
1. Supplemental Information for Remote Sensing of Sediment 

Below is supplemental methods information based on Gardner et al., (2023). 
 

1.1 Image Analysis: 

Extraction of Rs was automated using Google Earth Engine via its python (v3.7.3) API 

(ee package v1.7.9), accounting for fluctuating river position, size, topographic shadows, clouds, 

cloud shadow, snow, ice, and river obstructions to extract only high-quality open water river 

channel pixels. The dynamic surface water extent (DSWE) algorithm (Jones, 2019) was used to 

identify open water river pixels in each image. The Landsat quality assessment band generated 

by FMask was used to mask clouds, cloud shadow, snow, and ice (Foga et al., 2017; Zhu et al., 

2015). To account for differences in band centers and ranges of different Landsat sensors, we 

corrected Rs from Landsat 5 and 8 to match Landsat 7 following Gardner et al. (2021) and (Topp 

et al., 2021). We applied the same procedure to extract Rs over field measurement sites to 

generate matchups provided using a 500 m buffer around site coordinates. 

1.2 SSC machine learning algorithm: 

To provide representative data for training, testing, and validation, matchups were 

stratified into groups with approximately equal amounts of data based on SSC magnitude, site 

coordinates, and day of year. Within each unique combination of SSC magnitude, spatial group, 

and temporal group, 90% of the match-ups were randomly selected for training and validation 

(n=985) and the remaining 10% (n=109) were set aside as test hold-outs that are never used in 

training. The number of bins, also used as spatial-temporal cross validation folds, were chosen to 

balance an adequate amount of training data within each group while having groups that capture 

spatial and temporal variability in SSC across the US. Xgboost was chosen because it 

outperformed other ML algorithms in remote sensing applications (Cao et al., 2022; Fan et al., 

2020; Georganos et al., 2018) and was used in a related study using a similar approach with 

USGS Landsat T1-SR (Gardner et al., 2023; Topp et al., 2021). LLLTO-CV is critical for models 

that make spatial predictions by cross-validating the model on locations and times that were not 

used for model training to reduce overfitting and spatial-temporal bias (Meyer et al., 2018; 

Meyer et al., 2019). FFS reduces overfitting by building models with all combinations of input 



features while penalizing complexity to find the optimal, minimum number of features. We input 

Landsat’s six common optical bands and 55 different spectral indices used in remote sensing of 

water quality for a total of 61 potential features. 

1.3 Limitations: 

Our remote sensing approach has limitations including use of land-based atmospheric 

corrections, adjacency effects, sunglint, and bottom reflectance (Mouw et al., 2015; Zheng and 

DiGiacomo, 2017). The Landsat 8 Surface Reflectance Correction (LaSRC) atmospheric 

correction algorithm performs as well as aquatic-based correction algorithms (e.g. SeaDAS, 

ACOLITE) for water quality applications (Kuhn et al., 2019). Many studies have successfully 

retrieved water quality observations from USGS T1-SR over regional to global extents using 

data-driven approaches (Dethier et al., 2020; Dethier et al., 2022; Olmanson et al., 2020; Topp et 

al., 2021). Adjacency effects in Landsat may be less severe over narrower waters such as rivers 

(Pahlevan et al., 2018). Sunglint may impact a small fraction of images and is minimized by 

calculating median reflectance values over reaches. Bottom reflectance may impact Rs, but likely 

only in clear rivers without vegetation since we remove vegetated water pixels using DSWE 

(Jones, 2015; Jones, 2019). In Gardner et al., (2021), we evaluated the potential impacts of 

adjacency and bottom effects by repeating trend analyses in river color for all rivers vs. rivers > 

120 m, assuming the widest rivers would be deep and/or turbid enough that bottom reflectance 

would be minimized and found no changes in trends in river color based on river size. There are 

further limitations for general users of the RivSed-Amazon database. Our SSC observations only 

represent concentration near the surface. In very turbid rivers, our observations may only 

integrate over centimeters of the water column and therefore typically represent the 

concentration of fine sediments. Our goal was to make a coherent, basin-wide SSC database that 

is temporally or spatially consistent for scientific analysis. While we strive for accuracy, any 

given SSC observation might not be locally accurate enough for decision making that requires 

exact SSC thresholds. Note, our satellite observations are measuring a different spatial scale than 

field measurements, spatially averaging SSC over reaches (median length = 10 km) of river 

surface area whereas field measurements represent a discrete point. RivSed observations are 

designed to be comparable with each other over time and space. The SSC algorithm will 

underestimate SSC in the high range (> 2,000 mg/L). We are working to resolve these issues and 



produce future versions of our SSC model and database that will be updated to Landsat 

collection 2, include Landsat 9, predict over a wider range of SSC, and/or be produced globally 

over the footprint of SWORD, river reaches. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S1. Locations and observation density of satellite/in-situ match-ups used to build and validate the SSC algorithm. 

 

 



 

Figure S2. Feature Importance of the bands and spectral indices used in the final Xgboost regression algorithm for 
predicting SSC. These bands were chosen by forward-feature selection. red=red band; BN = blue/nir; R.GS = red/(green 
+ swir1); hue = hue from the hsv colorspace calculated using rgb2hsv() function in R using the red, green, and blue 
bands; swir1= shortwave infrared 1; nir = near infrared; NR = nir/red; N.GB = nir/ (green +blue) 

  



2. Supplemental Figures of fine scale SSC trend and lag analyses 

 

Figure S3. Reach level SSC trends for 2001-2020. Trends were calculated using a Mann-Kendall test on the median SSC 
recording for each year. The inset map shown in the bottom right of the figure provides an example of the heterogeneous 
trends observed at the river reach scale. 



 

Figure S4. Lag Responses by year found in Amazonian minor tributary basins (2001-2020). Major tributary basins 
containing their respective minor tributary basins are delineated in black. 
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