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Abstract. The Amazon experiences thousands of square kilometres of deforestation annually with recent rates increasing to 

levels unseen since the late 2000s. These increased rates of deforestation within the basin have led to changes in sediment 

concentration within its river systems, with potential impacts on ecological functioning, freshwater availability, and fluvial 

and coastal geomorphic processes. The relationship between deforestation and fluvial sediment dynamics at large scales has 10 

not been extensively studied, in the Amazon or elsewhere, primarily due to lack of data. In this study, we utilize a novel remote 

sensing-derived sediment concentration dataset to analyze the impact of deforestation from 2001 to 2020 on suspended 

sediment in large rivers (> 50 m wide) across the Amazon River Basin. These impacts are studied using a lag-based approach 

to quantify the spatiotemporal relationships between observed suspended sediment and changes in landcover over time. The 

results show that large scale deforestation of the Amazon during the 2001-2020 period are associated with significant changes 15 

in sediment concentration in the eastern portion of the basin. In the heavily deforested eastern regions, the hydrogeomorphic 

response to deforestation occurs relatively rapidly (within a year), whereas the less disturbed western areas exhibit delays of 

one to two years before responses are observable. Moreover, we observe that deforestation must be substantial enough to 

overcome the collective influences of human activities and natural sediment variations to result in a discernible impact on 

sediment concentration in large rivers. In 69% of Amazonian major tributary basins with an immediate response, more than 20 

5% of the basin was deforested during the 2001-2020 period, while in 85% of basins with lagged responses, less than 5% of 

the land was cleared. These findings suggest severe implications for future sediment dynamics across the Amazon if 

deforestation is to further expand into the basin. 

1 Introduction 

The Amazon River Basin is the largest river system in the world, accounting for roughly one-fifth of global freshwater 25 

discharge (Callède et al., 2010) and supplying 40% of the Atlantic Ocean’s sediment flux (Milliman and Farnsworth, 2011). 

Though the Amazon is most often recognized for its rich biological diversity, the basin also performs a suite of ecosystem 

functions such as local climate modulation and carbon sequestration (Foley et al., 2007). Despite its ecological importance, 

the Amazon experiences thousands of square kilometers of deforestation annually with 2020 rates increasing to levels unseen 

since 2008 (Silva Junior et al., 2020). From 1975 to 2018, the Amazon experienced an accelerated rate of deforestation with 30 

roughly 20% (788,353 km2) of the Amazon deforested during this 43-year span (da Cruz et al., 2020). Deforestation alters the 

https://doi.org/10.5194/egusphere-2023-2271
Preprint. Discussion started: 8 November 2023
c© Author(s) 2023. CC BY 4.0 License.



2 
 

geomorphological, biochemical, and hydrological states of streams by decreasing land surface evapotranspiration and 

increasing surface runoff and river discharge, erosion rates (Horton et al., 2017), and sediment fluxes from land surfaces (Coe 

et al., 2011). For example, a 2003 study conducted within the Tocantins sub-basin (of the Amazon), noted a 24% increase in 

mean annual water discharge and a 28% increase in high-flow season discharge not attributed to changes in precipitation, but 35 

rather by changes in land cover (Costa et al., 2003). A 2009 model simulation study using the same watershed determined that 

the increase in water discharge could not be solely attributed to climate variation (Coe et al., 2009) but rather, two-thirds of 

the observed 25% increase in discharge was attributed to deforestation that occurred during that period (Coe et al., 2011). 

 

An intact forest cover is known to reduce runoff through various mechanisms such as canopy interception (Dykes, 1997), 40 

increased evapotranspiration (Ellison et al., 2011, Breil et al., 2021), and enhanced infiltration and soil moisture retention 

(Ellison et al., 2017, Ilstedt et al., 2007) and soil erosion control (Reubens et al., 2007, Flores et al., 2019, Veldkamp et al., 

2020). Deforestation, however, reduces these capabilities by removing the protective canopy cover and vegetation roots that 

help to slow down surface water flow, increase infiltration, and stabilize the soil, leading to increased erosion rates (Veldkamp 

et al., 2020). Because of these impacts, it is suspected that the quantity of deforestation plays a significant role in the sediment 45 

response to land clearance. Likely, in areas with greater deforestation, the sediment response is generally more pronounced 

compared to areas with less deforestation. From a land-atmosphere approach, it is suggested that the impact of deforestation 

on the water cycle in the Amazon depends on various factors, such as the size and distribution of the deforested areas 

(D’Almeida et al., 2006). These factors can either increase or decrease the intensity of the water cycle in the region, depending 

on the specific deforestation scenarios. From a land-surface hydrology perspective, this relationship may also apply; a larger 50 

cleared area exposes a greater amount of bare soil, which is more susceptible to erosion and sedimentation. In these cleared 

areas, rainfall, wind, and surface runoff can swiftly mobilize and transport the exposed soil into nearby water bodies, leading 

to rapid sedimentation. Additionally, the increased fragmentation of forests into smaller patches in the Amazon (Broadbent et 

al., 2008) can further contribute to increased rates of soil erosion due to increased edge effects1 (Cardelús  et al., 2020). 

However, the presence of remaining vegetation and intact forests (in areas less deforested; Kroese et al., 2020, Wei et al., 55 

2014) as well as reforestation can mitigate erosion and sedimentation processes (Ouyang et al., 2013, Wei et al., 2009), thus 

slowing the sediment response in areas with less deforestation or smaller cleared patches.  

 

Previous studies have observed significant increases in sediment yield and concentration attributed to deforestation. However, 

these studies have been limited in scale, focusing on smaller basins or study areas (Bringhurst and Jordan, 2015; Latrubesse et 60 

al., 2009; Ochiai et al., 2015; Maina et al., 2013; Maeda et al., 2008). Studies conducted within the sub-basins of the Amazon 

have observed significant increases in sediment due to deforestation. Within the Suiá-Miçu River Basin (located in the 

 
1 The edges of forest patches are more exposed to environmental factors such as wind, rainfall, and sunlight. This exposure 
increases the vulnerability of the soil to erosion, as it is more susceptible to being dislodged and transported by wind and 
runoff. 

https://doi.org/10.5194/egusphere-2023-2271
Preprint. Discussion started: 8 November 2023
c© Author(s) 2023. CC BY 4.0 License.



3 
 

northeast region of Mato Grosso) deforestation was observed to increase annual average sediment yields by 7 ton/ha (Maeda 

et al., 2008). This was assessed by examining land cover changes during three periods in time (1973, 1984, and 2005) and 

using the Universal Soil Loss Equation (USLE) to identify changes in sediment yield. Although this study concluded that 65 

deforestation had resulted in significant increases in the sediment load, examining shifts between only three points in time 

introduces some uncertainty about these results. Further, the use of the USLE may not be the best choice in tropical climates 

as more than three quarters of all studies (conducted between 1977 and 2017) utilizing the USLE are focused on North America, 

Europe, or Asia; only eight percent of all studies during this period had been conducted in South America (Alewell et al., 

2019). As the usability of the USLE is not well documented in the tropics, it may be inappropriate to apply these types of 70 

equations to complex tropical regions like the Amazon. 

 

In the Magdalena River Basin, located to the north of the Amazon River Basin, deforestation in the Colombian Andes was 

observed to increase the basin's sediment load, with an estimated 9% contribution from deforestation (Restrepo et al., 2015). 

In this study, the total area of deforestation was assessed for each of the Magdalena’s sub-basins during the 1980-2010 period; 75 

this data was used to modify the anthropogenic induced erosion factor (𝐸ℎ) of the BQART sediment modeling equation. By 

altering the 𝐸ℎ factor, Restrepo et al (2015) observed an 11% increase in model accuracy. Though this method allows for 

comparison of sediment load with and without anthropogenic input, it is based on a simple empirical model. Observations at 

the river basin scale are needed to quantify the sediment response to deforestation.   

 80 

The number of readily available observational datasets within the Amazon has increased significantly in recent years 

(Crochemore et al., 2019) however, it is likely that large scale deforestation-hydrologic studies within the Amazon River Basin 

remain limited due to a lack of high-quality water quality datasets. For example, Brazil’s national hydrologic dataset, ANA 

Hidroweb (Water Resources National Agency, 2020), contains data on hundreds of river gauging stations. These stations 

collect water discharge and sediment concentration data throughout the country. However, sediment concentration 85 

measurements are spatially sparse and limited in long-term records for trend analysis. More than half of the stations lack data 

prior to 2007 and only a handful of stations contain observations for each year from 2001-2015. Other datasets, such as SO-

HYBAM (Institut national des sciences de l'Univers, 2021) contain consistent, long-term observations and are updated 

frequently but only fourteen stations across the Amazon River Basin  limiting the scale to smaller catchments.  

 90 

Depending on their research goals, many studies in the Amazon use sediment modeling equations in place of in-situ data 

(Maeda et al., 2008, Restrepo et al., 2015). As the Amazon River Basin falls within the boundaries of eight different countries, 

it is difficult to compile the various national datasets available for a basin wide analysis due to variations in data collection 

methods and the temporal availability of data. Despite improvements to hydrologic models in recent years, using traditionally 

modeled data introduces some sources of error due to uncertainties in parameters, model structure, calibration, and input data 95 

(Moges et al., 2020). In this paper, we explore deforestation-sediment concentration dynamics across the 34 major tributary 
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basins of the Amazon River Basin. Using a suite of statistical testing and comparative mapping, we explore the strength of the 

hydrogeomorphic response to deforestation, as well as response lags associated with deforestation magnitude. To overcome 

uncertainties associated with modeled data, sediment data in this study is derived from new remote sensing observations.  

2 Methods 100 

2.1 Study Area 

Despite its size (6,300,000 km2), the Amazon River Basin has a relatively homogenous climate due to its large tropical 

rainforest and its location situated along the equator between 10°N and 20° S (Figure 1). The basin is characterized as a tropical 

rainforest (Af by the Köppen-Geiger system) with average temperatures ranging between 24-26 °C throughout the year 

(Barthem et al., 2005). Typical of the Af climate type, the Amazon experiences large amounts precipitation annually. However, 105 

the spatial distribution of its receiving precipitation varies largely (1,000-3,600 mm) with annual rainfall exceeding 7,000 mm 

along the southern Amazon/Andean transition line (Espinoza et al., 2015) and ranging from 1,500 to 1,700 mm in the drier 

regions of Roraima, Brazil through the Middle Amazon to the state of Goiás (Barthem et al., 2005). 

 
Figure 1: The Amazon River Basin with major streams and rivers. Line width symbolizes river’s width. Data used to produce river 110 
reach delineations are from the Surface Water Ocean Topography (SWOT) River Database (SWORD) centerlines (Altenau et al., 
2021) 
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Topographic characteristics, such as hillslope steepness, can significantly influence soil erosion rates (Zhang et al., 2015), 

however the majority of Amazon River Basin is characterized by vast lowland areas. These lowland areas are relatively flat or 

gently sloping, with gradients that are generally not considered steep. Excluding the Andean Region, the basin wide median 115 

slope is 2.78 degrees and carries an average slope of 5.32 degrees. As a result, steep slopes and their associated effects, such 

as increased erosion and sedimentation, are less prevalent in much of the Amazon. Though hillslope steepness is recognized 

as a significant factor influencing sediment dynamics and is commonly used in modeling sediment transport, this study focuses 

on trends and relationships at the major tributary scale in the Amazon basin, and therefore we do not consider hillslope 

steepness in our analysis. The coarse analysis resolution used in this study, along with the predominance of lowland areas in 120 

the basin, limits the ability to capture fine-scale variations in hillslope steepness that may be present on a river reach-by-reach 

scale analysis. 

2.2 Deforestation Dynamics 

The Global Forest Change (GFC) dataset is a remotely sensed, forest loss detection dataset developed by Hansen et al. (2013) 

in GEE. Using growing season imagery collected from the Landsat satellite series, the GFC dataset identifies changes in forest 125 

cover from the year 2000 to 2020 (v1.8) at a 30-meter resolution. Forest loss is defined as a stand-replacement disturbance, or 

a change from forest to non-forest (Hansen et al., 2013). In this context, the term “forest loss” does not equate loss caused 

exclusively by deforestation as forest loss induced by natural disasters such as tornadoes, wildfires, and hurricanes are also 

included. Though the purpose of this study is to investigate the effects of deforestation on suspended sediment load, the GFC 

dataset is used to identify areas affected non-natural forest loss (deforestation). In the Brazilian Amazon, eighty-five percent 130 

of forest loss during the 2001-2013 period occurred as a direct result of deforestation (Deforestation in the Amazon, 2021).  

Other datasets such as the Program to Calculate Deforestation in the Amazon (PRODES; Instituto Nacional de Pesquisas 

Espaciais, 2020) and the Palsar Global Forest/Non- Forest Maps from ALOS PALSAR (Shimada et al., 2014) were considered; 

however, these datasets did not have the spatial coverage or the temporal range desired for this analysis. The large spatial scale, 

temporal continuity, and high resolution of the GFC dataset remains unmatched to other forest clearing datasets available, 135 

making it the most suitable choice for this study. Forest loss across the 2001-2020 study period, identified by the GFCC dataset, 

is shown in Figure 2.   
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Figure 2. Forest Cover Loss in the Amazon River Basin 2001-2020. Forest loss data was acquired from the Global Forest Change 
Dataset (Hansen et al., 2013). 140 

2.3 Sediment Remote Sensing Dataset 

Suspended Solid Concentration (SSC) concentration (mg/L) data was acquired using Landsat Collection 1 and machine 

learning using the methods described in Gardner et al. (2023) and (2021) as Collection 1 was the best available product at the 

time. To summarize here, Landsat surface reflectance values were extracted over 18,401 river reaches (median length = 10 

km) from the SWOT River Database or SWORD (Altenau et al., 2021) from Landsat 5 Thematic Mapper I, Landsat 7 Enhanced 145 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) using Google Earth Engine (GEE). Satellite 

imagery was captured mostly during the dry season due to cloud coverage, coinciding with the same period deforestation data 

is collected. The SSC model was applied to this river surface reflectance database that was processed and cross-calibrated 

across Landsat sensors to enable time series analysis (Roy et al., 2016; Gardner et al., 2021). 
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Using 1200 matchups, or coincident satellite and SSC field observations, from gauging stations (Water Resources National 150 

Agency, 2020) and grab samples (Institut national des sciences de l'Univers, 2021) located throughout the basin (Figure S1), 

an xgboost model was trained including forward feature selection, leave-time-out-leave-space-out spatial-temporal cross 

validation, and hyperparameter tuning (Meyer et al., 2018) to reduce overfitting and spatial-temporal bias and validated on 

hold-out test data. The model performs well and can predict over an SSC range from 0.01 to 2414 mg/L. Our model has 

comparable error metrics to published models over large areas (Gardner et al., 2023; Dethier et al., 2020) and previous work 155 

in the Amazon (Yepez et al., 2018; Montanher et al., 2014). Specifically, our model exhibits a mean absolute error (MAE) of 

32 mg/L, a symmetric mean absolute percentage error (SMAPE) of 30%, a percent bias (Pbias) of 11% (as shown in Figure 

3A), and a very low relative error of 0.21. In comparison, similar studies by Gardner et al. (2023) reported a relative error of 

0.59 for rivers in the USA, while Dethier et al. (2020) reported a relative error of 0.73 for rivers on a global scale. However, 

we focus on MAE and relative error as suggested by Seegers et al., (2018). It should be noted that our SSC database focuses 160 

on surface concentration and may not capture high SSC values due to factors such as cloud cover and the lack of high SSC 

field measurements for  model training. However, it is important to emphasize that our primary goal is to assess relative 

changes in SSC over time and space. As such, the limitations inherent in remote sensing do not  impact the validity of our 

results. Remote sensing remains the sole approach capable of generating  consistent, spatially explicit, long-term (1984-2020) 

SSC observations across the Amazon Basin (see supplemental information for methods details). Of the 17,182 river reaches 165 

in the Amazon, 10,932 reaches had at least one year2 of SSC data during the twenty-year period (2001-2020). Roughly 60% 

of reaches with SSC data had at least 80% of complete data (at least 18 years). Reaches ranged in length from 115 meters to 

20 km, with 58% of reaches falling between 10 and 15 km in length (Figure 3B).  

 
2 Defined as having valid SSC remote sensing measurements during the dry season. “Annual” values were computed by 
taking average SSC values of reaches with at least 6 samples during the dry season period. 
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Figure 3. (a) Remote sensing derived (predicted) suspended sediment concentration (SSC; mg/L) vs. in situ SSC measurements 170 
(MAE = 32 mg/L; Relative Error = 0.21; Percent Bias = 11% and (b) Number of annually averaged SSC observations during the 
2001-2020 period. 

 

To prepare representative SSC data for trend and statistical analyses, SSC data was filtered based on data availability and 

reaches are aggregated by their major tributary basins. First, reaches with less than ten years of SSC data are removed from 175 

the dataset. The remaining reaches are then grouped by their respective major and minor tributary basins defined by the 

Amazon GIS-Based River Basin Framework (Venticinque et al., 2016). These basin delineations were chosen over other 

commonly used datasets, such as HydroBASINS (Lehner and Grill, 2013), due to its spatially uniform, multi-scale framework 

necessary for comparative statistical analyses.  

 180 

While finer scale analyses often offer detailed insights on small scale variations and are useful in supporting local management 

goals there are significant advantages to using large spatial analysis like major tributary basins in hydrogeomorphic analyses. 

First, major tributary basins provide a larger spatial analysis scale allowing for a more comprehensive assessment of sediment 

dynamics across a wider area of the Amazon region. This broader perspective enables the identification of general trends and 

patterns in sediment concentration associated with deforestation. Second, major tributary basins tend to exhibit more consistent 185 

characteristics in terms of hydrological processes, land use patterns, and sediment transport. This consistency simplifies the 

analysis by reducing the variability introduced by smaller tributaries with unique geomorphological and hydrological 

characteristics.  
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Though most water quality studies tend to sample the basin outlet (e.g., Restrepo et al., 2015, Wasson et al., 2008, Diringer et 190 

al., 2019, Sweeney et al., 2004) there are several merits to using the basin-average, rather than the basin-outlet sediment 

concentration measurement in a deforestation-sediment study. For instance, the median basin value provides a more 

comprehensive and spatially representative measure of sediment concentration compared to measurements at the basin outlet. 

Sediment concentration can vary significantly within a river system, with different tributaries and sub-basins contributing 

varying amounts of sediment. Relying solely on the downstream most value could introduce bias and may not reflect the 195 

sediment conditions throughout the entire basin. Confluences with other rivers, changes in channel morphology, or the 

presence of reservoirs or dams can alter sediment transport patterns and influence sediment concentrations at specific locations. 

Further, the use of the median SSC and not the mean or maximum values, provides resilience to extreme values. Extreme 

events such as floods or exceptionally dry periods can lead to transient spikes or depressions in sediment concentrations at 

specific points, however the use of median value reduces the influence of these extremes. 200 

2.4 Precipitation and SSC Trend Analysis 

To identify trends in SSC and precipitation over the 2001-2020 period, Mann-Kendall trend tests are performed over the 

Amazon’s 172 minor tributary basins. Precipitation plays a significant role in shaping sediment trends by influencing sediment 

mobilization and transport (Renard, 1997, Wei et al., 2014). On one hand, increasing trends in precipitation can result in more 

surface runoff, leading to increases in erosion and sediment mobilization (Armijos et al., 2020). Decreasing precipitation 205 

trends, however, can lead to reduced sediment transport due to limited surface runoff and decreased erosion rates (Ayes Rivera 

et al., 2021). Therefore, to limit the influence of precipitation, reaches within minor tributary basins bearing significant 

precipitation trends are excluded from the deforestation-sediment analysis.  

 

To perform this analysis, daily rainfall data from the Climate Hazards Center at the University of California Santa Barbara is 210 

used (CHIRPS Daily: Climate Hazards Group InfraRed Precipitation; Funk et al., 2015). Daily precipitation values are summed 

for each month for each 0.05°x 0.05° pixel and the average summed value is calculated for each minor tributary basin. 

Precipitation trends are then calculated using these basin-averaged monthly precipitation totals. Reaches within minor tributary 

basins with significant trends are then removed from deforestation-sediment analysis (performed at the major tributary basin 

scale). Trends in SSC are then assessed at the minor tributary basin scale using a Mann Kendall test on the median annual SSC 215 

measurement for each basin. By removing reaches with significant precipitation trends, the focus is narrowed to basins where 

the sediment response is primarily driven by deforestation, enabling a more focused assessment of the deforestation-sediment 

relationship. 

2.5 Sediment Response Analysis 

To assess the impact of deforestation on sediment concentration in the Amazon's 34 major tributary basins, we used a lag-220 

based approach. It is suspected that the timing of sediment responses is closely linked to the intensity of deforestation. 
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Specifically, in basins with higher levels of deforestation, a relatively rapid hydrogeomorphic response is expected. 

Conversely, in less disturbed (more pristine) basins, a delayed response is anticipated. Therefore, a time lagged cross 

correlation (TLCC) analysis is used to identify lags in sediment response to deforestation. TLCC analyses are frequently used 

to identify lag responses in discharge, deposition, and water quality within watersheds (Yang et al., 2023, Kovacic and Nataša 225 

Ravbar, 2010, Durin et al., 2023, Chen et al., 2014). These types of correlation analyses are useful for determining the amount 

of time required to pass for a response to occur. For example, given two phenomena differing by an unknown amount of time, 

one can use a cross-correlation to determine how much one variable must be shifted along the x-axis to align with the other. 

Essentially, the shift is identified using the peak Pearson correlation (r). For each major tributary basin, the median sediment 

concentration is calculated for each year in the 2001-2020 period (n=20). This median value is then correlated with the 230 

percentage of deforestation that occurred in these corresponding years to quantify the co-variation in sediment and 

deforestation temporal trends. We use the annual deforestation percentages as a “stationary” predictor variable and test lag 

responses in the median annual SSC concentration. We confine the results presented here to a maximum of a two-year lag 

based on our preliminary analysis which found no significant co-variation when using three or more year shifts.  

 235 

After identifying response lags within the Amazon's major tributary basins, two statistical tests are used to explore the 

relationship between deforestation and identified lags. A Kruskal-Wallis (K-W) test is used to identify significant variations 

in deforestation intensity between all three lag groups, while a Fisher's exact test is used to test for significant association 

between the deforestation intensity (categorized as high or low) and the presence of response lags. These tests serve distinct 

but complementary purposes in understanding the relationship between deforestation and response lags. While the K-W test 240 

provides a broad view of deforestation intensity patterns across various lag groups, the Fisher's exact test focuses on the specific 

linkages between deforestation intensity and response lags. To conduct the K-W test, basins are first separated by their 

respective lag groups (based on the TLCC analysis). Subsequently, the total percentage of deforestation within each basin 

during the 2001-2020 period is calculated, forming the basis for the K-W test. For the Fisher's exact test, basins are categorized 

into two primary groups based on deforestation intensity: high deforestation, consisting of basins with over 5% of their area 245 

deforested over the 2001-2020 period, and low deforestation, consisting of basins with less than 5% deforested. Likewise, 

basins are grouped into two categories based on their lag response: those with a lagged response and those with an immediate 

response. The Fisher's exact test is then applied to these groupings to examine potential associations. 

 

To quantify the influence of deforestation on sediment concentration annually, we compare annual SSC and deforestation 250 

using a regression analysis. Because sediment concentration can vary significantly across different basins, concentration values 

are normalized by measuring their deviation from the mean (i.e., standard anomaly) using Equation 1 below. While normalized 

values are commonly employed in climate studies to compare diverse phenomena like temperature and precipitation (American 

Academy of Actuaries, 2016), in this context, we use normalizations to investigate how deforestation affects concentration 

changes on an annual basis between different lag groups. For the analysis, annual normalized SSC values (𝑆𝑆𝐶!) are computed 255 
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for each basin. The basins are then categorized into their respective lag groups, and 𝑆𝑆𝐶! values are synchronized with their 

expected deforestation year before conducting a regression analysis. This approach, based on lag groups, acknowledges the 

potential variation in sediment response dynamics between basins exhibiting rapid responses (within a year) and those showing 

lagged responses (with one to two years). Further, it allows us to determine if the impact of deforestation on SSC remains 

consistent between different lag groups. 260 

 

SSCn,μ =""#
$$$$$%""#!
&&'"

            (1) 

 

where 𝑆𝑆𝐶!,)is the normalized SSC for year μ, the 2001-2020 average 𝑆𝑆𝐶$$$$$ sediment concentration, 𝑆𝑆𝐶) is the concentration 

value for year μ, and SSC*is the 2001-2020 standard deviation. Positive and negative 𝑆𝑆𝐶+ indicate above and below 2001-265 

2020 average SSC respectively.  

2.6 Data Scaling 

Within this study, deforestation and sediment concentration patterns are examined at the major tributary basin analysis scale 

while precipitation and SSC trends are isolated at the minor tributary basin scale. Initial trend and correlation assessments were 

conducted at the river reach level for precipitation, SSC, and deforestation. However, these analyses often resulted in 270 

inconsistent findings that lacked spatial uniformity. For example, high levels of variability in SSC trends were often noted 

between river reaches of the same river (Figure S3). Similarly, an assessment on lags performed at the minor tributary basin 

aggregation scale yielded similar, non-uniform results (Figure S4). Though precipitation and SSC trends were observable at 

this scale and demonstrated significant spatial consistency (meaning basins with significant trends tended to be close to each 

other), relationships between SSC and deforestation remained inconsistent. This contrasts examinations at the larger major 275 

tributary basin scale, which revealed clearer spatial patterns of SSC-deforestation relationships. These outcomes suggest that 

at finer scales, local variations and fluctuations likely carry a significant influence on sediment concentration leading to a high 

sensitivity to small-scale factors.  

3 Results 

3.1 Temporal Trends in Precipitation and Sediment 280 

Significant trends in precipitation between 2001 and 2020 (p <0.05) were observed in the western portion of the Amazon near 

the Andes (Figure 4A). Twelve minor tributary basins were noted as having increasing precipitation trends while one basin 

had a decreasing trend. Notably, significant SSC trends and patterns were identified across the Amazon basin. In the eastern 

portion of the Amazon, several sub-basins showed significant increases in SSC trends (Figure 4B), coinciding with relatively 
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high deforestation rates (Figure 2). In the north, a separate cluster of basins with increasing SSC trends is also observed. While 285 

deforestation does occur in this region, its rate is not nearly as high as in the east of the Amazon Basin (Figure 2). 

Figure 4. Precipitation (a) and Sediment (b) Trends across the Amazon River Basin, 2001-2020. 

3.2 Time Lagged Cross Correlation 

The time lagged cross correlation analyses revealed significant patterns in lags throughout the Amazon. Prior to applying the 290 

lags, the Pearson’s Correlation (between median annual SSC and annual percentage of the basin deforested) appeared 

somewhat weak in many of the Amazon’s sub-basins, particularly in the west where deforestation is limited (Figure 5A). In 

fact, negative correlations were observed in many of these basins, meaning that increases in deforestation were associated with 

decreases in sediment concentration. However, after adjusting for lags, the correlation between deforestation and SSC 

increased throughout much of the basin (Figure 5B). This indicates that the observed negative correlations were likely a result 295 

of a misalignment in the hydrogeomorphic response to deforestation. Although this adjustment improved the temporal 

alignment for many of these basins, five basins continued to have a negative correlation following the lag adjustment.  

a. b.

https://doi.org/10.5194/egusphere-2023-2271
Preprint. Discussion started: 8 November 2023
c© Author(s) 2023. CC BY 4.0 License.



13 
 

 
Figure 5. Correlation Coefficients prior to applying lags (a) and Correlation Coefficients after applying lags (b) 300 

Mapping the optimal lag for each sub-basin reveals a unique pattern across the Amazon (Figure 6). Most basins with zero lags 

are clustered in the eastern portion of the basin. This is an important observation, as the majority of deforestation and human 

settlement over the past 20 years (and beyond) has been concentrated in the east. Similarly, in basins requiring a lag of one or 

two years, there is a marked decrease in the amounts of observed deforestation. To further explore these differences, a 

contingency table is provided displaying the frequency (in terms of percent) of high/low deforestation 3  with basins 305 

with/without a lag response (Table 1). From the table, strong differences are observed between basins that are heavily 

deforested and basins that are not. Roughly 61% of basins examined in this study have a lagged response of one or two years. 

Of that 61%, nearly 85% have little deforestation (<5% of basin deforested). Conversely, about 69% of basins without a lagged 

response have high deforestation rates (>5% of basin deforested).  

 
3 Basins with more than 5% of their total area deforested are placed in the “high” deforestation group and while basins with 
less than 5% are placed in the “low” group. 

a. b.
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 310 
Figure 6. Identified lag response (in years) present in each major tributary basin (a) and total percentage of each major tributary 
basin deforested in the Amazon from 2001-2020 (b). River reaches falling within the precipitation zone (sig. precipitation trends) 
were excluded from the basin lag analysis. 

 
Table 1. 2 x 2 Contingency Table showing Response Lag Presence vs. Deforestation. Data is reported in terms of percent.  315 

Deforestation Lag No Lag Total 

Low 52.94 11.76 64.71 

High 8.82 26.47 35.29 

Total 61.76 38.24 100 

 

a.

b.

a.
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The Fisher’s exact test revealed significant associations between deforestation (high vs. low) and lag presence (Table 2). Basins 

with large amounts of deforestation (> 5%) were less likely to exhibit lags in SSC response. Similarly, basins with less 

deforestation (<5%) were more likely to exhibit lags. Further, significant results were observed when performing a one-tailed 

(right) Fisher's exact test, indicating a strong association between the absence of lags and high deforestation rates.  320 
 

Table 2. Results of the association tests between High/Low Deforestation and Lag/Non-Lagged Basins 

Statistical Test Tails p-value Significant (0.05) 

Fisher’s exact test 2 0.002 Yes 

One tailed Fisher’s exact test (right) 1 0.002 Yes 

 

Prior to performing the Kruskal-Wallis Test, a modified box plot and Grubb's test were used to identify any basins with unusual 

levels of deforestation (outliers). The Curuá-una sub-basin stood out as having an unusually high amount of deforestation 325 

despite its small size. Curuá-una, approximately 83% smaller than the average basin, had 23% of its area deforested from 

2001-2020. Due to its small size and the significant impact of even a small amount of deforestation, Curuá-una was excluded 

from the analysis. Upon categorizing the data into different lag groups, another outlier was identified: the Huallaga River 

Basin. While the Huallaga, like many other Amazon basins, has experienced substantial deforestation over the past two 

decades, the nature of land use following clearance sets it apart from other basins. Unlike the predominant cattle ranching and 330 

soy cultivation which drives deforestation in most Amazon basins, deforestation in the Huallaga is primarily driven by coca 

cultivation for cocaine production (Van Dun, 2009, Pruett, 2014). The land in the region is promptly replanted after 

deforestation instead of being converted to pasture. This distinction suggests that the hydrologic response to deforestation in 

the Huallaga differs from that of other basins. As a result, the Huallaga basin was also excluded from the sample to account 

for these dissimilarities. 335 

 

The Kruskal-Wallis Test demonstrated significant variations in the total deforestation percentages (2001-2020) among the 

different lag groups (p-value of 0.0209, H-statistic of 7.734). Sub-basins with zero years of lag (L0), indicating a more 

immediate response, exhibited a higher average percentage of deforestation compared to sub-basins with lags of one (L1) or 

two (L2) years (Figure 7). Similarly, sub-basins with a lagged response of one year displayed a greater average percentage of 340 

deforestation than sub-basins with two lag years. Table 3 provides a summary of these observations. To ensure that these 

differences are attributed to deforestation rather than inherent basin characteristics, a similar analysis was conducted 

considering basin size and the number of river reaches falling within the basin. However, no significant differences in 

deforestation were found through these analyses, suggesting that the temporal response to deforestation is strongly contingent 

on the extent of deforestation taking place. 345 
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Table 3. Deforestation statistics by lag years 350 

Lag Group Mean Percent 
Basin Deforested 

Median Percent 
Basin Deforested 

Range of Values 

L0 9.07 9.57 15.55 

L1 4.02 2.70 12.86 

L2 3.20 2.88 4.26 

 

 
Figure 7. Percent of each basin deforested by lag year (with outliers removed). 

3.3 Regression Analysis 

The regression between the normalized SSC for each year (𝑆𝑆𝐶!,); Eq. 1) and annual deforestation percentages provided 355 

interesting insights into deforestation-SSC relationships across different lag groups (Table 4). As expected, the L0 group 

showed the highest overall correlation (R2 = 0.13) compared to the L1 (0.001) and L2 basins (0.0007). These findings suggest 

that the geomorphic response to deforestation is highly specific to each sub-basin (i.e., no strong general association) except 

for regions with a relatively high intensity of deforestation (L0). 
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 360 
Table 4. Results of the Regression Analysis 

Lag Group Coefficient of Determination (R2) n 

L0 0.13 240 

L1 0.001 180 

L2 0.0007 260 

  

 To further explore these relationships, a Mann-Whitney U test is used to identify differences in deforestation rates between 

years characterized by positive and negative	𝑆𝑆𝐶!,)  values. This test was performed separately within each lag group to 

examine how response lags might influence the impact of deforestation on sediment dynamics. 𝑆𝑆𝐶!,) were grouped into a 365 

positive and negative years (above and below mean respectively). A Mann-Whitney U test was then performed within each 

lag group to assess the differences in deforestation between positive and negative 𝑆𝑆𝐶!,) . Not surprisingly, significant 

differences in deforestation patterns were observed in the L0 group (p = 0.002; Table 5). In these sub-basins, which exhibit an 

immediate response to deforestation, years with higher-than-normal sediment concentration (positive 𝑆𝑆𝐶!,)) were strongly 

associated with elevated deforestation rates. Similarly, years with lower sediment concentration (negative 𝑆𝑆𝐶!,) ) were 370 

strongly associated with lower deforestation rates. In contrast, no significant differences in deforestation were observed in the 

L1 and L2 groups (p = 0.344 and 0.155 respectively). These results suggest that the impacts of deforestation on SSC are most 

pronounced in basins without a lagged response, while the relationship becomes less significant or more complex in basins 

with lagged responses. Despite its unusual nature, this finding is not surprising. In basins with high deforestation rates, 

deforestation is expected to have a more significant impact on sediment concentration compared to basins with low 375 

deforestation rates. In the latter case, sediment dynamics are likely to be more influenced by other factors such as damming, 

mining, agricultural practices, and urbanization. Likewise, these factors may cause the discernable signal of deforestation 

induced sediment to be “washed out” over time. These results further suggest a non-linear or perhaps a threshold-dominated 

relationship. 
 380 
Table 5. Mann Whitney U test results for lag groups L0, L1, and L2. 

Lag Group Z-score P-value Average Percent Basin 
Deforested for years with 
negative 𝑆𝑆𝐶!,) 

Average Percent Basin 
Deforested for years with 
positive 𝑆𝑆𝐶!,) 

L0 3.0509 0.0022 0.206 0.294 

L1 -0.4012 0.3445 0.424 0.344 

L2 -1.4159 0.1556 0.221 0.263 
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4 Discussion 

In a basin as large as the Amazon, it is difficult to make definitive, basin wide statements on deforestation-sediment 

relationships. In some Amazonian sub-basins, these relationships appear very clear, evident by the results of the time lagged 385 

cross correlation (TLCC) analysis (Figure 5B). In other sub-basins, however, these relationships are unclear with weak or 

negative correlations present. From the regression analysis, it is suggested that the strength of SSC-deforestation relationships 

is tied directly to deforestation intensity (Table 4 and 5). The stronger correlation between SSC anomalies and deforestation 

found in basins with no lags (L0) can be attributed to the stronger presence of deforestation. In contrast, basins with lag 

responses (L1 and L2) display a diminished correlation. This decline in correlation strength likely arises from the lower 390 

occurrence of deforestation in lagged basins (Figure 7), allowing external factors such as anthropogenic activities and natural 

variations to exert a more dominant influence on SSC dynamics. Moreover, as time elapses between deforestation and 

response, the signal tends to be "washed out," diminishing its clarity and detectability. 

 

Similarly, the results of the Fisher’s exact test suggest that the presence of SSC response lags is strongly tied to deforestation 395 

intensity. In basins characterized by significant deforestation (> 5% deforested), there is a decreased tendency for lags to be 

present; conversely, in basins with relatively little deforestation (<5% deforested), there is an increased tendency for a lag 

response to exist. These patterns align with the findings from the K-W test, which suggest that deforestation intensity may 

influence the number of lag years. These findings suggest two important insights regarding the impact of deforestation on 

sediment concentration. First, on a broad scale, a significant level of deforestation is required to generate an immediate impact 400 

on sediment concentration. As forest and vegetation landscapes experience degradation and fragmentation, their ability to 

buffer and mitigate soil erosion weakens. Simultaneously, intense deforestation practices lead to increased soil erosion, 

resulting in a greater amount of sediment available to the river system. This creates a compounding “snowball” effect, where 

sediment delivery and deposition become amplified. Second, the impact of deforestation on sediment concentration is not 

solely determined by the extent of deforestation. Other factors, such as damming, mining activities, and basin characteristics, 405 

can attenuate the relationship between deforestation and SSC. These factors may make the relationship less apparent or even 

non-existent. 

 

For example, mining activities generate large volumes of exposed soil and sediment, not only through land clearance, but also 

through excavation, blasting, and ore processing. The loosened soil and tailings can then be easily transported by rainfall and 410 

runoff into nearby rivers and streams. Soil characteristics are another potential factor that can influence sediment dynamics. 

High cohesion is a basin’s dominant soil groups, for example, may result in reduced transportability. Consequently, even with 

deforestation and the removal of vegetation cover, the cohesive nature of the soils can impede sediment erosion and transport, 

contributing to a negative response in sediment concentration. Alternatively, damming can have a significant impact on 

sediment dynamics by acting as a sediment trap, capturing and accumulating sediments upstream. This process effectively 415 
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reduces the downstream transport of sediments, leading to a decrease in sediment concentration immediately downstream 

(Moragoda et al., 2023). To observe a noticeable and immediate impact of deforestation on sediment concentration, the 

magnitude of deforestation must be substantial enough to surpass the influence of these other factors. In other words, 

deforestation must be significant to overcome the combined effects of human activities and natural sediment variations to 

produce a discernible influence on river sediment concentration.  420 

 

Despite the valuable insights gained from this study, it is important to acknowledge the limitations associated with data 

aggregation and resolution, both spatially and temporally. This research primarily focuses on the impact of deforestation on 

sediment concentration within the Amazon's major tributary basins. While this approach offers a broad, comprehensive view 

of sediment dynamics, it overlooks finer-scale variability and localized effects within each basin. Consequently, the findings 425 

may not fully encapsulate the complex and variable nature of deforestation-induced sediment dynamics at finer scales. 

Attempts to explore relationships using finer aggregation scales, such as river reach or minor tributary basin levels, did not 

yield easily discernible trends and patterns across the basin. This challenge may be linked to the use of coarse temporal 

measurements (annual), which might have obscured finer-scale dynamics operating on shorter timescales. Previous works 

have observed that the most substantial impact of deforestation on the sediment delivery ratio usually occurs immediately after 430 

the disturbance event (Lal, 1997, Ochiai et al., 2015). Therefore, the use of annually aggregated data may obscure fine-scale 

temporal patterns, such as seasonal fluctuations and the influence of specific disturbance events. Consequently, this temporal 

aggregation may hinder our capacity to establish direct cause-and-effect relationships between deforestation and sediment 

concentration at specific locations within the Amazon basin. This study underscores significant connections and relationships 

between deforestation rates and sediment concentration, however attributing the observed changes solely to deforestation 435 

requires more detailed data and comprehensive analyses. 

 

Despite these limitations, this research provides valuable insights into the complex nature of deforestation-sediment 

relationships within the Amazon. Though associations between deforestation and suspended sediment concentration are not 

uniform across the Amazon basin, this work suggests the impact of deforestation is likely influenced by three main factors: (1) 440 

the extent of deforestation itself, (2) the presence of external sediment-altering factors, and (3) the specific environmental 

context of each sub-basin. As deforestation intensifies, the impact on sediment concentrations is likely to become more 

pronounced. However, delays in response within less deforested basins may indicate the presence of natural buffers that 

mitigate sediment impacts and a stronger influence of factors not directly related to deforestation on sediment dynamics.  

5 Conclusion 445 

From this study, it is evident that deforestation plays a significant impact on sediment dynamics at the large basin scale across 

the Amazon, particularly in basins with intense deforestation. The hydrogeomorphic response to deforestation was observed 
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to be relatively rapid (within a year) in highly disturbed basins, while a 1- to 2-year lagged response was observed in less 

disturbed basins, potentially due to the influence of other factors such as natural sediment variations, human activities, and soil 

characteristics. We find that the impact of deforestation on sediment concentration is directly tied to the magnitude of 450 

deforestation. For deforestation to have a detectable influence on sediment concentration in large rivers, it needs to be 

substantial enough to surpass the combined effects of human activities and natural sediment variations. Further, increases in 

sediment concentration were found to be positively correlated with the magnitude of deforestation rates, emphasizing the 

importance of considering the extent of deforestation when assessing its impact on sediment concentration.  

 455 

These findings have potential implications for environmental management and policy development in the Amazon region. 

While this study does not directly attribute the observed increases in sediment concentration in eastern Amazonia to 

deforestation, based on our results, it is likely that if deforestation expands deeper into the Amazon, the fluvial response can 

rapidly intensify. This underscores the importance of implementing sustainable land use practices to mitigate soil erosion and 

maintain Amazonian River systems.  Incorporating finer-scale spatial and temporal data to capture the localized variations and 460 

transient dynamics of sediment concentrations following deforestation events will potentially allow for better understanding 

of the specific drivers and processes involved. This expanded knowledge can help identify critical areas where interventions 

are needed to mitigate the negative impacts of deforestation on riverine sediment dynamics and associated ecological 

consequences. As anthropogenic activities continue to alter the earth system, understanding both the intended effects and 

unintentional consequences of these activities are vital to sustaining a future on Earth.  465 

Code Availability 

The code used to generate SSC data is available at  https://github.com/johngardner87/tss_amazon. 

Data Availability 

This study utilizes several publicly available precipitation and forest loss data and river reach and basin shapefiles. Precipitation 

data from the Climate Hazard Center UC Santa Barbara CHIRPS dataset, which can be accessed at 470 

https://chc.ucsb.edu/data/chirps and on Google Earth Engine through the following link: https://developers.google.com/earth-

engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY. The forest loss data used in this research is obtained from the Hansen 

Global Forest Change dataset, which is accessible on Google Earth Engine at https://developers.google.com/earth-

engine/datasets/catalog/UMD_hansen_global_forest_change_2022_v1_10. The SWOT River reach data utilized in this study 

can be obtained from the following source: https://zenodo.org/record/4917236. Additionally, shapefiles for the Amazon 475 

Aquatic Ecosystem Spatial Framework are available for download through the SNAPP Western Amazon Group and can be 

accessed via the following link: https://knb.ecoinformatics.org/view/doi:10.5063/F1BG2KX8. 
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The sediment concentration(SSC) data, RivSed-Amazon, is available at https://zenodo.org/record/8377853 (but is currently 

embargoed and can be opened for reviewers).  
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