1 <u>18 2128</u> Dec 2023

2	Fractionation of stable carbon isotopes during formate consumption in
3	anoxic rice paddy soils and lake sediments
4	
5 6	Ralf Conrad ¹ , Peter Claus ¹
7 8 9	¹ Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
11 12	Correspondence to: Ralf Conrad (<u>Conrad@mpi-marburg.mpg.de</u>)
13	Running head: Isotope fractionation by anaerobic formate consumption
14 15	

16 Abstract.

- 17 Formate is energetically equivalent to hydrogen and thus, is an important intermediate during
- 18 the breakdown of organic matter in anoxic rice paddy soils and lake sediments. Formate is a
- 19 common substrate for methanogenesis, homoacetogenesis and sulfate reduction. However,
- 20 how much these processes contribute to formate degradation and fractionate carbon stable
- 21 isotopes is largely unknown. Therefore, we measured the conversion of formate to acetate,
- 22 CH₄ and CO₂ and the δ^{13} C of these compounds in samples of paddy soils from Vercelli
- 23 (Italy) and the International Rice Research Institute (IRRI, the Philippines) and of sediments
- 24 from the NE and SW basins of Lake Fuchskuhle (Germany). The samples were suspended in
- 25 phosphate buffer (pH 7.0) both in the absence and presence of sulfate (gypsum) and of
- 26 methyl fluoride (CH₃F), an inhibitor of aceticlastic methanogenesis. In the paddy soils,
- 27 formate was mainly converted to acetate both under methanogenic and sulfidogenic
- 28 conditions. Methane was only a minor product and was mainly formed from the acetate. In
- 29 the lake sediments, the product spectrum was similar, but only under methanogenic
- 30 conditions. In the presence of sulfate, however, acetate and CH₄ were only minor products.
- 31 The isotopic enrichment factors (ε_{form}) of formate consumption, determined by Mariotti plots,
- 32 were in the low range of -8‰ to -2.5‰ when sulfate was absent and formate was mainly
- 33 converted to acetate and CH4. However, no enrichment factor was detectable when formate
- 34 was degraded with sulfate to mainly CO₂. The δ^{13} C of acetate was by about 25-50‰ more
- 35 negative than that of formate indicating acetate production by chemolithotrophic
- 36 homoacetogenesis. Hence, formate seems to be an excellent substrate for homoacetogenesis
- in anoxic soils and sediments, so that this process is competing well with methanogenesis and
- 38 sulfate reduction.
- 39

40 1 Introduction

41 Formate is energetically almost equivalent to H₂ (Schink et al. 2017) and thus, is an

- 42 important intermediate in the anaerobic degradation of organic matter. Formate is a product
- 43 of microbial fermentation, where it is for example produced in pyruvate cleavage by pyruvate
- 44 formate lyase (Thauer et al., 1977) or by reduction of CO₂ (Schuchmann and Müller, 2013).
- 45 Formate can also be produced in secondary fermentation, such as oxidation of butyrate or
- 46 propionate (Dong et al., 1994; Sieber et al., 2014). In fact, formate and H₂ may equivalently
- 47 be used as electron shuttles between secondary fermenting bacteria and methanogens
- 48 (Montag and Schink, 2018; Schink et al., 2017)
- 49 Formate can serve alternatively to H₂ as a substrate for methanogenesis (Zinder, 1993),
- 50 (homo)acetogenesis (Drake, 1994) or sulfate reduction (Widdel, 1988), i.e.:
- 51 4 HCOOH \rightarrow CH₄ + 3 CO₂ + 2 H₂O
- 52 4 HCOOH \rightarrow CH₃COOH + 2 CO₂ + 2 H₂O (2)

(1)

53	$4 \operatorname{HCOOH} + \operatorname{SO}_4^{2-} + \operatorname{H}^+ \xrightarrow{\bullet} \operatorname{HS}^- + 4 \operatorname{CO}_2 + 4 \operatorname{H}_2 \operatorname{O} $ (3)
54	Formate may also be a substrate for syntrophic bacteria, which live from the little Gibbs free
55	energy ($\Delta G^{0'}$ = -3.4 kJ mol ⁻¹) that is generated by the conversion of formate to H ₂ plus CO ₂
56	(Dolfing et al., 2008; Kim et al., 2010; Martins et al., 2015), i.e.
57	$HCOOH \rightarrow CO_2 + H_2 \tag{4}$
58	Formate can also be enzymatically equilibrated with H ₂ and CO ₂ without energy generation.
59	This reaction happens in any organism possessing the suitable enzymes, such as formate
60	hydrogen lyase or hydrogen-dependent carbon dioxide reductase, and in anoxic sediments
61	(DeGraaf and Cappenberg, 1996; Peters et al., 1999; Schuchmann et al., 2018):
62	$HCOOH \leftrightarrow CO_2 + H_2 \tag{5}$
63	Formate has been identified as an important substrate for methanogenesis,
64	homoacetogenesis or sulfate reduction in lake sediments (DeGraaf and Cappenberg, 1996;
65	Lovley and Klug, 1982; Phelps and Zeikus, 1985), soils (Kotsyurbenko et al., 1996; Küsel
66	and Drake, 1999; Rothfuss and Conrad, 1993), mires (Hausmann et al., 2016; Hunger et al.,
67	2011; Liebner et al., 2012; Wüst et al., 2009) and marine sediments (Glombitza et al., 2015).
68	However, it is not very clear to which extent formate-dependent methanogenesis,
69	homoacetogenesis and sulfate reduction are actually operative and to which extent formate
70	affects stable carbon isotope fractionation. The $\delta^{13}C$ values of compounds involved in the
71	degradation process of organic matter provide valuable information on the metabolic
72	pathways involved (Conrad, 2005; Elsner et al., 2005; Hayes, 1993). However, for correct
73	interpretation the knowledge of the enrichment factors (ε) of the major metabolic processes is
74	also important. The ε values of methanogenesis or homoacetogenesis from H ₂ plus CO ₂ are
75	large (Blaser and Conrad, 2016). However, our knowledge of carbon isotope fractionation
76	with formate as substrate is scarce. In cultures of homoacetogenic bacteria the carbon in the
77	acetate produced from formate was strongly depleted in ¹³ C (ε = -56.5‰) almost similarly as
78	with CO ₂ as carbon source (Freude and Blaser, 2016). However, it is not known which
79	enrichment factors operate in methanogenic or sulfidogenic environmental samples.
80	Therefore, we measured isotope fractionation in methanogenic and sulfidogenic rice paddy
81	soils and lake sediments amended with formate. We recorded the consumption of formate
82	along with the production of acetate, CH ₄ and CO ₂ and measured the δ^{13} C of these
83	compounds. We also used the treatment with methyl fluoride (CH ₃ F) to inhibit the
84	consumption of acetate by methanogenic archaea (Janssen and Frenzel, 1997). We used the
85	same environmental samples as for the study of carbon isotope fractionation during
86	consumption of acetate (Conrad et al., 2021) and propionate (Conrad and Claus, 2023), i.e.,
87	rice paddy soils from Vercelli, Italy and the International Rice Research Institute (IRRI, the
88	Philippines) and sediments from the NE and SW basins of Lake Fuchskuhle (Germany). The
89	molecular data characterizing the microbial community compositions in these samples are
90	found in Conrad et al. (2021).

91

92 2 Materials and Methods

93 2.1 Environmental samples and incubation conditions

94 The soil samples were from the research stations in Vercelli, Italy and the International Rice 95 research Institute (IRRI) in the Philippines. Sampling and soil characteristics were described 96 before (Liu et al., 2018). The lake sediments (top 10 cm layer) were from the NE and SW 97 basins of Lake Fuchskuhle, an acidic-bog (pH 4.2 - 4.6) lake in Northerneastern Germany 98 (Casper et al., 2003). The lake was artificially divided into four compartments in 1987 and 99 finally in 1991, resulting in four nearly equal sized compartments, each with a different 100 catchment area. The NE basin is characterized by higher biomass and activity throughout all 101 trophic levels in the water column than the SW basin. They The lake sediments were sampled 102 in July 2016 using a gravity core sampler as described before (Kanaparthi et al., 2013). The 103 experiments with rice field soil were carried out in 2016, those with sediments of Lake 104 Fuchskuhle in 2017. 105 The experimental setup was exactly the same as during previous studies of acetate 106 consumption (Conrad et al., 2021) and propionate consumption (Conrad and Claus, 2023). 107 For methanogenic conditions, paddy soil was mixed with autoclaved anoxic H₂O (prepared 108 under N_2) at a ratio of 1:1 and incubated under N_2 at 25°C for 4 weeks. In a second 109 incubation, for sulfidogenic conditions, paddy soil was mixed with autoclaved anoxic H2O at 110 a ratio of 1:1, was amended with 0.07 g CaSO₄.2H₂O, and then incubated under N₂ at 25°C 111 for 4 weeks. These two preincubated soil slurries were sampled and stored at -20°C for later 112 molecular analysis (see data in Conrad et al. (2021)). The preincubated soil slurries were also 113 used (in 3 replicates) for the following incubation experiments. Two different sets of 114 incubations were prepared. In the first set (resulting in methanogenic conditions), 5 mL soil 115 slurry preincubated without sulfate was incubated at 25°C with 40 mL of 20 mM potassium 116 phosphate buffer (pH 7.0) in a 150-mL bottle under an atmosphere of N_2 . The bottles were 117 the amended with (i) 5 mL H₂O; (ii) 5 mL H₂O + 4.5 mL CH₃F; (iii) 5 mL 200 mM sodium 118 formate; (iv) 5 mL 200 mM sodium formate + 4.5 mL CH₃F. In the second set (resulting in 119 sulfidogenic conditions), 5 mL soil slurry preincubated with sulfate was incubated at 25°C 120 with 40 mL of 20 mM potassium phosphate buffer (pH 7.0) in a 150-mL bottle under an 121 atmosphere of N₂. The amendments were the same as above, but with the addition of 200 μ l 122 of a CaSO₄ suspension corresponding to a concentration of 2.5 M (giving a final 123 concentration of 10 mM sulfate). 124 For lake sediments under methanogenic conditions, 5 ml sediment was incubated in 3 125 replicates at 10°C (which is close to the in-situ temperature) with 40 ml of 20 mM potassium 126 phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N₂. The bottles were the

127 amended with (i) 5 ml H₂O; (ii) 5 ml H₂O + 4.5 ml CH₃F; (iii) 5 ml 200 mM sodium formate;

128 (iv) 5 ml 200 mM sodium formate + 4.5 ml CH₃F. For sulfidogenic conditions, lake

sediments were preincubated with sulfate by adding 0.1 g CaSO4.2H₂O (gypsum) to 50 ml

- 130 sediment and incubating at 10°C for 4 weeks. For sulfidogenic conditions, 5 ml of the
- 131 preincubated sediment was incubated in 3 replicates at 10°C with 40 ml of 20 mM potassium
- 132 phosphate buffer (pH 7.0) in a 150-ml bottle under an atmosphere of N₂. The bottles were
- amended as above, but in addition also with 200 µl of a CaSO4 suspension giving a final
- 134 concentration of 10 mM sulfate. Samples for later molecular analysis were taken from the
- 135 original lake sediment and from the lake sediment preincubated with sulfate. The samples
- 136 were stored at -20° C (see data in Conrad et al. (2021)).
- 137

138 2.2 Chemical and isotopic analyses

139 Gas samples for analysis of partial pressures of CH₄ and CO₂ were taken from the

- 140 headspace of the incubation bottles after vigorous manual shaking for about 30 s using a gas-
- 141 tight pressure-lock syringe, which had been flushed with N_2 before each sampling. Soil
- 142 slurries were sampled, centrifuged and filtered through a $0.2 \mu m$ cellulose membrane filter

143 and stored frozen at -20°C for later fatty acid analysis. Chemical and isotopic analyses were

- 144 performed as described in detail previously (Goevert and Conrad, 2009). Methane was
- 145 analyzed by gas chromatography (GC) with flame ionization detector. Carbon dioxide was
- analyzed after conversion to CH₄ with a Ni catalyst. Stable isotope analyses of ${}^{13}C/{}^{12}C$ in gas
- samples were performed using GC-combustion isotope ratio mass spectrometry (GC-C-
- 148 IRMS). Formate and acetate were measured using high-performance liquid chromatography
- 149 (HPLC) linked via a Finnigan LC IsoLink to an IRMS. The isotopic values are reported in the
- 150 delta notation (δ^{13} C) relative to the Vienna Peedee Belemnite standard having a 13 C/ 12 C ratio
- 151 (R_{standard}) of 0.01118: $\delta^{13}C = 10^3$ (R_{sample}/R_{standard} 1). The precision of the GC-C-IRMS was
- 152 \pm 0.2‰, that of the HPLC-IRMS was \pm 0.3‰.
- 153
- 154 2.3 Calculations

155 Millimolar concentrations of CH_4 were calculated from the mixing ratios (1 ppmv = 10^{-6}

- bar) measured in the gas phase of the incubation bottles: 1000 ppmv CH₄ correspond to 0.09
- 157 µmol per mL of liquid. Note, that this is the total amount of CH₄ in the gas phase relative to
- 158 the liquid phase.
- 159 Fractionation factors for reaction A \rightarrow B are defined after Hayes (Hayes, 1993) as:

160
$$\alpha_{A/B} = (\delta_A + 1000)/(\delta_B + 1000)$$

- 161 also expressed as $\varepsilon \equiv 1000 (1 \alpha)$ in permil. The carbon isotope enrichment factor $\varepsilon_{\text{form}}$
- 162 associated with formate consumption was calculated from the temporal change of $\delta^{13}C$ of
- 163 formate as described by Mariotti et al. (Mariotti et al., 1981) from the residual reactant
- 164 $\delta_{\rm r} = \delta_{\rm ri} + \varepsilon \left[\ln(1 f) \right]$
- 165 where δ_{ri} is the isotopic composition of the reactant (formate) at the beginning, and δ_r is the
- 166 isotopic composition of the residual formate, both at the instant when f is determined. from is

(7)

(8)

- 167 the fractional yield of the products based on the consumption of formate ($0 \le f_{\text{form}} \le 1$).
- 168 Linear regression of δ^{13} C of formate against $\ln(1 f)$ yields $\varepsilon_{\text{form}}$ as the slope of best fit lines.
- 169 The regressions of δ^{13} C of formate were done for data in the range of $f_{\text{form}} < 0.7$. The linear

170 regressions were done individually for each experimental replicate (n = 3) and were only

- 171 accepted if $r^2 > 0.7$. The ε values resulting from the replicate experiments were then averaged
- 172 (\pm SE).
- 173

174 3 Results

175 3.1 Conversion of formate under methanogenic and sulfidogenic conditions

176 The rice paddy soils were submerged and preincubated to create methanogenic or

sulfidogenic conditions. Samples of these soils were suspended in buffer at pH 7 and

amended with formate. In the Vercelli soil, formate was consumed after a lag phase of 4 days

179 under methanogenic and 5 days under sulfidogenic conditions (Fig. 1a). During this time the

180 pH increased from pH 7 up to pH 8 despite buffering. Formate consumption was not inhibited

181 by CH₃F (Fig. 1a). Similar results were obtained with IRRI soil (Fig. S1). Acetate was

182 produced concomitantly with formate consumption, again without effect by CH₃F (Fig. 1b).

183 The production of acetate under sulfidogenic conditions was smaller than under

184 methanogenic conditions. Methane was also produced under both methanogenic and

- 185 sulfidogenic conditions concomitantly with formate consumption (Fig. 1c; S1c). It is
- 186 noteworthy that CH₃F inhibited the production of CH₄ (Fig. 1c; S1c). Finally, CO₂ was
- 187 produced under all conditions without lag phase and without effect by CH₃F (Fig. 1<u>de</u>). In

188 Vercelli soil, CO₂ production was about twice two times larger under sulfidogenic than under

189 methanogenic conditions (Fig. 1<u>de</u>). In IRRI soil, it was only slightly larger (Fig. S1<u>de</u>). The

accumulation of acetate plus CH₄ was equimolar to the consumption of formate in terms of

191 electron equivalents, while the accumulation of CH₄ alone accounted only for <30%, in the

192 presence of CH₃F even less (Fig. 2a; S2a). Hence, acetate was the more important product of

193 formate consumption. Under sulfidogenic conditions, accumulation of acetate plus CH₄ was

194 less than equimolar, especially in Vercelli soil (Fig. 2b), probably since formate was instead

converted to CO₂. However, acetate formation was still substantial accounting for 60-80% offormate consumption (Fig. 2b; S2b).

197 The sediments from Lake Fuchskuhle were methanogenic in-situ so that preincubation of 198 the samples was not required. However, sulfidogenic conditions were created analogously to 199 the paddy soils by preincubion with sulfate (gypsum). Substantial formate depletion did not 200 start before about 20 days of incubation both in sediments from the NE basin (Fig. 3) and the 201 SW basin (Fig. S3). Again, CH₃F only inhibited the production of CH₄ but not that of acetate 202 or CO₂ (Fig. 3; S3). The main difference to the paddy soils was that CH₄ was not produced 203 concomitantly with formate consumption, but started right from the beginning. However, the 204 amounts of CH₄ produced were only small and were apparently due to the little formate that

- was consumed in the beginning of incubation (i.e., before day 20), as seen by the fact that
- 206 CH₄ production in the water control (not amended with formate) was negligible (Fig. 3c;
- 207 S3c). Production of CO₂ started without lag phase but accelerated together with formate
- 208 consumption (Fig. 3d; S3d). In the lake sediments, CH₄ accounted only for <10% of formate
- 209 consumption, while acetate was the main product when sulfate was absent (Fig. 4a, S4a). In
- 210 contrast to the paddy soils, formate consumption in both lake sediments was much slower
- 211 under sulfidogenic than under methanogenic conditions (Fig. 3a; S3a). In the sediment from
- 212 SW basin, formate consumption was very slow so that less than half of the formate was
- 213 consumed during 80 days of incubation and consumption was not completed until the end of
- the experiment (Fig. S3a). Very little acetate was produced and no CH₄ was formed from
- 215 formate in both lake sediments, when sulfate was present (Fig. 4b, S4b).
- 216

217 *3.2 Isotope fractionation during formate consumption*

218 In the rice paddy soils, values of δ^{13} C-values of formate increased when formate was 219 being consumed indicating discrimination against the heavy carbon isotope. This process was 220 not affected by CH₃F and was similar without and with sulfate (Fig. 1e; S1e). The same was 221 the case with the sediment from the NE lake basin, but only in the absence of sulfate (Fig. 222 3e). With sulfate, the δ^{13} C of formate slowly decreased with time (Fig. 3e). In the sediment 223 from the SW basin, δ^{13} C of formate slowly decreased (without sulfate) or stayed constant 224 with time (with sulfate) (Fig. S3e). Note that formate was not completely consumed in the 225 SW sediment when sulfate was present (Fig. S3a).

Mariotti plots of δ^{13} C of formate as function of f_{form} resulted in negative slopes (Fig. 4; S5). Hence, the enrichment factors ($\varepsilon_{\text{form}}$) for the paddy soils, both without and with sulfate, and for the sediments from the NE basin of Lake Fuchskuhle without sulfate showed that the

- light isotope of formate carbon was preferred. Values of $\varepsilon_{\text{form}}$ were in the range of -8.5 to -
- 230 2.5‰ (Fig. 6). Under sulfidogenic conditions, however, the Mariotti plots of the sediments
- from the NE basin (Fig. 5) did not show a negative slope and $\varepsilon_{\text{form}}$ could not be determined.
- 232 The same was the case for the sediments from the SW basin (Fig. 6).

The negative $\varepsilon_{\text{form}}$ indicates that products of formate should be depleted in ¹³C. Indeed the δ^{13} C of acetate and CH₄ were generally more negative than the δ^{13} C of formate. This was the

case in the paddy soils from Vercelli (Fig. 1f) and the IRRI (Fig. S1f) as well as in the

- sediments from the NE basin (Fig. 3f) and the SW basin (Fig. S3f) of Lake Fuchskuhle. In the
- 237 sediment of the NE basin, the δ^{13} C of acetate increased from very low -95‰ to finally about -
- 238 57‰ in parallel with formate consumption (Fig. 3f). CO₂ was also produced during formate
- degradation to various extent (equ.1, 2 and 3). Since the pH was in a range of pH 7 to pH 8,
- 240 CO₂ was also converted to bicarbonate. The δ^{13} C of bicarbonate is generally by about 10‰
- 241 more positive than the δ^{13} C of CO₂ (Stumm and Morgan, 1996). The δ^{13} C of the gaseous CO₂
- 242 was always close to the δ^{13} C of formate or was more positive. In the paddy soils and the NE

243 basin of Lake Fuchskuhle, the δ^{13} C of CO₂ increased in parallel with the increasing δ^{13} C of

- formate (Fig. 1h, 3h; S1h). The δ^{13} C of the gaseous CO₂ produced from the formate-amended
- samples was initially more negative than that from the unamended samples, but eventually
- 246 the δ^{13} C increased above these values when formate was completely consumed (Fig. 1h, 3h;
- 247 S3h).

248 The δ^{13} C values of the initial formate were about -24‰ (Fig. 5). When formate was

- 249 completely consumed, the δ^{13} C values of the products acetate and CH₄ were always more
- 250 negative. The average δ^{13} C values of the products after complete consumption of formate are
- shown in Fig. 7. In the absence of sulfate, δ^{13} C of acetate was in a range of -51‰ to -49‰
- and -70‰ to -63‰, in the paddy soils and lake sediments, respectively (Fig. 7). In the
- 253 presence of sulfate, δ^{13} C of acetate was in a range of -57‰ to -52‰ and -78‰ to -72‰, in
- the paddy soils and lake sediments (only NE basin), respectively (Fig. 7). The δ^{13} C of CH₄
- was in a range of -70% to -54‰ and -60‰ to -54‰, in the absence and presence of sulfate,
- respectively (Fig. 7). The δ^{13} C of gaseous CO₂ (for bicarbonate plus 10‰) was in a range of -
- 257 23‰ to -11‰ and -24‰ to -19‰, in the absence and presence of sulfate, respectively (Fig.
- 258 259

260 4 Discussion

7).

- 261 4.1 Formate degradation under acetogenic/methanogenic conditions
- 262 In rice paddy soils formate was consumed within <10 days. The absence of sulfate did not 263 allow sulfidogenic (equ.3) degradation, but allowed the operation of methanogenic (equ.1), 264 homoacetogenic (equ.2) or syntrophic (equ.4) degradation. Syntrophic degradation is still 265 disputed, since many microorganisms are able to enzymatically equilibrate H₂ and formate 266 and thus prohibit generation exploitation of the difference in the energy content (Montag and 267 Schink, 2018; Schink et al., 2017). Syntrophic formate degradation generates is exergonic by 268 only a few kilojoules of Gibbs free energy per mole and requires the coupling with 269 methanogenesis or other efficient hydrogen (electron) scavengers. Although formate-driven 270 CH₄ production was observed in our study, the production was sensitive to inhibition by 271 CH₃F indicating that CH₄ was predominantly produced from acetate rather than from H₂. 272 Therefore, syntrophic formate oxidation coupled to CH₄ production was probably not a major 273 pathway. 274 Acetate was the most important product of formate degradation in the paddy soils as well 275 as in the lake sediments. Methane also was a product, but was much less important than 276 acetate. Furthermore, it was predominantly produced from acetate as shown by the inhibition 277 by CH₃F and the concomitant decrease of δ^{13} C of CH₄, which is characteristic for 278 hydrogenotrophic methanogesis that is not inhibited by CH₃F (Conrad et al., 2010). Hence, 279 formate was apparently primarily degraded by homoacetogenesis (equ.1). Only part of the
- 280 produced acetate was immediately used by aceticlastic methanogenesis generating CH4 as

281 secondary product. Although formate is a perfect substrate for homoacetogenic bacteria 282 operating the Wood-Ljungdahl pathway (WLP) (Drake, 1994), the yield of Gibbs free energy 283 per mole formate is less for homoacetogenic than for methanogenic degradation (Dolfing et 284 al., 2008). Thus, it is surprising that formate-driven homoacetogenesis prevailed over 285 methanogenesis. Nevertheless, simultaneous operation of homoacetogenesis and 286 methanogenesis from formate has been observed before in a fen soil (Hunger et al., 2011). 287 Homoacetogenesis prevailing over methanogenesis has also frequently been observed with 288 H₂/CO₂ as substrate (Conrad et al., 1989; Nozhevnikova et al., 1994), indicating that 289 homoacetogens can take particular advantage from low temperatures (Conrad, 2023) or the 290 availability of secondary substrates (Peters et al., 1998). It is noteworthy that homoacetogens 291 have to invest ATP for fixation of formate, while methanogens are able to bypass this step 292 (Lemaire et al., 2020). Perhaps it is such energy investment which makes the homoacetogens 293 to competitive formate utilizers. 294 Formate consumption was recorded upon addition of formate to initial concentrations of 295 about 15 mM, which was much higher than the in-situ concentration being typically on the 296 order of a few micromolar (Montag and Schink, 2018). However, the increased concentration 297 allowed stable isotope fractionation, which would not occur under formate limitation. The 298 δ^{13} C of the produced acetate was by about 24-33‰ lower than that of formate. This isotopic 299 discrimination between formate and acetate is similar to that measured in a culture of the 300 homoacetogen Thermoanaerobacter kivui (Freude and Blaser, 2016). However, this 301 discrimination is much larger than the isotopic enrichment factors ($\varepsilon_{\text{form}}$ of -8‰ to -2.5‰) 302 determined from the change of δ^{13} C during formate consumption. There are two conceivable 303 explanations for this observation. (1) Formate is disproportionated to CO_2 and acetate. In the 304 WLP three formate are oxidized to CO₂, one formate is reduced to the methyl group of 305 acetate and one of the produced CO_2 is reduced to the carboxyl group of acetate. The 306 disproportionation of formate to acetate and 2 CO₂ is possibly a branch point (Fry, 2003; 307 Hayes, 2001), at which the carbon flow is split into the production of ¹³C-enriched CO₂ and 308 ¹³C-depleted acetate, which together result in the $\varepsilon_{\rm form}$ observed. (2) Formate first is 309 completely converted to CO_2 plus H₂ (equ.5) or other electron equivalents. This reaction 310 displays the $\varepsilon_{\rm form}$ determined by the Mariotti plots. Acetate is then produced via the WLP by 311 the chemolithotrophic reduction of 2 CO₂ to acetate, of which the isotopic enrichment factor 312 is typically on the order of about -55‰ (Blaser and Conrad, 2016). In any case, it is plausible 313 to assume that acetate was formed via the WLP. In the WLP, oxidation of formate is 314 catalyzed by a formate dehydrogenase, which provides CO₂ to the carboxyl branch of the 315 WLP. The methyl branch of the WLP normally starts with formate being converted to 316 formyl-THF. However, it can also start with the reduction of CO₂ to formate with a 317 hydrogen-dependent carbon dioxide reductase (HDCD). Homoacetogens (e.g., Acetobacter 318 woodii, T. kivui) contain such a HDCD, which allows the interconversion of formate and H₂

- 319 plus CO₂ (Jain et al., 2020; Schuchmann et al., 2018). The isotope discrimination in our
- 320 experiments indicates that the CO_2 produced from formate has been enriched in ¹³C rather
- 321 than depleted, thus supporting the first explanation. The δ^{13} C of CO₂ produced from formate
- 322 was initially lower than that of the unamended soil or sediment being on the order of -20% to
- -10‰ (Fig. 1h, 3h, S1h, S3h). Eventually, however, δ^{13} C of CO₂ reached values of -25‰ to -
- 324 10‰ (Fig. 7). The δ^{13} C of bicarbonate is 10‰ more positive than that of CO₂. This mixed
- 325 inorganic carbon would be the CO₂ substrate for WLP, which together with formate generates
- 326 the acetate having a δ^{13} C of about -70‰ to -50‰ (Fig. 7).
- 327 Methane was a minor product of formate degradation in all soils and sediments. Since CH₄
- 328 formation was strongly inhibited by CH₃F, it was most likely produced from acetate by
- 329 aceticlastic methanogens. Since CH4 production from the soils or sediments was much lower
- 330 without formate amendment, the CH4 must have primarily been produced from the acetate
- that was generated from formate. The δ^{13} C of CH₄ in the soil incubations was more negative
- than that of acetate (Fig. 7). The difference between the δ^{13} C of CH₄ and the δ^{13} C of acetate
- indicated an isotopic enrichment factor of $\varepsilon_{ac-CH4} = -10\%$ to -8‰, which is close to the
- 334 enrichment factor of aceticlastic Methanosaeta (Methanothrix) concilii (Penning et al., 2006).
- In the lake sediments, the δ^{13} C of CH₄ and acetate were not much different indicating that
- acetate was instantaneously consumed by methanogens as it was produced by homoacetogens
- 337 so that carbon isotopes were not discriminated. Both, paddy soils and lake sediments
- 338 contained mcrA genes (coding for a subunit of methyl CoM reductase) of Methanosaetaceae
- 339 (Methanotrichaceae) (Conrad et al., 2021).
- 340

341 4.2 Formate degradation under sulfidogenic conditions

342 In the rice paddy soils, formate was consumed within ten days when sulfate was present, 343 not quite as fast as without sulfate. In the lake sediments, however, sulfidogenic formate 344 consumption was much slower. Formate degradation by sulfate reduction normally results in 345 complete oxidation to CO_2 (equ.3). In the lake sediments, CO_2 was indeed the main 346 degradation product. However, in the paddy soils substantial amounts of acetate and even 347 CH4 were also produced. The homoacetogenic bacteria in these soils apparently competed 348 well with the sulfate reducing bacteria, although the soils had been adapted by preincubation 349 in the presence of sulfate. The production of acetate and CH4 was dependent on formate 350 degradation, since no production was observed in the unamended control. Production of CH4 351 was inhibited by CH₃F indicating that aceticlastic methanogenesis was the main process of 352 CH₄ production. The carbon isotope fractionation of formate was similar as under non-353 sulfidogenic conditions, exhibiting a small $\varepsilon_{\text{form}}$ of -8‰ to -3.5‰ (Fig. 5) and displaying a 354 strong isotope effect with the formation of acetate ($\delta^{13}C = -57 - 52\%$) and CH₄ ($\delta^{13}C = -60 - -$ 355 58‰). The mechanism of fractionation is probably the same (see above).

356 In the lake sediments, however, sulfidogenic degradation of formate was much slower 357 than methanogenic/acetogenic degradation. In the sediment of the SW basin, formate was not 358 even completely degraded within 80 days. In the sediments of both lake basins, neither 359 acetate nor CH₄ was a major product of sulfidogenic formate degradation. Hence, formate 360 was apparently degraded according to equ.3 forming CO₂ as main carbon product. This 361 formation process displayed no depletion of the heavy carbon isotope, as the Mariotti plots of 362 δ^{13} C of formate did not exhibit a negative slope. The δ^{13} C of the CO₂ slowly decreased with 363 increasing fraction of formate consumed (Fig. 3h; 5c), probably involving isotope exchange 364 between formate and CO₂ (DeGraaf and Cappenberg, 1996). The little acetate, which was 365 formed, displayed a δ^{13} C of -77‰ (Fig. 7b) indicating that it was produced by a similar mechanism as in the absence of sulfate, presumably via the WLP. 366 367 The strong differences between rice paddy soils and lake sediments were possibly caused 368 by their different microbial communities (Conrad et al., 2021). The differences were seen in 369 the composition of the mcrA and dsrB genes coding for methyl CoM reductase and 370 dissimilatory sulfate reductase, respectively, as well as the gene coding for the bacterial 16S 371 rRNA (data are shown in Conrad et al. (2021)). The microbial community structures based 372 on composition of these genes was were similar whether the soils and sediments were 373 amended with sulfate or not. However, they were strongly different between soils and

374 sediments (Conrad et al., 2021). Unfortunately, these data do not allow to discriminate for

375 particular taxa of homoacetogenic bacteria. Nevertheless, it is possible that formate-

376 consuming homoacetogens were more prevalent in the soils than in the sediments and

- accordingly competed more or less with the formate-consuming sulfate reducers.
- 378

379 *4.3 Conclusions*

380 Formate was found to be an excellent substrate for acetate formation in the paddy soils as 381 well as in the lake sediments, confirming and extending similar observations in a fen soil 382 (Hunger et al., 2011). In the anoxic soils, acetate was the major product even in the presence 383 of sulfate, which would have allowed sulfate reduction. The acetate was strongly depleted in 384 13 C relative to formate, but the consumption of formate itself displayed only a small isotopic 385 enrichment factor. Therefore, it is likely that formate was disproportionated to ¹³C-depleted acetate and ¹³C-enriched CO₂. The δ^{13} C of CO₂ was indeed slightly higher than that of 386 387 formate. Acetate was most likely produced by homoacetogenesis via the WLP. The produced 388 acetate was then used by aceticlastic methanogens (probably by Methanothrix), but only to minor extent, resulting in further depletion of ¹³C. The homoacetogenic bacteria in the paddy 389 390 soils apparently competed well with both methanogenic and sulfate-reducing

391 microorganisms, when formate was the substrate. The preference of homoacetogenesis as

392 degradation pathway is unexpected, since other substrates, such as acetate and propionate, are

393 <u>degraded</u> in these paddy soils degraded by methanogenesis or sulfate reduction (Conrad et al.,

394	2021) (Conrad and Claus, 2023). Only in the lake sediments, formate oxidation by sulfate
395	reduction was more prevalent than homoacetogenesis.
396	
397	Supplement link
398	
399	Author contribution: RC designed the experiments, evaluated the data and wrote the
400	manuscript. PC conducted the experiments.
401	
402	Conflicting interests: The contact authors has declared that neither of the authors has any
403	competing interests.
404	
405	Financial Support
406	This research has been supported by the Fonds der Chemischen Industrie (grant no. 163468).
407	
408	
409	

410	References
411	
412	Blaser, M. and Conrad, R.: Stable carbon isotope fractionation as tracer of carbon
413	cycling in anoxic soil ecosystems, Curr. Opinion Biotechnol., 41, 122-129,
414	2016.
415	Casper, P., Chan, O. C., Furtado, A. L. S., and Adams, D. D.: Methane in an
416	acidic bog lake: The influence of peat in the catchment on the biogeochemistry
417	of methane, Aquat. Sci., 65, 36-46, 2003.
418	Conrad, R.: Quantification of methanogenic pathways using stable carbon
419	isotopic signatures: a review and a proposal, Org. Geochem., 36, 739-752,
420	2005.
421	Conrad, R.: Complexity of temperature dependence in methanogenic microbial
422	environments, Front. Microbiol., 14, 1232946-
423	doi:10.3389/fmicb.2023.1232946, 2023.
424	Conrad, R., Bak, F., Seitz, H. J., Thebrath, B., Mayer, H. P., and Schütz, H.:
425	Hydrogen turnover by psychrotrophic homoacetogenic and mesophilic
426	methanogenic bacteria in anoxic paddy soil and lake sediment, FEMS
427	Microbiol. Ecol., 62, 285-294, 1989.
428	Conrad, R. and Claus, P.: Fractionation of stable carbon isotopes during microbial
429	propionate consumption in anoxic rice paddy soils, Biogeosciences, 20, 3625-
430	3635, 2023.
431	Conrad, R., Klose, M., Claus, P., and Enrich-Prast, A.: Methanogenic pathway,
432	¹³ C isotope fractionation, and archaeal community composition in the sediment
433	of two clearwater lakes of Amazonia, Limnol. Oceanogr., 55, 689-702, 2010.
434	Conrad, R., Liu, P., and Claus, P.: Fractionation of stable carbon isotopes during
435	acetate consumption by methanogenic and sulfidogenic microbial communities
436	in rice paddy soils and lake sediments, Biogeosciences, 18, 6533-6546, 2021.
437	DeGraaf, W. and Cappenberg, T. E.: Evidence for isotopic exchange during
438	metabolism of stable- isotope-labeled formate in a methanogenic sediment,
439	Appl. Environ. Microbiol., 62, 3535-3537, 1996.
440	Dolfing, J., Jiang, B., Henstra, A. M., Stams, A. J. M., and Plugge, C. M.:
441	Syntrophic growth on formate: a new microbial niche in anoxic environments,
442	Appl. Environ. Microbiol., 74, 6126-6131, 2008.
443	Dong, X. Z., Plugge, C. M., and Stams, A. J. M.: Anaerobic degradation of
444	propionate by a mesophilic acetogenic bacterium in coculture and triculture
445	with different methanogens, Appl. Environ. Microbiol., 60, 2834-2838, 1994.
446	Drake, H. L.: Acetogenesis, acetogenic bacteria, and the acetyl-CoA
447	"Wood/Ljungdahl" pathway: past and current perspectives, in: Acetogenesis,
448	edited by: Drake, H. L., Chapman & Hall, New York, 3-60, 1994.
449	Elsner, M., Zwank, L., Hunkeler, D., and Schwarzenbach, R. P.: A new concept
450	linking observable stable isotope fractionation to transformation pathways of
451	organic pollutants [review], Environ. Sci. Technol., 39, 6896-6916, 2005.
452	Freude, C. and Blaser, M.: Carbon sotope fractionation during catabolism and
453	anabolism in acetogenic bacteria growing on different substrates, Appl.
454	Environ. Microbiol., 82, 2728-2737, 2016.
455	Glombitza, C., Jaussi, M., Roy, H., Seidenkrantz, M. S., Lomstein, B. A., and
456	Joergensen, B. B.: Formate, acetate, and propionate as substrates for sulfate
457	reduction in sub-arctic sediments of Southwest Greenland, Frontiers
150	M_{1000} has $10.2280/Emich 2015 00946 2015$

458 Microbiol., 6, 846-doi: 10.3389/fmicb.2015.00846, 2015.

- Goevert, D. and Conrad, R.: Effect of substrate concentration on carbon isotope
 fractionation during acetoclastic methanogenesis by *Methanosarcina barkeri*and *M. acetivorans* and in rice field soil, Appl. Environ. Microbiol., 75, 26052612, 2009.
- Hausmann, B., Knorr, K. H., Schreck, K., Tringe, S. G., DelRio, T. G., Loy, A.,
 and Pester, M.: Consortia of low-abundance bacteria drive sulfate reductiondependent degradation of fermentation products in peat soil microcosms,
 ISME J., 10, 2365-2375, 2016.
- 467 Hayes, J. M.: Factors controlling ¹³C contents of sedimentary organic
- 468 compounds: principles and evidence, Mar. Geol., 113, 111-125, 1993.
- Hunger, S., Schmidt, O., Hilgarth, M., Horn, M. A., Kolb, S., Conrad, R., and
 Drake, H. L.: Competing formate- and carbon dioxide-utilizing prokaryotes in
 an anoxic methane-emitting fen soil, Appl. Environ. Microbiol., 77, 37733785, 2011.
- Jain, S., Dietrich, H. M., Müller, V., and Basen, M.: Formate is required for
 growth of the thermophilic acetogenic bacterium *Thermoanaerobacter kivui*lacking hydrogen-dependent carbon dioxide reductase (HDCR), Frontiers
- 476 Microbiol., 11, 59-doi: 10.3389/fmicb.2020.00059, 2020.
- Janssen, P. H. and Frenzel, P.: Inhibition of methanogenesis by methyl fluoride studies of pure and defined mixed cultures of anaerobic bacteria and archaea,
 Appl. Environ. Microbiol., 63, 4552-4557, 1997.
- Kanaparthi, D., Pommerenke, B., Casper, P., and Dumont, M. G.:
 Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial
 subdivision lineage TM3, ISME J., 7, 1582-1594, 2013.
- 483 Kim, Y. J., Lee, H. S., Kim, E. S., Bae, S. S., Lim, J. K., Matsumi, R.,
- 484 Lebedinsky, A. V., Sokolova, T. G., Kozhevnikova, D. A., Cha, S. S., Kim, S.
- 485 J., Kwon, K. K., Imanaka, T., Atomi, H., Bonch-Osmolovskaya, E. A., Lee, J.
- 486 H., and Kang, S. G.: Formate-driven growth coupled with H2 production,
- 487 Nature, 467, 352-U137, 2010.
- Kotsyurbenko, O. R., Nozhevnikova, A. N., Soloviova, T. I., and Zavarzin, G. A.:
 Methanogenesis at low temperatures by microflora of tundra wetland soil, Ant.
 Leeuwenhoek, 69, 75-86, 1996.
- Küsel, K. and Drake, H. L.: Microbial turnover of low molecular weight organic
 acids during leaf litter decomposition, Soil Biol. Biochem., 31, 107-118, 1999.
- Lemaire, O. N., Jespersen, M., and Wagner, T.: CO2-fixation strategies in energy
 extremophiles: What can we learn from acetogens?, Frontiers Microbiol., 11,
 2020.
- Liebner, S., Schwarzenbach, S. P., and Zeyer, J.: Methane emissions from an
 alpine fen in central Switzerland, Biogeochem., 109, 287-299, 2012.
- Liu, P. F., Klose, M., and Conrad, R.: Temperature effects on structure and
 function of the methanogenic microbial communities in two paddy soils and
 one desert soil, Soil Biol. Biochem., 124, 236-244, 2018.
- Lovley, D. R. and Klug, M. J.: Intermediary metabolism of organic matter in the
 sediments of a eutrophic lake, Appl. Environ. Microbiol., 43, 552-560, 1982.
- 503 Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., and
- 504 Tardieux, P.: Experimental determination of nitrogen kinetic isotope
- 505 fractionation: some principles; illustration for the denitrification and
- nitrification processes, Plant and Soil, 62, 413-430, 1981.

507	Martins, M., Mourato, C., and Pereira, I. A.: Desulfovibrio vulgaris growth
508	coupled to formate-driven H2 production, Environ. Sci. Technol., 49, 14655-
509	14662, 2015.
510	Montag, D. and Schink, B.: Formate and hydrogen as electron shuttles in terminal
511	fermentations in an oligotrophic freshwater lake sediment, Appl. Environ.
512	Microbiol., 84, e01572-18-https://doi.org/10.1128/AEM .01572-18, 2018.
513	Nozhevnikova, A. N., Kotsyurbenko, O. R. and Simankova, M. V.: Acetogenesis
514	at low temperature, in: Acetogenesis, edited by: Drake, H. L., Chapman &
515	Hall, New York, 416-431, 1994.
516	Penning, H., Claus, P., Casper, P., and Conrad, R.: Carbon isotope fractionation
517	during acetoclastic methanogenesis by <i>Methanosaeta concilii</i> in culture and a
518	lake sediment, Appl. Environ. Microbiol., 72, 5648-5652, 2006.
519	Peters, V., Janssen, P. H., and Conrad, R.: Efficiency of hydrogen utilization
520	during unitrophic and mixotrophic growth of Acetobacterium woodii on
521	hydrogen and lactate in the chemostat, FEMS Microbiol. Ecol., 26, 317-324,
522	1998.
523	Peters, V., Janssen, P. H., and Conrad, R.: Transient production of formate during
524	chemolithotrophic growth of anaerobic microorganisms on hydrogen, Curr.
525	Microbiol., 38, 285-289, 1999.
526	Phelps, T. J. and Zeikus, J. G.: Effect of fall turnover on terminal carbon
527	metabolism in Lake Mendota sediments, Appl. Environ. Microbiol., 50, 1285-
528	1291, 1985.
529	Rothfuss, F. and Conrad, R.: Vertical profiles of CH ₄ concentrations, dissolved
530	substrates and processes involved in CH4 production in a flooded Italian rice
531	field, Biogeochem., 18, 137-152, 1993.
532	Schink, B., Montag, D., Keller, A., and Müller, N.: Hydrogen or formate:
533	Alternative key players in methanogenic degradation [review], Environ.
534	Microbiol. Reports, 9, 189-202, 2017.
535	Schuchmann, K., Chowdhury, N. P., and Müller, V.: Complex multimeric [FeFe]
536	hydrogenases: biochemistry, physiology and new opportunities for the
537	hydrogen economy [review], Frontiers Microbiol., 9, 2911-doi:
538	10.3389/fmicb.2018.02911, 2018.
539	Schuchmann, K. and Müller, V.: Direct and reversible hydrogenation of CO2 to
540	formate by a bacterial carbon dioxide reductase, Science, 342, 1382-1385,
541	2013.
542	Sieber, J. R., Le, H. M., and McInerney, M. J.: The importance of hydrogen and
543	formate transfer for syntrophic fatty, aromatic and alicyclic metabolism,
544	Environ. Microbiol., 16, 177-188, 2014.
545	Stumm, W. and Morgan, J. J.: Aquatic Chemistry, 3. ed. Wiley, New York, 1996.
546	Thauer, R. K., Jungermann, K., and Decker, K.: Energy conservation in
547	chemotrophic anaerobic bacteria, Bacteriol. Rev., 41, 100-180, 1977.
548	Widdel, F.: Microbiology and ecology of sulfate- and sulfur-reducing bacteria, in:
549	Biology of Anaerobic Microorganisms, edited by: Zehnder, A. J. B., Wiley,
550	New York, 469-585, 1988.
551	Wüst, P. K., Horn, M. A., and Drake, H. L.: Trophic links between fermenters
552	and methanogens in a moderately acidic fen soil, Environ. Microbiol., 11,
553	1395-1409, 2009.
554	Zinder, S. H.: Physiological ecology of methanogens, in: Methanogenesis.
555	Ecology, Physiology, Biochemistry and Genetics, edited by: Ferry, J. G.,
556	Chapman & Hall, New York, 128-206, 1993.

- 559 Figure legends
- 560
- 561 Figure 1. Formate conversion to acetate, CH₄ and CO₂ in suspensions of paddy soil from
- 562 Vercelli (Italy) after addition of formate without sulfate (blue squares) or formate plus sulfate
- 563 (gypsum) (red triangles) without CH₃F (open symbols) or with CH₃F (closed symbols).
- 564 Controls with addition of only water (blue or red X crosses) are only shown occasionally. The
- 565 panels show the temporal change of (a) concentrations of formate, (b) concentrations of
- 566 acetate, (c) mixing ratios of CH₄ (1 ppmv = 10^{-6} bar), (d) mixing ratios of CO₂, (e) δ^{13} C of
- 567 formate, (f) $\delta^{13}C$ of acetate, (g) $\delta^{13}C$ of CH₄, and (h) $\delta^{13}C$ of CO₂. Means \pm SE.
- 568 **Figure 2.** Balance of produced acetate plus CH₄ (blue symbols) and of only CH₄ (red
- 569 symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in
- paddy soil from Vercelli (Italy). <u>Acetate and CH4 are each equivalent to 4 H2, formate to 1</u>
- 571 <u>H2.</u> The open and closed symbols denote conditions in the absence and the presence of CH₃F,
- 572 respectively. The different symbols indicate three different replicates. The line indicate
- 573 equimolarity (in terms of reducing equivalents between substrate and product.
- 574 Figure 3. Formate conversion to acetate, CH₄ and CO₂ in suspensions of sediment from the
- 575 NE basin of Lake Fuchskuhle after addition of formate without sulfate (blue squares) or
- 576 formate plus sulfate (gypsum) (red triangles) without CH₃F (open symbols) or with CH₃F
- 577 (closed symbols). Controls with addition of only water (blue or red X crosses) are only shown
- 578 occasionally. The panels show the temporal change of (a) concentrations of formate, (b)
- 579 concentrations of acetate, (c) mixing ratios of CH_4 (1 ppmv = 10^{-6} bar), (d) mixing ratios of
- 580 CO₂, (e) δ^{13} C of formate, (f) δ^{13} C of acetate, (g) δ^{13} C of CH₄, and (h) δ^{13} C of CO₂. Means ±
- 581 SE.
- 582 **Figure 4.** Balance of produced acetate plus CH₄ (blue symbols) and of only CH₄ (red
- 583 symbols) against the consumed formate in (a) the absence and (b) the presence of sulfate in
- sediment from the NE basin of Lake Fuchskuhle. Acetate and CH₄ are each equivalent to 4
- 585 H₂, formate to 1 H₂. The open and closed symbols denote conditions in the absence and the
- 586 presence of CH₃F, respectively. The different symbols indicate three different replicates. The
- 587 line indicate equimolarity (in terms of reducing equivalents between substrate and product.
- **Figure 5.** Mariotti plots of formate consumption in (a, b) paddy soil from Vercelli and (b, c,
- d) sediment from the NE basin of Lake Fuchskuhle under methanogenic (a, c, blue symbols)
- and sulfidogenic (b, d, red symbols) conditions both in the absence (open symbols) and in the
- 591 presence (closed symbols) of CH₃F. The different symbols indicate tThree different
- 592 replicates.
- Figure 6. Isotopic enrichment factors (*ɛ*form, given as negative values) in paddy soils from
 Vercelli and the IRRI (the Philippines) and in lake sediments from the NE and SW basins of

- 595 <u>Lake Fuchskuhle</u> without <u>(left panel)</u> and with <u>(right panel)</u> addition of sulfate (gypsum) and
- 596 CH_3F . Means \pm SE.
- 597 Figure 7. Average δ^{13} C of formate (at the beginning of incubation) and of CO₂, acetate and
- 598 CH₄ (after the depletion of formate) in <u>paddy</u> soils or <u>sediments</u> from Vercelli (blue), and the
- 599 IRRI (green), and in sediments from the NE basin (red) and the SW basin (yellow) of Lake
- 600 <u>Fuchskuhle</u> in the absence (filled bars) and the presence (dotted bars) of CH₃F. Means \pm SE.
- 601