1	The hidden role of dissolved organic carbon in the	
2	biogeochemical cycle of carbon in modern redox-stratified	
3	lakes	
4	Robin Havas ^{a,*} , Christophe Thomazo ^{a,b} , Miguel Iniesto ^c , Didier Jézéquel ^d , David Moreira ^c , Rosaluz Tavera ^e ,	
5 6	Jeanne Caumartin ^f , Elodie Muller ^f , Purificación López-García ^e , Karim Benzerara ^f	
7	^a Biogéosciences, CNRS, Université de Bourgogne Franche-Comté, 21 000 Dijon, France	
8	^b Institut Universitaire de France, 75005 Paris, France	
9 10 11	^c Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91190 Gif-sur-Yvette, France ^d IPGP, CNRS, Université Paris Cité, 75005 Paris, and UMR CARRTEL, INRAE & USMB, France	
12	^e Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, México	
13	^f Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, Institut de Minéralogie, de Physique des	
14	Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France.	
15		
16		
17	* Correspondence to: Robin Havas (robin.havas@gmail.com)	Field Code Changed
18 19 20		
21 22	Keywords: Carbon cycle; isotopic fractionation; DOC; Precambrian analogues,	Deleted: analogs
23		

25	Abstract. The dissolved organic carbon (DOC) reservoir plays, a critical role in the C cycle of marine and
26	freshwater, environments because of its size and implication, in many biogeochemical reactions. Although it is
27	poorly constrained, its importance in ancient Earth's C cycles is also commonly invoked. Yet, DOC is rarely
28	quantified and characterized in modern stratified analogues. In this study, we investigated the DOC reservoirs of
29	four redox-stratified alkaline crater lakes in, Mexico. We analyzed the concentrations and isotopic compositions of
30	DOC throughout the four water columns and compared them with existing data on dissolved inorganic and
31	particulate organic C reservoirs (DIC and POC). The four lakes have high DOC concentrations with great,
32	variability between and within the lakes (averaging 2 ± 4 mM; 1SD, n=28; <u>i.e.</u> from ~ 15 to 160 times the amount
33	of POC). The $\delta^{13}C_{DOC}$ signatures also span a broad range of values from -29.3 to -8.7 $\%$ (with as much as 12.5 $\%$
34	variation within a single lake). The prominent DOC peaks (up to 21 mM), together with their associated isotopic
35	variability, are interpreted as reflecting oxygenic and/or anoxygenic primary productivity through the release of
36	excess fixed carbon in three of the lakes (La Alberca de los Espinos, La Preciosa, and Atexcac), By contrast, the
37	variability of [DOC] and $\delta^{13}C_{DOC}$ in the case of Lake Alchichica is mainly explained by the partial degradation of
37 38	variability of [DOC] and $\delta^{13}C_{DOC}$ in the case of Lake Alchichica is mainly explained by the partial degradation of organic matter and accumulation of DOC in anoxic waters. The DOC records detailed metabolic functions such as
38	organic matter and accumulation of DOC in anoxic waters. The DOC records detailed metabolic functions, such as
38 39	organic matter and accumulation of DOC in anoxic waters. <u>The DOC records detailed metabolic functions such as</u> active DIC-uptake and DIC-concentrating <u>mechanisms</u> , which cannot be inferred from DIC and POC analyses
38 39 40	organic matter and accumulation of DOC in anoxic waters. <u>The DOC records detailed metabolic functions</u> , such as active DIC-uptake and DIC-concentrating <u>mechanisms</u> , which cannot be inferred from DIC and POC analyses alone, but <u>which</u> are critical to the <u>understanding of</u> carbon fluxes from the environment to the biomass.
38 39 40 41	organic matter and accumulation of DOC in anoxic waters. <u>The DOC records detailed metabolic functions such as</u> active DIC-uptake and DIC-concentrating <u>mechanisms</u> , which cannot be inferred from DIC and POC analyses alone, but <u>which</u> are critical to the <u>understanding of</u> carbon fluxes from the environment to the biomass. Extrapolating our results to the geological record, we suggest that anaerobic oxidation of DOC may have caused
38 39 40 41 42	organic matter and accumulation of DOC in anoxic waters. <u>The DOC records detailed metabolic functions such as</u> active DIC-uptake and DIC-concentrating <u>mechanisms</u> , which cannot be inferred from DIC and POC analyses alone, but <u>which</u> are critical to <u>the understanding of</u> carbon fluxes from the environment to the biomass. Extrapolating our results to the geological record, we suggest that anaerobic oxidation of DOC may have caused the very negative C isotope excursions in the Neoproterozoic. It is however unlikely that a large oceanic DOC
38 39 40 41 42 43	organic matter and accumulation of DOC in anoxic waters. <u>The DOC records detailed metabolic functions such as</u> active DIC-uptake and DIC-concentrating <u>mechanisms</u> , which cannot be inferred from DIC and POC analyses alone, but <u>which</u> are critical to <u>the understanding of</u> carbon fluxes from the environment to the biomass. Extrapolating our results to the geological record, we suggest that anaerobic oxidation of DOC may have caused the very negative C isotope excursions in the Neoproterozoic. <u>It is however unlikely that a large oceanic DOC</u> reservoir <u>could overweigh</u> the <u>entire oceanic DIC</u> reservoir. <u>This study demonstrates</u> how the analysis of DOC in

-{	Deleted: holds
{	Deleted: fresh water
~{	Deleted: large
ì	Deleted: involvement
Ì	Deleted: Despite poor constraints
Ì	Deleted: However,
Ú	Deleted: remains
Ĵ	Deleted: analogs. Here
Ň	Deleted: from
Ĵ	Deleted: To achieve this, we
ì	Deleted: important
ľ	Deleted: representing
{	Deleted: to reflect
{	Deleted: -
ì	Deleted: Atexcac, La Preciosa and
ì	Deleted:).
Ì	Deleted: was
Ì	Deleted: Overall,
ì	Deleted: functioning
Ĭ,	Deleted: mechanism that
Ì	Deleted: that
ľ	Deleted: understand
Ĵ.	Deleted: , but it
Ĵ	Deleted: overweight
Ň	Deleted: associated
N(Deleted: Overall, this
Ň	Deleted: shows
M	Deleted: lakes
N	Deleted: how it can help
N	Deleted: size
N.	Deleted: to
1	Deleted:

80 1. INTRODUCTION

81 Dissolved organic carbon (DOC) is a major constituent of today's marine and freshwater, environments (e.g. 82 Ridgwell and Arndt, 2015; Brailsford, 2019). It is an operationally defined fraction of aqueous organic carbon 83 within a continuum of organic molecules spanning a broad range of sizes, compositions, degrees of reactivity, and 84 bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015; Carlson and Hansell, 2015; Brailsford, 2019). 85 Oceanic DOC is equivalent to the total amount of atmospheric carbon (Jiao et al., 2010; Thornton, 2014) and 86 represents the majority of freshwater organic matter (Kaplan et al., 2008; Brailsford, 2019). The DOC reservoir, is 87 (i) at the base of many trophic chains (Bade et al., 2007; Hessen and Anderson, 2008; Jiao et al., 2010; Thornton, 88 2014), (ii) key in physiological and ecological equilibria (Hessen and Anderson, 2008) and (iii), that a critical role 89 for climate change (Jiao et al., 2010; Hansell, 2013; Thornton, 2014; Ridgwell and Arndt, 2015). Although isotopic 90 signatures are a powerful and widespread tool in biogeochemical studies, the use of DOC isotopes has been 91 relatively limited owing to technical difficulties (Cawley et al., 2012; Barber et al., 2017). Radioisotopes or labeled 92 stable isotopes of DOC have been used to date and retrace DOC compounds in diverse aquatic environments (e.g. 93 Repeta and Aluwihare, 2006; Bade et al., 2007; Kaplan et al., 2008; Brailsford, 2019). Studies featuring natural 94 abundances of DOC stable isotope data (i.e. $\delta^{13}C_{DOC}$) mainly used them to discriminate between different source 95 endmembers (e.g. terrestrial vs. autochthonous) (e.g. Cawley et al., 2012; Santinelli et al., 2015; Barber et al., 96 2017). After a pioneer study by Williams and Gordon (1970), few studies have used natural DOC stable isotope 97 compositions to explore processes intrinsically related to its production and recycling. Recently, Wagner et al. 98 (2020) reaffirmed the utility of stable isotopes to investigate DOC biosynthesis, degradation pathways, and transfer 99 within the foodweb. 100 Several studies have suggested a significant role for the DOC reservoir throughout geological time, when it would 101 have been much larger in size and impacting various phenomena, including; the regulation of climate and 102 glaciations during the Neoproterozoic (e.g. Peltier et al., 2007), the paleoecology of Ediacaran Biota and its early 103 complex life forms (e.g. Sperling et al., 2011), the oxygenation of the ocean through innovations of eukaryotic life 104 near the Neoproterozoic-Cambrian transition (e.g. Lenton and Daines, 2018), and the perturbation of the C cycle 105 recorded in δ^{13} C sedimentary archives from the Neoproterozoic to the Phanerozoic (e.g. Rothman et al., 2003; Fike 106 et al., 2006; Sexton et al., 2011; Ridgwell and Arndt, 2015). 107 The contribution of DOC reservoirs to the past and modern Earth's global climate and biogeochemical cycles 108 remains poorly constrained (Jiao et al., 2010; Sperling et al., 2011; Dittmar, 2015; Fakhraee et al., 2021) and the 109 existence and consequences of a large ancient oceanic DOC are still debated (e.g. Jiang et al., 2010, 2012; Ridgwell

existence and consequences of a large ancient oceanic DOC are still debated (e.g. Jiang et al., 2010, 2012; Ridgwell and Arndt, 2015; Li et al., 2017; Fakhraee et al., 2021). Thus, in addition to modeling approaches (e.g. Shi et al., 2017; Fakhraee et al., 2021), the understanding of DOC-related processes in the past anoxic and redox-stratified oceans (Lyons et al., 2014; Havig et al., 2015; Satkoski et al., 2015) should rely on the characterization of DOC dynamics in comparable modern analogues (Sperling et al., 2011). Although many studies have explored the C dynamics in comparable modern analogues (Sperling et al., 2011). Although many studies have explored the C Schiff et al., 2017; Havig et al., 2018; Cadeau et al., 2020; Saini et al., 2021; Petrash et al., 2022, very few have

analyzed DOC and even fewer have measured its stable isotope signature (Havig et al., 2018).

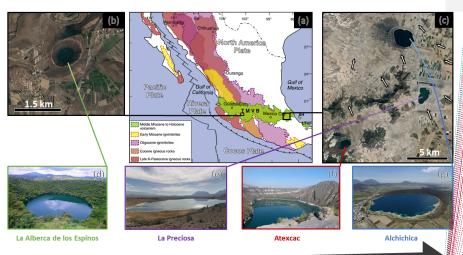
In this study, we characterize the DOC reservoir of four modern redox-stratified alkaline crater lakes from the
 Trans-Mexican Volcanic Belt (Ferrari et al., 2012) and its role within the C cycle of these environments. We report

Deleted: fresh water
Formatted: Font:Not Italic

Deleted: It generally Deleted: , while the size of oceanic DOC equals the total amount of atmospheric carbon (Jiao et al., 2010; Thornton, 2014). DOC Deleted:) as a long-term C storage reservoir, it Deleted: as a long-term C storage reservoir Deleted: The DOC reservoir Deleted: also

A	Deleted: invoked to play
1	Deleted: in
1	Deleted: times, potentially reaching a
A	Deleted: higher
А	Deleted: . These include
4	Deleted: Neoproterozoic's
4	Deleted: regulation
-{	Formatted: Font:Not Italic
-{	Deleted: Ediacarian
{	Formatted: Font:Not Italic
-	Formatted: Font:Not Italic
-	Deleted: or some perturbations
{	Deleted: the
٦	Formatted: Font:Not Italic
	Deleted: Nonetheless, the
4	Deleted: remain controverted
-{	Formatted: Font:Not Italic
1	Formatted: Font:Not Italic
Å	Deleted: analogs
4	Deleted: Yet, although
A	Formatted: Font:Not Italic
1	Deleted: Crowe et al., 2011; Kuntz et al., 2015; Camacho et al., 2017; Posth et al., 2017; Schiff et al., 2017; Havig et al., 2018; Cadeau et al., 2020; Saini et al., 2021; Petrash et al., 2022)
{	Deleted: included the analysis of
1	Deleted: Here
1	Deleted: trans
-{	Deleted: volcanic belt

150	DOC concentration and isotopic composition at multiple depths in the four water columns, and discuss these results
151	in the context of physico-chemical parameters (temperature, dissolved oxygen, chlorophyll a, and nutrient
152	concentrations), and the isotopic composition of dissolved inorganic and particulate organic carbon (DIC, POC),
153	all measured in the same lakes and from the same water samples as in Havas et al. (submitted). The four lakes
154	show, distinct water chemistries, along an alkalinity/salinity gradient (Zeyen et al., 2021). with, diverse planktonic
155	microbial communities (Iniesto et al., 2022; Havas et al., submitted). These characteristics allow us to examine the
156	effect of specific environmental and ecological constraints on the production and recycling of DOC in redox
157	stratified environments. We then present how the analysis of DOC deepens our understanding of the C cycle in
158	these lakes, compared to more classical DIC and POC analyses. Finally, the production and fate of the DOC
159	reservoir in these modern analogues is used to discuss the potential role of DOC in past perturbations of the
160	sedimentary C isotope record from the Neoproterozoic and Phanerozoic.
161	
162	2. SITE DESCRIPTION
102	2. SHE DESCRIPTION
163	The main characteristics of the geological, climatic and limnological context of the lakes under study are presented
164	here, but a more detailed description is available in Havas et al. (submitted).
165	The four lakes are volcanic maars formed after phreatic, magmatic and phreatomagmatic explosions, and are
166	located in the Trans-Mexican Volcanic Belt (TMVB, Fig. 1). The first lake, La Alberca de los Espinos, is located
167	at the margin of the Zacapu tectonic lacustrine basin in the Michoacán-Guanajuato Volcanic Field (MGVF), in the
168	western-central part of the TMVB (Fig. 1). The other three (La Preciosa, Atexcac, and Alchichica) are located
169	within the same zone (~ 50 km ²) of the Serdan-Oriental Basin (SOB), in the easternmost part of the TMVB (Fig. 1).
170	La Alberca, with a temperate semi-humid climate, is predominantly underlain, by andesitic rocks (Siebe et al.,
171	2012, 2014). By contrast, Alchichica shows much higher evaporation than precipitation rates, reflecting the
172	temperate sub-humid to temperate arid climate experienced by the SOB lakes (Silva-Aguilera et al., 2022). These
173	lakes, overlie calcareous and basaltic/andesitic basement rocks (Carrasco-Núñez et al., 2007; Chako Tchamabé et
174	al., 2020) ₁
175	These variations in geological context, and hydrological processes generate a gradient of water chemical
176	compositions, where salinity, alkalinity and DIC increase in the following order: (i) Lake La Alberca, (ii) La
177	Preciosa, (iii) Atexcac, and (iv) Alchichica (Zeyen et al., 2021). The four lakes are alkaline with pH values around
178	9. Under these conditions, DIC is composed of HCO_3^{-7}/CO_3^{-2} ions with minor amounts of $CO_{2(aq)}$ (< 0.5 %). This
179	favors, the precipitation of microbialite, deposits, which are found in the four systems but more abundantly as,
180	alkalinity <u>increases</u> (Zeyen et al., 2021).
181	The four lakes are defined as warm monomictic with anoxic conditions prevailing in the bottom waters during
182	most of the year (i.e. one mixing period per year, during winter; (Armienta et al., 2008; Macek et al., 2020; Havas
183	et al., submitted). They are all "closed lakes" with no inflow or outflow of surficial waters and are thus fed by rain
184	and groundwater, only.
185	Atexcac is the most oligotrophic of the three SOB lakes (Lugo et al., 1993; Vilaclara et al., 1993; Sigala et al.,
186	2017). Chlorophyll a data from May 2019 (Fig. 2), based on mean and maximum value categories (OECD, 1982),


2017). Chlorophyll a data from May 2019 (Fig. 2), based on mean and maximum value categories (OECD, 1982),

 $\underline{indicate} ultra-oligotrophic \ conditions \ \underline{for} Atexcac \ (\leq 1 \ and \ 2 \ \mu g/L, \ respectively), \ oligotrophic \ \underline{for} \ Alchichica \ (\leq 2 \ \mu g/L, \ respectively))$

187

-{	Deleted: concentrations
1	Deleted: compositions of DOC
-{	Deleted: them together with
-{	Deleted: characteristics (<i>e.g.</i> Vilaclara et al., 1993; Zeyen et al., 2021) and
ľ	Deleted: compositions
Ì	Deleted:)
ľ	Deleted: (
ľ	Deleted: .,
ľ	Deleted: exhibit
Ĭ	Deleted: aligning
Ĵ	Deleted:) and
ľ	Deleted: This allows
Ň	Deleted: DOC reservoir, and how this latter influences the overall C cycle in
ľ	Deleted: -
1	Deleted:
-(Deleted: Here, the
-(Deleted: . A
4	Deleted: -
4	Deleted: Three of them (Alchichica, Atexcac and La
	Preciosa) are located in a restricted area ($\sim 50 \text{ km}^2$) of the Serdan-Oriental Basin (SOB), in the easternmost part of the TMVB (Fig. 1). By contrast,
1	Deleted: Lakes from the SOB experience
1	Deleted: subhumid to temperate arid climates as reflected by
-	Moved (insertion) [1]
4	Deleted: fluxes in Alchichica for example (Silva-Agui [2]
4	Deleted: La Alberca's climate is temperate to semi-hu [3]
1	Moved up [1]: by andesitic rocks (Siebe et al., 2012, 2014).
1	Deleted: contexts
4	Deleted: salinity, notably,
4	Deleted: finally
1	Deleted: Nonetheless, the
4	Deleted: fosters
1	Deleted: microbialites
1	Deleted: with an abundance increasing with
4	Deleted: (one mixing period per year, during winter)
Ą	Deleted: Importantly, they
4	Deleted: receive water from
Ą	Deleted: groundwaters
Ą	Deleted: Finally, the trophic status of the lakes under s [4]
4	Deleted: being
1	Deleted: and La Preciosa and Alchichica being more o
1	Deleted: in
-{	Deleted:) suggest,
1	Deleted: in
-	Deleted: conditions in
ľ	

and 6 μ g/L, respectively), intermediate between oligo- and mesotrophic for La Alberca (≤ 3 and 4.5 μ g/L, respectively) and "low" mesotrophic for La Preciosa (≤ 3 and 9 μ g/L, respectively). Total dissolved P concentrations from May 2019 show similar values for the three SOB lakes close to the surface (increasing in the anoxic zone of Alchichica) but much higher values for La Alberca (Havas et al., submitted). This pattern was observed during previous sampling campaigns (Zeyen et al., 2021). La Alberca is surrounded by more vegetation, which could favor the input of nutrients to this lake. La Preciosa and La Alberca are thus the least oligotrophic of the four lakes. Importantly, although differences in trophic status exist between the four lakes, they are more oligotrophic than eutrophic.

Increasing alkalinity and salinity

253

254 255

256

257

258

259

260

Figure 1. Geographical location and photographs of the four crater lakes, (a) Geological map from Ferrari et al. (2012) with black squares showing the location of the four studied lakes within the Trans-Mexican Volcanic Belt, (TMVB). (b, c) Close up © Google Earth views of La Alberca de los Espinos and the Serdan-Oriental Basin (SOB). The white arrows represent the approximate groundwater flow path (based on Silva-Aguilera, 2019), (d-g) Photographs of the four lakes (d from © Google Image ['enamoratedemexicowebsite'], e from © Google Earth street view, and g from © 'Agencia Es Imagen'). Figure from Havas et al. (submitted).

261 **3.** METHOD

262 3.1. Sample Collection

All samples were collected in May 2019. Samples for DOC analyses were collected at different depths from the surface to the bottom of the water columns, particularly, where the physico-chemical parameters showed pronounced variation (e.g. at the chemocline and turbidity peaks; Fig. 2 and Table 1). Water samples were collected with a Niskin bottle. For comparison with DIC and POC data, the DOC was analyzed on the same Niskin sampling as in Havas et al. (submitted), except where indicated (Fig. 4; Tables 1 and 2). Analyses of DOC and major, minor,

	2019 show similar values for the three SOB lakes close to thetheirsurface (increasing in theAlchichicaanoxic zone of Alchichica) but much higher values forinLa Alberca (Havas et al., submitted). This sameattern washas beenobserved during previous sampling campaigns (Zeyen et al., 2021). Thus,a Preciosa andberca isappear overall as the least oligotrophic of the four lakes. Besides, La Alberca's is noticeably [6]
1	Formatted: Font:(Default) Times New Roman, 10 pt
-	Moved down [2]: (submitted).
	Deleted: <sp></sp>
ļ	Formatted: Font:10 pt
	Deleted: from Havas et al.
	Formatted: Font:(Default) Times New Roman
	Deleted: studied
	Formatted: Font:(Default) Times New Roman
	Formatted[7]
l	Deleted: representing
	Formatted
l	Deleted: in
	Formatted: Font:(Default) Times New Roman
	Deleted: trans
	Formatted: Font:(Default) Times New Roman
1	Deleted: volcanic belt
ļ	Formatted: Font:(Default) Times New Roman
1	Deleted:), (
A	Formatted: Font:(Default) Times New Roman
A	Deleted: lake
A	Formatted: Font:(Default) Times New Roman
1	Deleted:), respectively.
1	Formatted: Font:(Default) Times New Roman
1	Deleted: Pictures
1	Formatted: Font:(Default) Times New Roman
1	Moved (insertion) [2]
-	Formatted: Font:(Default) Times New Roman
-	Deleted: 。
/	Deleted: ofDOC analyses were collected at different depths from the surface to the bottom of the water columns, particularly with specific interestswhere the physico- chemical parameters showed pronounced variationpeculiar variations[9]
1	Deleted: ,turbidity peaks; Fig.Figure2 and Table 1). The
	main physico-chemical vertical profiles are shown in Fig. 2. Water samples were collected with a Niskin bottle. For comparison with DIC and POC data the DOC was analyzed

onanalyses were carried out from...the same Niskin sampling as in Havas et al. (submitted), except

Formatted: Font:Not Italic

... [10]

Deleted: conditions in...La Alberca (\leq 3 and 4.5 µg/L, respectively) and "low" mesotrophic forconditions in...La

Preciosa (≤ 3 and 9 µg/L, respectively). TotalMoreover, we

note that total...dissolved P concentrations fromin...May

and trace ions were carried out after water filtration at 0.22 µm, directly in the field with Filtropur S filters prerinsed with Jake water. Details about the sampling procedure and analysis of the physico-chemical parameters, as
well as DIC and POC measurements, are reported in Havas et al. (submitted),

351

352 3.2. Dissolved organic carbon (DOC) concentration and isotope measurements

353 Filtered solutions were acidified to a pH of 21-2 to degas all the DIC and leave DOC as the only C species in 354 solution. The bulk DOC was analyzed directly from the acidified waters (i.e. all organic C molecules smaller than 355 0.22 µm). Bulk concentration was measured with a Vario TOC at the Laboratoire Biogéosciences (Dijon), 356 calibrated with a range of potassium hydrogen phthalate (Acros®) solutions. Before isotopic analysis, DOC 357 concentration of the samples was adjusted to match international standards at 5 ppm (USGS 40 glutamic acid and 358 USGS 62 caffeine). Isotopic compositions were measured at the Laboratoire Biogéosciences using an IsoTOC 359 (Elementar, Hanau, Germany), running under He-continuous flow and coupled with an IsoPrime stable isotope 360 ratio mass spectrometer (IRMS; Isoprime, Manchester, UK). Samples were stirred with a magnetic bar and flushed 361 with He before injection of 1 mL sample aliquots (repeated 3 times). The DOC was then converted into gaseous 362 CO2 by combustion at \$50 °C, quantitatively oxidized by copper oxide, and separated from other combustion 363 products in a reduction column and a water condenser. This CO₂ was transferred to the IRMS via an open split 364 device. To avoid a significant memory effect between consecutive analyses, each sample (injected and measured 365 three times) was separated by six injections of deionized water and the first sample measurement was discarded, 366 Average reproducibility was 1.0 % for standards and 0.5 % for samples (1SD). The average reproducibility for 367 sample [DOC] measurements was 0.3 mM₂ and blank tests were below the detection limit.

In addition to DOC measurements, we calculated the "Total carbon concentration" as the sum of DOC, DIC, and POC concentrations, with DIC and POC data from Havas et al. (submitted). The corresponding isotopic composition ($\delta^{13}C_{Total}$) was calculated as the weighted average of the three $\delta^{13}C$. The DIC and POC isotope data were also used to calculate isotopic differences with $\delta^{13}C_{DOC}$, expressed in the $\Delta^{13}C$ notation. The values for $\delta^{13}C_{DIC}$ and $\delta^{13}C_{POC}$ are detailed in Havas et al. (submitted) and summarized in the results section.

Deleted: on Deleted: that were Deleted: the Deleted: / Formatted: English (US) Deleted:

Deleted: first
Deleted: about
Deleted: .
Deleted: concentrations were measured
Deleted: analyses
Deleted: concentrations
Deleted: were
Deleted: our
Deleted:)

Deleted: about
Deleted: oxides
Deleted: condensers. Finally, it
Deleted: In order to
Deleted: were
Deleted: from the isotopic calculations.
Deleted: $\delta^{13}C_{DOC}$
Deleted: of $\delta^{13}C_{DOC}$
Deleted: and 0.5 % (1SD)
Deleted: , respectively.

374 4. RESULTS

373

380

381

The water columns of the four lakes were clearly stratified in May 2019 (Fig. 2; Havas et al., submitted). The epi, meta-_and hypo-limnion layers of each lake were identified based on the thermocline depths, and correspond to
the oxygen-rich, intermediate, and oxygen-poor layers in the four lakes, although the oxycline in La Preciosa is
slightly thinner than the thermocline (~5 vs. 8 m). In the following, DIC, POC, O₂, chlorophyll a (Chl a), NH₄, P
and CO_{2(aq)} data are also presented.

4.1. <u>Lake La Alberca de los Espinos</u>

Bulk DOC had a concentration of ~ 0.4 mM throughout the water column, except at 7 and 17 m, where it peaked at 1.0 and 1.7 mM, respectively (Fig. 3). Its isotopic composition ($\delta^{13}C_{DOC}$) was comprised between -27.2 and -

-{	Deleted:	[11]
-	Formatted: Font: (Default) Times New Roman, 10 pt	
{	Deleted: -	

Deleted: (underlined by a light grey color gradient in the figures)

Moved (insertion) [3]

6

Formatted: Justified, Level 1, Space After: 8 pt

413 25.1 ‰ except at 7 m, where it reached -14.7 ‰ (Fig. 3). It represented ~ 8% of total carbon on average, and 93% Moved (insertion) [4] 414 of the organic carbon present in the water column. Total C concentration increased downward from about 7 to 415 <u>9 mM.</u> The $\delta^{13}C_{\text{total}}$ decreased from -3.9 to -7.9 ‰ between 5 and 17 m and then increased to -3.2 ‰ at 25 m 416 (Table 1). The isotopic difference between DOC and DIC ($\Delta^{13}C_{DOC-DIC}$) was between -21.2 and -25.2 ‰, except at 7 m depth, where it peaked to -12.4 % (Fig. 4; Table 2). The $\Delta^{13}C_{\text{DOC-POC}}$ values were comprised between -1.5 417 and +3.1 ‰, except at 7 m depth, where DOC was enriched in ¹³C by ~11.5 ‰ (Fig. <u>4: Table 2)</u>. The DIC 418 419 concentration and $\delta^{13}C_{DIC}$ averaged 7.5 ± 0.7 mM and -2.9 ± 0.8 ‰; POC concentration and $\delta^{13}C_{POC}$ averaged 420 0.04 ± 0.02 mM and -27.1 \pm 1.3 ‰. Dissolved oxygen showed a stratified profile with an oxycline layer 421 transitioning from O2-saturated to O2-depleted conditions between 5 and 12 m depths (Fig. 2). Chl a concentration 422 showed three distinct peaks at ~7.5, 12.5 and 17.5 m depths, all reaching ~4 μ g/L (Fig. 2). The average NH₄⁺ and 423 P concentrations were 3.9 and 11.3 µM, respectively. The activity of CO_{2(aq)} was 10^{-5.00} at 7 m depth and increased 424 to 10^{-3.40} at the bottom of the lake.

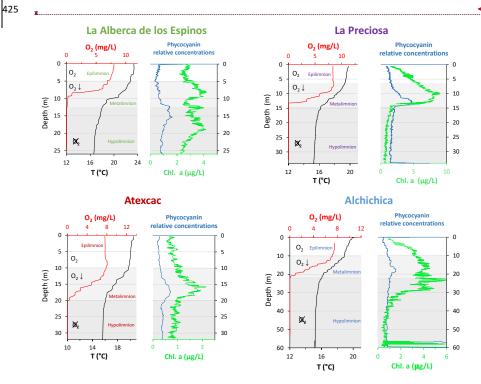


Figure 2. Physico-chemical parameter depth profiles of La Alberca de los Espinos, La Preciosa, Atexcac, and Alchichica: dissolved oxygen concentration (mg/L), water temperature (°C), phycocyanin and chlorophyll a pigments (µg/L). Absolute values for phycocyanin concentrations were not determined; only relative variations are represented (with increasing concentrations to the right). Epi-, meta- and hypo-limnion layers are represented for each lake by the white, gray, and dark gray areas, based on temperature profiles with the metalimnion corresponding to the thermocline. The three layers match the oxygen-rich, intermediate, and oxygen-poor zones, except in La Preciosa). Original data from Havas et al. (submitted).

Formatted: Justified, Level 1, Space After: 8 pt Moved (insertion) [6] Formatted: Font: (Default) Times New Roman, 10 pt Formatted: No underline

Moved (insertion) [5]

426 4.2. Lake La Preciosa

427	Bulk DOC had a concentration of ~ 0.5 mM throughout the water column except at 12.5 m, where it peaked at
428	1.6 mM. The $\delta^{13}C_{DOC}$ was -25.9 ± 0.4 ‰ throughout the water column except between 12.5 and 15 m, where it
429	reached -20.0 ‰ (Fig. 3). The DOC represented ~ 3% of the total carbon on average, and 91% of the organic
430	carbon present in the water column. The total C concentration was relatively stable at ~13.8 mM, while $\delta^{13}C_{total}$
431	was centered around -1 $\%$ with a decrease to -2.8 $\%$ at 12.5 m (Table 1). The $\Delta^{13}C_{\text{DOC-DIC}}$ values were very stable
432	with depth around -26 ‰, but markedly increased at 12.5 m up to -19.8 ‰. (Fig. 4; <u>Table 2</u>). The $\Delta^{13}C_{DOC-POC}$
433	values decreased from ~1.3 ‰ in the upper waters to ~ -0.4 ‰ in the bottom waters but showed a peak to +7.1 ‰
434	at a depth of 12.5 m (Fig. 4; Table 2). The DIC concentration and $\delta^{13}C_{DIC}$ averaged 13.0 ± 0.8 mM and -0.2 ± 0.3 ‰;
435	POC concentration and $\delta^{13}C_{POC}$ averaged 0.05 ± 0.02 mM and -26.1 ± 1.4 ‰. Dissolved oxygen showed a stratified
436	profile with an oxycline layer transitioning from O2-saturated to O2-depleted conditions between 8 and 14 m depths
437	(Fig. 2). The Chl a concentration showed a large peak at ~10 m, reaching 9 μ g/L (Fig. 2). The average NH ₄ ⁺ and
438	<u>P concentrations were 1.9 and 0.2 μM, respectively. The activity of CO_{2(aq)} averaged 10^{-4.57}.</u>
439	×

4.3. Lake Atexcac

440

453

441 Bulk DOC had a concentration of ~ 1.1 mM throughout the water column except at 16 and 23 m, where it reached 442 7.7 and 20.8 mM, respectively. The $\delta^{13}C_{DOC}$ increased from -20.0 to -8.7 ‰ between 5 and 23 m, decreasing to -443 11.2 ‰ at 30 m. It represented about 16% of the total carbon on average, and 98 % of the organic carbon present 444 in the water column. Total C concentrations and $\delta^{13}C_{total}$ are centered around 27.7 mM and -0.6 ‰ with a clear 445 increase to 38.9 mM and decrease to -2.7 ‰ at 23 m, respectively. The $\Delta^{13}C_{\text{DOC-DIC}}$ values significantly increased 446 from the surface (-20.4 ‰) to the hypolimnion (~ -11.4 ‰). The DOC isotope compositions were strictly and 447 significantly less negative than POC (i.e. enriched in heavy ¹³C), with $\Delta^{13}C_{\text{DOC-POC}}$ reaching as much as +17.9 ‰ 448 at the depth of 23 m (Fig. 4; Table 2). The DIC concentration and $\delta^{13}C_{DIC}$ averaged 25.7 ± 0.9 mM and 0.5 ± 0.3 %; 449 POC concentration and $\delta^{13}C_{POC}$ averaged 0.04 ± 0.02 mM and -27.7 ± 1.1 ‰. Dissolved oxygen showed a stratified 450 profile with an oxycline layer transitioning from O2-saturated to O2-depleted conditions between 10 and 20 m 451 depths (Fig. 2). Chl a concentration showed a small peak at 16 m, reaching 2 μ g/L (Fig. 2). The average NH₄⁺ and 452 P concentrations were 2.5 and 0.3 µM, respectively. The activity of CO_{2(aq)} averaged 10^{-4.27}.

454 4.4. Lake Alchichica

455 Bulk DOC had a concentration of ~0.5 mM throughout the water column, except in the hypolimnion, where it 456 reached up to 5.4 mM. The $\delta^{13}C_{DOG}$ varied from -29.3 to -25.1 ‰, with maximum values found in the hypolimnion 457 (Fig. 3), The DOC represented about 5 % of the total carbon on average, and 93 % of the organic carbon present 458 in the water column. Total carbon concentration depth profile roughly followed that of DOC, while $\delta^{13}C_{total}$ was 459 between -0,2 and 1.6 ‰ throughout the water column, except in the lower part of the hypolimnion, where it 460 decreased to -2.3 % (Table 1). The isotopic difference between DOC and DIC ($\Delta^{13}C_{DOC-DIC}$) was slightly smaller 461 in the hypolimnion and was comprised between -26.7 and -30.9 ‰. The DOC isotope compositions were more 462 negative than POC, with $\Delta^{13}C_{DOC-POC}$ values between -0.7 and -3.5 % (Fig. 4; Table 2),

4.5.

463

Moved (insertion) [7]

Formatted: Font:(Default) Times New Roman

Moved (insertion) [8]

Formatted: Justified, Space After: 8 pt, Line spacing: 1.5 lines

61	Formatted: Justified, Space After: 8 pt, Line spacing: 1.5 ines
/ 🖸	Deleted: around
/ C	Deleted: Its isotopic composition
/ C	Deleted: [12]
/ C	Deleted: on average
/ C	Deleted: The total
/ C	Deleted: roughly comprised
1	Deleted: and
1	Deleted: ‰ through
/ C	Deleted: overall
· (C	Deleted: isotopic
1	Deleted: those of
- [[Deleted: .
`[Moved up [8]: - Lake Atexcac -

The DIC concentration and $\delta^{13}C_{\text{DIC}}$ averaged 34.6 ± 0.6 mM and 1.7 ± 0.2 ‰; POC concentration and $\delta^{13}C_{\text{POC}}$ **averaged** 0.01 ± 0.04 and -25.6 ± 1.0 ‰. Dissolved oxygen showed a stratified profile with an oxycline layer **transitioning from** O₂-saturated to O₂-depleted conditions between ~10 and 20 m depths (Fig. 2). Chl a showed a **broad peak between** ~ 10 and 30 m, averaging 4 µg/L and with a narrow maximum of 6 µg/L (Fig. 2). The average **NH**₄⁺ and P concentrations were 4.3 and 1.5 µM respectively.

484

4.6.

4.7.

The

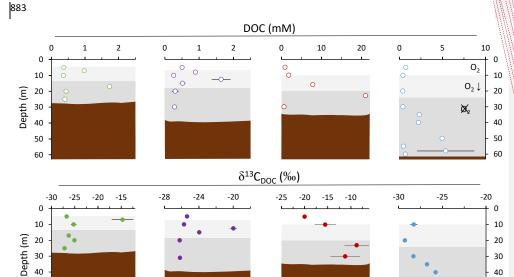
485

486

activity of CO_{2(aq)} averaged 10^{-4.53}

487 488 489

490


Lake	Sample	DOC	Total Carbon	$\delta^{13}C_{DOC}$	$\delta^{13}C_{Total}$	4
	•	mmo	oles/L	%		/
	Albesp, 5m	0.4	<u>7.2</u>	<u>-26.7</u>	<u>-3.9</u>	k
	Albesp 7m	1.0	<u>8.1</u>	<u>-14.7</u>	<u>-3.9</u>	
La Alberca	Albesp 10m,	0.4	7.6	-25.2	<u>-5.1</u>	
<u>de Los</u> Espinos	Albesp 17m,	<u>1.7</u>	<u>9.0</u>	- <u>26</u> ,3	<u>-7.9</u>	
<u>Espinos</u>	Albesp 20m	0.4	<u>8.4</u>	-25.1	- <u>4.5</u>	
	Albesp 25m	<u>0.4</u>	<u>9.2</u>	- <u>27.2</u>	- <u>3.2</u>	
	<u>LP 5m</u>	<u>0.5</u>	14.0	-25.4	-0.9	4
	LP 8m,	0.9	7	ND,	ND,	
	<u>LP 10m</u> ,	0.3	<u>13.7</u>	- <u>25</u> 7	- <u>0.4</u>	
La Preciosa	LP 12.5m	<u>1.6</u>	13.2	-20.0	<u>-2.8</u>	-
	<u>LP 15m</u>	0.5	<u>13.9</u>	-24,0	- <u>1.3</u>	4
	LP 20m,	0.3	<u>13.6</u>	-26.2	- <u>1.0</u>	
	<u>LP 31m</u> ,	0.3	13.6	-26.2	<u>-0.9</u>	
	ATX <mark>5m,</mark>	0.92	27.4	-20.0	-0.4	4
	ATX <u>10m</u>	1.8	<u>28.1</u>	- <u>15.5</u>	-0.7 <u>,</u>	
Atexcac	<u>ATX 16m</u>	<u>7.8</u>	<u>34.7</u>	ND,	ND,	4
	ATX 23m	21.0	45.2	-8.7	<u>-3.6</u>	
	ATX 30m	0.7	<u>26.4</u>	- <u>11.2</u>	-0. <u>1</u>	
	AL 5m	0.7	<u>35.8</u>	ND,	ND,	4
	<u>AL 10m</u>	0.4	<u>33.5</u>	-28.3	1.6	
	AL_20m	0.4	<u>35.0</u>	- <u>29.3</u>	1.3	
Alabiahiaa	<u>AL 30m</u>	0.4	<u>35.1</u>	-28.3	1.2	
Alchichica	<u>AL 35m</u>	2.3	<u>37,2</u>	-26. <mark>8</mark>	- <u>0.2</u>	
	<u>AL 40m</u>	2.2	<u>37.0</u>	-25.8	<u>-0.1</u>	
	<u>AL 50m</u>	<u>5.0</u>	<u>39.8</u>	-25.1	<u>-1.8</u>	
	AL 55m,	0.5	<u>35.3</u>	- <u>27.6</u>	1.1	

Formatted [... [13]] **Deleted:** DOC had a...concentration and $\delta^{13}C_{DIC}$ aver [... [14]] Moved up [6]: ... [15] Formatted ... [16] **Deleted:** DOC had a concentration around 0.5 mM [... [17] Moved up [5]: 4; Table 2). Moved up [3]: ... [21] **Deleted:** $\Delta^{13}C_{DOC-DIC}$ values were very stable with de ... [19] Deleted: ... [20] Formatted ... [18] Deleted: DOC had a concentration of around 0. Formatted [... [22] **Deleted:** mM throughout the water column except at ... [23] Moved up [4]: and 93% of the organic carbon presen ... [24] **Deleted:** $\delta^{13}C_{total}$ decreased from -3.9 to -7.9 ‰ betw(...[25]) Formatted ... [26] Formatted [... [27] Formatted ... [28] Formatted Table [... [29] Deleted: mmol.... [... [30] Deleted: 7 Deleted: 35.8 Deleted: ND Deleted: ND Deleted: AL Deleted: .4 Deleted: 33.5 Deleted: 28.3 Deleted: 1.6Deleted: AL 10m Deleted: Alchichica Formatted ... [31] Moved (insertion) [9] [... [32] Deleted: 35.0 Deleted: 29.3 Deleted: .3 Deleted: AL 20m Deleted: 0.4 Deleted: 35.1 Deleted: 28 Deleted: 1.2 Deleted: AL 30m Deleted: 2.3 Deleted: 37.2 **Deleted:** 26.8 Deleted: 0.2 Deleted: AL 35m Deleted: 2.2 Deleted: 37.0 Deleted: 25.8 **Deleted:** 0.1 Deleted: AL 40m Deleted: 5. Deleted: 39.8 Deleted: 1 Deleted: 1.8 Deleted: AL 50m Formatted ... [35] Moved (insertion) [11] ... [36] Moved (insertion) [10] ... [33]

<u>AL 58m</u>	5,4	40.2	-27.7	- <u>2.3</u>	 Deleted: 0
<u>AL 60m,</u>	0.7	35.3	-26.1	1.0	 Deleted: 8.4

Table 1

Concentration, and isotopic composition, of dissolved organic carbon (DOC). Total carbon concentration is the sum of DOC, DIC, and POC reservoirs. For LP 8m, [DIC] was not measured, and the total carbon concentration was not calculated. The DIC and POC, were determined by Havas et al. (submitted). The $\delta^{13}C_{Total}$ is the weighted average of the three δ^{13} C. ND: non-determined.

Deleted: 0	
Deleted: 8.4	
Deleted: 25.1	
Deleted: 4.5	
Deleted: Albesp 20m	
Deleted: 4	
Deleted: 9.2	
Deleted: 27.2	
Deleted: -3.2	
Deleted: Albesp 25m	
Deleted:	[47]
Deleted: Concentrations	
Deleted: compositions	
Deleted: therefore	
Deleted: latter two	

Figure 3. Vertical profiles of concentration and isotopic composition of dissolved organic carbon (DOC) throughout the water columns of the studied lakes: La Alberca de los Espinos, La Preciosa, Atexcac, and Alchichica. Concentration is in mmol.L⁻¹ (mM) and isotopic composition in ‰ vs. VPDB. The white, gray, and dark gray shading is as in Fig. 2. The brown shading symbolizes the presence of sediment at the bottom of the water columns (showing the greater water depth in Lake Alchichica).

Atexcac

La Preciosa

884

30

40

50

60

5. DISCUSSION 885

La Alberca

886 887 The four Mexican lakes studied here have a high DOC content but very different profiles and signatures for [DOC] 888 and <u>b13C_{DOG}</u> (Fig. 3), Evaporation may increase DOC concentration (Anderson and Stedmon, 2007; Zeyen et al., 889 2021), but would not explain the significant intra-lake DOC variability with depth. It is likely marginal because, 890 in contrast with what was observed for DIC (Havas et al., submitted), there is no correlation between the average 891 DOC concentration in the Mexican lakes and their salinity ($R^2=0.47$, p=0.2 for DOC and $R^2=0.93$, $p=5.8*10^{-5}$ for 892 DIC). In the following discussion, we therefore explore the different patterns of DOC production and fate, in

Deleted: In all

Deleted:]

30

40

50

60

Alchichica

- 11	
	Deleted: , the DOC reservoir occupies a predominant role, but showed quite diverse dynamics and characteristics between the lakes. Indeed, the four lakes
/	Deleted: [DOC] or $\delta^{13}C_{DOC}$ profiles and signatures. In contrast, they show quite similar
А	Deleted: the DIC
И	Deleted: POC reservoirs
4	Deleted: ; Havas et al., submitted).
	Deleted: be one process that increases DOC concentrations
	Deleted: . However, it
	Deleted: here
	Deleted: on the contrary to
	Deleted: ,
	Deleted: [

925 relation to other environmental and biological variations, and how this can provide information about past DOC-926 related perturbations of the C cycle,

5.1 Sources and fate of DOC

929 Due to their endorheic nature, the four lakes receive relatively little allochthonous OM, (Alcocer et al., 2014b; 930 Havas et al., submitted). It is therefore possible to focus on DOC-related processes occurring within the water 931 column, particularly on autochthonous DOC primary production. Autochthonous DOC can form through higher-932 rank OM degradation processes such as sloppy feeding by zooplankton, UV photolysis or bacterial and viral cell 933 lysis (Lampert, 1978; Hessen, 1992; Bade et al., 2007; Thornton, 2014; Brailsford, 2019), as well as passive 934 (leakage) or active (exudation) release by healthy cells (e.g. Baines and Pace, 1991; Hessen and Anderson, 2008; 935 Thornton, 2014; Ivanovsky et al., 2020). Generally, this C release (whether, "active" or "passive") tends to be 936 enhanced in nutrient-limited conditions because recently fixed C is in excess compared with other essential 937 nutrients such as N or P (Hessen and Anderson, 2008; Morana et al., 2014; Ivanovsky et al., 2020). For oxygenic 938 phototrophs, this is particularly true under high photosynthesis rates, because photorespiration bolsters the 939 excretion of DOC (Renstrom-Kellner and Bergman, 1989). Oligotrophic conditions also tend to limit heterotrophic 940 bacterial activity and thus preserve, DOC stocks (Thornton, 2014; Dittmar, 2015). Both these production and 941 preservation aspects are consistent with the trend of increasing DOC concentrations observed in the lakes, from 942 the less oligotrophic La Alberca and La Preciosa, (0.7 mM on average) to the more oligotrophic Alchichica 943 (1.8 mM) and Atexcac (6.5 mM).

944

927

928

945 5.1.1 DOC release by autotrophs

946 In the four Mexican lakes, DOC concentration profiles exhibit one or several peaks occurring both in oxic and 947 anoxic waters (Fig. 3). In La Alberca and La Preciosa, these peaks correlate with Chl.a peaks, but not in the other 948 Jakes, they do not match the chlorophyll increase. However, in Atexcac, a remarkable DOC peak (over 10-fold 949 increase, Fig. 3) occurs at the same depth as a peak of anoxygenic photosynthesis (Havas et al., submitted). These 950 co-occurrences indicate that a large portion of DOC in these three lakes (at least at these depths) arises from the 951 release of photosynthetic C fixed in excess. Phytoplankton, in aerobic conditions generally releases dissolved 952 organic matter by (i) an active "overflow mechanism" (DOM exudation) or (ii) passive diffusion through the cell 953 membranes, but this remains to be shown for anoxygenic organisms, In the first case, DOM is actively released 954 from the cells as a result of C fixation rates higher than growth and molecular synthesis rates (e.g. Baines and Pace, 955 1991). Hence, DOM exudation depends not only on the nature of primary producers (different taxa may display 956 very different growth rates, photosynthetic efficiency, and exudation mechanisms), but also on environmental 957 factors such as irradiance and nutrient availability (e.g. Otero and Vincenzini, 2003; Morana et al., 2014; Rao et 958 al., 2021). Exudation of DOM may also serve "fitness-promoting purposes" such as storage, defense, or mutualistic 959 goals (Bateson and Ward, 1988; Hessen and Anderson, 2008). In the case of passive diffusion, DOM release also 960 depends on cell permeability and the outward DOC gradient, but is more directly related to the amount of 961 phytoplankton biomass (e.g. Marañón et al., 2004). Thus, any new photosynthate production drives a steady DOM 962 release rate, independent of environmental conditions to some extent (Marañón et al., 2004; Morana et al., 2014).

Deleted: . Moreover, evaporation would not explain the significant intra-lake DOC depth variability Formatted: Strikethrough

Deleted: In the following, we explore the different patterns of DOC production and fate, which depend on slight environmental and biological variations between the Mexican lakes Moreover we describe how the analysis of DOC provides insights into microbial processes and overall C cycle dynamics in stratified water columns. Finally, we extrapolate our results to discuss the possible roles of DOC onto paleoclimate and sedimentary C isotopes variations at the geological scale.

Deleted: Dissolved organic carbon is an operationally defined fraction of aqueous organic carbon (here separated from particulate organic carbon by filtration at $0.22 \,\mu\text{m}$) within a continuum of organic molecules spanning a large range of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015; Carlson and Hansell, 2015; Brailsford, 2019). Importantly... the four lakes receive relatively little input of allochthonous OM due to their endorheic nature...(Alcocer et al., 2014b; Havas et al., submitted). It is therefore possible toThis allows to specifically ... focus on DOC-related processes occurring within the water column. particularlycolumns, and notably ... on autochthonous DOC primary production. Autochthonous DOC can form through multiple processes, including: ...igher-rank OM degradation processes such as sloppy feeding by zooplanktonpred [.... [48] Formatted: Font:Not Italic

Deleted: either ... "active" or "passive") tends to be enhanced in nutrient-limited conditions because some ... ecently fixed C is in excess compared with other essential nutrients such as N or P (Hessen and Anderson, 2008; Morana et al., 2014; Ivanovsky et al., 2020). For and that especially in high oxygenic phototrophs, this is particularly true under high photosynthesis rates, becausecontexts, where...photorespiration bolsters the excretion of DOC

(Renstrom-Kellner and Bergman, 1989). Oligotrophic Moreover, oligotrophic ... onditions also tend to limit the heterotrophic bacterial activity and thus preserve the...DOC stocks (Thornton, 2014; Dittmar, 2015). Both these production and preservation aspects are consistent with This may partly explain...the trend of increasing DOC concentrations observed in the lakes, from the less oligotrophic La Alberca and La

PreciosaPreciosa's...(0.7 ... M on average) to the mo ... [49] Deleted: [...OC concentration] depth ...rofiles exhibit one or several peaks standing out from low background values and ... ccurring in ... oth in oxic and anoxic waters (Fig. 3). In La Alberca and La Preciosa, these peaksthey...com ... [50] Formatted: Font:Not Italic

Deleted: pf...primary producers (different taxa may display very different growth ratesrate ... photosynthetic efficiency and or ... [51]

Formatted: Font:Not Italic

Deleted: Morana et al., 2014). Besides, it may...serve fitness-promoting purposes" such as storage, defense, or mutualistic goals (Bateson and Ward, 1988; Hessen and Formatted: Font:Not Italic

Deleted: , which is, to some extent... independent of ... [53]

The fact that <u>La Alberca and La Preciosa have lower DOC but Chl</u> a concentrations higher than Atexcac and Alchichica <u>overall</u>, suggests that DOC production does not directly relate to phytoplankton biomass and is not passively released. <u>By contrast</u>, active DOC release is <u>supported by DOC isotope signatures</u>. These tropical, Mexican lakes correspond <u>precisely</u> to environmental contexts (high irradiance and oligotrophic freshwater bodies) / where DOC exudation has been observed and is predicted (<u>e.g. Baines and Pace, 1991; Morana et al., 2014;</u> <u>Thornton, 2014; Rao et al., 2021</u>,

Release of DOC by primary producers can be characterized by the percentage of extracellular release (PER), which 1136 1137 corresponds to the fraction of DOC over total (dissolved and particulate) OM primary production (e.g. Thornton 1138 et al., 2014). The PER is highly variable and averages about 13% of C biomass over a wide range of environments 1139 (e.g. Baines and Pace, 1991; Thornton, 2014). Values as high as 99% have been reported (see Bertilsson and Jones, 1140 2003), showing that most of the fixed C can be released in the external aqueous media as DOC_At depths where 1141 oxygenic photosynthesis occurs, the DOC over total OC ratio averages approximately 95, 94, 99, and 85% for La 1142 Alberca, La Preciosa, Atexcac, and Alchichica, respectively. Thus, although the PER was not directly measured, 1143 and, some of the measured DOC may correspond to an older long-term DOC reservoir, the majority of DOC 1144 measured could represent a recent phytoplankton exudation,

1145 The DOC peaks associated with primary production (mainly photosynthesis) are characterized by very positive 1146 $\Delta^{13}C_{\text{DOC-POC}}$ (from +3 to +18 ‰, Fig. 4). These signatures further support a primary origin of DOC as photosynthate 1147 release at these depths, rather than a secondary origin by OM degradation. Bacterial heterotrophy would generate 1148 smaller and rather negative $\Delta^{13}C_{DOC-POC}$ (section 5.1.2. and references therein) and cell lysis or zooplankton sloppy 1149 feeding would also produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Photo-degradation is unlikely to proceed at these 1150 depths and would not generate such positive fractionations (Chomicki, 2009). Ar switch from CO_{2(aq)} to HCO₃ as 1151 an inorganic C source (which differ by 10%, e.g. Mook et al., 1974) would not adequately explain the deviation, 1152 between $\frac{\delta^{13}C_{POG}}{\delta^{13}C_{POG}}$ and $\frac{\delta^{13}C_{DOG}}{\delta^{13}C_{POG}}$. The isotopic enrichment of DOC molecules relative to POC must therefore have a 1153 different origin.

1154 The ¹³C-enriched, DOC could originate from photosynthetic organisms using a different C-fixation pathway, 1155 inducing a smaller isotopic fractionation (provided that these organisms contributed predominantly to the DOC 1156 rather than to the POC fraction). In La Alberca and Atexcac, anoxygenic phototrophic bacteria may release large 1157 amounts of DOC, especially under nutrient-limiting conditions (Ivanovsky et al., 2020). Unlike cyanobacteria or 1158 purple sulfur bacteria (PSB, anoxygenic phototrophs belonging to the Proteobacteria), which use the Calvin-1159 Benson-Bassham, pathway (CBB), green sulfur bacteria (GSB; another group of anoxygenic phototrophs belonging 1160 to the Chlorobi), use the reductive citric acid cycle or reverse tricarboxylic-TCA cycle, which tends to induce 1161 smaller isotopic fractionations (between $\sim 3-13$ %), Hayes, 2001). The DOC isotope signatures recorded in the 1162 hypolimnion of La Alberca ($\varepsilon_{\text{DOC-CO2}} \approx -13.5 \pm 2 \%$) agree well with fractionations found for this type of organism 1163 in laboratory cultures and in stratified water bodies (Posth et al., 2017). By contrast, EDOC-CO2 signatures in the 1164 hypolimnion of Atexcac are higher ($\varepsilon_{\text{DOC-CO2}} \approx 0$ %), and thus cannot be explained by the use of the reductive 1165 citric acid cycle C fixation pathway. Consistently, GSB were identified in La Alberca but not in Atexcac (Havas 1166 et al., submitted).

Deleted: lakes ... a Preciosa and Alberca ... ave lower DOC but Chloverall chlorophyll...a concentrations higher than Atexcac and Alchichica overall, suggests that DOC production does not directly relate to phytoplankton biomass and is not passively released. By contrast,Alternatively, DOC isotopic signatures suggest an...active DOC release is supported by DOC isotope signatures. These tropical(see below). Furthermore, these...Mexican lakes precisely[...[54]]

Formatted: Font:Not Italic Deleted: Baines and Pace, 1991; Morana et al., 2014; Thornton, 2014)

Formatted

Deleted: But values...as high as 99% have been reported (see Bertilsson and Jones, 2003), showing that most of the fixed C can be released in the external aqueous media as DOC....At depths where oxygenic photosynthesis occurs, the DOC over total OC ratio averages approximately 9585, 99...94, 99, and 85 95... for La Alberca, La Preciosa, Atexcae, andlakes...Alchichica, Atexcae, La Preciosa and La Alberca, ...espectively. Thus, although these ratios are likely higher than ...he actual ...ER was not directly measured, and(as...some of the DOC ...easured DOCin the Mexican lakes...may correspond to an older long-term DOC reservoir, the majority of DOC measured could represent a recent), these DOC fractions are consistent with extremely high...phytoplankton exudation-release rates

... [55]

Deleted: An interesting feature is that...DOC peaks associated with primary production (mainly photosynthesis) are characterized by very positive $\Delta^{13}C_{DOC-POC}$ (from +3 to +18 ‰, Fig. 4). These signatures further support a primary origin of DOC as photosynthate release at these depths, rather than a secondary origin by OM degradation. Bacterial heterotrophy would generate smaller and rather negative $\Delta^{13}C_{\text{DOC-POC}}$ (section 5.1.2. and references therein) and cell lysis or zooplankton sloppy feeding would also produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Photo-degradation is unlikely to proceed at these depths and would not generate such positive fractionations (Chomicki, 2009). Alt should be noticed that a ... switch from CO2(aq) to HCO3 as an inorganic C source (which differ byand their...10‰,‰ isotopic difference. .. [57]

Deleted: origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{\rm DOC}$ close to $\delta^{13}C_{\rm POC}$ values. Second, this heavy...DOC could originate from photosynthetic organisms using a different C-fixation pathway, inducing a smaller isotopic fractionation (provided that these organisms contributed predominantlymostly...to the DOC rather thanbut not...to the POC fraction). In lakes Atexcac and ...a Alberca and Atexcac, anoxygenic phototrophic bacteria maycould...release largeimportant...amounts of DOC, especially under nutrient-limiting conditions (Ivanovsky et al., 2020). UnlikeBy contrast to...cyanobacteria or purple sulfur bacteria (PSB, anoxygenic phototrophs belonging to the Proteobacteria), which use the Calvin-Benson-BasshamCCB...pathway (CBB),....green sulfur bacteria

(GSB; another group of anoxygenic phototrophs belof ... [59]

Phytoplankton, blooms may specifically release isotopically heavy organic molecules. Carbohydrates, could be preferentially released under nutrient-limiting conditions as they are devoid of N and P (Bertilsson and Jones, 2003; Wetz and Wheeler, 2007; Thornton, 2014). Carbohydrates typically have a ¹³C-enriched (heavy) isotopic composition (Blair et al., 1985; Jiao et al., 2010; Close and Henderson, 2020). Considering the isotopic mass balance of cell specific organic compounds, this molecular hypothesis is insufficient to explain the full range of μ
 Δ¹³C_{DOC-POC} variations measured in La Alberca and Atexcac (Hayes, 2001).

Alternatively, such enrichments require that DOC and DIC first accumulate in the cells. If DOC molecules were released as soon as they were produced, their isotopic composition would tend towards that of the biomass (i.e. $\delta^{13}C_{POC}$, within the range of molecule specific isotopic compositions), which is not the case. If DIC could freely exchange between inner and outer cell media, maximum "carboxylation-limited" fractionation (between ~ 18 and 30 ‰ depending on RuBisCO form, Thomas et al., 2019) would be expressed in all synthesized organic molecules, as represented in Fig. 5a (e.g. O'Leary, 1988; Descolas-Gros and Fontungne, 1990; Fry, 1996). This is also inconsistent with the DOC isotopic signatures (see $\varepsilon_{DOC-CO2}$ in Table. 2).

1328 Under the environmental conditions of the lakes studied (i.e. low CO₂ relative to HCO₃, local planktonic 1329 competition for CO₂, and low nutrient availability), the activation of an intracellular DIC-concentrating mechanism 1330 (DIC-CM) is expected (Beardall et al., 1982; Burns and Beardall, 1987; Fogel and Cifuentes, 1993; Badger et al., 1331 1998; Iñiguez et al., 2020). This mechanism is particularly relevant in oligotrophic aqueous media (Beardall et al., 1332 1982), where CO₂ diffusion is slower than in the air (O'Leary, 1988; Fogel and Cifuentes, 1993; Iñiguez et al., 1333 2020). A DIC-CM has been proposed to reduce the efflux of DIC from the cells back to the extracellular solution. 1334 This internal DIC is eventually converted into organic biomass, thereby drawing the cell isotopic composition 1335 closer to that of $\delta^{13}C_{DIC}$ (Fig. 5; Beardall et al., 1982; Fogel and Cifuentes, 1993; Werne and Hollander, 2004). As 1336 a conceptual model, we suggest that the activation of a DIC-CM could preserve a large $\Delta^{13}C_{POC-DIC_{a}}$ while 1337 generating an apparent fractionation between the DOC and POC molecules. The initially fixed OC would be 1338 discriminated against the heavy C isotopes, and incorporated into the cellular biomass (Fig. 5c, 'ti'). In turn, 1339 following the overflow mechanism scenario, high photosynthetic rates (due to high irradiance and temperature, 1340 and high DIC despite low CO2) coupled with low population growth rates and organic molecule synthesis (due to 1341 limited abundances of P, N, and Fe), would result in the exudation of excess organic molecules with heavy $\delta^{13}C_{DOC_{2}}$ 1342 as they are synthesized from residual internal DIC, which progressively becomes 13 C-enriched (Fig. 5c, ' t_{ii} '). This

	Deleted: Third, phytoplankton	
-	Deleted: For example, carbohydrates)
A	Deleted: Yet	
A	Deleted: would barely	
A	Deleted: Atexcac and	
4	Deleted: according to isotopic mass balance of cells organic compounds	specific
/	Deleted: At last	
	Deleted: otherwise	
	Deleted: Indeed, if	
	Deleted: should approach	
Y	Formatted: Font:Not Italic	
N	Deleted: molecules	
N	Deleted: mostly	
	Formatted: Font:Not Italic	
1	Deleted: , which	
-	Deleted: records	
N	Formatted: Font:(Default) +Theme Body (Calibri), 1	1 pt
Ν	Deleted:	
М	Sample	[[60]]
V	Formatted	[61]
Ĭ	Formatted	[63]
	Moved down [13]: 🦂	[[62]
Ń	Formatted: Font:10 pt	
Ĭ	Formatted Table	
N	Deleted: Atexcac	[64]
Ŋ	Formatted	[[65]
	Moved down [14]: La Alberca de Los Espinos	[[66]
$\overline{\langle}$	Formatted: Font:10 pt	
Ì	Formatted Table	
	Deleted: .	[67]
\mathbf{i}	Moved up [7]: Table 2	
Ň	Deleted: .	[68]
N	Deleted: lakes,	
Ŵ	Formatted: Font:Not Italic	
ii)	Deleted: ., (i)	
	Deleted: quantities	
	Deleted: (ii))
	Formatted: Font:(Default) Times New Roman)
	Deleted: (iii)]
Ì	Deleted: ,)
V	Deleted: a]
Ń	Deleted: However]
Ń	Deleted: instead. Indeed,)
Ń	Deleted: Further]
	Deleted: ,]
1	Deleted:)]

1382 process could explain the formation of DOC with δ^{13} C very close to DIC/CO₂ signatures as observed in Lake 1383 Atexcac. This suggests that oligotrophic conditions could be a determinant factor in the generation of significantly 1384 heavy δ^{13} C_{DOC}, even more so if they are coupled to high irradiance. This also demonstrates that considerable 1385 isotopic variability can exist between these two organic C reservoirs.

1386
1387In summary, the unusual [DOC] and $\delta^{13}C_{DOC}$ profiles in La Alberca, La Preciosa and Atexcac could be interpreted1388
as mainly reflecting a prominent exudation of autochthonous C, fixed in excess by oxygenic and/or anoxygenic1389
phototrophs in nutrient-poor and high-irradiance conditions. The striking ¹³C-rich signatures of these exudates are1390
fixation of C via the reductive citric acid cycle. We propose a conceptual model involving the DIC-CM, whereby
oligotrophic and high irradiance contexts can lead to high $\delta^{13}C_{DOC}$ compared to both $\delta^{13}C_{DIC}$ and $\delta^{13}C_{POC}$.

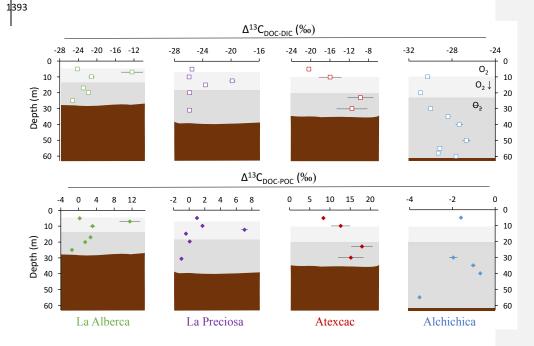
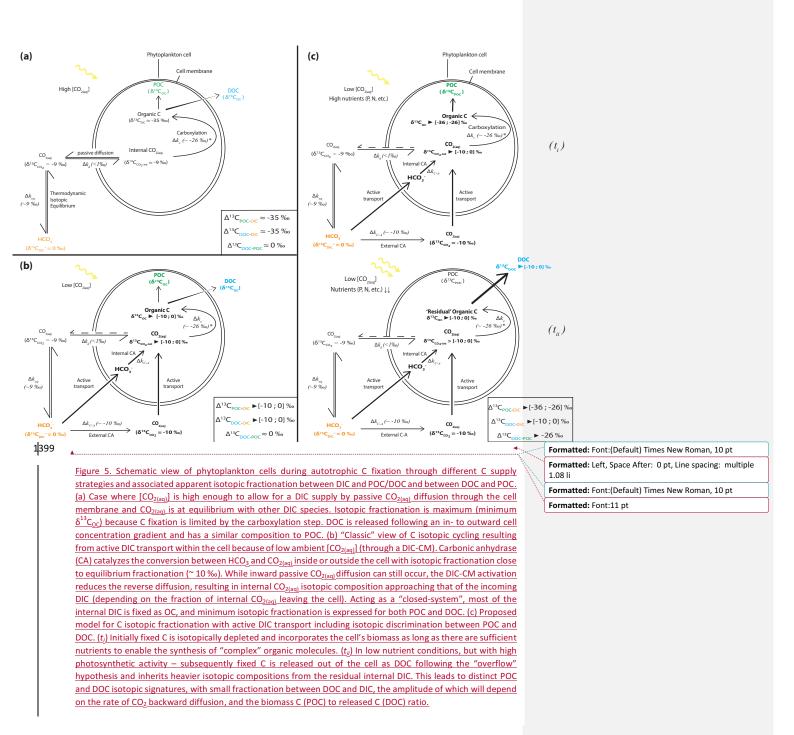



Figure 4. Vertical profiles of the difference in δ^{13} C values of DOC and DIC (top) as well as DOC and POC (bottom) throughout the water columns of the four lakes (all expressed as Δ^{13} C in ∞ vs. VPDB). POC and DIC data used in these calculations are from Havas et al. (submitted). In Alchichica, $\delta^{13}C_{\text{DOC}}$ was not measured at 5 m and its value at 10 m was used in this calculation of $\Delta^{13}C_{\text{DOC}-POC}$. The white, gray, and dark gray shading is as in Fig. 2. The brown shading symbolizes the presence of sediment at the bottom of the water columns.

Deleted: and Deleted: It Deleted: underlines <sp> Formatted: Font:(Default) Times New Roman, 10 pt, Font color: Black Deleted: significant Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, Font color: Auto Deleted: the different

1400 5.1.2 OM partial degradation and DOC accumulation: the case of Lake Alchichica

1401 From the previous discussion, it appears that the environmental conditions of the Mexican lakes favor substantial 1402 phytoplankton, production of DOC. Alcocer et al. (2014a), proposed that an early spring cyanobacterial bloom in 1403 Lake Alchichica may favor, the production of DOC in the epilimnion. However, at the time of sampling, the DOC 1404 reservoir in this lake was not correlated with any sizeable autotrophic activity at any depth. The large epilimnetic 1405 <u>Chl</u> a peak did not correlate with any changes in [DOC] or $\delta^{13}C_{DOC}$ (Fig. 3). Compared with the other lakes, the 1406 geochemical conditions in which Chl a was produced in Alchichica may have been incompatible with the 1407 activation of a DIC-CM and significant DOC exudation. Alchichica had similar [CO2(aq)] to La Preciosa, but higher 1408 P and NH_4^+ concentrations (Havas et al., submitted); La Alberca had higher P concentrations, but similar $[NH_4^+]$ 1409 and lower [CO_{2(aq)}]. In contrast with measurements from 2013 (Alcocer et al., 2014a), we found a large increase 1410 in the middle of the anoxic hypolimnion of Alchichica, which did not correspond to any change in the DIC 1411 reservoir, unlike that observed for La Preciosa at 12.5 m and Atexcac at 23 m (Havas et al., submitted). At these 1412 depths, photosynthetic active radiation (PAR) is below 0.1% in Alchichica during the stratified season (Macek et 1413 al., 2020), which might not be sufficient to trigger major anoxygenic phytoplankton DOC release.

The DOC reservoir in Alchichica is characterized by a $\delta^{13}C_{DOC}$ (and $\Delta^{13}C_{DOC-DLC}$) lower than in the other lakes, systematically showing ¹³C-depleted signatures relative to POC (i.e. $\delta^{13}C_{DOC} < \delta^{13}C_{POC}$; Fig. 4). Thus, if the DOC increase in the hypolimnion of Alchichica resulted from the release of photosynthetic OC, as in some of the other lakes, it was not associated with the same C isotope fractionation (e.g. if anoxygenic phototrophs did not concentrate intracellular DIC, cf. Fig. 5a). Some PSB have been identified but they only become abundant toward the end of the stratification (from July/August to December/January; Alcántara-Hernández et al., 2022; Iniesto et al., 2022).

1421 Alternatively, the hypolimnetic DOC increase in Lake Alchichica may reflect the preservation and accumulation 1422 of DOM over the years, consistent with the higher [DOC] measured in 2019 than in the previous years (Alcocer 1423 et al., 2014a). While alteration of the DOC reservoir by UV-photolysis would induce positive isotopic fractionation 1424 (Chomicki, 2009), the slightly negative $\Delta^{13}C_{DOC-POC}$ signatures support the possibility of DOC being mainly a recalcitrant residue of primary OM degradation by heterotrophic organisms (Alcocer et al., 2014a). The 1425 1426 preferential consumption of labile 13C-enriched molecules by heterotrophic bacteria would leave the residual OM 1427 with more negative isotopic signatures (Williams and Gordon, 1970; Lehmann et al., 2002; Close and Henderson, 1428 2020). The DIC and POM data were also consistent with heterotrophic activity from the surface to the hypolimnion 1429 of Alchichica, by recording complementary decreasing and increasing $\delta^{13}C$, respectively, and a decreasing C:N 1430 ratio (Havas et al., submitted). Degradation by heterotrophic bacteria leaves more recalcitrant DOM in the water 1431 column, which tends to accumulate over longer periods of time (Ogawa et al., 2001; Jiao et al., 2010; Kawasaki et 1432 al., 2013). The DOM content is a balance between production by autotrophs and consumption by heterotrophs, especially in environments where both types of organisms compete for low-concentration nutrients (Dittmar, 1433 1434 2015). If the DOC in Alchichica represents a long-term reservoir, its presence might favor the development of 1435 bacterial populations, A shift of the cyanobacterial DOC from the epilimnion toward the hypolimnion of 1436 Alchichica was described at the end of the spring (Alcocer et al., 2014a; 2022). Thus, part of the hypolimnetic 1437 DOC in Alchichica may originate from a phytoplankton release, as observed in the other lakes, but it was already 1438 partially degraded by heterotrophic bacteria at the time we sampled it. The deeper and darker anoxic waters of

	Deleted: in (
	Deleted: bottom water
	Deleted:)
	Deleted: might
	Deleted: an important phytoplanktonic
	Deleted: also
	Deleted: favored
	Deleted: Indeed, the
Ń	Deleted: chlorophyll
N	Deleted: of
N	Deleted: at
[l]	Deleted: chlorophyll
W	Deleted: is
M	Deleted: could
$\ N \ $	Deleted: For example,
	Deleted: as
	Deleted: Lake
	Deleted: presented
	Deleted: find
	Deleted: DOC
	Deleted: DOC in
	Deleted: Lake
	Deleted: but it
	Deleted: as
	Deleted: lakes
	Deleted: (
	Deleted:) or
	Deleted: (
	Deleted:)
\mathbb{N}	Deleted: Moreover, at
$\langle \rangle$	Deleted: important
Ň	Deleted: The DOC reservoir in Alchichica is characterized by a $\delta^{13}C_{DOC}$ (and $\Delta^{13}C_{DOC-DIC}$) lower than in the other lakes
$\langle l \rangle$	and systematically showing ${}^{13}C$ -depleted signatures re[[69]
11	Deleted: this
$\langle \rangle \rangle$	Deleted: consistently
N	Deleted: a
Ň	Deleted: Indeed, the
	Deleted: (Havas et al., submitted).
	Deleted: Moreover, degradation
	Deleted: its
	Deleted: Alchichica's
	Deleted: actually
	Deleted: growing on it.
•••••	Deleted: Lake
	Deleted: Thus,
	Deleted: in
	·

1500 Alchichica could help to better preserve this DOC from intense microbial and light degradation, hence allowing

1501 its accumulation over time.

1502 In conclusion, the DOC reservoir in Alchichica (notably in the hypolimnion) more likely represents an older, more Deleted: Alchichica's 1503 evolved DOM pool. The time required for its accumulation and long-term stability has not yet been, evaluated. Deleted: and Deleted: over the years remains to be

1504 1505 1506

Laba	Samula	$\Delta^{13}C_{\text{DOC-DIC}}$	$\Delta^{13}C_{\text{DOC-POC}}$		<u>EDOC-CO2</u>
<u>Lake</u> Sample		%			%0
	Albesp 5m	-24.2	0.2		-14.8
	Albesp 7m	-12.4	11.5	=	-3.0
La Alberca de	Albesp 10m	<u>-21.2</u>	<u>3.1</u>	=	<u>-11.6</u>
Los Espinos	<u>Albesp 17m</u>	<u>-22.9</u>	<u>2.7</u>	=	<u>-13.1</u>
	Albesp 20m	-21.8	1.5	-	-12.2
	Albesp 25m	-25.2	-1.5	_	-15.9
	LP 5m	-25.5	<u>1.0</u>		-15.7
	<u>LP 10m</u>	-25.9	<u>1.7</u>	_	-16.0
T D '	LP 12.5m	-19.8	<u>7.1</u>	_	<u>-9.8</u>
La Preciosa	LP 15m	-23.6	-0.4	_	-13.5
	LP 20m	-25.8	0.1	_	-15.7
	LP 31m	-25.8	-1.0	_	-15.7
	ATX 5m	-20.4	<u>8.4</u>		-10.6
Atexcac	<u>ATX 10m</u>	<u>-16.0</u>	<u>12.6</u>	_	<u>-6.1</u>
Atexcac	ATX 23m	<u>-9.7</u>	<u>17.9</u>	_	<u>0.6</u>
	<u>ATX 30m</u>	<u>-11.4</u>	<u>15.2</u>	_	<u>-1.2</u>
	AL 5m	<u>ND.</u>	<u>-1.6</u>	_	_
	<u>AL 10m</u>	<u>-30.3</u>	=	-	<u>-20.1</u>
	<u>AL 20m</u>	-30.9	=	-	-20.5
	<u>AL 30m</u>	-30.0	<u>-2.0</u>	-	<u>-19.5</u>
Alchichica	<u>AL 35m</u>	-28.4	<u>-1.0</u>	-	-17.9
	<u>AL 40m</u>	-27.3	-0.7	=	<u>-16.8</u>
	<u>AL 50m</u>	-26.7	=	-	-16.2
	<u>AL 55m</u>	-29.1	-3.5	=	-18.7
	<u>AL 58m</u>	-29.3	=	-	-18.8
	<u>AL 60m</u>	-27.6	=	_ = _	<u>-17.1</u>

1507 1508

Table 2

Isotopic fractionation between DOC and DIC, and DOC and POC, where $\Delta^{13}C_{xy} = \delta^{13}C_x - \delta^{13}C_y$ is the apparent.

1509 1510 1511 fractionation and ε is computed as the actual metabolic isotopic discrimination between CO₂ and DOC. In Alchichica, $\delta^{13}C_{\text{DOC}}$ was not measured at 5 m, and its value at 10 m was used in this calculation of $\Delta^{13}C_{\text{DOC}+\text{OC}}$. The 1512 1513 full chemistry at depths 35 and 58 m was not determined, thus the calculation of $\delta^{13}C_{CO2}$ for these samples is based on the composition of samples above and below. Isotopic data for DIC, POC, and $\overline{CO_2}$ are from Havas et al.

1514 (submitted).

1515 1516

17

Deleted: Nevertheless, we cannot fully rule out that part of

Formatted: Position:Horizontal: Left. Relative to: Column. Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap

Formatted: Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap

Formatted: Space After: 18 pt, Line spacing: single Formatted: Font:(Default) +Theme Body (Calibri)

Deleted: was produced by anoxygenic photosynthetic

Formatted: Font:(Default) +Theme Body (Calibri)

Formatted: Font:(Default) +Theme Body (Calibri)

Formatted: Font:(Default) +Theme Body (Calibri) Deleted: enrichment as in the other lakes remain to be

Formatted: Font:(Default) +Theme Body (Calibri)

Deleted: reasons why it did not bear

it this

Around Formatted Table Moved (insertion) [14]

Around

plankton. If so,

Deleted: same

elucidated.

Moved (insertion) [15]

Formatted: Font:10 pt

1 1529 5.2 DOC analysis provides deeper insights into planktonic cell functioning and water column C cycle 1530 dynamics than POC or DIC analyses

1528

1562

1563

1564

1531 The depth profiles of DOC concentration and isotope composition differ significantly from those of POC. Notably 1532 in La Preciosa, the photosynthetic DOC production (+1.5 mM) at the Chl a peak depth matches the decrease in 1533 DIC (-2 mM), while there was no change in [POC] or $\delta^{13}C_{POC}$ (Havas et al., submitted). Just below, at 15 m depth, 1534 δ^{13} CPOC exhibited a marked increase (+3.6 ‰), interpreted as reflecting heterotrophic activity (Havas et al., 1535 submitted). It is likely explained by the production of DOC with heavier isotope compositions between 12.5 and 1536 15 m depth, and its consumption by heterotrophic organisms (as seen with $\Delta^{13}C_{\text{DOC-POC}} \approx 0$). In La Alberca, the 1537 peaks of oxygenic and anoxygenic photosynthesis clearly stand out from DOC concentrations (+ 0.5/1.5 mM), but 1538 not from POC concentrations (+ <0.03 mM), while the DIC geochemical signatures reflected the influence of OC 1539 respiration, sediment-associated methanogenesis, and possible volcanic degassing at the bottom of the lake (Havas 1540 et al., submitted). In Atexcac, anoxygenic photosynthesis is clearly evidenced by [DOC] and $\delta^{13}C_{DOC}$ data (see 1541 5.1.1), but is not recorded by the POC reservoir (a decrease of 0.03 mM at this depth) and not as distinctively, by 1542 the DIC reservoir (a decrease of $\sim 2 \text{ mM}$; Havas et al., submitted). It implies that recently fixed OC is quickly 1543 released out of the cells as DOC, transferring most C from DIC to DOC, rather than POC, which is therefore an 1544 incomplete archive of the biogeochemical reactions occurring in water columns. The isotopic analysis of DIC, and 1545 by extension of authigenic carbonates, especially in alkaline-buffered waters, might not be sensitive enough to 1546 faithfully record all environmental and biological changes.

1547 The $\delta^{13}C_{\text{DOC}}$ recorded in La Alberca, La Preciosa, and Atexcac present peculiar heavy signatures, which provide strong constraints on planktons intra-cellular functioning and their use of C. These signatures may arise from the 1548 1549 activation of a DIC-CM or from a specific metabolism or C-fixation pathway. By contrast, the use of a DIC-CM 1550 is poorly captured by $\delta^{13}C_{POC}$ although recognition of active DIC uptake has often been based on this signal (by 1551 reduced isotopic fractionation with DIC; e.g. Beardall et al., 1982; Erez et al., 1998; Riebesell et al., 2000). Most 1552 interestingly, intra-cellular amorphous Ca-carbonates (iACC) are formed in some of the cyanobacteria from 1553 Alchichica microbialites, possibly due to supersaturated intra-cell media following active DIC uptake through a 1554 DIC-CM (Couradeau et al., 2012; Benzerara et al., 2014). While the link between DIC-CM and iACC still needs 1555 to be demonstrated (Benzerara et al., 2014), the active use of DIC-CMs in Mexican lakes is independently 1556 supported by the DOC isotopic signature.

1557In summary, the analysis of DOC concentrations and isotope compositions showed that most of the autochthonous1558C fixation ends up in the DOC reservoir, thus highlighting important features of the lakes and their C cycle that1559were not evidenced by POC and DIC analyses alone, notably the activation of a DIC-CM and a better description1560of the planktonic diversity. In the future, it will be interesting to couple the present analyses with deeper molecular1561and compound-specific isotopic analyses of DOM (Wagner et al., 2020).

Deleted: Additional insights on the C cycles of the lakes can be provided by DOC analysis compared with the more classical DIC and POC data described in Havas et al.

Moved up [15]: (submitted).

Formatted: Font:(Default) +Theme Body (Calibri) Deleted: Lake Deleted: Deleted: of Deleted: is Deleted: Fig. 3; Deleted: a Moved (insertion) [16] Deleted: the **Deleted:** of $\delta^{13}C_{POC}$ Deleted: to reflect Deleted: is better evidenced when considering the Deleted: DOC isotopes Deleted: as a C source Deleted: (Fig. 3; Moved up [16]: Havas et al., submitted). Deleted: Similarly, in Lake Deleted: only a small portion of C is transferred from ... [71] Deleted: in Deleted: Lake Deleted: stands out based on Deleted: Deleted: only slightly Deleted: Overall, it Deleted: thereby Deleted: . Therefore, POC Deleted: Furthermore, this shows that the Deleted: heavy Deleted: lakes Deleted: La Alberca Deleted: important Deleted: the way planktonic cells deal with Deleted: cvcle Deleted: : it Deleted: analyses Formatted: Font:Not Italic Formatted: Font:Not Bold

5.3 Implications for the hypothesis of a large DOC reservoir controlling past carbon cycling

 Deleted: "big...DOC"
[72]

 Deleted: .
[73]

In these Mexican lakes, the DOC concentrations (from 0.6 to 6.5 mM on average) are between 14 and 160 times higher than the POC concentrations. The DOC represents from 5 to 16% of the total C measured in the four lakes. In comparison, it remains under 0.3 mM in large-scale anoxic basins such as the Black Sea (Ducklow et al., 2007). In the modern ocean, DOC is also the main organic pool but its concentration rarely exceeds 0.08 mM (Hansell, 2013). Thus, the DOC pools of these lakes is much larger than in the modern ocean and can be used to draw (comparisons with studies invoking past occurrences of oceanic carbon cycles dominated by vast DOC reservoirs (e.g. Rothman et al., 2003; Sexton et al., 2011).

1631 <u>5.3.1 Eocene carbon isotope excursions (CIEs)</u>

1622

1630

1632 Ventilation/oxidation cycles of a large deep ocean DOC reservoir have been inferred to explain carbonate isotopic 1633 records of successive warming events through the Eocene (Sexton et al., 2011). In this scenario, the release of 1634 carbon dioxide into the ocean/atmosphere system following DOC oxidation would trigger both the precipitation 1635 of low $\delta^{13}C$ carbonates and an increase of the atmospheric greenhouse gas content. The size of this DOC reservoir 1636 should have been at least 1600 PgC (about twice the size of the modern ocean DOC reservoir) to account for a 2-1637 4°C increase in deep ocean temperatures (Sexton et al., 2011). However, the main counter-argument to this 1638 hypothesis is that the buildup of such a DOC reservoir at modern DOC production rates implies sustained deep 1639 ocean anoxia over several hundred, thousand years, while independent geochemical proxies do not support the 1640 persistence of such anoxic conditions (Rigwell and Arndt, 2015). Our study suggests, albeit at a different scale, 1641 that this kinetic argument may be weak. In these Mexican lakes, the lowest recorded [DOC] is 260 µM (Table 1), 1642 which is about 6 times the deep modern ocean concentration (~ 45 µM; Hansell, 2013). Yet the entire water 1643 columns of these lakes down to the surficial sediments are seasonally mixed with di-oxygen, showing that high 1644 [DOC] (notably in Alchichica, which likely harbors a "long-term" DOC reservoir) can be achieved despite frequent 1645 oxidative conditions. The oxidation of only half of the DOC in the lakes would generate average $\delta^{13}C_{DIC}$ deviations 1646 between -0.6 and -1 ‰, corresponding to the C isotope, excursion magnitudes described by Sexton et al. (2011).

1647 Similarly, deep anoxic waters in the Black Sea hold about 3 times the amount of DOC found in the modern deep 1648 open ocean (Ducklow et al., 2007; Sexton et al., 2011; Dittmar, 2015). In the Black Sea and in the Mexican lakes, 1649 Jow nutrient availability may limit sulfate-reduction despite high sulfate and labile organic matter concentrations, 1650 thus favoring DOM preservation and accumulation (Dittmar, 2015 and references therein). Margolin et al. (2016) 1651 argued that substantial DOM is maintained in the Black Sea by large terrigenous inputs only. Our study attests the 1652 possibility for "autochthonous systems" to reach DOC concentrations well above what is found in the Black Sea, 1653 without requiring terrigenous inputs, Therefore, it supports the hypothesis that the buildup of a large DOC reservoir, 1654 may have influenced the carbonate isotopic record of Eocene warming events Nonetheless, it remains to be proven 1655 how this could apply to larger oceanic-type basins, with more variable environmental conditions (e.g. tropical ys. 1656 polar latitudes), greater diversity of eukaryotic heterotrophs (in Phanerozoic oceans), and more active water 1657 currents and ventilation processes. A better characterization of the molecular composition of DOM in the Mexican 1658 lakes will help to understand how it can accumulate over time and refine the suggested analogy with Phanerozoic 1659 <u>CIEs</u>, Furthermore, investigating the paleo-ecology and -geography of the CIE time period will also help to 1660 constrain the potential applicability of a large DOC hypothesis (Sexton et al., 2011),

1	Deleted:
1	Formatted: Font:Not Italic
	Deleted: entilation/oxidation cycles of a large deep ocean DOC reservoir have been inferred to explain carbonate isotopic records of successive warming events through the Eocene (Sexton et al., 2011). In this scenarioAccordingly the release of carbon dioxide into the ocean/atmosphere system following DOC oxidation wouldis suggested totrigger both the precipitation of low δ^{13} C carbonates and an increase of the atmospheric greenhouse gas content. Thelt was assessed that thesize of this DOC reservoir should have been at least 1600 PgC (about twice the size of the modern ocean DOC reservoir) to account for a 2–4°C increase inofdeep ocean temperatures (Sexton et al., 2011). However, the main counterrgument to this hypothesis is that the buildup of such a DOC reservoir at modern DOC production rates implies austained deep ocean anoxia over several hundredhundreds ofthousand years, while independent geochemical proxies do not support
	the persistence of such anoxic conditions such a sustained

the persistence of such anoxic conditions such a sustained anoxia during this time period ...Rigwell and Arndt, 2015). OurHowever, our...study suggests, albeit at a different scale, that this kinetic argument may be weak. In theseIndeed, in the studied...Mexican lakes, the lowest recorded [DOC] is 260 μ M (Table ...), which isi.e.,...about 6 times the deep modern ocean concentrationsconcentrations...(~ 45 ...M; Hansell, 2013). Yet,...the entire water columns of these lakes down to the surficial sediments are seasonally mixed with di-oxygen, showing that high [DOC] (notably in Alchichica, which likely harbors a "long-term" DOC reservoir) can be achieved despite frequent oxidative (oxygen-rich) ...onditions. TheBesides, the...oxidation of only half of the DOC in the lakes would generate average $\delta^{13}C_{DIC}$ deviations between -0.6 and -1 ‰, corresponding to the C isotopeisotopes

... [74] Deleted: Black Sea's ... eep anoxic waters in the Black Sea hold about 3 times the amount of DOC found in the modern deep open ocean (Ducklow et al., 2007; Sexton et al., 2011; Dittmar, 2015). In the Black Sea and in the Mexican lakes, the ... ow nutrient availability may limit sulfate-reduction despite high sulfate and labile organic matter concentrations, thusthence...favoring DOM preservation and accumulation (Dittmar, 2015 and references therein). Margolin et al. (2016) argued that substantialimportant...DOM is maintained in the Black Seawas sustained ... by largeimportant ... terrigenous inputs only. Our study attests the possibility for "autochthonous systems" to reach DOC concentrations well above what is found in the Black Sea, without requiring and that ... terrigenous inputs are not needed for that ... Therefore, it supports the hypothesiscan be argued...that the buildup of a large DOC reservoir, which ... may have influenced the carbonatecarbonates...isotopic record of Eocene warr ... [75]

Deleted:) or yet,...more active water currents and ventilation processes. AIn that regard, a...better characterization of the molecular composition of DOM in the Mexican lakes will help to understand how it can accumulate over time and refine the suggested analogy with Phanerozoic CIEs.....Furthermore, investigating the paleo-ecology and geography of the CIE time period will also help to constrain the potential applicability of a large"big...DOC"...hypothesis (Sexton et al., 2011). [...[77]

1792 5.3.2 Neoproterozoic carbon isotope excursions (CIEs)

1793 The presence of a large oceanic DOC reservoir has also been used to account for the Neoproterozoic C isotope, 1794 record, where carbonates show δ^{13} C negative excursions of more than 10% over tens of Ma₄(Rothman et al., 2003; Fike et al., 2006; Swanson-Hysell et al., 2010; Tziperman et al., 2011). Once, again, this hypothesis has been 1795 1796 questioned because of (i) the oversized DOC reservoir (10 times the contemporaneous DIC, i.e., 10² to 10³ times 1797 that of modern DOC) and (ii) the amount of oxidants required to generate such a sustained DOC oxidation process 1798 (see Ridgwell and Arndt, 2015). Recent studies offered potential explanations for this latter issue showing that 1799 pulses of continental weathering and an associated increase of sulfate supply would have provided sufficient 1800 oxidant (Shields et al., 2019; Chen et al., 2022), while lateral heterogeneity of the carbonate geochemical signatures 1801 - with a restricted record of the CIEs on the continental shelves - would require lower amounts of oxidant (Li et 1802 al., 2017; Shi et al., 2017).

Critically though, direct evidence for the existence of such high oceanic DOC levels in the past remains scarce (Li
et al., 2017), although multiple studies have built on the Neoproterozoic large DOC scenario (e.g. Sperling et al.,
2011; Cañadas et al., 2022). Purported high oceanic DOC concentrations during the Ediacaran period have been
estimated from the Ge/Si ratio of diagenetic chert nodules (Xing et al., 2022) but they reflect the sediments
porewater geochemistry and remain difficult to directly relate to the ocean water itself. Besides, some modeling
approaches have suggested that DOC abundance in the past Earth's oceans could not have markedly differed from
today's values (Fakhraee et al., 2021).

1810	Modern analogous systems such as the Black Sea or Mexican lakes studied here support the possibility of greater,
1811	DOC accumulation in anoxic waters (Ducklow et al., 2007), but only to levels substantially lower than those
1812	required to account for the Neoproterozoic CIEs, (minimum concentrations estimated between 25 and 100 mM;
1813	Ridgwell and Arndt, 2015). One could argue that the development of larger DOC pools in the three Mexican lakes
1814	from the SOB is hindered by relatively large sulfate reservoirs (especially in Alchichica ~10 mM). However, we
1815	notice that La Alberca does not show a larger DOC reservoir despite having the lowest oxidant availability (both
1816	oxygen- and sulfate-free at depth) and being the only one of the four lakes to present isotopic signatures associated
1817	with methanogenesis (Havas et al., submitted). Furthermore, the Mexican lakes are seasonally oxidized, which
1818	could consume part of their DOC reservoir. However, the Black Sea is permanently stratified and shows even
1819	lower [DOC], suggesting that DOC production might be the primary control on DOC concentration over DOC
1820	oxidation. The processes of DOC production and accumulation in the Neoproterozoic ocean could have been less
1821	efficient than today (Fakhraee et al. 2021). Nonetheless, an important limit to the analogy between modern
1822	analogues and the Precambrian oceans is the difference in time over which DOC could have accumulated in both
1823	environments (Ridgwell and Arndt, 2015). One could expect the formation of such a large autochthonous DOC
1824	reservoir to increase the ocean inorganic C isotope composition, by mass balance. However, from $\delta^{13}C_{Carb}$ data
1825	compilation (e.g. Fike et al., 2006; Saltzman and Thomas, 2012; Li et al., 2017), we see that there are no positive
1826	increases of $\delta^{13}C_{\underline{Carb}}$ at the magnitude of the negative CIEs tens to hundreds of million years before the
1827	Neoproterozoic CIEs. Thus, even if the "oxidant paradox" may have found satisfactory explanations, the origin of
1828	the massive DOC reservoir required to generate these excursions still remains to be elucidated (Jiang et al., 2010;
1829	Lu et al., 2013; Li et al., 2017).

	Deleted: isotopic
	Deleted: , while the paired sedimentary organic carbon isotope signal remains stable
{	Deleted: However, once
{	Deleted: too high
	Deleted: reservoir's size
Ì	Formatted: Font:Not Italic

Deleted: material

Deleted: or present days
Deleted: big
Formatted: Font:Not Italic
Deleted: Ediacarian

Deleted: significantly departed

Deleted: important
Deleted: those remain
Deleted: the levels
Deleted: events

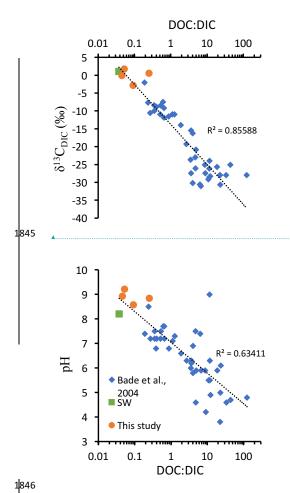


Figure 6. DOC:DIC ratios, pH and $\delta^{13}C_{\text{DIC}}$ values from different lakes compiled from Bade et al. (2004) and the four Mexican lakes from Havas et al. (submitted), as well as modern surface ocean values (from Kroopnick, 1985; Zeebe and Wolf-Gladrow, 2009 and Hansell, 2013).

<u>Top:</u> $\delta^{13}C_{DIC}$ as a function of DOC:DIC ratio represented with a logarithmic abscissa scale and logarithmic trend line which combines the three datasets.

Bottom: pH as a function of DOC:DIC ratio, with a logarithmic abscissa scale and logarithmic trend line which combines the three datasets. Formatted: Font:(Default) Times New Roman, 10 pt, Font color: Text 1

Deleted: . One could argue that the development of larger DOC pools in the three Mexican lakes from the SOB is hindered by relatively large sulfate reservoirs (especially in Alchichica ~10 mM). However, we notice that Lake La Alberca does not show a larger DOC reservoir despite having the lowest availability of oxidant (both oxygen- and sulfate-free at depth and the only one to present isotopic signatures associated with methanogenesis or methanotrophy, Havas et al., submitted). It could also be argued that large OM particles in Alchichica for example (Ardiles et al., 2012) favor the sedimentation of OC rather than DOC production, thereby favoring the oxygenation of deep waters as suggested for the beginning of the Phanerozoic period with advent of eukaryotic plankton (Lenton and Daines, 2018; Fakhraee et al., 2021). Yet, plankton of the studied Mexican lakes is overall dominated by prokaryotic communities and not large organisms (Iniesto et al., 2022). Besides, rapid sinking of OM particles in modern oceans does not necessarily preclude important fluxes of benthic DOC from the sediments (around ~ 100 PgC.yr-1 in today's ocean; Burdige and Komada, 2015) and especially in anoxic bottom waters (Dadi et al., 2017). Thus, even if the "oxidant paradox" may have found satisfactory explanations (see above), the origin of the massive DOC reservoir required to generate these excursion remains to be elucidated (Jiang et al., 2010; Li et al., 2017). [... [78]] Formatted: Font: (Default) Times New Roman, 10 pt

1849 1850 1851

1847

1848

1851that modern low alkalinity/low pH lakes generally show more negative $\delta^{13}C_{DIC}$ (down to ~ -30 %), partly due to a
higher responsiveness of the $\delta^{13}C_{DIC}$ to remineralization of OM and especially DOC. Compiling our data with
those of Bade et al. (2004), we consistently show a clear negative trend of $\delta^{13}C_{DIC}$ with an increasing DOC:DIC
ratio over a broad range of lacustrine DOC and DIC concentrations (Fig. 6). This trend also matches modern ocean
values (Fig. 6). These observations are consistent with the inference that systems where DOC:DIC >> 1 should
drive $\delta^{13}C_{DIC}$ to very negative values (Rothman et al., 2003). However, in modern environments, the biomass isfluxes of benthic D
PgC.yr¹ in today's
especially nanxii
especially in anxii
especially in anxii
especially in anxii
even if the "oxidar"
especially in anxii
even if the "oxidar"
especially in anxii
even if the "oxidar"
especially in anxii
especially in anxii<

In the alkaline lakes studied, oxidation of the DOC reservoir would generate a maximum $\delta^{13}C_{DIC}$ deviation of -

2 ‰, in La Alberca de los Espinos, which has the lowest alkalinity. The other lakes $\delta^{13}C_{DIC}$ are less impacted,

notably because they are largely buffered by high DIC content (Havas et al., submitted). Bade et al. (2004) showed

1885 largely influenced by aerobic heterotrophs and high DOC:DIC waters usually lean toward acidic pHs (Fig. 6; Bade 1886 et al., 2004), at which carbonate precipitation is prevented. Instead, in anoxic waters, remineralization of OM 1887 through sulfate- or iron-reduction generates alkalinity (e.g. Tziperman et al., 2011). Hence, environmental 1888 conditions where DOC:DIC >> 1 might be inconsistent with large carbonate deposits unless they are associated 1889 with anaerobic remineralization. This further, supports the hypothesis that negative $\delta^{13}C_{Carb}$ excursions of the 1890 Ediacaran, were triggered by continental sulfate addition to the ocean (Li et al., 2017; Shields et al., 2019; Chen et 1891 al., 2022), but following the oxidation of DOC by anaerobic (e.g. sulfate reduction) rather than aerobic (e.g. by 1892 free oxygen) pathways. At the same time, additional DOC inputs (e.g. terrigenous) might be necessary to reach 1893 the required high DOC conditions allowing the Neoproterozoic CIEs. This echoes previous suggestions of 1894 "Neoproterozoic greening", referring to a phase of biological land colonization, although evidence for this 1895 phenomenon currently remains equivocal (Lenton and Daines, 2017). While a concomitant supply of sulfate and DOC via rivers may cause - at least - a partial oxidation of DOC, it would still result in a ¹³C-depleted source of 1896 1897 alkalinity to the coastal environments.

The inferences from Fig. 6 also foster the scenario proposed by Tziperman et al. (2011) where <u>the</u> anaerobic respiration of a large DOM production leads to the sequestration of newly produced C in carbonates – with very negative δ^{13} C – and thereby to the drawdown of atmospheric pCO₂ and <u>the</u> initiation of Cryogenian glaciations. <u>We therefore</u> suggest that the climatic feedbacks associated with the negative Neoproterozoic CIEs have been *j* controlled by the total amount and balance between <u>different DOC sources (autochthonous vs. allochthonous)</u> and *j* <u>different oxidation pathways (e.g. via O₂ vs. SO4²⁻)</u>.

In summary, Neoproterozoic carbonate carbon isotope excursions likely require DOC and DIC pools to be spatially
decoupled (e.g. through terrestrial DOM inputs), which suggests that DOC was not necessarily larger than DIC in
the entire ocean. The analogues studied here further support that the Neoproterozoic CIEs recorded in carbonates,
should have occurred following DOC oxidation through anaerobic rather than aerobic pathways,

6. CONCLUSIONS AND SUMMARY

1908 1909

Based on its concentration and isotopic signatures, we characterized the nature and role of the DOC reservoir
 within the C cycle of four stratified alkaline crater lakes, in comparison with previously described DIC and POC
 data, Despite similar contexts, the DOC reservoirs of the four lakes show considerable variability, driven by
 environmental and ecological differences, as summarized below:

-	The DOC is the largest OC reservoir in the water column of the studied lakes (> 90%). Its concentration,
	and isotopic composition provide noveLinformation about the C cycle of these stratified water bodies. In
	each of the four lakes, diverse photosynthetic planktonic communities release greater, or smaller, amounts
	of DOC, depending strongly on environmental factors such as nutrient and DIC availability, and transfer,
	most of the inorganic C to DOC rather than POC.
	-

 1919
 - This process is marked by very heavy and distinct isotopic signatures of DOC compared with POC. They

 1920
 reflect different metabolism/C fixation pathways and/or the activity of a DIC-CM coupled with an

 1921
 overflow mechanism (i.e. DOM exudation), which could be active for both oxygenic and anoxygenic

4	Deleted: But
1	Deleted: instead
	Formatted: Font:Not Italic
1	Deleted: Besides, from the above discussion, increased terrigenous DOC inputs may be necessary to generate sufficiently high DOC:DIC conditions and initiate the Neoproterozoic CIEs. Thus, this
	Deleted: Ediacarian
	Formatted: Font:Not Italic
	Formatted: Font:Not Italic
1	Deleted: Accordingly, we
ĥ	Formatted: Font color: Auto
l	Deleted: terrigenous
l	Formatted: Font:Not Italic
Ņ	Deleted: marine DOC being oxidized
Ņ	Formatted: Font color: Auto
1	Deleted: the nature of the oxidant
7	Formatted: Font color: Auto
7	Formatted: Font:Not Italic
1	Formatted: Font:Not Italic
A	Formatted: Comment Text
4	Deleted: Therefore
1	Deleted: seem to
-	Deleted: that
	Deleted: are Formatted: Font:Not Italic
4	Deleted:) and thus suggest
4	
N	Deleted: Moreover, the record of these excursions in [[79] Formatted: Font color: Text 1
N	Formatted: Font color: Text 1
N	Deleted: instead of
Ň	Formatted: Font color: Text 1
Ì	Deleted: Further characterization of the nature and p([80]
1	Deleted: The
1	Deleted: were characterized and extensively compar([81]
	Deleted: from these lakes.
Ĵ	Deleted: exhibit important
	Deleted: changes
	Deleted: concentrations
	Deleted: compositions bring precious, new and [[82]
	Deleted: Depending on environmental factors such [[83]
	Deleted: appear to Deleted: more
N	Deleted: more Deleted: less important
V	Deleted: on the lake, transferring
	Formatted: Font:Not Italic
-	Deleted:)
1	,

1967	phototrophs, and for which we propose a novel isotopic model of cell carbon cycling, integrating, DOC		Deleted: including the
1968	molecules.		
1969	- The DOC reservoir in one of the lakes was not characterized by this release process, but rather by partial		
1970	degradation and accumulation in anoxic waters, associated with more negative isotopic signatures.		
1971	- Our results bring further constraints on the environmental conditions under which autochthonous DOM		
1972	can accumulate in anoxic water bodies, providing, boundary conditions to the large, DOC reservoir,		Deleted: and provides
1973	scenarios. This study of modern redox-stratified analogues supports the idea that a large oceanic DOC		Deleted: "big
1974	reservoir may have generated the record of successive C isotope excursions during the Eocene. Our study		Deleted: "
1975	suggests, however, that the Neoproterozoic large DOC hypothesis and its record in carbonates as negative		Deleted: Specifically, our
1976	CIEs would only have been possible if external DOC sources largely contributed, and if DOC oxidation	(////	Deleted: analogs
1977	occurred via anaerobic pathways	$\langle \rangle \rangle$	Deleted: small Eocene
1977	occurred via anaerobic partiways	$\langle \rangle \langle \rangle$	Deleted: . However, while important DOC oxidation could have favored locally – near the continental shelves –
1978		$\left \right\rangle$	Deleted: precipitation of isotopically light C
1979	Author Contributions		Deleted: , the existence of a globally very large oceanic DOC reservoir seems unlikely
1980 1981	RH and CT designed the study in a project directed by PLG, KB and CT. CT, MI, DJ, DM, RT, PLG and KB collected the samples on the field. RH carried out the measurements for C data; DJ the physico-chemical parameter	Ϋ́	Formatted: Font:Not Italic, Strikethrough
1982	probe measurements and EM provided data for trace and major elements. RH and CT analyzed the data. RH wrote		
1983	the manuscript with important contributions of all co-authors.		
1984			
1985 1986	Competing Interests The authors declare that they have no conflict of interest.		
1980	The authors declare that they have no conflict of interest.		
1987			
1988	Disclaimer		
1989			
1990	Acknowledgements		
1991	This work was supported by Agence Nationale de la Recherche (France; ANR Microbialites, grant number ANR-		
1992 1993	18-CE02-0013-02). The authors thank Anne-Lise Santoni, Elodie Cognard, Théophile Cocquerez and the GISMO platform (Biogéosciences, University Bourgogne Franche-Comté, UMR CNRS 6282, France). We thank Céline	ſ	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
1994	Liorzou and Bleuenn Guéguen for the analyses at the Pôle Spectrométrie Océan (Laboratoire Géo-Océan, Brest,	1	Deleted: . (
1995	France) and Laure Cordier for ion chromatography analyses at IPGP (France). We thank Nelly Assayag and Pierre		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
1996	Cadeau for their help on the AP 2003 at IPGP.		Deleted:).
1997		////	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
1998	References	////	Deleted: . In
			Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
1999 2000	Alcántara-Hernández, R.J., Macek, M., Torres-Huesca, J., Arellano-Posadas, J., Valdespino-Castillo,	W 7 - 5	Deleted: eds)
2000 2001	P.M., 2022, Bacterioplankton, in: Alcocer, J. (Ed.), Lake Alchichica Limnology: The Uniqueness of a j Tropical Maar Lake, Springer International Publishing, Cham, pp. 183–196,	ح <i>ا</i>	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2001	https://doi.org/10.1007/978-3-030-79096-7_11	87-4 X	Deleted: .
		$ \setminus \{$	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2003	Alcocer, J., Guzmán-Arias, A., Oseguera, L.A., Escobar, E., 2014a. Dinámica del carbono orgánico	- \\ \	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2004 2005	disuelto y particulado asociados al florecimiento de Nodularia spumigena en un lago tropical oligotrófico. Programma Mex. Carbono 13.	> >	Deleted: . Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2005		- NE	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
			English (US)

2024	Alcocer, J., Ruiz-Fernández, A.C., Escobar, E., Pérez-Bernal, L.H., Oseguera, L.A., Ardiles-Gloria, V.,		
2024	2014b. Deposition, burial and sequestration of carbon in an oligotrophic, tropical lake. J. Limnol. 73.		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2026	https://doi.org/10.4081/jlimnol.2014.783		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, English (US)
2027 2028 2029	Anderson, N.John, Stedmon, C.A., 2007. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshw. Biol. 52, 280–289. https://doi.org/10.1111/j.1365-2427.2006.01688.x		Deleted: Alcocer, J. <i>et al.</i> (2022). Physicochemical Characteristics. In: Alcocer, J. (eds) Lake Alchichica Limnology. Springer, Cham. https://doi.org/10.1007/978-3- 030-79096-7 7 .
2030	Armienta, M.A., Vilaclara, G., De la Cruz-Reyna, S., Ramos, S., Ceniceros, N., Cruz, O., Aguayo, A.,	1117	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2031	Arcega-Cabrera, F., 2008. Water chemistry of lakes related to active and inactive Mexican volcanoes.	(M)	Deleted: J
2032	J. Volcanol. Geotherm. Res. 178, 249–258. https://doi.org/10.1016/j.jvolgeores.2008.06.019	N N	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2033 2034	Bade, D.L., Carpenter, S.R., Cole, J.J., Hanson, P.C., Hesslein, R.H., 2004. Controls of δ13C-DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnol. Oceanogr. 49, 1160–1172.		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French
2035	https://doi.org/10.4319/lo.2004.49.4.1160		Deleted: Ardiles, V., Alcocer, J., Vilaclara, G., Oseguera, L.A., Velasco, L., 2012. Diatom fluxes in a tropical, oligotrophic lake dominated by large-sized phytoplankton.
2036 2037	Bade, D.L., Carpenter, S.R., Cole, J.J., Pace, M.L., Kritzberg, E., Van de Bogert, M.C., Cory, R.M., McKnight, D.M., 2007. Sources and fates of dissolved organic carbon in lakes as determined by		Hydrobiologia 679, 77–90. https://doi.org/10.1007/s10750- 011-0853-7
2038 2039	whole-lake carbon isotope additions. Biogeochemistry 84, 115–129. https://doi.org/10.1007/s10533- 006-9013-y		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2040 2041 2042	Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C., Leggat, W., Price, G.D., 1998. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2- concentrating mechanisms in algae 76, 20.		
2043 2044 2045	Baines, S.B., Pace, M.L., 1991. The production of dissolved organic matter by phytoplankton and its importance to bacteria: Patterns across marine and freshwater systems. Limnol. Oceanogr. 36, 1078–1090. https://doi.org/10.4319/lo.1991.36.6.1078		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French
2046 2047	Barber, A., Sirois, M., Chaillou, G., Gélinas, Y., 2017. Stable isotope analysis of dissolved organic		Moved (insertion) [17]
2047 2048	<u>carbon in Canada's eastern coastal waters: Stable isotope analysis of DOC. Limnol. Oceanogr. 62,</u> <u>S71–S84. https://doi.org/10.1002/lno.10666</u>		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French
2049 2050 2051	Bateson, M.M., Ward, D.M., 1988. Photoexcretion and Fate of Glycolate in a Hot Spring Cyanobacterial Mat. Appl. Environ. Microbiol. 54, 1738–1743. https://doi.org/10.1128/aem.54.7.1738-1743.1988		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2052 2053	Beardall, J., Griffiths, H., Raven, J.A., 1982. Carbon Isotope Discrimination and the CO2 Accumulating Mechanism in Chlorella emersonii. J. Exp. Bot. 33, 729–737. https://doi.org/10.1093/jxb/33.4.729		
2054 2055 2056	Beaupré, S.R., 2015. The Carbon Isotopic Composition of Marine DOC, in: Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, pp. 335–368. https://doi.org/10.1016/B978-0-12-405940- 5.00006-6		
2057 2058 2059 2060	Benzerara, K., Skouri-Panet, F., Li, J., Férard, C., Gugger, M., Laurent, T., Couradeau, E., Ragon, M., Cosmidis, J., Menguy, N., Margaret-Oliver, I., Tavera, R., López-García, P., Moreira, D., 2014. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria. Proc. Natl. Acad. Sci. 111, 10933–10938. https://doi.org/10.1073/pnas.1403510111		
2061 2062 2063	Bertilsson, S., Jones, J.B., 2003. Supply of Dissolved Organic Matter to Aquatic Ecosystems: Autochthonous Sources, in: Findlay, S.E.G., Sinsabaugh, R.L. (Eds.), Aquatic Ecosystems, Aquatic Ecology. Academic Press, Burlington, pp. 3–24. https://doi.org/10.1016/B978-012256371-3/50002-0		

- 2074 Blair, N., Leu, A., Muñoz, E., Olsen, J., Kwong, E., Des Marais, D., 1985. Carbon isotopic fractionation
- 2075 in heterotrophic microbial metabolism. Appl. Environ. Microbiol. 50, 996–1001.
- 2076 https://doi.org/10.1128/aem.50.4.996-1001.1985
- 2077 Brailsford, F.L., 2019. Dissolved organic matter (DOM) in freshwater ecosystems. Bangor University.
- 2078
 Burns, B.D., Beardall, J., 1987. Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol.

 2079
 Ecol. 107, 75–86. https://doi.org/10.1016/0022-0981(87)90125-0
- Cadeau, P., Jézéquel, D., Leboulanger, C., Fouilland, E., Le Floc'h, E., Chaduteau, C., Milesi, V.,
 Guélard, J., Sarazin, G., Katz, A., d'Amore, S., Bernard, C., Ader, M., 2020. Carbon isotope evidence for
- 2081 Guerard, S., Sarazhi, G., Katz, A., d'Anore, S., Bernard, C., Ader, M., 2020. Carbon Solope evidence for
 2082 large methane emissions to the Proterozoic atmosphere. Sci. Rep. 10, 18186.
 2083 https://doi.org/10.1038/s41598-020-75100-x
- Cañadas, F., Papineau, D., Leng, M.J., Li, C., 2022. Extensive primary production promoted the
 recovery of the Ediacaran Shuram excursion. Nat. Commun. 13, 148.
 https://doi.org/10.1038/s41467-021-27812-5
- 2087Carlson, C.A., Hansell, D.A., 2015. DOM Sources, Sinks, Reactivity, and Budgets, in: Biogeochemistry2088of Marine Dissolved Organic Matter. Elsevier, pp. 65–126. https://doi.org/10.1016/B978-0-12-2089405940-5.00003-0
- Carrasco-Núñez, G., Ort, M.H., Romero, C., 2007. Evolution and hydrological conditions of a maar
 volcano (Atexcac crater, Eastern Mexico). J. Volcanol. Geotherm. Res. 159, 179–197.
- 2092 https://doi.org/10.1016/j.jvolgeores.2006.07.001
- Cawley, K.M., Ding, Y., Fourqurean, J., Jaffé, R., 2012. Characterising the sources and fate of dissolved
 organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon
 isotopes. Mar. Freshw. Res. 63, 1098. https://doi.org/10.1071/MF12028
- 2096 Chako Tchamabé, B., Carrasco-Núñez, G., Miggins, D.P., Németh, K., 2020. Late Pleistocene to
 2097 Holocene activity of Alchichica maar volcano, eastern Trans-Mexican Volcanic Belt. J. South Am. Earth
 2098 Sci. 97, 102404. https://doi.org/10.1016/j.jsames.2019.102404
- Chen, B., Hu, C., Mills, B.J.W., He, T., Andersen, M.B., Chen, X., Liu, P., Lu, M., Newton, R.J., Poulton,
 S.W., Shields, G.A., Zhu, M., 2022. A short-lived oxidation event during the early Ediacaran and
 delayed oxygenation of the Proterozoic ocean. Earth Planet. Sci. Lett. 577, 117274.
- 2102 https://doi.org/10.1016/j.epsl.2021.117274
- 2103 Chomicki, K., 2009. The use of stable carbon and oxygen isotopes to examine the fate of dissolved 2104 organic matter in two small, oligotrophic Canadian Shield lakes. University of Waterloo.
- 2105 Close, H.G., Henderson, L.C., 2020. Open-Ocean Minima in δ13C Values of Particulate Organic Carbon
 2106 in the Lower Euphotic Zone. Front. Mar. Sci. 7, 540165. https://doi.org/10.3389/fmars.2020.540165
- Couradeau, E., Benzerara, K., Gérard, E., Moreira, D., Bernard, S., Brown, G.E., López-García, P., 2012.
 An Early-Branching Microbialite Cyanobacterium Forms Intracellular Carbonates. Science 336, 459–
 462. https://doi.org/10.1126/science.1216171
- 2110 Crowe, S.A., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M.A., Kessler, J.D.,
- 2111 Reeburgh, W.S., Roberts, J.A., González, L., Douglas Haffner, G., Mucci, A., Sundby, B., Fowle, D.A.,
- 2112 2011. The methane cycle in ferruginous Lake Matano: Methane cycle in ferruginous Lake Matano.
- 2113 Geobiology 9, 61–78. https://doi.org/10.1111/j.1472-4669.2010.00257.x

Deleted: Burdige, D.J., Komada, T., 2015. Sediment Pore Waters, in: Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, pp. 535–577. https://doi.org/10.1016/B978-0-12-405940-5.00012-1 .

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French

Deleted: Camacho, A., Walter, X.A., Picazo, A., Zopfi, J

Moved up [17]: ., 2017.

25

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French

Deleted: Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments. Front. Microbiol. 08. https://doi.org/10.3389/fmicb.2017.00323 -

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

Formatted: Font: (Default) +Theme Body (Calibri), 11 pt

- 2123 Descolas-Gros, C., Fontungne, M., 1990. Stable carbon isotope fractionation by marine
- 2124 phytoplankton during photosynthesis. Plant Cell Environ. 13, 207–218.
- 2125 https://doi.org/10.1111/j.1365-3040.1990.tb01305.x
- 2126 Dittmar, T., 2015. Reasons Behind the Long-Term Stability of Dissolved Organic Matter, in:
- 2127 Biogeochemistry of Marine Dissolved Organic Matter. Elsevier, pp. 369–388.
- 2128 https://doi.org/10.1016/B978-0-12-405940-5.00007-8
- 2129Ducklow, H.W., Hansell, D.A., Morgan, J.A., 2007. Dissolved organic carbon and nitrogen in the2130Western Black Sea. Mar. Chem. 105, 140–150. https://doi.org/10.1016/j.marchem.2007.01.015
- 2131 Erez, J., Bouevitch, A., Kaplan, A., 1998. Carbon isotope fractionation by photosynthetic aquatic 2132 microorganisms: experiments with *Synechococcus* PCC7942, and a simple carbon flux model. Can. J.
- 2133 Bot. 76, 1109–1118. https://doi.org/10.1139/b98-067

2160

2161

- Fakhraee, M., Tarhan, L.G., Planavsky, N.J., Reinhard, C.T., 2021. A largely invariant marine dissolved
 organic carbon reservoir across Earth's history. Proc. Natl. Acad. Sci. 118, e2103511118.
 https://doi.org/10.1073/pnas.2103511118
- Ferrari, L., Orozco-Esquivel, T., Manea, V., Manea, M., 2012. The dynamic history of the TransMexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523, 122–149.
 https://doi.org/10.1016/j.tecto.2011.09.018
- 2140Fike, D.A., Grotzinger, J.P., Pratt, L.M., Summons, R.E., 2006. Oxidation of the Ediacaran Ocean.2141Nature 444, 744–747. https://doi.org/10.1038/nature05345
- Fogel, M.L., Cifuentes, L.A., 1993. Isotope Fractionation during Primary Production, in: Engel, M.H.,
 Macko, S.A. (Eds.), Organic Geochemistry, Topics in Geobiology. Springer US, Boston, MA, pp. 73–98.
 https://doi.org/10.1007/978-1-4615-2890-6_3
- 2145
 Fry, B., 1996. 13C/12C fractionation by marine diatoms. Mar. Ecol. Prog. Ser. 134, 283–294.

 2146
 https://doi.org/10.3354/meps134283
- Hansell, D.A., 2013. Recalcitrant Dissolved Organic Carbon Fractions. Annu. Rev. Mar. Sci. 5, 421–445.
 https://doi.org/10.1146/annurev-marine-120710-100757
- Havig, J.R., Hamilton, T.L., McCormick, M., McClure, B., Sowers, T., Wegter, B., Kump, L.R., 2018.
 Water column and sediment stable carbon isotope biogeochemistry of permanently redox-stratified
 Fayetteville Green Lake, New York, U.S.A. Limnol. Oceanogr. 63, 570–587.
 https://doi.org/10.1002/lno.10649
- Havig, J.R., McCormick, M.L., Hamilton, T.L., Kump, L.R., 2015. The behavior of biologically important
 trace elements across the oxic/euxinic transition of meromictic Fayetteville Green Lake, New York,
 USA. Geochim. Cosmochim. Acta 165, 389–406. https://doi.org/10.1016/j.gca.2015.06.024
- 2156
 Hayes, J.M., 2001. Fractionation of Carbon and Hydrogen Isotopes in Biosynthetic Processes*. Rev.

 2157
 Mineral. Geochem. 43, 225–277. https://doi.org/10.2138/gsrmg.43.1.225
- 2158 Hessen, D.O., 1992. Dissolved organic carbon in a humic lake: effects on bacterial production and

Netherlands, Dordrecht, pp. 115-123. https://doi.org/10.1007/978-94-011-2474-4_9

Ecosystems: Energy Source and System Regulator, Developments in Hydrobiology. Springer

respiration, in: Salonen, K., Kairesalo, T., Jones, R.I. (Eds.), Dissolved Organic Matter in Lacustrine

- Deleted: Dadi, T., Harir, M., Hertkorn, N., Koschorreck, M., Schmitt-Kopplin, P., Herzsprung, P., 2017. Redox Conditions Affect Dissolved Organic Carbon Quality in Stratified Freshwaters. Environ. Sci. Technol. 51, 13705– 13713. https://doi.org/10.1021/acs.est.7b04194.
- Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, English (US)
- Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

Deleted: Havas, R., Thomazo, C., Iniesto, M., Jézéquel, D., Moreira, D., Tavera, R., Caumartin, J., Muller, E., Lopez-Garcia, P., Benzerara, K., submitted. A comparative isotopic study of the biogeochemical cycle of carbon in modern redox-stratified lakes. Biogeosciences preprint. https://doi.org/10.5194/bg-2022-149 .

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

- 2173 Hessen, D.O., Anderson, T.R., 2008. Excess carbon in aquatic organisms and ecosystems:
- Physiological, ecological, and evolutionary implications. Limnol. Oceanogr. 53, 1685–1696.
- 2175 https://doi.org/10.4319/lo.2008.53.4.1685
- 2176 Iniesto, M., Moreira, D., Benzerara, K., Reboul, G., Bertolino, P., Tavera, R., López-García, P., 2022.
- 2177 Planktonic microbial communities from microbialite-bearing lakes sampled along a salinity-alkalinity 2178 gradient. Limnol. Oceanogr. Ino.12233. https://doi.org/10.1002/lno.12233
- 2179 Iñiguez, C., Capó-Bauçà, S., Niinemets, Ü., Stoll, H., Aguiló-Nicolau, P., Galmés, J., 2020. Evolutionary
 2180 trends in RuBisCO kinetics and their co-evolution with CO2 concentrating mechanisms. Plant J. 101,
 2181 897–918. https://doi.org/10.1111/tpj.14643
- Ivanovsky, R.N., Lebedeva, N.V., Keppen, O.I., Chudnovskaya, A.V., 2020. Release of
 Photosynthetically Fixed Carbon as Dissolved Organic Matter by Anoxygenic Phototrophic Bacteria.
 Microbiology 89, 28–34. https://doi.org/10.1134/S0026261720010075
- Jiang, G., Wang, X., Shi, X., Xiao, S., Zhang, S., Dong, J., 2012. The origin of decoupled carbonate and
 organic carbon isotope signatures in the early Cambrian (ca. 542–520Ma) Yangtze platform. Earth
 Planet. Sci. Lett. 317–318, 96–110. https://doi.org/10.1016/j.epsl.2011.11.018
- Jiang, G., Wang, X., Shi, X., Zhang, S., Xiao, S., Dong, J., 2010. Organic carbon isotope constraints on
 the dissolved organic carbon (DOC) reservoir at the Cryogenian–Ediacaran transition. Earth Planet.
 Sci. Lett. 299, 159–168. https://doi.org/10.1016/j.epsl.2010.08.031
- Jiao, N., Herndl, G.J., Hansell, D.A., Benner, R., Kattner, G., Wilhelm, S.W., Kirchman, D.L., Weinbauer, M.G., Luo, T., Chen, F., Azam, F., 2010. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599.
- 2194 https://doi.org/10.1038/nrmicro2386
- 2195 Kaplan, L.A., Wiegner, T.N., Newbold, J.D., Ostrom, P.H., Gandhi, H., 2008. Untangling the complex 2196 issue of dissolved organic carbon uptake: a stable isotope approach. Freshw. Biol. 53, 855–864.
- 2196issue of dissolved organic carbon uptake: a stable isotope approach. Freshw. Biol. 53, 855–864.2197https://doi.org/10.1111/j.1365-2427.2007.01941.x
- Kawasaki, N., Komatsu, K., Kohzu, A., Tomioka, N., Shinohara, R., Satou, T., Watanabe, F.N., Tada, Y.,
 Hamasaki, K., Kushairi, M.R.M., Imai, A., 2013. Bacterial Contribution to Dissolved Organic Matter in
 Eutrophic Lake Kasumigaura, Japan. Appl. Environ. Microbiol. 79, 7160–7168.
 https://doi.org/10.1128/AEM.01504-13
- 202 Kroopnick, P.M., 1985. The distribution of 13C of ΣCO2 in the world oceans. *Deep Sea Research Part*
- 2203 A. Oceanographic Research Papers, 32(1), pp.57-84. <u>https://doi.org/10.1016/0198-0149(85)90017-2</u>
- Kuntz, L.B., Laakso, T.A., Schrag, D.P., Crowe, S.A., 2015. Modeling the carbon cycle in Lake Matano.
 Geobiology 13, 454–461. https://doi.org/10.1111/gbi.12141
- Lampert, W., 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr.
 2207 23, 831–834. https://doi.org/10.4319/lo.1978.23.4.0831
- 2008 Lehmann, M.F., Bernasconi, S.M., Barbieri, A., McKenzie, J.A., 2002. Preservation of organic matter
- 2209 and alteration of its carbon and nitrogen isotope composition during simulated and in situ early
- 2210
 sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584. https://doi.org/10.1016/S0016

 2211
 7037(02)00968-7

Deleted: Johnston, D.T., Macdonald, F.A., Gill, B.C., Hoffman, P.F., Schrag, D.P., 2012. Uncovering the Neoproterozoic carbon cycle. Nature 483, 320–323. https://doi.org/10.1038/nature10854 .

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

Formatted: Font:(Default) +Theme Body (Calibri), 11 pt Formatted: Font:(Default) +Theme Body (Calibri), 11 pt Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

2216	Lenton, T.M., Daines, S.J., 2018. The effects of marine eukaryote evolution on phosphorus, carbon		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2217 2218	and oxygen cycling across the Proterozoic–Phanerozoic transition. Emerg. Top. Life Sci. 2, 267–278. https://doi.org/10.1042/ETLS20170156		
2219	Lenton, T.M., Daines, S.J., 2017. Matworld – the biogeochemical effects of early life on land. New		
2220	Phytol. 215, 531–537. https://doi.org/10.1111/nph.14338		
2221	Li, C., Hardisty, D.S., Luo, G., Huang, J., Algeo, T.J., Cheng, M., Shi, W., An, Z., Tong, J., Xie, S., Jiao, N.,		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2222 2223	Lyons, T.W., 2017. Uncovering the spatial heterogeneity of Ediacaran carbon cycling. Geobiology 15, 211–224. https://doi.org/10.1111/gbi.12222		
2224	Lu, M., Zhu, M., Zhang, J., Shields-Zhou, G., Li, G., Zhao, F., Zhao, X., Zhao, M., 2013. The DOUNCE		
2225	event at the top of the Ediacaran Doushantuo Formation, South China: Broad stratigraphic		
2226	occurrence and non-diagenetic origin. Precambrian Res. 225, 86–109.		
2227	https://doi.org/10.1016/j.precamres.2011.10.018		
2228 2229	Lugo, A., Alcocer, J., Sanchez, M.R., Escobar, E., 1993. Trophic status of tropical lakes indicated by littoral protozoan assemblages. SIL Proc. 1922-2010 25, 441–443.	\leq	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, English (US)
2230	https://doi.org/10.1080/03680770.1992.11900159	-	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2231 2232	Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506, 307–315. https://doi.org/10.1038/nature13068		
2233	Macek, M., Medina, X.S., Picazo, A., Peštová, D., Reyes, F.B., Hernández, J.R.M., Alcocer, J., Ibarra,		
2234 2235	M.M., Camacho, A., 2020. Spirostomum teres: A Long Term Study of an Anoxic-Hypolimnion Population Feeding upon Photosynthesizing Microorganisms. Acta Protozool. 59, 13–38.		
2236	https://doi.org/10.4467/16890027AP.20.002.12158		
2237 2238	Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J., Zabala, L., 2004. Significance and mechanisms of photosynthetic production of dissolved organic carbonin a coastal eutrophic ecosystem. Limnol.		
2230	Oceanogr. 49, 1652–1666. https://doi.org/10.4319/lo.2004.49.5.1652		
2240	Margolin, A.R., Gerringa, L.J.A., Hansell, D.A., Rijkenberg, M.J.A., 2016. Net removal of dissolved		
2240	organic carbon in the anoxic waters of the Black Sea. Mar. Chem. 183, 13–24.		
2242	https://doi.org/10.1016/j.marchem.2016.05.003		
2243	Morana, C., Sarmento, H., Descy, JP., Gasol, J.M., Borges, A.V., Bouillon, S., Darchambeau, F., 2014.		
2243	Production of dissolved organic matter by phytoplankton and its uptake by heterotrophic		
2245	prokaryotes in large tropical lakes. Limnol. Oceanogr. 59, 1364–1375.		
2246	https://doi.org/10.4319/lo.2014.59.4.1364		
2247	Organization for Economic Cooperation and Development (OECD), 1982, Eutrophication of waters.		Moved (insertion) [18]
2248	Monitoring, assessment and control: Paris, Organization for Economic Cooperation and		
2249	<u>Development, 154 p.</u>		
2250	Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., Benner, R., 2001. Production of Refractory Dissolved		
2251	Organic Matter by Bacteria. Science 292, 917–920. https://doi.org/10.1126/science.1057627		
2252 2253	O'Leary, M.H., 1988. Carbon Isotopes in Photosynthesis. BioScience 38, 328–336. https://doi.org/10.2307/1310735		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French
2254	Otero, A., Vincenzini, M., 2003. Extracellular polysaccharide synthesis by Nostoc strains as affected		
2255 2256	by N source and light intensity. J. Biotechnol. 102, 143–152. https://doi.org/10.1016/S0168- 1656(03)00022-1		
22.50	1050(05)00022-1		

2257		*******	Moved up [18]: Organization for Economic Cooperation and
2258 2259	Peltier, W.R., Liu, Y., Crowley, J.W., 2007. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818. https://doi.org/10.1038/nature06354		Development (OECD), 1982, Eutrophication of waters. Monitoring, assessment and control: Paris, Organization for Economic Cooperation and Development, 154 p.
2260 2261 2262 2263	Petrash, D.A., Steenbergen, I.M., Valero, A., Meador, T.B., Pačes, T., Thomazo, C., 2022. Aqueous system-level processes and prokaryote assemblages in the ferruginous and sulfate-rich bottom waters of a post-mining lake. Biogeosciences 19, 1723–1751. https://doi.org/10.5194/bg-19-1723-2022		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2264 2265 2266	Posth, N.R., Bristow, L.A., Cox, R.P., Habicht, K.S., Danza, F., Tonolla, M., Frigaard, NU., Canfield, D.E., 2017. Carbon isotope fractionation by anoxygenic phototrophic bacteria in euxinic Lake Cadagno. Geobiology 15, 798–816. https://doi.org/10.1111/gbi.12254		
2267 2268 2269	Rao, D.N., Chopra, M., Rajula, G.R., Durgadevi, D.S.L., Sarma, V.V.S.S., 2021. Release of significant fraction of primary production as dissolved organic carbon in the Bay of Bengal. Deep Sea Res. Part Oceanogr. Res. Pap. 168, 103445. https://doi.org/10.1016/j.dsr.2020.103445		
2270 2271 2272	Renstrom-Kellner, E., Bergman, B., 1989. Glycolate metabolism in cyanobacteria. III. Nitrogen controls excretion and metabolism of glycolate in Anabaena cylindrica. Physiol. Plant. 77, 46–51. https://doi.org/10.1111/j.1399-3054.1989.tb05976.x		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2273 2274 2275	Repeta, D.J., Aluwihare, L.I., 2006. Radiocarbon analysis of neutral sugars in high-molecular-weight dissolved organic carbon: Implications for organic carbon cycling. Limnol. Oceanogr. 51, 1045–1053. https://doi.org/10.4319/lo.2006.51.2.1045		
2276 2277 2278 2279	Ridgwell, A., Arndt, S., 2015. Chapter 1 - Why Dissolved Organics Matter: DOC in Ancient Oceans and Past Climate Change, in: Hansell, D.A., Carlson, C.A. (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (Second Edition). Academic Press, Boston, pp. 1–20. https://doi.org/10.1016/B978-0- 12-405940-5.00001-7		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2280 2281 2282	Riebesell, U., Burkhardt, S., Dauelsberg, A., Kroon, B., 2000. Carbon isotope fractionation by a marine diatom:dependence on the growth-rate-limiting resource. Mar. Ecol. Prog. Ser. 193, 295–303. https://doi.org/10.3354/meps193295		
2283 2284	Rothman, D.H., Hayes, J.M., Summons, R.E., 2003. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl. Acad. Sci. 100, 8124–8129. https://doi.org/10.1073/pnas.0832439100		
2285 2286 2287	Saini, J.S., Hassler, C., Cable, R., Fourquez, M., Danza, F., Roman, S., Tonolla, M., Storelli, N., Jacquet, S., Zdobnov, E.M., Duhaime, M.B., 2021. Microbial loop of a Proterozoic ocean analogue (preprint). Microbiology. https://doi.org/10.1101/2021.08.17.456685		
2288 2289	Saltzman, M.R., Thomas, E., 2012. Carbon Isotope Stratigraphy, in: The Geologic Time Scale. Elsevier, pp. 207–232. https://doi.org/10.1016/B978-0-444-59425-9.00011-1		
2290 2291 2292	Santinelli, C., Follett, C., Retelletti Brogi, S., Xu, L., Repeta, D., 2015. Carbon isotope measurements reveal unexpected cycling of dissolved organic matter in the deep Mediterranean Sea. Mar. Chem. 177, 267–277. https://doi.org/10.1016/j.marchem.2015.06.018		
2293 2294	Satkoski, A.M., Beukes, N.J., Li, W., Beard, B.L., Johnson, C.M., 2015. A redox-stratified ocean 3.2 billion years ago. Earth Planet. Sci. Lett. 430, 43–53. https://doi.org/10.1016/j.epsl.2015.08.007		Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

- Schiff, S.L., Tsuji, J.M., Wu, L., Venkiteswaran, J.J., Molot, L.A., Elgood, R.J., Paterson, M.J., Neufeld,
 J.D., 2017. Millions of Boreal Shield Lakes can be used to Probe Archaean Ocean Biogeochemistry.
 Sci. Rep. 7, 46708. https://doi.org/10.1038/srep46708
- 2302 Sexton, P.F., Norris, R.D., Wilson, P.A., Pälike, H., Westerhold, T., Röhl, U., Bolton, C.T., Gibbs, S.,
 2011. Eocene global warming events driven by ventilation of oceanic dissolved organic carbon.
 2304 Nature 471, 349–352. https://doi.org/10.1038/nature09826

Shi, W., Li, C., Algeo, T.J., 2017. Quantitative model evaluation of organic carbon oxidation
hypotheses for the Ediacaran Shuram carbon isotopic excursion. Sci. China Earth Sci. 60, 2118–2127.
https://doi.org/10.1007/s11430-017-9137-1

- Shields, G.A., Mills, B.J.W., Zhu, M., Raub, T.D., Daines, S.J., Lenton, T.M., 2019. Unique
 Neoproterozoic carbon isotope excursions sustained by coupled evaporite dissolution and pyrite
 burial. Nat. Geosci. 12, 823–827. https://doi.org/10.1038/s41561-019-0434-3
- Siebe, C., Guilbaud, M.-N., Salinas, S., Chédeville-Monzo, C., 2012. Eruption of Alberca de los Espinos
 tuff cone causes transgression of Zacapu lake ca. 25,000 yr BP in Michoacán, México. Presented at
 the IAS 4IMC Conference, Auckland, New Zeland, pp. 74–75.

Siebe, C., Guilbaud, M.-N., Salinas, S., Kshirsagar, P., Chevrel, M.O., Jiménez, A.H., Godínez, L., 2014.
Monogenetic volcanism of the Michoacán-Guanajuato Volcanic Field: Maar craters of the Zacapu
basin and domes, shields, and scoria cones of the Tarascan highlands (Paracho-Paricutin region).
Presented at the Pre-meeting field guide for the 5th international Maar Conference, Querétaro,
México, pp. 1–37.

- Sigala, I., Caballero, M., Correa-Metrio, A., Lozano-García, S., Vázquez, G., Pérez, L., Zawisza, E., 2017.
 Basic limnology of 30 continental waterbodies of the Transmexican Volcanic Belt across climatic and
 environmental gradients. Bol. Soc. Geológica Mex. 69, 313–370.
- 2322 https://doi.org/10.18268/BSGM2017v69n2a3
- 2323 Silva-Aguilera, R.A., <u>Vilaclara, G., Armienta, M.A., Escolero, Ó., 2022. Hydrogeology and</u>
- Hydrochemistry of the Serdán-Oriental Basin and the Lake Alchichica, in: Alcocer, J. (Ed.), Lake
 Alchichica Limnology. Springer International Publishing, Cham, pp. 63–74.
- 2326 https://doi.org/10.1007/978-3-030-79096-7_5

Sperling, E.A., Peterson, K.J., Laflamme, M., 2011. Rangeomorphs, Thectardis (Porifera?) and
 dissolved organic carbon in the Ediacaran oceans: Rangeomorphs, Thectardis and DOC. Geobiology 9,
 24–33. https://doi.org/10.1111/j.1472-4669.2010.00259.x

Swanson-Hysell, N.L., Rose, C.V., Calmet, C.C., Halverson, G.P., Hurtgen, M.T., Maloof, A.C., 2010.
Cryogenian Glaciation and the Onset of Carbon-Isotope Decoupling. Science 328, 608–611.
https://doi.org/10.1126/science.1184508

Thomas, P.J., Boller, A.J., Satagopan, S., Tabita, F.R., Cavanaugh, C.M., Scott, K.M., 2019. Isotope
discrimination by form IC RubisCO from *Ralstonia eutropha* and *Rhodobacter sphaeroides*,
metabolically versatile members of *' Proteobacteria '* from aquatic and soil habitats. Environ.
Microbiol. 21, 72–80. https://doi.org/10.1111/1462-2920.14423

- 2337 Thornton, D.C.O., 2014. Dissolved organic matter (DOM) release by phytoplankton in the
- 2338 contemporary and future ocean. Eur. J. Phycol. 49, 20–46.
- 2339 https://doi.org/10.1080/09670262.2013.875596

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Deleted: Alcocer, J. (

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Formatted: Line spacing: multiple 1.08 li

 Deleted:). Recent Climate of

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Deleted: . In

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Deleted: eds)

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Deleted: eds)

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

 Deleted: 4

 Formatted: Font:(Default) +Theme Body (Calibri), 11 pt

2345 2346 2347	Tziperman, E., Halevy, I., Johnston, D.T., Knoll, A.H., Schrag, D.P., 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proc. Natl. Acad. Sci. 108, 15091–15096. https://doi.org/10.1073/pnas.1016361108	
2348 2349 2350	Vilaclara, G., Chávez, M., Lugo, A., González, H., Gaytán, M., 1993. Comparative description of crater- lakes basic chemistry in Puebla State, Mexico. SIL Proc. 1922-2010 25, 435–440. https://doi.org/10.1080/03680770.1992.11900158	
2351 2352 2353 2354	Wagner, S., Schubotz, F., Kaiser, K., Hallmann, C., Waska, H., Rossel, P.E., Hansman, R., Elvert, M., Middelburg, J.J., Engel, A., Blattmann, T.M., Catalá, T.S., Lennartz, S.T., Gomez-Saez, G.V., Pantoja- Gutiérrez, S., Bao, R., Galy, V., 2020. Soothsaying DOM: A Current Perspective on the Future of Oceanic Dissolved Organic Carbon. Front. Mar. Sci. 7, 341. https://doi.org/10.3389/fmars.2020.00341	
2355 2356 2357	Werne, J.P., Hollander, D.J., 2004. Balancing supply and demand: controls on carbon isotope fractionation in the Cariaco Basin (Venezuela) Younger Dryas to present. Mar. Chem. 92, 275–293. https://doi.org/10.1016/j.marchem.2004.06.031	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt, French Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2358 2359	Wetz, M.S., Wheeler, P.A., 2007. Release of dissolved organic matter by coastal diatoms. Limnol. Oceanogr. 52, 798–807. https://doi.org/10.4319/lo.2007.52.2.0798	
2360 2361 2362	Williams, P.M., Gordon, L.I., 1970. Carbon-13: carbon-12 ratios in dissolved and particulate organic matter in the sea. Deep Sea Res. Oceanogr. Abstr. 17, 19–27. https://doi.org/10.1016/0011- 7471(70)90085-9	
2363 2364 2365 2366	Xing, C., Liu, P., Wang, R., Li, C., Li, J., Shen, B., 2022. Tracing the evolution of dissolved organic carbon (DOC) pool in the Ediacaran ocean by Germanium/silica (Ge/Si) ratios of diagenetic chert nodules from the Doushantuo Formation, South China. Precambrian Res. 374, 106639. https://doi.org/10.1016/j.precamres.2022.106639	Formatted: Font:(Default) +Theme Body (Calibri), 11 pt
2367 2368 2369	Zeebe, R.E., Wolf-Gladrow, D.A. (2009). Carbon Dioxide, Dissolved (Ocean). In: Gornitz, V. (eds) Encyclopedia of Paleoclimatology and Ancient Environments. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4411-3_30	
2370 2371 2372 2373	Zeyen, N., Benzerara, K., Beyssac, O., Daval, D., Muller, E., Thomazo, C., Tavera, R., López-García, P., Moreira, D., Duprat, E., 2021. Integrative analysis of the mineralogical and chemical composition of modern microbialites from ten Mexican lakes: What do we learn about their formation? Geochim. Cosmochim. Acta 305, 148–184. https://doi.org/10.1016/j.gca.2021.04.030	

Page 4: [2] Deleted	Rob Havas	4/18/23 2:56:00 PM
fluxes in Alchichica for example (S	ilva-Aguilera et al., 2022). They	
Page 4: [3] Deleted	Rob Havas	4/18/23 2:56:00 PM
La Alberca's climate is temperate t	o semi-humid and is underlain mostly	
Page 4: [4] Deleted	Rob Havas	4/18/23 2:56:00 PM
Finally, the trophic status of the lake	es under study has only been assessed for the	three SOB lakes, with Lake
Page 4: [5] Deleted	Rob Havas	4/18/23 2:56:00 PM
and La Preciosa and Alchichica bein	ng more or less oligotrophic than each other c	lepending on the year of sampling
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		

Rob Havas

4/18/23 2:56:00 PM

Page 4: [1] Deleted

conditions in

Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		
Page 5: [6] Deleted	Rob Havas	4/18/23 2:56:00 PM
conditions in		· · ·
Page 5: [7] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:(Default) Times New Roman	nos navas	4/10/25 2.50.00 F M
Tont. (Default) Times New Koman		
Page 5: [7] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:(Default) Times New Roman		
Page 5: [8] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:(Default) Times New Roman		
Page 5: [8] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:(Default) Times New Roman		
		- / /
Page 5: [9] Deleted	Rob Havas	4/18/23 2:56:00 PM
01		
Page 5: [9] Deleted	Rob Havas	4/18/23 2:56:00 PM
of		
Page 5: [9] Deleted	Rob Havas	4/18/23 2:56:00 PM
of		
Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM
,		
Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM

,

Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM
,		
Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM
,		
Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM
,		
Page 5: [10] Deleted	Rob Havas	4/18/23 2:56:00 PM
,		
Page 6: [11] Deleted	Rob Havas	4/18/23 2:56:00 PM

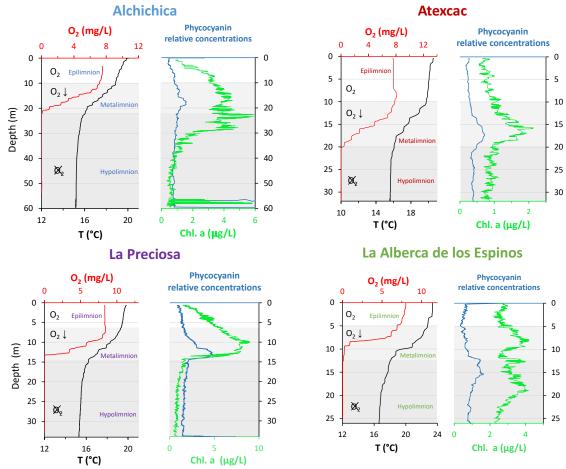


Figure 2. Main physico-chemical parameters depth profiles of Alchichica, Atexcac, La Preciosa and Alberca de los Espinos including: dissolved oxygen concentrations (mg/L), water temperature (°C), phycocyanin and chlorophyll a pigments (μ g/L). Absolute values for phycocyanin concentrations were not determined; only relative variations are represented (with increasing concentrations to the right). Epi-, meta- and hypo-limnion layers are represented for each lake according to temperature profiles (and mostly correspond to oxygen-rich, -poor and intermediate zones). Original data from Havas et al. (submitted).

Dege 9.	[1]]	Deleted
Page 8:	1771	Deleted

Rob Havas

4/18/23 2:56:00 PM

The sum and weighted average of total carbon concentrations and isotopic compositions were calculated (considering the DIC and POC reservoirs).

Page 9: [13] Formatted

Rob Havas

4/18/23 2:56:00 PM

Justified, Level 1, Space After: 8 pt

Page 9: [14] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a		
Page 9: [14] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a		
Page 9: [14] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a		
Page 9: [14] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a		
Page 9: [14] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a		
Page 9: [15] Moved to page 7 (Move #6)	Rob Havas	4/18/23 2:56:00 PM

1.1. Lake La Preciosa

Page 9: [16] Formatted	Rob Havas	4/18/23 2:56:00 PM

No underline

Page 9: [17] Deleted	Rob Havas	4/18/23 2:56:00 PM
DOC had a concentration around 0.5	5 mM throughout the water column except at 15 r	m, where it peaked at 1.6 mM.
$\delta^{13}C_{DOC}$ was mostly around -26 ‰ ex	cept between 10 and 12.5 m, where it reached up to	o -20 ‰ (Fig. 3). It represented
on average about 3% of the total ca	rbon and 91% of the organic carbon present in t	the water column. The total C
concentration was relatively stable at ~13.8 mM, while $\delta^{13}C_{total}$ was centered around -1 ‰ with a decrease down to -		
2.8 ‰ at 12.5 m (Table 1).		

Page 9: [18] Formatted	Rob Havas	4/18/23 2:56:00 PM	
Justified, Level 1, Space After: 8 pt			
Page 9: [19] Deleted	Rob Havas	4/18/23 2:56:00 PM	
$\Delta^{13}C_{\text{DOC-DIC}}$ values were very stable with depth around -26 ‰ but markedly increased at 12.5 m up to -20 ‰. The			
$\Delta^{13}C_{DOC-POC}$ values were centered around	nd 0 ‰ at all depths but 12.5 m where it	increased to +7 ‰ (Fig.	

Page 9: [20] Deleted Rob Havas	4/18/23 2:56:00 PM
--------------------------------	--------------------

Rob Havas

1.2. Lake La Alberca de los Espinos

Page 9: [22] Formatted	Rob Havas	4/18/23 2:56:00 PM
Superscript		

iper crip

Page 9: [23] Deleted	Rob Havas	4/18/23 2:56:00 PM
mM throughout the water column exe	cept at 7 and 17 m, where DOC peaked at 1	and 1.7 mM, respectively (Fig. 3).
Its isotopic composition was mostly c	comprised between -27 and -25 ‰ except at	7 m, where it reached -15 ‰ (Fig.
	1 1	

3). It represented about 8% of the total carbon

Page 9: [24] Moved to page 7 (Move #4)	Rob Havas	4/18/23 2:56:00 PM
and 93% of the organic carbon present in the	e water column. Total C conce	ntration increased downward from about 7
to 9 mM.		

Page 9: [25] Deleted	Rob Havas	4/18/23 2:56:00 PM
$\delta^{13}C_{total}$ decreased from -3.9 to -7.9 ‰	between 5 and 17 m and then increased up	to -3.2 ‰ at 25 m (Table 1). The
$\Delta^{13}C_{\text{DOC-DIC}}$ values were between -21 at	nd -25 ‰ except at 7 m depth where it increa	ased up to -12 ‰. The $\Delta^{13}C_{DOC-POC}$
values were comprised between -1 and	+3 ‰ except at the same depth of 7 m where	DOC was 13 C-enriched by ~12 ‰.

Page 9: [26] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:10 pt		

Page 9: [27] Formatted	Rob Havas	4/18/23 2:56:00 PM
Justified Line spacing: 1.5 lines		

Justified, Line spacing: 1.5 lines

6:00 PM	4/18/23 2:56:00 P	Rob Havas	Page 9: [28] Formatted
, Wrap	Horizontal: 0", Wra	Left, Relative to: Column, Vertical: In line, Relative to: Ma	Position:Horizontal: Le Around

Page 9: [29] Formatted Table	Rob Havas	4/18/23 2:56:00 PM
Formatted Table		
Page 9: [30] Deleted	Rob Havas	4/18/23 2:56:00 PM
	mmol.	
Page 9: [30] Deleted	Rob Havas	4/18/23 2:56:00 PM
	mmol.	
Page 9: [31] Formatted	Rob Havas	4/18/23 2:56:00 PM

Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Page 9: [32] Moved from page 9 (Move #9)	Rob Havas	4/18/23 2:56:00 PM
I	La Alberca de Los Espinos	
Page 9: [33] Moved from page 9 (Move #10)	Rob Havas	4/18/23 2:56:00 PM
	La Preciosa	
Page 9: [34] Formatted	Rob Havas	4/18/23 2:56:00 PM
Centered, Position:Horizontal: Left, Rela 0", Wrap Around	itive to: Column, Vertical: Ir	n line, Relative to: Margin, Horizontal:
Page 9: [35] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Co Around	lumn, Vertical: In line, Rela	tive to: Margin, Horizontal: 0", Wrap
Page 9: [36] Moved from page 9 (Move #11)	Rob Havas	4/18/23 2:56:00 PM
	LP 5m	
Page 9: [37] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Co Around	lumn, Vertical: In line, Rela	tive to: Margin, Horizontal: 0", Wrap
Page 9: [38] Moved from page 9 (Move #12)	Rob Havas	4/18/23 2:56:00 PM
	Atexcac	
Page 9: [39] Formatted	Rob Havas	4/18/23 2:56:00 PM
Centered, Position:Horizontal: Left, Rela 0", Wrap Around	itive to: Column, Vertical: Ir	n line, Relative to: Margin, Horizontal:
Page 9: [40] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Co Around	lumn, Vertical: In line, Rela	tive to: Margin, Horizontal: 0", Wrap
Page 9: [41] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Co Around	lumn, Vertical: In line, Rela	tive to: Margin, Horizontal: 0", Wrap
Page 9: [42] Formatted	Rob Havas	4/18/23 2:56:00 PM
Centered, Position:Horizontal: Left, Rela 0", Wrap Around	itive to: Column, Vertical: Ir	n line, Relative to: Margin, Horizontal:
Page 9: [43] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around		
Page 9: [44] Deleted	Rob Havas	4/18/23 2:56:00 PM

Page 9: [44] Deleted	Rob Havas	4/18/23 2:56:00 PM
	-	
Page 9: [45] Deleted	Rob Havas	4/18/23 2:56:00 PM
	-	
Page 9: [45] Deleted	Rob Havas	4/18/23 2:56:00 PM
	-	
Page 9: [46] Formatted	Rob Havas	4/18/23 2:56:00 PM
Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around		

Page 10: [47] Deleted	Rob Havas	4/18/23 2:56:00 PM
-----------------------	-----------	--------------------

Page 11: [48] Deleted	Rob Havas	4/18/23 2:56:00 PM
Dissolved organic carbon is an	operationally defined fraction of aqueous organic	c carbon (here separated from
particulate organic carbon by filtra	ation at 0.22 μ m) within a continuum of organic me	olecules spanning a large range

of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015; Carlson and Hansell, 2015; Brailsford, 2019). Importantly

Page 11: [48] Deleted	Rob Havas	4/18/23 2:56:00 PM
Dissolved organic carbon is an ope	erationally defined fraction of aqueous orga	nic carbon (here separated from
particulate organic carbon by filtration	on at 0.22 μ m) within a continuum of organic	molecules spanning a large range
of sizes, compositions, degrees of re	activity and bioavailability (Kaplan et al., 200	08; Hansell, 2013; Beaupré, 2015;
Carlson and Hansell, 2015; Brailsford	d, 2019). Importantly	

Page 11: [48] DeletedRob Havas4/18/23 2:56:00 PMDissolved organic carbon is an operationally defined fraction of aqueous organic carbon (here separated from
particulate organic carbon by filtration at 0.22 μm) within a continuum of organic molecules spanning a large range
of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015;

Carlson and Hansell, 2015; Brailsford, 2019). Importantly

Page 11: [48] DeletedRob Havas4/18/23 2:56:00 PMDissolved organic carbon is an operationally defined fraction of aqueous organic carbon (here separated from
particulate organic carbon by filtration at 0.22 µm) within a continuum of organic molecules spanning a large range
of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015;
Carlson and Hansell, 2015; Brailsford, 2019). Importantly

Page 11: [48] DeletedRob Havas4/18/23 2:56:00 PMDissolved organic carbon is an operationally defined fraction of aqueous organic carbon (here separated from
particulate organic carbon by filtration at 0.22 µm) within a continuum of organic molecules spanning a large range
of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015;
Carlson and Hansell, 2015; Brailsford, 2019). Importantly

Page 11: [48] Deleted	Rob Havas	4/18/23 2:56:00 PM
Dissolved organic carbon is an oper	rationally defined fraction of aqueous orga	nic carbon (here separated from
particulate organic carbon by filtration	n at 0.22 $\mu m)$ within a continuum of organic	molecules spanning a large range
of sizes, compositions, degrees of read	ctivity and bioavailability (Kaplan et al., 200	08; Hansell, 2013; Beaupré, 2015;
Carlson and Hansell, 2015; Brailsford	, 2019). Importantly	

Page 11: [48] DeletedRob Havas4/18/23 2:56:00 PMDissolved organic carbon is an operationally defined fraction of aqueous organic carbon (here separated from
particulate organic carbon by filtration at 0.22 µm) within a continuum of organic molecules spanning a large range
of sizes, compositions, degrees of reactivity and bioavailability (Kaplan et al., 2008; Hansell, 2013; Beaupré, 2015;
Carlson and Hansell, 2015; Brailsford, 2019). Importantly

Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		., 20, 20 2100100 1 11
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		1, 20, 20 2100100 1 11
entier		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		., 10, 20 2.30.00 1 11
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		
Page 11: [49] Deleted	Rob Havas	4/18/23 2:56:00 PM
either		

Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
·		
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
-		
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM

Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
[
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
[
-		
Page 11: [50] Deleted	Rob Havas	4/18/23 2:56:00 PM
[4/ 10/ 20 2:30:00 1 11
t		
Dense 11, [51] Delated	Dala Usura	4/10/22 2.5C.00 DM
Page 11: [51] Deleted	Rob Havas	4/18/23 2:56:00 PM
pi		
Page 11: [51] Deleted	Rob Havas	4/18/23 2:56:00 PM
pf		
Page 11: [51] Deleted	Rob Havas	4/18/23 2:56:00 PM
pf		
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		1, 20, 20 2100100 1 11
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		4/18/25 2:50:00 PW
Morana et al., 2017). Desides, it illay		
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		
Page 11: [52] Deleted	Rob Havas	4/18/23 2:56:00 PM
Morana et al., 2014). Besides, it may		
Page 11: [53] Deleted	Rob Havas	4/18/23 2:56:00 PM
1.1.1. In the new second		

, which is, to some extent

Page 11: [53] Deleted	Rob Havas	4/18/23 2:56:00 PM
, which is, to some extent		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [54] Deleted	Rob Havas	4/18/23 2:56:00 PM
lakes		
Page 12: [55] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:Not Italic		
Page 12: [55] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:Not Italic		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		

Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		., 10, 10 2.00000 1
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values	KUD Havas	4/16/25 2:50:00 PIN
But values		
	D. L. U.	
Page 12: [56] Deleted But values	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [56] Deleted	Rob Havas	4/18/23 2:56:00 PM
But values		
Page 12: [57] Deleted	Rob Havas	4/18/23 2:56:00 PM
An interesting feature is that		
Page 12: [57] Deleted	Rob Havas	4/18/23 2:56:00 PM
An interesting feature is that		
Page 12: [57] Deleted	Rob Havas	4/18/23 2:56:00 PM
An interesting feature is that		., _0, _0 _100100 . 111
Page 12: [57] Deleted	Rob Havas	4/18/23 2:56:00 PM
An interacting feature is that		4/ 10/ 23 2:30:00 PW

An interesting feature is that

Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		
Page 12: [58] Deleted	Rob Havas	4/18/23 2:56:00 PM
could		

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	ay correspond to new photosynthate release ins	stead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{DOC}$ close to δ^{12}	³ C _{POC} values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC m	nay correspond to new photosynthate release in	nstead of a product of cell lysis or

zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC m	ay correspond to new photosynthate release i	nstead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{\text{DOC}}$ close to δ^{13}	$\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	y correspond to new photosynthate release	se instead of a product of cell lysis or
zooplankton sloppy feeding since the l	atter would likely produce $\delta^{13}C_{DOC}$ close	to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas
-----------------------	-----------

origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted **Rob Havas** 4/18/23 2:56:00 PM origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted 4/18/23 2:56:00 PM **Rob Havas** origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted **Rob Havas** 4/18/23 2:56:00 PM origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted **Rob Havas** 4/18/23 2:56:00 PM origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	ay correspond to new photosynthate release in	nstead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{DOC}$ close to δ^{13}	$^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	ay correspond to new photosynthate release ir	stead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{DOC}$ close to δ	¹³ C _{POC} values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC may	correspond to new photosynthate release in	nstead of a product of cell lysis or

zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted 4/18/23 2:56:00 PM **Rob Havas** origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or

zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted **Rob Havas** 4/18/23 2:56:00 PM origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted

origins. First, it supports that DOC may correspond to new photosynthate release instead of a product of cell lysis or zooplankton sloppy feeding since the latter would likely produce $\delta^{13}C_{DOC}$ close to $\delta^{13}C_{POC}$ values. Second, this heavy

Rob Havas

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC m	ay correspond to new photosynthate release in	stead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{\text{DOC}}$ close to δ	¹³ C _{POC} values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	ay correspond to new photosynthate release ins	stead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{DOC}$ close to δ^{1}	³ C _{POC} values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC m	hay correspond to new photosynthate release	instead of a product of cell lysis or
zooplankton sloppy feeding since the	latter would likely produce $\delta^{13}C_{DOC}$ close to	$\delta^{13}C_{POC}$ values. Second, this heavy

Page 12: [59] Deleted	Rob Havas	4/18/23 2:56:00 PM
origins. First, it supports that DOC ma	y correspond to new photosynthate release	instead of a product of cell lysis or
zooplankton sloppy feeding since the l	atter would likely produce $\delta^{13}C_{\text{DOC}}$ close to	$\delta^{13}C_{POC}$ values. Second, this heavy

Page 13: [60	50] Deleted Rob Havas			Rob Havas		/18/23 2:56:00 PM
Page 13:	Lake	Sample	$\Delta^{13}C_{DOC-DIC}$	$\Delta^{13}C_{DOC-POC}$	EDOC-CO2	[61] Formatted
4/18/23			Q	%00	‰	Rob Havas 2:56:00 PM
		AL 5m	ND	-1.6	ND	Centered,

Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Page 13: [62] Moved to page 17 (Mo	ove #13)	Rob Havas		4/18/23 2:56:00 PM
AL 10m	-30.3		-20.1	
AL 20m	-30.9		-20.5	
AL 30m	-30.0	-2.0	-19.5	
AL 35m	-28.4	-1.0	-17.9	
AL 40m	-27.3	-0.7	-16.8	
AL 50m	-26.7		-16.2	
AL 55m	-29.1	-3.5	-18.7	
AL 58m	-29.3		-18.8	
AL 60m	-27.6		-17.1	_
Page 13: [63] Formatted		Rob Havas		4/18/23 2:56:00 PM

Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

Page 13: [6	4] Deleted		Rob Havas		L	1/18/23 2:56:00 PM
Page 13:	Atexcac	ATX 5m ATX 10m	-20.4 -16.0	8.4 12.6	-10.6 -6.1	[65] Formatted
4/18/23		ATX 16m	ND	12.0	-0.1	Rob Havas 2:56:00 PM
		ATX 23m	-9.7	17.9	0.6	
		ATX 30m	-11.4	15.2	-1.2	
	La Preciosa	LP 5m	-25.5	1.0	-15.7	_
	2	LP 10m	-25.9	1.7	-16.0	
		LP 12.5m	-19.8	7.1	-9.8	
		LP 15m	-23.6	-0.4	-13.5	
		LP 20m	-25.8	0.1	-15.7	
		LP 31m	-25.8	-1.0	-15.7	

Position:Horizontal: Left, Relative to: Column, Vertical: In line, Relative to: Margin, Horizontal: 0", Wrap Around

age 13: [66] Mov	ed to page 17 (Mo	ve #14)	Rob Havas		4/18/23 2:56:00 PM
	Albesp 5m	-24.2	0.2	-14.8	
	Albesp 7m	-12.4	11.5	-3.0	
La Alberca de	Albesp 10m	-21.2	3.1	-11.6	
Los Espinos	Albesp 17m	-22.9	2.7	-13.1	
	Albesp 20m	-21.8	1.5	-12.2	
	Albesp 25m	-25.2	-1.5	-15.9	_
age 13: [67] Dele	ted		Rob Havas		4/18/23 2:56:00 PM

Page 13: [68] Deleted	Rob Havas	4/18/23 2:56:00 PM
-----------------------	-----------	--------------------

Isotopic fractionations between DOC and DIC and POC where $\Delta^{13}C_{x-y} = \delta^{13}C_x - \delta^{13}C_y$ is the apparent fractionation and ε is computed as the actual metabolic isotopic discrimination between CO₂ and DOC. In Alchichica, $\delta^{13}C_{DOC}$ was not measured at 5 m and its value at 10 m was used in this calculation of $\Delta^{13}C_{DOC-POC}$. The full chemistry at depths 35 and 58 m was also not determined, thus, the calculation of $\delta^{13}C_{CO2}$ for these samples is based on the composition of samples above and beneath. Isotopic data for DIC, POC and CO₂ are from Havas et al. (submitted).

Page 16: [69] Deleted	Rob Havas	4/18/23 2:56:00 PM
The DOC reservoir in Alchichica is	characterized by a $\delta^{13}C_{\text{DOC}}$ (and $\Delta^{13}C_{\text{DOC-DIC}}$) lower than in the other lakes and
systematically showing ¹³ C-depleted	I signatures relative to POC (<i>i.e.</i> $\delta^{13}C_{DOC} < \delta^{13}$	$\delta^{13}C_{POC}$; Fig. 4). Thus, if the DOC
increase in Alchichica's hypolimnio	n resulted from the release of photosynthetic	OC as in some of the other lakes, it
was not associated with the same	C isotopes fractionation (e.g. if anoxygenio	c phototrophs did not concentrate
intracellular DIC, cf. Fig. 5a). Some	purple sulfur bacteria (anoxygenic phototrop	hs belonging to the Proteobacteria)
have been identified but they bec	some significant towards the end of the st	tratification (from July/August to
December/January; Alcántara-Herná	ndez et al., 2022; Iniesto et al., 2022).	

Page 18: [70] Deleted	Rob Havas	4/18/23 2:56:00 PM
With concentrations ranging from 0	.6 to 6.5 mM on average, DOC amounts be	tween 14 and 160 times the POC
concentrations. It represents from abo	out 5 to 16% of the total C measured in the fo	our lakes. In comparison, although
DOC is the main organic pool in the o	ocean, its concentration hardly exceeds 0.08 n	nM (Hansell, 2013) while in large-
scale anoxic basins such as the Black	Sea, it remains under 0.3 mM (Ducklow et al	., 2007). Hence, DOC is a major C
reservoir in these Mexican lakes, by i	ts size.	

Page 18: [71] Deleted	Rob Havas	4/18/23 2:56:00 PM
only a small portion of C is transferred	from the inorganic to the POC by primary pro-	ductivity, while the DIC reservoir

is largely influenced by methanotrophy

5.2

Page 19: [72] Deleted	Rob Havas	4/18/23 2:56:00 PM
"big		
5.1		
Page 19: [72] Deleted	Rob Havas	4/18/23 2:56:00 PM
"big		

Page 19: [73] Deleted	Rob Havas	4/18/23 2:56:00 PM
Phanarazaia aarhan isatana ay	oursions (CIFs)	
Phanerozoic carbon isotope ex	cursions (CIES)	
The studied		
Page 19: [73] Deleted	Rob Havas	4/18/23 2:56:00 PM
Phanerozoic carbon isotope ex	cursions (CIEs)	
The studied		
Page 19: [73] Deleted	Rob Havas	4/18/23 2:56:00 PM
Phanerozoic carbon isotope ex	cursions (CIFs)	
-		
The studied		
Page 19: [73] Deleted	Rob Havas	4/18/23 2:56:00 PM
		4/ 10/ 20 2.00.00 1 11
Phanerozoic carbon isotope ex	cursions (CIEs)	
The studied		
Page 19: [73] Deleted	Rob Havas	4/18/23 2:56:00 PM
Phanerozoic carbon isotope ex	cursions (CIEs)	
The studied		
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM

Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Tage 13. [74] Deleted		4/10/25 2.50.00 110
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
		· ·
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Dense 10: [74] Deleted	Dah Usua	4/40/22 2.50.00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
1 age 151 [7 1] Deleted		1, 20, 20 2100100 T III
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
	Data Usura	
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM

Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [74] Deleted	Rob Havas	4/18/23 2:56:00 PM
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted Black Sea's	Rob Havas	4/18/23 2:56:00 PM
Diack Sea S		
Page 19: [75] Deleted	Poh Hours	4/18/23 2:56:00 PM
Black Sea's	Rob Havas	4/18/23 2:30:00 PW
2		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		-,,
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM

Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [75] Deleted	Rob Havas	4/18/23 2:56:00 PM
Black Sea's		
Page 19: [76] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:Not Italic		
Page 19: [76] Formatted	Rob Havas	4/18/23 2:56:00 PM
Font:Not Italic		
Dega 10: [77] Delated	Rob Havas	4/10/22 2.EC.00 DM
Page 19: [77] Deleted) or yet,	ROD Havas	4/18/23 2:56:00 PM
) or yet,		
Page 19: [77] Deleted	Rob Havas	4/18/23 2:56:00 PM
) or yet,		4/ 16/ 23 2.30.00 FW
,		
Page 19: [77] Deleted	Rob Havas	4/18/23 2:56:00 PM
) or yet,	NOD HAVAS	-1 10/20 2.50.00 T III
Page 19: [77] Deleted	Rob Havas	4/18/23 2:56:00 PM
) or yet,		·/ _0/ _0 _100100 : 111
· · ·		
Page 19: [77] Deleted	Rob Havas	4/18/23 2:56:00 PM
) or yet,		·, _0, _0
, . .		
Page 19: [77] Deleted	Rob Havas	4/18/23 2:56:00 PM
) or yet,		., 10, 10 2.00.00 1 11

Page 21: [78] Deleted Rob Havas	4/18/23 2:56:00 PM
---------------------------------	--------------------

. One could argue that the development of larger DOC pools in the three Mexican lakes from the SOB is hindered by relatively large sulfate reservoirs (especially in Alchichica ~10 mM). However, we notice that Lake La Alberca does not show a larger DOC reservoir despite having the lowest availability of oxidant (both oxygen- and sulfate-free at depth and the only one to present isotopic signatures associated with methanogenesis or methanotrophy, Havas et al., submitted). It could also be argued that large OM particles in Alchichica for example (Ardiles et al., 2012) favor the sedimentation of OC rather than DOC production, thereby favoring the oxygenation of deep waters as suggested for

the beginning of the Phanerozoic period with advent of eukaryotic plankton (Lenton and Daines, 2018; Fakhraee et al., 2021). Yet, plankton of the studied Mexican lakes is overall dominated by prokaryotic communities and not large organisms (Iniesto et al., 2022). Besides, rapid sinking of OM particles in modern oceans does not necessarily preclude important fluxes of benthic DOC from the sediments (around ~ 100 PgC.yr⁻¹ in today's ocean; Burdige and Komada, 2015) and especially in anoxic bottom waters (Dadi et al., 2017). Thus, even if the "oxidant paradox" may have found satisfactory explanations (see above), the origin of the massive DOC reservoir required to generate these excursion remains to be elucidated (Jiang et al., 2010; Li et al., 2017).

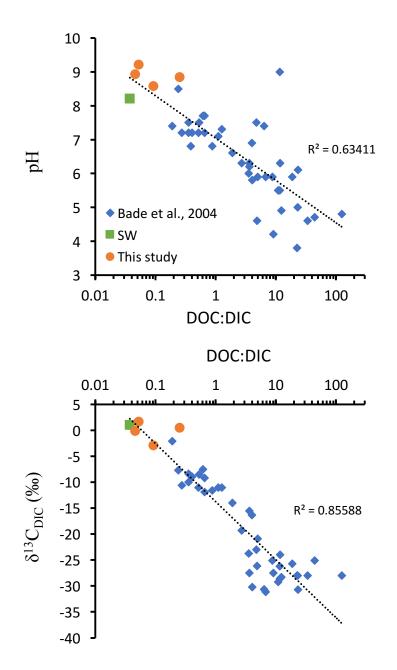


Figure 6. DOC:DIC ratios, pH and $\delta^{13}C_{\text{DIC}}$ values from different lakes compiled from Bade et al. (2004) and the four Mexican lakes from Havas et al. (submitted) as well as modern surface ocean values (from Kroopnick, 1985; Zeebe and Wolf-Gladrow, 2009 and Hansell, 2013).

Top: $\delta^{13}C_{DIC}$ as a function of DOC:DIC ratio represented with a logarithmic abscises scale and logarithmic trend line which combines the three datasets.

Bottom: pH as a function of DOC:DIC ratio, with a logarithmic abscises scale and logarithmic trend line which combines the three datasets.

In the studied

Page 22: [79] Deleted Rob Havas	4/18/23 2:56:00 PM
---------------------------------	--------------------

Moreover, the record of these excursions in carbonate deposits supports that the oxidation of DOC

Page 22: [80] Deleted	Rob Havas	4/18/23 2:56:00 PM
Further characterization of the nature a	nd potential continental overprinting of t	he OM signatures in these sedimentary
successions could provide important in	sights into the triggers of these events.	

Page 22: [81] DeletedRob Havas4/18/23 2:56:00 PMwere characterized and extensively compared, based on the concentration and isotopic signatures of this DOCreservoir,

Page 22: [82] Deleted	Rob Havas	4/18/23 2:56:00 PM
compositions bring precious, new and complementary		

 Page 22: [83] Deleted
 Rob Havas
 4/18/23 2:56:00 PM

Depending on environmental factors such as nutrients and DIC availability,