Supplement of

The impact multi-decadal of changes in VOCs speciation on urban ozone

chemistry: A case study in Birmingham, United Kingdom.

Jianghao Li^{1,2}, Alastair C. Lewis^{1,3}, Jim R. Hopkins^{1,3}, Stephen J. Andrews^{1,3}, Tim Murrells⁴, Neil Passant⁴, Ben Richmond⁴, Siqi Hou⁵, William Bloss⁵, Roy Harrison^{5,6}, Zongbo Shi⁵.

¹Wolfson Atmospheric Chemistry Laboratories, University of York, York YO10 5DD, UK

²School of Water and Environment, Chang'an University, Xi'an 710064, China

³National Centre for Atmospheric Science, University of York, Heslington, York YO10 5DD, UK

⁴Ricardo Energy and Environment Gemini Building, Fermi Avenue, Harwell, Oxon OX11 0QR, UK

⁵School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

⁶Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia *Correspondence to:* Jianghao Li (cfm531@york.ac.uk)

Table Captions

Table S1. Descriptive statistics (Mean \pm SD) of the concentrations of measured gases and meteorological parameters at the Birmingham Supersite.

Table S2. Relative contributions of ozone precursors emitted from the six emission inventory source sectors.

Species (ppbv)	Initial Period	O ₃ Period	Clear-out Period	
O ₃	21.6 ± 8.5	31.5 ± 19.1	26.7 ± 10.7	
СО	99.0 ± 57.7	$120.4{\pm}~34.5$	102.3 ± 29.9	
NO	0.6 ± 0.6	0.8 ± 2.0	0.6 ± 1.1	
NO ₂	2.5 ± 3.7	7.6 ± 7.8	3.6 ± 4.1	
Parameter	Initial Period	O ₃ Period	Clear-out Period	
temperature (°C)	18.2 ± 4.1	20.8 ± 5.3	18.1 ± 2.8	
relatively humidity (%)	65.5 ± 16.9	58.3 ± 19.1	75.7 ± 15.6	
wind speed (m/s)	1.7 ± 1.2	1.5 ± 0.9	1.9 ± 1.3	

Table S1. Descriptive statistics (Mean \pm SD) of the concentrations of measured gases andmeteorological parameters at the Birmingham Supersite.

	road	fuel	agriculture	industrial	combustion	solvents	SUM
	transport	fugitive		process			
ethane	6.0%	48.6%	39.1%	2.1%	2.9%	0.0%	98.7%
butanes	34.9%	35.2%	0.0%	1.4%	1.2%	27.0%	99.8%
propanes	82.0%	9.9%	0.0%	0.7%	0.5%	6.7%	99.8%
C>=6 alkanes	39.5%	31.3%	0.0%	2.2%	1.5%	22.8%	97.2%
acetylene	85.8%	7.6%	_	2.7%	0.0%	-	96.2%
ethene	8.6%	86.9%	_	4.5%	-	-	100.0%
butenes	96.1%	0.7%	-	0.7%	1.5%	_	99.0%
propene	64.1%	34.1%	_	1.8%	_	_	100.0%
pentenes	100.0%	_	_	_	_	_	100.0%
1,3-butadiene	76.0%	3.3%	_	3.5%	11.0%	_	93.8%
toluene	80.0%	3.8%	0.3%	0.6%	1.1%	10.3%	96.1%
xylenes	72.0%	1.3%	0.3%	1.0%	1.3%	21.6%	97.6%
other aromatics	71.3%	2.9%	_	1.8%	5.3%	12.6%	94.0%
acetaldehyde	69.0%	_	0.2%	13.0%	0.0%	_	82.1%
acetone	17.0%	_	_	15.4%	0.2%	65.6%	98.3%
methanol	_	0.0%	_	3.0%	_	96.8%	99.8%
ethanol	7.3%	0.1%	11.9%	48.8%	5.8%	25.3%	99.1%
NO _x	33.3%	_	3.9%	18.4%	28.0%	_	83.5%
СО	14.5%	1.2%	_	32.3%	34.0%	_	82.0%

Table S2. Relative contributions of ozone precursors emitted from the six emission inventory source sectors.

Figure Captions

Figure S1. Average contributions of different measured VOCs functional groups to the overall measured total of VOCs and the mean concentrations of the sum of all measured VOCs in the each of the three periods.

Figure S2. Diurnal variations of the modelled average OH reactivity (k(OH)) for VOCs, CO, and NOx in initial period(a), O₃ period (b), and clear–out period (c).

Figure S3. Modelled average chemical budgets of O₃ in the selected periods.

Figure S4. Emissions of VOCs from anthropogenic sources in the UK between 1990-2019. Data: UK National Atmospheric Emissions Inventory (<u>https://naei.beis.gov.uk/</u>, last access 07 September 2023).

Figure S5. Modelled RIRs for anthropogenic sources in selected periods during 08:00-16:00 LST.

Figure S1. Average contributions of different measured VOCs functional groups to the overall measured total of VOCs and the mean concentrations of the sum of all measured VOCs in the each of the three periods.

Figure S2. Diurnal variations of the modelled average OH reactivity (k(OH)) for VOCs, CO, and NOx in initial period(a), O₃ period (b), and clear–out period (c).

Figure S3. Modelled average chemical budgets of O_3 in the selected periods.

Figure S4. Emissions of VOCs from anthropogenic sources in the UK between 1990-2019. Data: UK National Atmospheric Emissions Inventory (<u>https://naei.beis.gov.uk/</u>, last access 07 September 2023).

Figure S5. Modelled RIRs for anthropogenic sources in selected periods during 08:00-16:00 LST.