
1. Supplemental Information for Remote Sensing of Sediment 

 

1.1 Image Analysis: 

Image and analysis and SSC ML algorithm development use the same methods as 

presented in Gardner et al., (2021) and Gardner et al., (2023). To summarize here, extraction of 

surface reflectance (Rs) was automated using Google Earth Engine via its python (v3.7.3) API 

(ee package v1.7.9), accounting for fluctuating river position, size, topographic shadows, clouds, 

cloud shadow, snow, ice, and river obstructions to extract only high-quality open water river 

channel pixels. The dynamic surface water extent (DSWE) algorithm (Jones, 2015; 2019) was 

used to identify high quality open water pixels in each image (See S1). Only high confidence 

water pixels were selected for analysis (DSWE = 1) while all other water pixels identified as 

water by DSWE were removed including low confidence open water (DSWE = 2), high 

confidence vegetated water (DSWE= 3), and low confidence vegetated water (DSWE = 4). The 

Landsat quality assessment band generated by FMask was used to mask clouds, cloud shadow, 

snow, and ice (Foga et al., 2017; Zhu et al., 2015). The global Multi-Error-Removed Improved-

Terrain (MERIT) DEM (Yamazaki et al., 2017) combined with Landsat image metadata on time, 

location, and solar zenith was used to calculate topographic shadow using the hillshadow GEE 

function to mask out shaded pixels. A cumulative cost algorithm then finds connected high 

confidence open water pixels connected to river centerlines to identify river channel water pixels. 

The remaining open water river channel pixels that are not removed by the aforementioned 

masking procedures are used to calculate the median surface reflectance for each band across all 

pixels within a SWORD river reach. We applied the same procedure to extract Rs over field 

measurement sites to generate matchups. Matchups must occur within a +/- 1 day difference 

between field and satellite measurements and the median surface reflectance values were 

calculated for high confidence water pixels within a 500-meter buffer from the field sampling 

coordinates. Quality control steps include removing any match-up or reach level pixel aggregates 

that had less than 5 remote high confidence water pixels to remove observations impacted by 

neighboring non-water pixels. Matchups were also manually inspected to remove field sampling 

sites with coordinates that to not correspond to Landsat visible rivers and field measurements > 

7500 mg/L. To account for differences in band centers and ranges of different Landsat sensors, 

we corrected Rs from Landsat 5 and 8 to match Landsat 7 following Gardner et al. (2021) and 

(Topp et al., 2021).  

 

1.2 SSC machine learning algorithm: 

To provide representative data for training, testing, and validation, matchups were 

stratified into groups with approximately equal amounts of data based on SSC magnitude, site 

coordinates, and day of year. Within each unique combination of SSC magnitude, spatial group, 

and temporal group, 90% of the match-ups were randomly selected for training and validation 

(n=985) and the remaining 10% (n=109) were set aside as test hold-outs that are never used in 

training. The number of bins (4), also used as spatial-temporal cross validation folds, were 

chosen to balance an adequate amount of training data within each group while having groups 



that capture spatial and temporal variability in SSC across the US. XGBoost was chosen because 

it outperformed other ML algorithms in remote sensing applications (Cao et al., 2022; Fan et al., 

2020; Georganos et al., 2018) and was used in a related study using a similar approach with 

USGS Landsat T1-SR (Gardner et al., 2023; Topp et al., 2021). LLLTO-CV is critical for models 

that make spatial predictions by cross-validating the model on locations and times that were not 

used for model training to reduce overfitting and spatial-temporal bias (Meyer et al., 2018; 

Meyer et al., 2019). FFS reduces overfitting by building models with all combinations of input 

features while penalizing complexity to find the optimal, minimum number of features. We input 

Landsat’s six common optical bands and 55 different spectral indices used in remote sensing of 

water quality for a total of 61 potential features. FFS chose 8 optimal bands/band combinations 

to predict SSC (Figure S2). The final model was trained using these 8 band combinations and 

tuned over all combinations of the four hyperparameters using a grid search to find the optimal 

parameter combination and model. 

 

1.3 Limitations: 

Our remote sensing approach has limitations including use of land-based atmospheric 

corrections, adjacency effects, sunglint, and bottom reflectance (Mouw et al., 2015; Zheng and 

DiGiacomo, 2017). The Landsat 8 Surface Reflectance Correction (LaSRC) atmospheric 

correction algorithm performs as well as aquatic-based correction algorithms (e.g. SeaDAS, 

ACOLITE) for water quality applications (Kuhn et al., 2019). Many studies have successfully 

retrieved water quality observations from USGS T1-SR over regional to global extents using 

data-driven approaches (Dethier et al., 2020; Dethier et al., 2022; Olmanson et al., 2020; Topp et 

al., 2021). Adjacency effects in Landsat may be less severe over narrower waters such as rivers 

(Pahlevan et al., 2018). Sunglint may impact a small fraction of images and is minimized by 

calculating median reflectance values over reaches. Bottom reflectance may impact Rs, but likely 

only in clear rivers without vegetation since we remove vegetated water pixels using DSWE 

(Jones, 2015; Jones, 2019). In Gardner et al., (2021), we evaluated the potential impacts of 

adjacency and bottom effects by repeating trend analyses in river color for all rivers vs. rivers > 

120 m, assuming the widest rivers would be deep and/or turbid enough that bottom reflectance 

would be minimized and found no changes in trends in river color based on river size. There are 

further limitations for general users of the RivSed-Amazon database. Our SSC observations only 

represent concentration near the surface. In very turbid rivers, our observations may only 

integrate over centimeters of the water column and therefore typically represent the 

concentration of fine sediments. Our goal was to make a coherent, basin-wide SSC database that 

is temporally or spatially consistent for scientific analysis. While we strive for accuracy, any 

given SSC observation might not be locally accurate enough for decision making that requires 

exact SSC thresholds. Note, our satellite observations are measuring a different spatial scale than 

field measurements, spatially averaging SSC over reaches (median length = 10 km) of river 

surface area whereas field measurements represent a discrete point. RivSed-Amazon 

observations are designed to be comparable with each other over time and space. The SSC 

algorithm will underestimate SSC in the high range (> 2,000 mg/L). We are working to resolve 

these issues and produce future versions of our SSC model and database that will be updated to 

Landsat collection 2 and include Landsat 9. 



 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1. Examples of DSWE algorithm applied to Landsat images in three rivers in the 

Amazon basin that are at the edge of detection due to river widths of 30-50 meters. A) Small 

tributary to the Maranon River. Only DSWE =1 is shown to illustrate the selection of high-

quality open water pixels only along the center of the channel (Landsat ID: 

LC08_L1TP_008063_20150629_20170407_01_T1). B) Rio Bacaja (Landsat ID: 

LC08_L1TP_225063_20150629_20170407_01_T1). C) Culuene River (Landsat ID: 

LC08_L1TP_225070_20150309_20170412_01_T1). Images B and C show low confidence open 

water and high confidence vegetated water which we exclude from analysis and are often located 

along the banks and sand bars. Note, any pixels not connected to the main river channel are also 

excluded from analysis in image processing.  

 

 

Figure S2. Feature Importance of the bands and spectral indices used in the final XGBoost 

regression algorithm for predicting SSC. These bands were chosen by forward-feature selection. 

red=red band; BN = blue/nir; R.GS = red/(green + swir1); hue = hue from the hsv colorspace 

calculated using rgb2hsv() function in R using the red, green, and blue bands; swir1= shortwave 

infrared 1; nir = near infrared; NR = nir/red; N.GB = nir/ (green +blue) 

  



2. Supplemental Figures of fine scale SSC trend and lag analyses 

 

 

Figure S3. Reach level SSC trends for 2001-2020. Trends were calculated using a Mann-Kendall 

test on the median SSC recording for each year. The inset map shown in the bottom right of the 

figure provides an example of the heterogeneous trends observed at the river reach scale. 



 

Figure S4. Lag Responses by year found in Amazonian minor tributary basins (2001-2020). 

Major tributary basins containing their respective minor tributary basins are delineated in black. 

  



 

 

Figure S5. L0 SSC Standard Anomalies vs. Percent Basin Deforested  

 

 
Figure S6. L1 SSC Standard Anomalies vs. Percent Basin Deforested 
 



 

Figure S7. L2 SSC Standard Anomalies vs. Percent Basin Deforested 
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