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1 Tendencies of the leaf gas exchange

This document contains instructions to calculate the tendency equations for the A-gs model as implemented in CLASS

model (details of A-gs in CLASS are in appendix E of Vilà-Guerau de Arellano et al. 2015). We do not write the equations

of the A-gs model here but we used the same formulation than the reference excepting than vapor pressure deficit is referred

as VPD instead of DS . The code needed for calculating the budget tendency equation for CLASS model output is in a Github5

repository1. This repository also contains the code needed to reproduce all the figures and analysis of the manuscript.

1.1 General approaches to calculate tendencies

The tendency equations have been computed with respect to two different set of environmental drivers. The first set is the

one used in the present manuscript and has been termed (1) process-based tendencies. Here the set of environmental variables

are PAR, T, VPD, Ca and soil water content at the rootzone (w2). The second set of environmental variables is PAR, T, air10

water vapor pressure (e), Ca and w2. The tendency equations derived with respect to this set has been termed (2) model-based

tendencies.

1.1.1 Process-based tendencies

With this approach, partial tendencies are computed with respect to environmental variables that are known to directly control

the plant photosynthesis and the dynamic stomatal movements. However, the environmental variables are not completely15

independent from each other. Specifically, VPD is known to depend on T, through the following expression:

V PD = esat(T )− e (1)

Here, we are assuming that water vapor is saturated inside the sub-stomatal cavities, and that the temperature inside those

cavities is equal to the atmospheric temperature. A partial derivative with respect to a variable xi (xi = PAR, Ca, VPD, T or

1The repository was uploaded from Rglezarm github profile and it can be accessed through the URL https://github.com/Rglezarm/LIAISE_manuscript
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w2) is calculated by leaving all the other variables from the set constant. Because of the tight relation between T and VPD, eq.20

(1), we highlight this fact of partial derivative by explicitly indicating in the tendency with respect to T (VPD) that VPD (T)

has been kept constant by adding it as a sub-index. To keep VPD constant when T changes, the atmospheric vapor pressure, e,

must balance the temperature change. According to this approach and to our formulation, we write the process-based tendency

equation for a general variable Y (e.g., gs, An, or TRleaf ) with the following mathematical expression.

dY

dt
=

∂Y

∂PAR

dPAR

dt
+

(
∂Y

∂T

)
V PD

dT

dt
+

(
∂Y

∂V PD

)
T

dV PD
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+

∂Y

∂Ca

dCa

dt
+

∂Y
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(2)25

1.1.2 Model-based tendencies

In a similar fashion to the previous approach, the model-based tendency equation for a general variable Y can be mathemat-

ically written as:
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∂PAR
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(3)

Although these two approaches view the tendencies through different lens, they are directly linked to each other.30

1.1.3 Relation between process-based and model-based tendencies

Because we known that V PD is a function of T and e, a direct link between process-based and model-based budget

tendency equations can be obtained. The following equations depict the relation between the partial tendency terms of the two

approaches.

∂Y
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=
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)
V PD
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∂Y

∂V PD
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T

∂V PD

∂T
(4)35

∂Y

∂e
=
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∂Y

∂V PD

)
T

∂V PD

∂e
(5)

Because the functional form of V PD is known (eq. (1)), its partial derivative with respect to T and e can be computed.

∂V PD

∂T
=

desat
dT

(6)

40

∂V PD

∂e
=−1 (7)

Considering all the concepts of this section we can construct the following final expression to calculate the model-based

tendency equations from the process-based ones.

dY
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∂w2

dw2

dt
(8)
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1.2 Strategy to calculate the budget tendency equations for A-gs model45

Now that we have described the connection between the process-based and model-based budget tendency equations, we

will focus on deriving the process-based ones, eq. (2), for the A-gs scheme. The tendency equations can be computed for any

intermediate variable of the leaf gas exchange. Note that in the previous section we have denoted such generic variable as Y .

This fact implies that we can quantify the effect that changes of the environmental variables have in any variable of the leaf gas

exchange. Our final goal is to do that for the stomatal conductance to water vapor (gs), the net assimilation rate (An) and the50

leaf transpiration (TRleaf ).

In leaf gas exchange models, these variables are generally linked to each other. Their dependency varies from one model (or

even implementation of a model) to another. A− gs model structure can be summarized as follows. The first step of the model

is to calculate the variables that depend solely on temperature. After that, Ci is computed through several equations that capture

its dependency with T, VPD and Ca. These variables allow the calculation of CO2 primary productivity (Am). Subsequently,55

gross primary productivity is calculated for a soil at field capacity (A∗
g). This means that the plant is completely unstressed in

terms of soil water content. At this step, the dependency on PAR is also included. The fourth step is to include the soil water

content dependency of gross primary productivity. This is done by applying a soil water stress function (f(w2)) that factorize

the gross primary productivity at field capacity. At this point, both the stomatal conductance to water vapor, net assimilation

rate of CO2 and leaf transpiration can be computed. Table 1 defines A-gs variable that may not have been introduced before.60

To see the A-gs parameters, the reader is referred to Table 3 of the manuscript.

Taking advantage of this structure, we calculate the tendency equations as follows:

1. Calculate the total temporal derivatives of the environmental variables. dPAR
dt , dT

dt , dV PD
dt , dCa

dt and dw2

dt are calcu-

lated using a numerical technique called symmetric difference quotient applied to the output of the numerical experiments

performed with CLASS.65

2. Calculate the tendency equation of the CO2 primary productivity (Am). Equations in Sect. 1.3.

3. Calculate tendency equation of the gross primary productivity under unstressed water situations (Ag
∗). Equations

in Sect. 1.4.

4. Calculate the tendency equation of the gross primary productivity at a particular soil water content in the root

zone (Ag). Equations in Sect. 1.5.70

5. Calculate the tendency equation of the net leaf assimilation rate (An). Equations in Sect. 1.6.

6. Calculate the tendency equation of the stomatal conductance to water vapor (gsw). Equations in Sect. 1.7.

7. Calculate the tendency equation of the leaf transpiration (TRleaf ). Equations in Sect. 1.8.
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Table 1. List of variables used in the A-gs model that may have not been introduced before.

Variables

Symbol Definition

α (mg J−1) Light use efficiency

Ag (mg m−2
leaf s−1) CO2 gross primary productivity at leaf level

A∗
g (mg m−2

leaf s−1) Unstressed CO2 gross primary productivity at leaf level

Am (mg m−2
leaf s−1) CO2 primary productivity

Am,max (mg m−2
leaf s−1) CO2 maximal primary productivity

An (mg m−2
leaf s−1) Net CO2 assimilated rate

Rd (mg m−2
leaf s−1) Dark respiration

Γ (ppmv) CO2 compensation point

Cfrac (-) Fraction of the concentration (Ci-Γ)/(Ca-Γ)

D0 (kPa) Water vapor pressure deficit when stomata close

gm (mm s−1) Mesophyll conductance

1.3 The tendency equation of Am

Am depends on Ca, T and VPD. Its tendency equation can be described as follows:75

dAm

dt
=

∂Am

∂Ca

dCa

dt
+

(
∂Am

∂T

)
V PD

dT

dt
+

(
∂Am

∂V PD

)
T

dV PD
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(9)

1.3.1 Dependency on Ca

∂Am

∂Ca
= gmCfrac

(
1− Am

Ammax

)
(10)

1.3.2 Dependency on VPD at constant T

(
∂Am

∂V PD

)
T

=
∂Am

∂Ci

∂Ci

∂Cfrac

(
∂Cfrac

∂V PD

)
T

(11)80

To calculate the above expression, some additional terms are needed:

∂Am

∂Ci
= gm

(
1− Am

Ammax

)
(12)

∂Ci

∂Cfrac
= Ca −Γ (13)
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(
∂Cfrac

∂V PD

)
T

=−ad (14)

1.3.3 Dependency on T at constant VPD85

(
dAm

dT

)
V PD
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∂Am

∂Ammax
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dT
+
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dT
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+
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∂Cfrac

(
∂Cfrac

fmin
+

∂Cfrac

∂D0
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)(
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∂gm
+
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∂gm

)
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]
(15)

To calculate the above expression, some temperature dependent functions are needed:

∂Γ

∂T
= 0.1 ·Γ · logQ10Γ (16)

∂Ammax

∂T
= 0.1 ·Ammax

[
logQ10Am +3 · e0.3(T1Am−T ) − e0.3(T−T2Am)

(1+ e0.3(T1Am−T ))(1+ e0.3(T−T2Am))

]
(17)

∂gm
∂T

= 0.1 · gm
[
logQ10gm +3 · e0.3(T1gm−T ) − e0.3(T−T2gm)

(1+ e0.3(T1gm−T ))(1+ e0.3(T−T2gm))

]
; (18)90

together with other terms

∂Am

∂Ammax
=

Am

Ammax
− gmCfrac(Ca −Γ)

Ammax

(
1− Am

Ammax

)
(19)

∂Am

∂gm
= Cfrac(Ca −Γ)

(
1− Am

Ammax

)
(20)

∂Am

∂Γ
=−gmCfrac

(
1− Am

Ammax

)
(21)

dAm

dCi
= gm

(
1− Am

Ammax

)
(22)95

dCi

dΓ
= 1−Cfrac (23)
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dCi

dCfrac
= Ca −Γ (24)

∂Cfrac

∂fmin
=

V PD

D0
(25)

∂Cfrac

∂D0
= (f0 − fmin)

V PD

D2
0

(26)

∂D0

∂fmin
=− 1

ad
(27)100

∂fmin

∂gm
=

gminw

1.6 · gm
1√

f2
min0 +

4·gminw

1.6 gm

− fmin

gm
(28)

∂fmin
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2 · gmfmin + fmin0
(29)

∂fmin0

∂gm
=−1

9
(30)

1.4 The tendency equation of A∗
g

dA∗
g

dt
=

∂A∗
g

∂PAR

dPAR

dt
+

∂A∗
g

∂Ca

dCa

dt
+

(
∂A∗

g
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)
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dT

dt
+

(
∂A∗

g

∂V PD

)
T

dV PD

dt
; (31)105

with

1.4.1 Dependency on PAR

∂A∗
g

∂PAR
= α

(
1−

A∗
g

Am +Rdark

)
(32)
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1.4.2 Dependency on Ca

∂A∗
g

∂Ca
=

(
∂A∗

g
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∂Am
+

∂A∗
g

∂Am

)
∂Am

∂Ca
+

∂A∗
g

∂α

∂α

∂Ca
(33)110

To calculate the above expression some additional terms are needed:

∂A∗
g

∂Rdark
=

A∗
g

Am +Rdark
− αPAR

Am +Rdark

(
1−

A∗
g

Am +Rdark

)
(34)

∂Rdark

∂Am
=

1

9
(35)

∂A∗
g

∂Am
=

∂A∗
g

∂Rdark
(36)

∂A∗
g

∂α
= PAR

(
1−

A∗
g

Am +Rdark

)
(37)115

∂α

∂Ca
=

3 ·α0Γ

(Ca +2Γ)2
(38)

1.4.3 Dependency on V PD at constant T

(
∂Ag

∗

∂V PD

)
T

=

(
∂A∗

g

∂Rdark

∂Rdark

∂Am
+

∂A∗
g

∂Am

)(
∂Am

∂V PD

)
T

(39)

1.4.4 Dependency on T at constant VPD

(
∂A∗

g

∂T

)
V PD

=

(
∂A∗

g

∂Rdark

∂Rdark

∂Am
+

∂A∗
g

∂Am

)(
∂Am

∂T

)
V PD

+
∂A∗

g

∂α

∂α

∂Γ

dΓ

dT
(40)120

∂α

∂Γ
=− 3 ·α0Ca

(Ca +2Γ)2
(41)
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1.5 The tendency equation of Ag

dAg

dt
=

∂Ag

∂PAR

dPAR

dt
+

∂Ag

∂Ca

dCa

dt
+

(
∂Ag

∂T

)
V PD

dT

dt
+

(
∂Ag

∂V PD

)
T

dV PD

dt
+

∂Ag

∂w2

dw2

dt
(42)

As mentioned previously, the gross primary productivity (Ag) is calculated from that under unstressed water situations (A∗
g)

and a soil water stress fucntion (β(w2)), Ag =A∗
g ·β(w2). Similarly the tendency equation of Ag can be computed from that125

of A∗
g and an additional term:

dAg

dt
= β

dA∗
g

dt
+A∗

g

dβ(w2)

dw2

dw2

dt
(43)

1.5.1 Dependency on PAR

∂Ag

∂PAR
=

∂A∗
g

∂PAR
·β (44)

1.5.2 Dependency on Ca130

∂Ag

∂Ca
=

∂A∗
g

∂Ca
·β (45)

1.5.3 Dependency on VPD at constant T

(
∂Ag

∂V PD

)
T

=

(
∂A∗

g

∂V PD

)
T

·β (46)

1.5.4 Dependency on T at cosntant VPD

(
∂Ag

∂T

)
V PD

=

(
∂A∗

g

∂T

)
V PD

·β (47)135

1.5.5 Dependency on w2

∂Ag

∂w2
=A∗

g

dβ(w2)

dw2
(48)

A∗
g is given by the model and as a consequence, the only term we analytically solve in this section is dβ(w2)

dw2
.
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The functional form of the water-stress function β implemented in CLASS model is the one presented by Combe et al.

(2016). The following equations govern the functional form and were proposed in the cited manuscript (see equations (13) and140

(14) of the manuscript).

SMI =
w2 −wwp

wfc −wwp
(49)

β =
1− e−P (Cβ)SMI

1− e−P (Cβ)
(50)

145

P (Cβ) =


6.4 ·Cβ if 0 %≤ Cβ < 25 %,

7.6 ·Cβ − 0.3 if 25 %≤ Cβ < 50 %,

23.66·Cβ+0.34 − 1 if 50 %≤ Cβ ≤ 100 %.

(51)

Taking into account that functional form, the analytical derivative of β with respect to w2 is:

dβ

dw2
=

1

wfc −wwp

P (Cβ)e
−P (Cβ)SMI

1− e−P (Cβ)
(52)

1.6 The tendency equation of An

An is the difference between the gross primary productivity and the dark respiration.150

An =Ag −Rdark (53)

The budget tendency equation of An is:

dAn

dt
=

∂An

∂PAR

dPAR

dt
+

∂An

∂Ca

dCa

dt
+

(
∂An

∂T

)
V PD

dT

dt
+

(
∂An

∂V PD

)
T

dV PD

dt
+

∂An

∂w2

dw2

dt
(54)

which can be related to that of Ag

dAn

dt
=

dAg

dt
− dRdark

dAm

dAm

dt
(55)155

1.7 The budget tendency equation of gs and gsc

The stomatal conductance to carbon dioxide gsc is calculated through the following equation:

gsc = gmin,c +
a1Ag

(Ca −Γ)
(
1− V PD

D∗

) (56)
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The total temporal derivatives of gs and gsc are related, eq. (57). Therefore, we only need to calculate the budget tendency

equation for one of the two.160

dgs
dt

= µ · dgsc
dt

(57)

where µ is the ratio of the molecular diffusivities between water vapor and carbon dioxide and is approximately 1.6.

The tendency equation for gsc is:

dgsc
dt

=
∂gsc

∂PAR

dPAR

dt
+

∂gsc
∂Ca

dCa

dt
+

(
∂gsc
∂T

)
V PD

dT

dt
+

(
∂gsc

∂V PD

)
T

dV PD

dt
+

∂gsc
∂w2

dw2

dt
(58)

1.7.1 Dependency on PAR165

∂gsc
∂PAR

=
∂gsc
∂Ag

∂Ag

∂PAR
(59)

∂gsc
∂Ag

=
a1

(Ca −Γ)
(
1− V PD

D∗

) (60)

1.7.2 Dependency on Ca

∂gsc
∂Ca

=

(
∂gsc
∂Ca

)
Ag

+
∂gsc
∂Ag

∂Ag

∂Ca
(61)170

(
∂gsc
∂Ca

)
Ag

=−gsc − gminc

Ca −Γ
(62)

∂gsc
∂Ag

=
gsc − gminc

Ag
(63)

1.7.3 Dependency on VPD at constant T

(
∂gsc

∂V PD

)
T

=

(
∂gsc

∂V PD

)
Ag,T

+
∂gsc
∂Ag

(
∂Ag

∂V PD

)
T

(64)175

(
∂gsc

∂V PD

)
Ag,T

=− gsc − gminc

D∗ +V PD
(65)
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1.7.4 Dependency on T at constant VPD

(
∂gsc
∂T

)
V PD

=

(
∂gsc
∂Γ

)
Ag

dΓ

dt
+

∂gsc
∂Ag

(
∂Ag

∂T

)
V PD

(66)

180 (
∂gsc
∂Γ

)
Ag,T

=
gsc − gminc

Ca −Γ
(67)

1.8 Tendency equation for TRleaf

In this research, we have estimated TRleaf as:

TRleaf = gsρ
0.622

Ps
V PD (68)

where ρ is the air density and PS the surface pressure taken as 101300 Pa. The tendency equation of TRleaf has the following185

form

dTRleaf

dt
=

∂TRleaf

∂PAR

dPAR

dt
+

∂TRleaf

∂Ca

dCa

dt
+

(
∂TRleaf

∂T

)
V PD

dT

dt
+

(
∂TRleaf

∂V PD

)
T

dV PD

dt
+

∂TRleaf

∂w2

dw2

dt
(69)

1.8.1 Dependency on PAR

∂TRleaf

∂PAR
=

dTRleaf

dgs

dgs
dPAR

(70)

190

dTRleaf

dgs
= ρ

0.622

Ps
V PD (71)

1.8.2 Dependency on Ca

∂TRleaf

∂Ca
=

dTRleaf

dgs

∂gs
∂Ca

(72)

1.8.3 Dependency on VPD at constant T

(
∂TRleaf

∂V PD

)
T

=
dTRleaf

dgs

(
∂gs

∂V PD

)
T

+ gsρ
0.622

Ps
(73)195
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1.8.4 Dependency on T at constant VPD

(
∂TRleaf

∂T

)
V PD

=
dTRleaf

dgs

(
∂gs
∂T

)
V PD

(74)

1.8.5 Dependency on w2

∂TRleaf

∂w2
=

dTRleaf

dgs

∂gs
∂w2

(75)
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