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Abstract. The calibration of Earth System Model parameters is subject to both data, time and computational constraints. The

high dimensionality of this calibration problem, combined with errors which arise
::::::
arising from model structural assumptions

:
,

makes it impossible to find model versions fully consistent with historical observations, with
:
.
::::::::
Therefore,

:
the potential for mul-

tiple plausible configurations which make
:::::::::
presenting different tradeoffs between skill in different variables or spatial regions

::::
skills

::
in
:::::::
various

::::::::
variables

:::
and

::::::
spatial

::::::
regions

:::::::
remains

:::::::
usually

:::::::
untested. In this study, we lay out a formalism for making dif-5

ferent assumptions about how ensemble variability in a Perturbed Physics Ensemble (PPE) relates to model error, proposing

an empirical but practical solution for finding diverse near-optimal solutions. We argue that the effective degrees of freedom

in model performance response to parameter input (the ’parametric component’
:::::::::
’parametric

:::::::::::
component’) is, in fact, relatively

small, illustrating why manual calibration is often able to find near-optimal solutions. Comparison with a perturbed initial

condition ensemble reveals that internal variability associated with this parametric component of model error is negligible.10

Finally, there is a
:::
The

::::::
results

::::::
explore

:::
the

:
potential for comparably performing parameter configurations making different trade-

offs in model errors. These alternative configurations
:::::
model

:::::::::
candidates

:
can inform model development and could potentially

lead to significantly different future climate evolution.

1 Introduction

::::::
General

::::::::::
Circulation

::::::
Models

::::::
(GCM)

::::
and Earth System Models are

::::::
(ESM)

:::
are

:::
the

::::::
primary

:::::
tools

::
for

:::::::
making

:::::::::
projections

:::::
about

:::
the15

:::::
future

::::
state

::
of

:::
the

:::::::
climate

::::::
system.

::
It

::
is

::
an

::::::::
important

::::
goal

:::
of

::::::
climate

::::::
science

:::
to

:::::::::
continually

:::::::
improve

:::::
these

::::::
models

::::
and

::
to

:::::
better

:::::::
quantify

::::
their

:::::::::::
uncertainties.

::::::::::
Constraints

::
on

::::::::::::
computational

:::::::::
resources

::::
limit

:::
the

::::::
ability

::
to

::::::
resolve

::::::::::
small-scales

:::::::::::
mechanisms,

::::
and

:::::::
sub-grid

::::::::::::::
parametrizations

:::
are

::::
used

::
to

::::::::
represent

::::::::
processes

:::::
such

::
as

::::::::::
atmospheric

::::::::::
convection

::
or

::::::
clouds.

::::::
These

::::::::::::::
parametrizations

::
are

::::::
based

::
on

::::::::
numerous

::::::::::::
unconstrained

:::::::::
parameters

::::
that

::::::::
introduce

:::::::::
uncertainty

:::
in

::::::
climate

::::::::::
simulations.

:::::::::
Therefore,

::::::
climate

:::::::
models

::
are

:
subject to a challenging calibration

::
(or

::::::::
’tuning’) problem. When used as tools of projection of future climate trajectories,20

they cannot be calibrated directly on their performance. Instead, assessment of performance and skill arises jointly from con-

fidence in the understood realism of physical parametrizations of relevant climatological processes, along with the fidelity of

model representation of historical climate change. Practical approaches to model calibration are subject to both data, time and
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computational constraints.

25

For the simplest models (zero or low dimensional representations of the climate system), model simulations are suffi-

ciently cheap with sufficiently few degrees of freedom that Bayesian formalism can be fully applied to estimate model un-

certainty (Ricciuto et al., 2008; Bodman and Jones, 2016; Nauels et al., 2017; Dorheim et al., 2020; Meinshausen et al., 2011)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ricciuto et al., 2008; Meinshausen et al., 2011; Bodman and Jones, 2016; Nauels et al., 2017; Dorheim et al., 2020). However,

more complex models such as the General Circulation Models used in successive generations of the Coupled Model Intercomparison30

Project (CMIP, (Eyring et al., 2016))
:::::
GCM present a number of difficulties for objective calibration which have resulted in a

status quo
::::
status

::::
quo in which manual calibration remains the default approach (Mauritsen et al., 2012; Hourdin et al., 2017).

Such approaches have proven remarkably robust (in that they have not yet been operationally replaced by objective calibration

approaches), but leave large intractable uncertaintiesassociated with
:
.
::
In

::::::::
particular,

:
the potential existence of comparably per-

forming alternative configurations with potentially significantly different future climate evolution (Hourdin et al., 2023; Ho et al., 2012)35

::::::::::::::::::::::::::::::
(Ho et al., 2012; Hourdin et al., 2023). Failing to explore alternative model configurations can result in model ensembles which

may not adequately sample projection uncertainty. For example, some of the CMIP6 model projections were ’too hot’ when

compared with other lines of evidence and using all of these models without statistical adjustment (in a simple ’model democ-

racy’ approach) could lead to an overestimate of future temperature change (Hausfather et al., 2022).

40

Although manual calibration remains by far the most common practice, objective calibration methods have been developed

and tested in climate models (Sellar et al., 2019; Nan et al., 2014; Price et al., 2006)
::::::::::::::::::::::::::::::::::::::::::::
(Price et al., 2006; Nan et al., 2014; Sellar et al., 2019)

. Approaches to date with GCMs have mainly relied on
:::::::
Perturbed

:::::::::
Parameter

:::::::::
Ensembles

:::::
(PPE)

::
of

:::::::::::
simulations,

:::::::
allowing

:
an ini-

tial stochastic sample of the parametric response of the model, followed by the
:
.
:::
The

:
construction of meta-models to emulate

the parametric response of model, either through
:
is
::::
then

::::::
needed

::
to

:::::::
emulate

:::
this

:::::::::
parametric

::::::::
response

:::
and

:::::::
enhance

:::
the

:::::::
number

::
of45

:::::::
samples.

::::
The

:::::::::::
meta-models

:::
can

::
be

:
quadratic (Neelin et al., 2010), logistic regression (Bellprat et al., 2012), Gaussian process

emulators (Salter and Williamson, 2016) or neural networks (Sanderson et al., 2008). Each of these meta-modeling approaches

offers different advantages in terms of accuracy, flexibility and speed (Lim and Zhai, 2017), but often require prior assumptions

on how smooth the parameter response surface might be, how noisy the samples themselves are. Such approaches allow for

the definition of implausible
:::::::
plausible

:
or "not ruled out yet" (NROY) spaces when using a low dimensional output space (such50

as global mean quantities) (Bellprat et al., 2012; Williamson et al., 2015)
:
,
:::::::::::::::::::::::::::::::::::::
Bellprat et al. (2012); Williamson et al. (2015)

:
), po-

tentially allowing for additional ensemble generations which sample in the NROY
:::
"not

:::::
ruled

:::
out

::::
yet" space (Williamson et al.,

2015). Emulators can be improved in promising sub-regions of the parameter space by running a new PPE in a reduced parame-

ter space to increase the ensemble density (sometimes referred as an "iterative refocussing" approach) (Williamson et al., 2017)

, but
:
,
::::::::::::::::::::
Williamson et al. (2017)

:
).
:::::::::

However, the choice of which region to initially focus on
:::::::
depends

::
on

::::::
advice

:::::
from

::::::
model55

:::::::::
developers

:::
and is itself subject to error in emulation.

::::::
Finally,

:::
one

::
of

:::
the

::::::::
strongest

::::::::
limitation

:::::
when

:::::::::
developing

:::::
GCM

:::::::::
automatic

:::::
tuning

::::::::
approach

::
is

:::
the

::::
high

::::::::::::
computational

::::
cost

::
of

:::
the

::::
PPE,

:::::::
leading

::
to

:::
the

:::::::::::
impossibility

::
of

:::::::
running

::::::::
ensemble

::::
large

:::::::
enough

:::
for

:::::::::
uncertainty

::::::::::::
quantification.

:::::::::::::::::
Dunbar et al. (2021)

::::
relies

:::
on

::::::::::::::::::::
calibrate-emulate-sample

:::::::
methods

::
to
::::::::
generate

:::::::::
probability

::::::::::
distributions

2



::
of

:::
the

:::::::::
parameters

::
at

:
a
:::::::
fraction

::
of

:::
the

::::::::::::
computational

::::
cost

::::::
usually

:::::::
required

::
to

::::::
obtain

:::::
them,

:::::::
allowing

:::
for

::::::
climate

::::::::::
predictions

::::
with

::::::::
quantified

::::::::::
parametric

:::::::::::
uncertainties.

:
60

Climate models produce high dimensional output across space, time and variable dimensions. Performance is often ad-

dressed by integrated output spanning these dimensions (Gleckler et al., 2008; Sanderson et al., 2017) and so calibration

techniques must be able to represent grid scale
:::::
spatial

:
performance in order to be useful to development. However, whereas

in
::
In

:
a low dimensional space defined by global mean quantities, it is possible to find model versions which are

:::
one

::::::
model65

::::::
version

:::::
which

::
is
:

consistent with observations (Williamson et al., 2015),
:::
but

:
this is not true for the assessment of a climate

model ’s
:::::
when

:::::::::
considering

:::
the

::::
high

:::::::::::::
dimensionality

::
of

::::::
climate

::::::
model

:::::::
outputs.

:::::
When

::::::::::
considering

::
an

::::::::::
assessment

::
of

:::::
model

:
error

integrated over a large number of pixels or variableswhere
:::
grid

::::::
points

:::
and

:::::::::
variables, structural trade-offs may arise between

model outputs which cannot be simultaneously optimized by adjusting model parameters. For example, (McNeall et al., 2016)

::::::::::::::::::
McNeall et al. (2016) found that land-surface parameters which were optimal for the simulation of the representation of the70

Amazon forest fraction were not optimal for other regions. In another case, structural errors in an atmospheric model were

found to increase significantly with the addition of additional variables to a spatial metric (Sanderson et al., 2008). As such,

the potential structural error component is implicitly related to the dimensionality of the space in which the cost function is

constructed.
:::
For

::::::::
example,

::::::::::::::::::
Howland et al. (2022)

:::::::::::
demonstrated

:::
that

:::
the

:::
use

::
of

:::::::::
seasonally

::::::::
averaged

::::::
climate

::::::::
statistics,

:::::
rather

::::
than

:::::::
annually

::::::::
averaged,

:::::
could

::::::
narrow

:::
the

::::::::::
uncertainty

::
of

::::::
climate

::::::
model

:::::::::
predictions.

:
75

In order to reduce the complexity of the emulation problem, and to preserve the covariance structure of the model output, it is

common to reduce the dimensionality of the output through Principal Component Analysis (PCA) (Higdon et al., 2008; Sexton et al., 2012; Wilkinson, 2010)

:
,
:::
e.g.

::::::::::::::::::::::::::::::::::::::::::::::::
Higdon et al. (2008); Wilkinson (2010); Sexton et al. (2012)

:
). Notably, for some spatial applications, this dimensional re-

duction may be insufficient to resolve certain important climatological features such as extreme precipitation frequency (Jew-80

son, 2020). This PCA representation, however, has some apparent drawbacks for optimization. An orthogonal space constructed

from the dominant modes of variability in a perturbed parameter ensemble may not be able to describe some components of

the spatial pattern of model error (O’Lenic and Livezey, 1988). (Salter et al., 2019)
:::::::::::::::
Salter et al. (2019) proposed an approach

to global optimization of a model with spatially complex output by a rotation of principal components such that model errors

were describable in reduced dimensionality basis set by including some aspects of higher order modes in the rotated, truncated85

basis set in order to better describe the error patterns of ensemble members. The method, however, makes some significant as-

sumptions about the ability of an emulator
:
a
::::::::
statistical

::::::
model to predict the parametric response of high order modes and does

not allow for an exploration of structural trade-offs between different variables, such as those found by (McNeall et al., 2016)

:::::::::::::::::
McNeall et al. (2016).

90

In this study, we
::::
argue

::::
that

::::::::::
considering

:
a
:::::::
sub-set

::
of

::::::::
plausible

::::::::
candidate

::::::::::
calibrations

::::::::
sampling

:::
the

:::::::
diversity

:::
of

:::::
model

:::::
error

:::::
spatial

:::::::
patterns

::::
can

::::
help

::::::
better

:::::::::
understand

::::
the

::::::
model

::::::
biases.

:::::
Such

::::::::
approach

:::::
could

::::
also

::::
help

:::
to

:::::
better

::::::::::
understand

::::::
model

:::::::::
uncertainty

::
in

:::::::
climate

::::::::::
projections,

::
as

::::::::
previous

::::::
studies

::::::::::
highlighted

:::
the

:::::::::
possibility

:::
for

::::::
several

::::::::::
calibrations

::
of

::
a
:::::
single

:::::::
climate

3



:::::
model

::
to

::::::
present

::::
very

::::::::
different

:::::
future

:::::::
climates

::::::::::::::::::
(Hourdin et al. (2023)

:
,
::::::::::::::::
Peatier et al. (2022)

:
).
::
In

:::
this

::::::
sense,

:::
we

:::
are

:::
not

::::::::
searching

::
for

:::
an

:::::::
optimal

:::::::::
parameter

::::::::::::
configuration,

:::::
rather

:::
for

::::::
model

::::::::::::
configurations

::::::
which

:::::::
perform

:::::::::::
comparably

::
to

::
a

::::::::
reference

::::::
model95

::::::
version.

:::
We

:
lay out an alternative formalism which makes different assumptions about how ensemble variability in a Perturbed

Physics Ensemble (PPE )
:::
PPE relates to structural error and how it can thus inform model development. This formalism allows

the empirical decomposition of the model error into one component depending on the parameter values, and a component

arising from structural inaccuracies. The approach is used as a practical solution for finding diverse near-optimal solutions

exploring key model error trade-offs. We start by illustrating the method using a simplified uni-variate case focusing on sur-100

face temperature errors (Section 3), before applying it to a more generalised multi-variate tuning case using 5 climatic fields

(Section 4).
::::::
Finally,

:::
we

::::::
discuss

:::
and

::::::::::
summarize

:::
the

::::
main

::::::
results

:::::::
(Section

:::
5).

2 Methods

2.1
:::::

Model
::::
and

:::::::::
Perturbed

:::::::::
Parameter

:::::::::
Ensemble

::::::
(PPE)

The model used in this study is ARPEGE-Climat, the atmospheric component of the CNRM-CM6 climate model(Roehrig et al., 2020)105

, referred bellow ,
:::::::
referred

::
to as f , the climate simulator. A perturbed parameter ensemble (PPE ) using the simulator f

::::::
model.

:::
The

::::::::
reference

:::::::::::
configuration

:::
of

:::
this

::::::
model

:::
will

:::
be

:::::::
referred

::
to

::
as

:::::::::::::
CNRM-CM6-1

::::
and

:::
has

::::
been

:::::
tuned

:::
by

:::
the

::::::
model

:::::::::
developers

::
for

::::
the

::::::
CMIP6

::::::::
exercise

::::::::::::::::::
(Roehrig et al., 2020).

::
A

::::
PPE

:::
of

::::
this

:::::
model

::
f
:
is created, containing 102 AMIP simulations

::::
amip

:::::::::
simulations

:::::::::::::::::
Eyring et al. (2016)

:::::::
differing

:::
by

::::
their

:::::::::
parameter

::::::
values,

:
representing the period 1979-1981 (3 years), with pre-

specified Sea Surface Temperatures (SSTs)
:::::::::::::::::
(Peatier et al., 2022). Thirty model parameters

:::
(see

::::::::
Appendix

::::
A1)

:
are perturbed110

with a Latin Hypercube sampling
::::::::
Sampling

:::::
(LHS)

:
strategy, producing a variety of simulated climate states in the experiment :

F = (f(θ1), . . . ,f(θn))::::::::::::::::::
F = (f(θ1), ...,f(θn)):based on a space-filling parameter design X = (θ1, . . . ,θn) (Peatier et al., 2022)

:::::::
maximin

::::::
design

:::::::::::::
θ = (θ1, ...,θn):::::::::::::::::

(Peatier et al., 2022),
::::
with

::::::::
n= 102

:::
and

:::
θi :

a
::::::
vector

::
of

:::
30

::::::::
parameter

::::::
values. For the present

study, only climatological annual means of the
::
we

:::::::
consider

:::
the

::::::
annual

::::::
means

::::::::
averaged

::::
over

:::
the

:::::
whole

:
1979-1981 historical

periodare considered
:::::
period. We write the model output f(θi) as a vector of length l, such that F has dimension l×n

::::
l×n,115

where n is the number of ensemble members
::::::::
(n= 102) and l the number of grid points . Elements are weighted according to

their corresponding area.
:::::::::
l = 32768.

:

2.2 EOF analysis

In order to build emulators of the simulated spatial climatology, general practice is to reduce the dimensionality of the emulated

response, and a common strategy is an EOF (Empirical Orthogonal Function) analysis (Higdon et al., 2008; Sexton et al., 2012; Wilkinson, 2010; Salter et al., 2019)120

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Higdon et al., 2008; Wilkinson, 2010; Sexton et al., 2012; Salter et al., 2019), which produces n eigenvectors that can be used

as basis vectors. Given n << l, the reconstruction of F is exact and reduces the complexity of the emulator required.

4



Variability in F
:
F

:
is explained in descending order of eigenvectors, such that a truncation to the first q modes yields a basis

Γq = (γ1, . . . ,γq) which produces an approximate reconstruction of the initial data, thus further reducing the scale of the emu-125

lation problem. Truncation length is often chosen such that a given fraction of ensemble variance (often 90-95%) is preserved

(Higdon et al., 2008; Chang et al., 2014), but some authors have argued that higher order modes may need to be included to

allow resolution of optimal configurations (Salter et al., 2019). We discuss choices of q in the first application (Section 3).

The EOF basis Γq is based on the centered ensemble (F −µ), with µ the ensemble mean. As a result, each simulation130

:::::::
anomaly (f(θi)−µ) is associated with a coefficient c(θi) ::

(or
::::::::
Principal

::::::::::
Component,

::::
PC) such as:

c(θi) = (ΓT
q Γq)

−1ΓT
q (f(θi)−µ) (1)

Given an orthogonal basis, the full spatial field of length l can be approximately reconstructed as a function of the q coeffi-

cients:

f(θi)−µ= Γqc(θi)+ rf , (2)135

with rf a residual that includes the ensemble mean µ and depends on the choice of q. Considering a variable j (for example,

the air surface temperature, as in the first application - section 3.1), such that yj :
zj:is the observed field for the variable and

fj(θi) is the model simulated field for that variable, for a given parameter input θi. As for F , we can subtract the ensemble

mean µ from the observation and project the anomaly of the observation (yj −µ)
:::::::
(zj −µ)

:
(which is also the error of the

ensemble mean µ) onto the basis Γq using Eq. 1 :140

yz
:i −µ= Γqcyz + ryz (3)

where ry ::
rz is a residual , it represents the sum of ensemble mean µ and the

::::::::::
representing

:::
the

:
part of the observation yj ::

zj

that can not be projected on the basis Γq . This residual ry ::
rz will, as rf , depend on the choice of q but will never (even when

q = n) equals 0, as the basis Γq explains the maximum amount of variability in F but does not guarantee to fully represent the

spatial pattern of the observation yj ::
zj (Salter et al., 2019).145

2.3 Model error partitioning
::::::::::::
decomposition

The model error pattern of a given parameter sample, Ej(θi) = yj − fj(θi):::::::::::::::::
Ej(θi) = zj − fj(θi), can be expressed in the basis

Γq and becomes the sum of a term that depends on the calibration
:::::
vector

:::
of

::::::::
parameter

:
θi (here called parametric

:::::::::
component),

and a term unsolvable in the basis Γq (here called non-parametric ) :
::::::::::
component)

:
:150

Ej(θi) = Γq[cz − c(θ)]︸ ︷︷ ︸
Parametric

+ rz − rf︸ ︷︷ ︸
Non−parametric

(4)
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We could consider a skill score defined by the Mean Square Error (MSE) of the spatial error pattern Ej(θi):

ej(θi) =
1

l
Σ((Ej(θi))

2), (5)

=
1

l

(
Σ(Γq[cr − c(θi)] + ryz − rf )

2

)
(6)

Furthermore, because (ry − rf )::::::::
(rz − rf ):is orthogonal by construction to the basis Γq , the interaction terms in Eq.5 are155

zero. As a result and using Eq. 4, the integrated model error ej(θi) becomes a linear sum of a parametric component pj(θi)

and a non-parametric component uj :

ej(θi) =
1

l
Σ

(
Γq[crz − c(θi)]

2

)
+

1

l
Σ(ryz − rf )

2, (7)

= pj(θi)+uj (8)

2.4 The discrepancy term160

We consider, following (Rougier, 2007; Salter et al., 2019)
::::::::::::
Rougier (2007)

:::
and

::::::::::::::::
Salter et al. (2019), that an observation y

:
z
:
can

be represented as a sum of an optimal calibration θ∗ of the climate simulator
:
a
:::::::::
simulation

:::::
using

:::
the

:::::
’best’

:::
set

::
of

::::::::
parameter

:::
θ∗

::
of

:::
the

::::::
climate

:::::
model

:
f and a term (initially unknown) representing discrepancy η.

yz
:
= f(θ∗∗)+ η (9)

The discrepancy effectively represents how informative the climate model is about the true climate, and it measures the
:::
the165

difference between the climate model and the real
:::::::
measured

:
climate that cannot be resolved by varying the model parameters

(Sexton et al., 2012). Such differences could arise from processes which are entirely missing from the climate model, or from

fundamental deficiencies in the representation of processes which are included : through limited resolution, the adoption of

an erroneous assumption in the parameterisation
::::::::::::::
parameterization scheme or parameters not included in the calibration

:::::
tuning

process. The discrepancy η can be defined as the integrated error associated with the optimal calibration θ∗. Considering a170

variable j, the univariate discrepancy term ηj is defined as :

ηj =
1

l
Σ((yz

:j − fj(θ
∗
:
))2), (10)

= ej(θ
∗
:
) (11)

In this case and following Eq. 4, ηj can also be expressed as a linear sum of a parametric component pj(θ∗)::::::
pj(θ

∗) and a

non-parametric component uj :175

ηj =
1

l
Σ

(
Γq[crz − c(θ∗

:
)]2

)
+

1

l
Σ(ryz − rf )

2, (12)

= pj(θ
∗
:
)+uj (13)

The irreducible error component of the climate model is represented by the η term, known as the discrepancy. To make

this statement, (Sexton et al., 2012)
:::::::::::::::::
Sexton et al. (2012) have to assert that the climate model is informative about the real

6



system and the discrepancy term can be seen as a measure of how informative our climate model is about the real world.180

(Sexton et al., 2012)
::::::::::::::::
Sexton et al. (2012) think of the discrepancy by imagining trying to predict what the model output would

be if all the inadequacies in the climate model were removed. The result would be uncertain and so discrepancy is of-

ten seen as a distribution, assumed Gaussian, and described by a mean and variance (Sexton et al., 2012; Rougier, 2007)

:::::::::::::::::::::::::::::
(Rougier, 2007; Sexton et al., 2012).

185

The calibration θ∗
::
θ∗ is usually defined as the ’best’ input setting, but it is hard to give an operational definition for an

imperfect climate model (Rougier, 2007; Salter et al., 2019). In practice, we can only propose an approximated θ∗ , hereafter

named θ̂, and multiple ’best analogues’ to this θ̂
::::::::::::
approximation exist (Sexton et al., 2012). In this work, we intend to select

diverse optimal
:
m

:::::::::::
near-optimal model candidates (θ̂1, ..., θ̂m)

::::::::::::
approximating

::
θ∗

:::
and

:
sampling the discrepancy term distribution

η. In this study, a uni-variate application is presented and the optimal input settings θ̂ will be defined as the calibrations190

minimizing the skill score ej(θ̂) or, considering Eq. 12, the parametric component of this skill score : pj(θ̂). We discuss

optimization using a simple emulator design in Section 2.3
::
2.5

:
and candidates selection in Section 2.4

::
2.6.

2.5 Emulator design
:::::::::
Statistical

:::::
model

:
and optimization

Optimization requires the derivation of a relationship between the model input parameters θ and the PC coefficients c(θ). In

the following illustration and as in (Peatier et al., 2022)
::::::::::::::::
Peatier et al. (2022), we consider a multi-linear regression:195

cem
::

(θi)≈ βθi + c0, (14)

where β is the least-square regression solution derived from F , and c0 is the ensemble mean coefficients. The regression

predictions are used in Eq. 12 to predict the model MSE as a function of input parameters θi. ::::
More

::::::
details

:::
on

:::
the

:::::
choice

::::
and

::::::::::
performance

::
of

:::
the

::::::::
statistical

::::::
model

:::
can

::
be

::::
find

::
in

:::
the

::::::::
Appendix

:::
C.

200

In this study, the objective of optimization is to consider
::::
look

::
for

:
non-unique solutions (θ̂1, ..., θ̂m) comparably performing

:::::
whose

:::::::::::
performances

:::
are

:::::
lower

::
or

::::::::::
comparable

::
to

::::
that

::
of

:
a
::::::::
reference

::::::
model, yet sampling possible trade-offs in the objective function.

In this case, we consider a diversity of candidate calibrations with comparable integrated error metric values. An empirical

solution considers a second emulated sample of parameter space, a 106
:::
The

::::::::
reference

:::::
model

::::
will

::
be

:::
the

:::::
model

::::::::::::::
CNRM-CM6-1,

::::
tuned

:::
by

:::
the

::::::
model

:::::::::
developers

:::
for

:::
the

::::::
CMIP6

:::::::
exercise

::::::::::::::::::
(Roehrig et al., 2020).

::::
This

::::::::
reference

::::::
model

:::
has

::::
been

::::::::
validated

:::
by

:::
the205

::::::
experts

:::
and

:::
can

:::::
serve

::
as

::
a

::::::::
threshold

::
to

:::::
define

:::::::
whether

:
a
::::::
model

:::::::::
calibration

::
is

:::::::::::
near-optimal.

:::
We

:::
can

::::
then

::::::::
consider

:
a
::::
105

:
member Latin Hypercube sample of the model parameter space , producing

:::
and

:::::::
produce

:
a

distribution of predicted p(θi):::::::
pem(θi) values. The parametric error associated with the reference calibration of the CNRM-CM

model, hereafter named p(θ0), is considered as a threshold to define the optimal
::::::::::
near-optimal candidates. For a given climatic210

field j, we consider the subset of m emulated cases θ̂ = (θ̂1, ..., θ̂m), where model error is predicted to be lower than the
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reference model error :

pjem,j
:::

(θ̂i)< pj(θ0) (15)

For a
:::::::::
operational

::::
use,

::::
ESM

:::::::::
developers

::::::::
generally

:::::::
attempt

::
to

:::::::
minimize

::
a
::::::::::
multi-variate

::::::
metric

:::::::::::::::::::::::::::::::::::
(Schmidt et al., 2017; Hourdin et al., 2017)

:
,
:::::::::
considering

:::
nj :::::::

different
:::::::
climatic

:::::
fields.

::
In

:::
this

:::::
case,

::
all

:::
the

:::::::::
individual

:::::
errors

:::::
ej(θi):::

and
::::::
pj(θi) ::::

need
::
to

::
be

:::::::::
aggregated

::
in

::
a

:::::
single215

:::::
score.

:::
The

::::::::
simplest

::::
way

::
to

:::::
obtain

:::::
such

::::::::::
multi-variate

::::
skill

:::::
score

::
is
::
to
:::::::::
normalize

::::
each

:
uni-variate application

::::::::
parametric

::::::
errors

:::::
pj(θi)::::::::

relatively
::
to

:::
the

::::::::
reference

:::::
model

:::::
error

::::
such

::
as

:
:
:

pem,tot(θ̂i) =
1

nj
Σ

nj

j=1

pem,j(θ̂i)

pj(θ0)
::::::::::::::::::::::::::

(16)

::
In

:::
this

::::
case,

:::
the

::::::::
condition

:::
for

:::
the

:::::::::::
near-optimal

::::::
sub-set

::
is

:
:
:

pem,tot(θ̂i)< 1
::::::::::::

(17)220

:::
For

::
an

:::::::::
application

::
to

::::::
surface

::::::::::
temperature, we can now consider, within the optimized subset of emulated cases θ̂ = (θ̂1, ..., θ̂m)

:::::::::::::::
θ̂tas = (θ̂1, ..., θ̂m),

a selection of candidate calibrations producing pattern error as diverse as possible while minimizing the common aggregated

metric ej(θ̂i):::::::::
aggregated

::::::
metric

:::::::
etas(θ̂i). The selection of candidate calibrations is detailed in Section 2.6, the results are shown

in Section 3.
:::
For

::
a

:::::::::::
multi-variate

::::::::::
application,

:::
we

:::::::
consider

::::
the

::::::::::
near-optimal

:::::::
sub-set

::::::::::::::::
θ̂tot = (θ̂1, ..., θ̂m),

:::::
which

:::::::::
minimize

:::
the

:::::
metric

:::::::
etot(θ̂i).::::

The
::::::::
selection

::
of

::::::::
candidate

::::::::::
calibrations

::
is

::::::
detailed

::
in
:::::::
Section

:::
2.6,

:::
the

::::::
results

:::
are

::::::
shown

::
in

::::::
Section

::
4.

:
225

2.6 Selection of diverse candidate calibrations

Given the subset
::::::
subsets

:
of plausible model configurations θ̂ = (θ̂1, ..., θ̂m), we then

:::::::::::
configuration

::::
θ̂tas::

or
:::::
θ̂tot, :::

we aim to

identify a subset of k solutions which explore different trade-offs. For a given variable j, the Root Mean Square distances

reconstructed in the EOF basis are computed for each pair of configurations θ̂i and θ̂k such as :

dj(θ̂i, θ̂k) =

√
1

l
Σ(Γq[cj(θ̂k)− cj(θ̂i)]2)230

::::
This

:
is
::::::::
obtained

:::::::
through

:
a
:::::::::
k-medians

::::::::
clustering

::::::::
analysis,

:::::
which

:::::::
separate

:::::::
samples

::
in

::
k

::::::
groups

::
of

:::::
equal

::::::::
variance,

:::::::::
minimizing

::
a

:::::::
criterion

::::::
known

::
as

::
the

::::::
inertia,

:::::::::
computed

::
as

:::
the

:::
sum

::
of

:::
the

:::::::
minimal

::::::::
distances

:::::
within

:::
the

:::::::
clusters

:::::::::::::::::::::::::::::::::::
(Hastie et al., 2009; Pedregosa et al., 2011)

:
.

The nearest-neighbor pair (θ̂i, θ̂k) is then identified by the minimum value of dj(θ̂i, θ̂k), and one of the pair is removed235

at random. Near neighbors are then removed until nk solutions remain, representing the diverse set of plausible solutions.

Illustrations of this selection is given in Section 3 for a uni-variate metric (nj = 1, the surface temperature) and five model

candidates selected (nk = 5).
:::
As

:
a
:::
first

:::::
step,

::
we

:::::
apply

:::
the

:::::::::
k-medians

::::::::
clustering

::
to

:::
the

::::::
surface

::::::::::
temperature

:::::::
Principal

:::::::::::
Components

::
of

:::
the

:::::::
plausible

::::::
model

:::::::::::
configuration

:::::::
sub-set,

::
the

::::::::::
coefficients

:::::::::
ctas(θ̂tas).::::

The
:::::::
medians

::
of

:::
the

:::::::
samples

::
in

::::
each

:::::::
clusters

::
are

::::::
called

8



::
the

:::::::::
centroids.

::::
The

::::::::
centroids

:::
are

:::::
points

:::::
from

:::
the

:::::::
original

:::::::
dataset,

:::::::
therefore

:::
we

:::::
know

:::::
their

:::::::::
associated

:::::
vector

:::
of

:::::::::
parameters

::
θ240

:::
and

:::
can

:::
use

:::::
them

::
to

::::::
sample

:::
the

:::::::
sub-set

::
of

::::::
diverse

::::
and

:::::::
plausible

:::::::::::::
configurations.

:::::
These

:::::::::
calibration

:::::::::
candidates

:::
are

::::::
tested

::
in

:::
the

::::::
climate

:::::
model

::::
and

:::::
results

:::
are

:::::::::
presented

::
in

:::
the

::::::
Section

::
3.

:

For operational use, ESM developers generally attempt to minimize a

::
In

:
a
:

multi-variate metric (Schmidt et al., 2017; Hourdin et al., 2017), and perspectives for
::::::
context,

:::
the

::::::::::
candidates

::::::
should245

:::::
reflect

:::
the

:::::
model

::::
error

::::::::
diversity

::::::
among

::::
both

::
the

::::::::
different

::::::
climatic

:::::
fields

:
j
::::
and

:::
the

:::::::
different

::::
EOF

:::::
modes

:::
of

::::
each

::::
field.

::::::::::
Considering

::
the

::::::
subset

::
of
::::::::

plausible
::::::::::::

configurations
::::
θ̂tot:,

:::
we

::::::
apply

:::
the

:::::::::
k-medians

::::::::
clustering

:::::::
analysis

:::
to

::
all

:::
the

::::
data

::::::::::
coefficients

::::::::
cj(θ̂tot),

:::::::::
normalized

:::
by

:::
the

::::::::
reference

::::::
model

::::::::::
coefficients

::::::
cj(θ0),:::

for
::
j
:::::::
climatic

::::::
fields.

::
In

::::
this

:::::
case,

::::::::
applying

:::
the

::::::::
clustering

::::::::
analysis

:::::
within

:::
the

:::::
EOF

:::::
space

::::::
reduce

:::
the

:::::::::::::
computational

::::
cost

:::
and

::::::
allows

::
to
:::::

look
:::
for

:::::::::
candidates

:::::::::::
representing

:::
the

::::::::
diversity

::
of

:::::
error

::::::
patterns

::
in
::

a
:
multi-variate application of the discrepancy distribution sampling and partitioning (with nj = 5) is presented in250

Section 4
::::::
context.

::::
The

::::::::
clustering

::::
will

::::::::
minimize

:::
the

:::::::
distances

::::::::
between

:::
the

:::::::::
coefficients

::
of

::
a
::::
same

:::::::
cluster,

:::::
while

::::::::::
maximizing

:::
the

::::::::::
inter-cluster

::::::::
distances.

:::
As

::
for

:::
the

::::::::::
uni-variate

:::::::::
application,

:::
the

::
k
::::::::
centroids

:::
will

:::
be

:::::::
retained

::
as

:::::::::
candidates

::
to

::::::
sample

:::
the

::::::::
represent

::
the

::::::::
diversity

::
of

::::
error

:::::::
patterns

::
in

:::
the

::::::::
plausible

:::::
subset

:::
of

::::::::::::
configurations.

::
In

:::
the

:::::::
Section

::
4,

::
we

:::::::
propose

:::
an

:::::::::
application

::::::::::
considering

:
5
:::::::
climatic

::::::::
variables

:::::::
(nj = 5,

:::::
Table

::
1).

:

255

:::
For

::::
both

:::::
cases,

:::
we

:::::
tested

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::
analysis

::
to

:::
the

:::::::
number

::
of

:::::::
clusters.

:::::::::
Following

:::
the

::::::
Elbow

::::::
method

:::::::
applied

:::
the

::
the

::::::
inertia

:::
and

:::
the

::::::::::::
maximization

::
of

::::::
Dunn’s

:::::
index,

:::
we

::::
have

:::::::
decided

::
to

::::
keep

::::::
k = 12

:::::::
clusters

:::
for

::::
both

::::::::::
applications.

:::::
More

:::::::
detailed

::::
about

:::
the

:::::::::
sensitivity

::
of

:::
the

:::::::
analysis

::
to

:::
the

::::::
cluster

:::::::
number

:::
and

:::
the

::::::
choice

::
of

:
k
:::
are

:::::
given

::
in

:::
the

:::::::::
Appendix

:
B.

3 First application : surface temperature error

We consider an example problem where the objective is to propose diverse candidates minimizing the Root Mean Squared260

Error of a single climatic field, the surface air temperature, when compared with observational estimates. Here we use the

BEST dataset (Rohde and Hausfather, 2020), over the simulated period (1979-1981). Observations have been interpolated onto

the model grid for a better comparison.

In this example, the first key question will be to select the truncation length of the basis Γq . (Salter et al., 2019) define265

two main requirements for an optimal basis selection : being able to represent the observations yj within the chosen basis (a

feature not guaranteed by the EOF analysis of the PPE), and retaining enough signal in the chosen subspace to enable accurate

emulators to be built for the basis coefficients. Our objectives here are a bit different, as we want to conserve our ability to

identify the trade-offs made by candidates calibrations in the non-parametric components of the model performance. We argue

that the original basis Γq is representative of the spatial degrees of freedom achievable through perturbations of the chosen270

parameters. As such, the degree to which the observational bias projects onto it is itself meaningful and can be used as a tool to

identify components of model error which are orthogonal to parameter response patterns (and therefore not reducible through
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parameter tuning).

Furthermore, we want, as (Salter et al., 2019), to be able to build accurate emulators for the basis coefficients. In this sense,275

the basis should not include variability modes poorly represented by the emulator. Sections 3.2 and 3.3 discuss the choice of q,

the truncation length.

3.1 Assessing meaningful number of degrees of freedom

We first consider how modes of intra-ensemble variability relate to the representation of model integrated Mean Square Error

of surface temperature etas(θi). Following Section 2.2, by projecting the spatial anomalies of models and observations onto the280

basis defined by the truncated EOF set, the mean-squared error can be partitioned into a parametric component (the projection

ptas(θi)) and non-parametric component (the residual utas). Figure 1 considers examples of the full model errors associated

with the PPE simulations and its partitioning
:::::::::::
decomposition

:
for different numbers of EOF modes retained, q = 102 being the

perfect reconstruction of the full error etas(θi).

285

(a) (b)

Figure 1. Figure showing the full
:::
Full

:
model error etas and its parametric component ptas(θi) for different truncation length : q = 5 (red

dots), q = 20 (blue dots), q = 50 (pink dots), q = 102 (orange dots). For these different truncation lengths, the left plot shows the
::
(a)

::::
Full

error partitioning in parametric and non-parametric components in the PPE members f(θi) ranked from lowest to highest error. The right

plot shows the correlation
::
(b)

:::::::::
Correlation between the full error

:::
etas:and its parametric component

::::::
ptas(θi) within the PPE.

A number of features are notable in Figure 1. Firstly, with
:::::
While

::::::::
retaining a relatively small number of modes (q = 5), the

correlation between the full model error and its parametric component is already really strong among the PPE members, with

a Pearson correlation coefficient of r = 0.982
::::::
(Figure

:::
1b). This correlation does not improve a lot when considering higher

modes - :
:
r = 0.998 for q = 20 and r = 0.999 for q = 50. This implies that only a relatively small number of modes is required

10



to reproduce the ensemble variance in etas(θi). The variation
::::::
variance

:
in ensemble spatial error pattern could be described by290

a small number of degrees of freedom.

However, even for the perfect reconstruction of the model error (when q = 102), a non-null non-parametric component

exists, and its ratio corresponds to 26% of the full model errors averaged over the PPE members. This ratio increases when

retaining less EOF modes, and a large fraction of the model error pattern is not represented within the parametric component.295

Using
:::
For

::
a

::::::::
truncation

:::
of q = 5, for example - the non-parametric component of the error utas is 53% of the total etas(θi)in

average
:
,
::
in

::::::
average

::::
over

:::
the

::::
PPE. Together, this implies that the variation

:::::::
variance

:
in model error seen in our ensemble

:::
the

::::
PPE

can be explained by a small number of degrees of freedom
:::::
modes, but a significant fraction of this error is not a function of the

perturbed parameters
:::::::::
represented

::::::
within

:::
the

:::::::::
parametric

:::::::::
component

::
of

:::
the

:::::
error

::::::::::::
decomposition.

3.2 Truncation and parametric emulation300

In section 3.1, it was evident
::
we

::::::::::::
demonstrated that the majority of variance in model MSE could

:::
can be described as a function

of a small number of spatial modes, but .
::
In

::
an

::::::::::
operational

:::::
model

::::::
tuning

:::::::
exercise,

:::
we

::::
want

::
to

:::::
make

::::
sure

:::
that

:::
we

::::::
explain

:::::
most

::
of

::
the

::::::::
ensemble

::::::::
variance

:::::
within

:::
the

::::::::
truncated

::::
EOF

:::::
basis,

::
so

:::
we

::::::
decided

::
to

:::
use

::
a

::::::::
subjective

::::::::
minimum

::
of

::::
85%

::
of

:::::::::
explained

:::::::
variance

::::
when

::::::::
deciding

::
on

:::
the

:::::::::
truncation

::::::
length.

::::
Now,

:
how does this relate to parametric dependency? We follow Section 14 to build a

linear emulator relating the model parameters θ to the PC coefficients c(θ). Out of a total of 102 simulations, 92 are randomly305

selected to form the training set. This training set is used to compute the EOF analysis and to derive least-square regression

coefficients of the emulator. The out-of-sample emulator performance is then assessed on the remaining 10 simulations, after

projection onto the EOF basis. This process is repeated 10 times with random samples of F used as training sets, to assess

the predictive performance of the regression model (i.e. the correlation between out-of-sample predicted c(θ) anc
:::
and

:
true c(θ)).

310

Figure 2
:
a
:
shows both in-sample and out-of-sample skill scores, in terms of mean and standard deviation across the 10

repetitions. The average of out-of-sample performance cumulative on modes is also represented by the red curve (ex : when

x= 5
::::
q = 5, the red curve is the average of the orange curve over the modes 1 to 5 included). We find that out-of-sample

emulation skill declines rapidly when the number of modes increases. This result challenges the utility of including high-

order modes in the high order modes in spatial emulator of parametric response (as , for example, in (Salter et al., 2019))-315

::
in

:::::::::::::::
Salter et al. (2019)

:
),
:

indicating that high order spatial modes may be too noisy to represent any parametric signal in the

ensemble and emulator design considered here. Here we consider an example of truncation at q = 18 that will be used in the

rest of the study. It corresponds to the poitn
::::
point

:
when the average of out-of-sample performance cumulative on modes reach

the arbitrary threshold of 0.5 and explains 94% of the ensemble variance
:::::::::
(respective

:::
our

::::::::
condition

::
of

::
at

::::
least

::::
85%

:::
of

::::::::
explained

:::::::
variance).320

Figure 2also
:
b shows the ratios between the PPE parametric and non parametric errors

::::
(dark

::::::
blue),

::::::::::::
non-parametric

::::::
errors

::::
(light

:::::
blue) and the total error

::::::
(green), as a function of the number of EOF modes retained. We see that for a EOF basis retain-
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94% 
Exp. var.

(a) (b)

Figure 2. Truncation choice based on parametric emulation and error decomposition. The left plot shows
::
(a)

:::::
Shows

:
the correlation between

the emulated and true PCs of the surface temperature EOF, for the different modes of variability. The correlation is showed within the

training set (blue curve) and the test set (orange curve). The evaluation is repeated 10 times with random sampling of training and test sets,

the mean and the standard deviation among these 10 evaluation are represented by the dots and the error bars, respectively. The red curve and

shading is the mean correlation averaged over the modes cumulatively. The right plot
::::
solid

::::
green

:::::
curve

:::::::
represents

:::
the

::::::::
percentage

::
of

:::::::
variance

:::::::
explained

::::
when

:::::::
retaining

:::
up

:
to
::
q
:::::
modes

::
of

:::
the

::::
EOF.

:::
The

::::::
dashed

::::
green

::::::::
horizontal

:::
line

:
shows

:
a

:::::::
threshold

::
of

::::
85%

::
of

:::::::
explained

:::::::
variance

:::
and

the
:::
solid

:::::
green

::::::
vertical

:::
line

::
is

::
the

::::::::
truncation

:::::
length

::::::
needed

::
to

:::::
satisfy

:::
this

::::::::
threshold.

::
(b)

::::::
Shows

::
the

:
ratio of the error components compared

to the full error etas(θi) (in green) as function of the number of modes of variability retained. The lines are the ensemble means and the

shadings represent the standard deviations. The plot shows the ratios of the PPE parametric error (dark blue), the PPE non-parametric error

(light blue), the reference calibration parametric error ptas(θ0) (red dotted curve) and the GMMIP parametric error (orange). An example of

truncation at q = 18 is represented on both plots by the black vertical line.

ing 1 to 5 modes, each component represents around 50% of the total error on average. For the truncation example of q = 18,

the parametric error represents 63% of the full error on average, and the non-parametric error 37%. This ratio evolves slowly325

when adding higher modes, and for a perfect reconstruction (q = 102), p(θi)
e(θi)

= 74% and u
e(θi)

= 26%. But we also note that

the large variability of ptas(θi) across the PPE (represented by the standard deviation) is constant irrespective of the number of

EOF modes retained, highlighting the strong dependency of this error component on the parameter values. On the other hand,

the variability of the residual error u within the PPE decreases when retaining more EOF modes, and is already very small for

our truncation example of q = 18.330

We can consider also how internal variability impacts the parametric errors
::
In

:::
the

::::::
context

:::
of

:::
the

::::::
Global

:::::::::
Monsoons

::::::
Model

::::::::::::::
Inter-comparison

::::::
Project

::::::::
(GMMIP,

:::::::::::::::
Zhou et al. (2016)

:
),
::
an

::::::::
ensemble

::
of

:::
10

::::::::::::::
atmospheric-only

::::::::::
simulations

::
of

:::
the

:::::::::::::
CNRM-CM6-1

:::
was

::::
run.

::
In

:::
this

:::::::::
ensemble,

:::
the

:::::::
reference

::::::
model

:::::::::
calibration

:::
was

:::::
used,

:::
the

::::
SST

:::
was

::::::
forced

::::
with

:::
the

::::
same

:::::::::::
observations

::
as

:::
the

::::
PPE

:::
and

:::
the

::::::::
members

:::::
differ

::
by

::::
their

:::::
initial

:::::::::
conditions

:::::
only.

::::
This

::::::
dataset

:::
can

::
be

:::::
used

::
to

:::::::
consider

:::
the

:::::
effect

::
of

:::::::
internal

::::::::
variability

:::
on335

::
the

:::::
error

:::::::::::::
decomposition,

:::
and

::::
will

::
be

:::::::
referred

::
to

::
as

:::
the

:::::::
GMMIP

::::::
dataset. The GMMIP dataset includes 10 AMIP simulations of

CNRM-CM6
::::::::::
atmospheric

::::::::::
simulations

::
of

:::::::::::::
CNRM-CM6-1 with the reference calibration but different initial conditions, that can

12



be projected into the PPE-derived EOF basis to compute their associated parametric errors. The variability of the parametric

component of the error across the GMMIP dataset is very small and does not depend on the truncation length. The fact that,

for q = 18 or higher, the variability of u is even smaller than the internal variability of the parametric component confirms that340

this part of the error is not dependent on the parametric values anymore.

Another point to note from Figure 2
:
b is that the reference calibration of the model performs well and shows a near-minimal

value of parametric error in the ensemble. Following Eq. 14, we use a multi-linear regression that emulates the parametric

component of the model error from the calibration values. This emulator is then optimized to find an example of optimal345

::::::::::
near-optimal

:
calibration θ̂ that minimizes the parametric component of the error. The optimization is done for for all the differ-

ent truncation lengths. As shown on the right plot of Figure 2
:::::
Figure

::
2a, the parametric component of the optimal

::::::::::
near-optimal

calibration p(θ̂) is a bit lower than the parametric error of the reference calibration when retaining 5 or more modes and starts

evolving in parallel of the PPE mean when retaining 7 or more modes. This parallel evolution between the optimal calibration

and the PPE mean indicates that the
:::
The difference between the PPE mean and this example of optimal calibration becomes350

constant when q = 7 or more, suggesting that there is no improvements of the optimization when adding modes with a rank

higher than 7.

These results suggest that the EOF basis Γq truncated at a relatively small number q = 18 is a good representation of the

parametric component of the model error pattern. Therefore, the truncation can be used to identify the residual u, that does355

not depend on the perturbed parametric values. Adding further modes has limited impact on the representation of ensemble

variation in integrated error and does not improve the ability to find optimal
:::::::::::
near-optimal candidates because of the poor skill

of the higher modes regression prediction. In the following, we will only use a truncation at rank q = 18.

3.3 Trade-offs in model candidates360

Following the methodology discussed in the Section 2.6, all emulated members with a parametric error lower than the reference

are selected from a 100,000 LHS set of emulations and considered as a sub-set of optimal
::::::::::
near-optimal

:
calibrations. From this

sub-set, five
::
12

:
candidates have been identified in order to maximize the diversity of model errors. The five selected parameter

calibrations
::
12

::::::::
calibrated

:::
set

::
of

:::::::::
parameters

:
were then used in the ARPEGE-Climat model to produce actual atmospheric sim-

ulations. One of the calibrations leads to a crash in the mode, the four others produced atmospheric simulations of the
:::::
model365

:::
and

::
11

::::::
others

::::::::
produced

:::
the

::::::::
complete

::::::::::
atmospheric

::::::::::
simulations.

::::
The annual mean surface temperature that could be

::
of

::::
these

:::
11

::::::::
candidates

:::::
were projected onto the EOF basis computed from the 102 members of the PPE,

:
to obtain the principal components.

Figure 3 presents the representation of the first five EOF modes by the principal components of the projected model candidates

: the closer the candidates are to the observation in the different modes, the lower their parametric error.

370
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Figure 3. Standardised principal components associated with
::::::::
Correlation

:::::::
between the 5 first modes of

::::::
different

::::::::::
standardised

::
PC

::::::::
(obtained

:::
from

:
the

:::
102

:::::::::
memberPPE

:
EOFbasis computed on

:
)
:::
for the 102 members of the PPE. The Figure presents the projections of the 100,000

::::::
100.000 emulated members

:::::::::
simulations (light gray), the ’optimal’

:::::::::
near-optimal emulated members (with a

:::
dark

::::
grey,

:
parametric error lower

than the reference CNRM-CM6-1, in dark grey), the 5
:
11

:
emulated candidates (colored dots) and the 4 candidates

::
11

::::
actual

:
CNRM-CM

::::::::
simulations

:
(colored triangles

::::
disks),

:::
the

:::::::
reference

::::::::
simulation

::::
(star)

:::
and

:::
the

:::::::::
observation

:::::
(cross).

Figure 3 provides some confidence in both the emulation skill and the method used for the selection of optimal
::::::::::
near-optimal

and diverse candidates. Although some differences exist between the emulations of the candidates and their actual atmospheric

simulations, all of them show principal components within the optimal
::::::::::
near-optimal

:
sub-set of calibrations for the 5 first EOF

14



modes, thus respecting the condition for optimal
::::::::::
near-optimal calibration. Moreover, for the 4 first modes, the

:::
the candidates

seem to explore a range of principal component values as wide as the optimal
::::::::::
near-optimal

:
sub-set of calibrations, meaning375

that we achieve the diversity expected in terms of model errors. Regarding the fifth EOF mode, a lack of diversity within the

candidate sub-set appears. The fifth mode is also the only EOF in which the
::
In

:::
the

::::
fifth

:::::
mode,

:::
the

:
projected observations are

outside of the emulated ensemble, illustrating that all ensemble members have a non-zero error for this mode, highlighting the

existence of a structural bias preventing us from tuning the model to match observations on this axis.

380

Figure 3 also allows to see
::::::::
illustrates the constraints due to optimisation on the principal components of the optimal

::::::::::
near-optimal

:
sub-set of calibration. Indeed, the principal components associated with the first EOF mode of the optimal

::::::::::
near-optimal

:
sub-set of calibrations (in dark gray on the Figure

::::::
Figure

:
3) span a very reduced range of values compared

to the full emulated ensemble. This result highlights a strong constraint on the first mode of the EOF, stronger than on the

modes 3 to 5.
::::
other

::::::
modes.

:
In other words, the candidates have to have a representation of the first EOF mode close to the385

projected observations in order to achieve a parametric error below the reference. This is an expected result
:
, knowing that the

first mode explains most of the PPE variance and that the amount of variance explained by each mode individually decreases

in higher modes.

Finally, Figure 3 illustrates that it is impossible for the model candidates to perform equally well on all modes and fit390

observations perfectly. Tradeoffs exist even in this space where the variability is driven by the calibration. Looking at candidate

2

::::::::
Candidate

::
5,

:
for example, it represents very well the modes 1 and 4

:
3, with values of principal components almost equal to

those obtained by projecting the observation on the EOF basis. For the modes 2, 3 and 5 however, candidate 2
:
,
:::
but is further

from the observations .
:
in

:::
the

::::::
modes

:::
2,4

:::
and

::
5. In the same way, candidate 3

::
10 performs well for the modes 1, 2 and 4

:
5
::::::
(being395

::
the

:::::::::
candidate

::
the

::::::
closest

::
to
::::::::::
observation

::
in

:::::
mode

::
5,

::::
with

:::
the

::::::::::
observation

::::::
outside

::
of

:::
the

::::::::
emulated

:::::::::
ensemble), but not for modes 3

and 5. Candidate 4
::
4.

::::::::
Candidate

::
3 is the best candidate, fitting

::::
close

::
to the observations on all modes 1 to 4. Considering mode

5, where the observation is outside of the emulated ensemble, none of the candidates show good performance (but it also, by

construction, accounts for the smallest fraction of error variance).

400

All of the 5
::
11 candidates have comparable values of their integrated temperature errors (both p(θ̂i) and e(θ̂i):::

and
:::
all

:::::
lower

:::
than

:::
the

::::::::
reference

::::::
values

:::::
p(θ0)::::

and
::::
e(θ0)) and Figure 3 is a good representation of the trade-offs they have to make in order

to minimize this metric. This is a good illustration of the main issue of model tuning : the existence of structural error, which

is illustrated here by mode 5, makes impossible the perfect fitting to the observation and candidates are making trade-offs to

achieve the metric minimization. This is well known when considering a classic model tuning approach, where multiple cli-405

matic variables are considered and the optimal
::::::::::
near-optimal calibrations are better representing certain fields at the expense of

others in order to minimize a multi-variate metric. Figure 3 is illustrating the problem at the scale of a single field (surface tem-

perature, in this case), highlighting the existence of trade-offs within the optimal
::::::::::
near-optimal

:
representation of this field : the
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temperature will be equally well represented in all the candidates when considering an integrated score (like an RMSE
:::::
MSE),

but their spatial error patterns will differ.410

3.4 Examples of temperature discrepancy term partitioning
::::::::::::
decomposition

Considering, as described in the Section 2.4, that the error associated with an optimally calibrated
:
a
:::::::::::
near-optimal model is an

approximation of the discrepancy term magnitude, the candidates selected here illustrate that near-optimal solutions can be

obtained with a diversity of spatial trade-offs that can be made for a minimization problem, even for a single variable output.

Moreover, the discrepancy terms can be decomposed in parametric and non-parametric components as seen in Section 2.4.415

Given the results of Section 3.3, there is a good practical case for choosing a low dimensional basis for calibration - with

evidence that it is sufficient to describe the majority of ensemble error variability and that higher modes are in any case not

predictable from parameters. The truncation chosen here is q = 18 and Figure 4 presents the decomposition of the optimal

::::::::::
near-optimal

:
candidates errors, based on this EOF basis Γq=18.

420

The candidates 2 to
:::
For

:::::::
practical

::::::
reason,

::::
only

:
4 shows full temperature RMSEs

::
of

::
the

:::
11

:::::::::
candidates

:::
are

::::::::
presented

::
in

::::::
Figure

::
4,

::
the

::::
rest

::
of

:::
the

:::::::::
candidates

:::
can

:::
be

::::
seen

::
in

::::::::
Appendix

:::::::
(Figure

::::
D1).

:::
All

::
of

:::
the

:::::::::
candidates

:::::
show

:::
full

::::::::::
temperature

::::::
MSEs e(θ̂i) of

1.31K
:::::::
between

::::::
1.62K

:::
and

::::::
1.99K, 1.34K and 1.27K, so below the RMSE

::::
MSE

:
of the reference of e(θ0) = 1.41K

::::::::::::
e(θ0) = 2.01K.

The candidate 5
:
7
:
is the least good,

::::
with

:::::::::::::
e(θ̂7) = 1.99K

:::
and

:::::::::::::
p(θ̂7) = 0.98K

::::
and

:::
the

:::::::::
candidate

::
3

::
is

:::
the

::::
best

::::::::::
performing

::::::
model,

:::::
with

:::::::::::::
e(θ̂3) = 1.62K and shows a full error slightly above reference : e(θ̂5) = 1.43K and e(θ0) = 1.41K. Overall,425

:::::::::::::
p(θ̂3) = 0.62K.

::::
The

::::::
quality

::
of
:

the statistical emulations of the parametric component perform acceptably : the emulated

patterns of the parametric components are quite close to the actual patterns
:::::
varies

:::::::::
depending

::
on

:::
the

:::::::::
candidate

:::
and

:::
the

::::::
biases

:::
over

::::::::::
Antarctica

:::
are

::::::
poorly

::::::::
captured

::
by

::::
the

:::::::::
emulations. We note an exception for the candidate 4 (which is also the best

candidate in terms of integrated score), where the statistical emulation overestimates the positive biases everywhere and fails to

represent the strong negative biases
:::
that

:::
the

:::::::::
emulation

::
of

::::::::
candidate

:
3
::::::
shows

:
a
::::::
rather

:::::::
different

:::::::::
parametric

::::
error

::::
than

:::
the

::::::
actual430

::::::
pattern,

::::
with

:::
an

:::::::
opposite

::::
sign

::
of

:::
the

:::::
biases

::::
over

::::::::::
Antarctica,

::::::::
Australia,

:::::
India

:::
and

:::::::::
Argentina,

::
as

::::
well

::
as

::
a
:::::
strong

:::::::::::::
under-estimate

::
of

:::
the

::::::
positive

::::
bias over central Africaand South Europe. For most of the candidates, the linear regressions were able to emulate

the spatial pattern .
:::
For

:::::::::
candidate

::
10,

:::
the

::::::::
statistical

:::::::::
emulation of the parametric error, probably thanks to the choice to truncate

the EOF basis after the first few modes (q = 18), allowing for skillful emulations (Figure 2)
:
’s
::::::
spatial

::::::
pattern

::
is

:::::
really

::::::
closed

::
to

::
the

:::::
truth.

:::
We

:::::::
discuss

:::
the

::::::
uneven

:::::::::::
performance

::
of

:::
the

::::::::
statistical

::::::::::
predictions

::
in

::::::::
Appendix

::
C

::::
and

:::::
argue

:::
that

:::
the

::::::::
emulator

::::
skill

::
is435

:::::
mostly

:::::::
limited

::
by

::::
size

::
of

:::
the

:::::::
training

::
set.

As stated before, optimal
::::::::::
near-optimal

:
candidate errors are our best estimate of the discrepancy term diversity. The full errors

shown in Figure 4 display features common to the 4 candidates and the reference : positive
::::::
negative

:
biases over the mountain

regions (Himalaya, Andes and North American mountains) and a negative
:::::::
positive bias over central Africa. However, the mag-440

nitude and position of these biases vary from a model to another, with a particularly strong positive
:::::::
negative

:
bias over north

America in candidate 3
:
1
:
and a strong negative

::::::
positive

:
bias over central Africa in candidate 5

:
3, for example. This diversity is
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Full error
E(θ$!)

Parametric error
P"#$% θ$!

Non–param. error
U = E θ$! − P"#$%(θ$!)

Emulations 
P"#$%(θ$!)

Figure 4. Differences between the simulations of temperature and the observations BEST (Rohde and Hausfather, 2020), for the 4 model

candidates and the reference. Decomposition of model errors in parametric and non-parametric components using the methodology described

in the Section 2, with an EOF basis truncated after the mode 18. The left column shows the full differences between simulations and

observations, the second column shows the parametric component of this difference, the third column presents the emulation by the linear

regression of this parametric component and the last column is the non-parametric component estimated as the difference between the full

error and its parametric component.

highlighted when looking at the parametric components of the candidate errors, showing a diversity of error signs and patterns
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over the poles (especially Antarctica), the South of Europe, India, North Africa and Canada.

445

The non-parametric components of the errors are smaller and qualitatively similar among the candidates, confirming that

they are not strongly controlled by the parameter values. In other words (as expected by the method), the first few modes of the

EOF analysis are enough to represent the diversity of model error spatial trade-offs among a sub-set of optimal
::::::::::
near-optimal

candidates. Moreover, the method allows to visualize and compare these trade-offs through the spatial representation of the

parametric component (Figure 4).450

4 Second application : multi-variate error

4.1 Variables, EOF analysis and truncations

The uni-variate analysis conducted in Section 3 illustrates quantitatively
:::::::::
qualitatively

:
the potential for trade-offs and multiple

optimal
::::::::::
near-optimal solutions of the climate model optimization problem. It is based on the minimization of

:
In

::::
this

:::::::
Section,

::
we

:::::::::
considered

:
a single uni-variate metric, allowing to select 5 optimal

::
12

::::::::::
near-optimal

:
candidates maximizing the diversity of455

spatial error patterns and trade-offs among the different EOF modes.

Field
:::::::::
Observable

:::::::
variables Symbol Units Citation

::::
Data

:::::::
product

:::::::
reference Years

Surface Temperature tas K (Rohde and Hausfather, 2020) 1979-1981

Precipitation pr mm/day (Huffman et al., 2009) 1979-1981

Sea Level Pressure psl Pa (Saha et al., 2010) 1979-1981

SW flux, TOA SW W.m−2 (Loeb et al., 2018) 2000-2002

LW flux, TOA LW W.m−2 (Loeb et al., 2018) 2000-2002
Table 1. Table of observable variables used in this study, plus citations for the data-products used.

In an operational GCM tuning application, the minimized metric
:::::
metric

::::::::::
considered must encompass multiple climate fields

and the optimization results in trade-offs between different uni-variate metrics, with optimal
::::::::::
near-optimal

:
models better repre-

senting some fields at the expense of others. The general solution to model calibration for operational use requires consideration

of a wide range of climatological fields spanning model components, including both mean state climatologies, assessment of460

climate variability and historical climate change. This is inherently more qualitative - requiring subjective decisions on variable

choices and weighting, which are beyond the scope of this study. However, we can consider an illustration of a multi-variate

application, based on 5 climatic fields : the surface temperature (tas), the precipitation (pr), the short wave (SW) and long wave

fluxes (LW) at the top-of-atmosphere and the surface pressure (psl). The model errors will be defined as the MSE between

model simulations and the observational datasets lists in Table 1. As for the uni-variate application, EOF analysis of the PPE465

variance is computed for the annual means of the different climatic fields and the EOF truncation choices depends on the
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parametric emulation skill and the error decomposition.

Figure 5 presents the performances of multi-linear regressions in the prediction of the principal components for the 5 fields

and we note a strong decrease in out-of-sample prediction skills as we move toward higher EOF modes for all climatic fields.470

Based on this result, it is clear that, as for the uni-variate application, the optimization should only retain the first few modes.

The truncation lengths should be different from a climatic field to another as the linear regressions perform the best for the

SW fluxes but have rather poor out-of-sample skill in terms of sea level pressure, for example. Examples of EOF truncations

are given on Figure 5, based on an arbitrary threshold of 0.5 for the averaged correlation coefficient of predicted and true

out-of-sample PCs.
:::
We

:::
also

:::::::
ensured

::::
that

::
the

::::::::
truncated

:::::
basis

::::::::
explained

::
at

::::
least

::::
85%

:::
of

:::
the

::::::::
ensemble

:::::::
variance.

:
These examples475

suggest that it is possible to retain up to 28 EOF modes for the TOA SW fluxes uni-variate metric, whereas no mode higher than

8 should be considered for the sea level pressure in order to keep satisfying statistical predictions. Moreover, some variables

require more EOF modes than other in order to explain most of the ensemble variance. e.g. For precipitation, we need to keep

18 EOF modes in order to explain 85% of variance, whereas for sea level pressure, the first 8 EOF modes explain 92% of

the variance. However, for every climatic field considered, the variance of model errors within the PPE is already very-well480

represented by the first 4
:
5
:
EOF modes, as suggested by the correlations between reconstructed and full errors (Figure 6).

Considering these truncation lengths, the PPE mean parametric component represents 80% of the full PPE mean error for the

TOA SW fluxes, but only 66% for the sea level pressure.

The error reconstructions presented on Figure 6 are the sums of the parametric components of the errors pj(θi) and the PPE485

mean non-parametric components uj,mean. As expected, the PPE mean non-parametric components decrease as higher EOF

modes are retained for the reconstruction but is never equal to 0 (even for a full reconstruction of q = 102), .
:::::
This

:
is
:
due to the

fact that observations can never be fully captured by their projections into the model EOF basis (Figure 6). As presented before,

the parametric component pj(θi) can be emulated with multi-linear regressions, and the PPE mean non-parametric component

uj,mean can be used as an approximation to reconstruct the full error ej(θi). This method succeeds to produce high correla-490

tions between the reconstructions and the actual full model errors among the PPE, with an offset due to the non-parametric

component variability across the PPE, which decreases when retaining more EOF modes. Even though higher EOF modes

are not well predicted by the emulators (Figure 5), they also explain small fractions of the model error variances. As a result,

the performances of the emulators to predict model errors are much more sensitive to the climatic field considered than to the

number of EOF modes retained.495

On the other hand, the reference calibration CNRM-CM6-1 remains one of the best models of the PPE for most of the

climatic fields and can be considered as near-optimal in the ensemble. Therefore, its model bias can be seen as a representative

of the CNRM
:::::::::
CNRM-CM

:
discrepancy term. Indeed, the reference CNRM-CM6-1 is the best model for surface pressure and

one of the best for precipitation and TOA fluxes, but several PPE members outperform it for surface temperature. This is a500

simple illustration of a complex tuning problem, and based on the results we obtained in the uni-variate application, it
:
.
::
It
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seems likely that comparably performing parameter configurations potentially exist for a multi-variate tuning problem, making

different model trade-offs among both climatic fields and EOF modes representations of uni-variate errors (Figure 3). In the

next Section, we will attempt to identify some of them, in order to illustrate the different choices that could be made when

tuning a climate model.505
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85% 
Exp. var.

97% 
Exp. var.

96% 
Exp. var.

92% 
Exp. var.

Figure 5. Truncation choice based on parametric emulation and error decomposition for 5 climatic fields : surface temperature, precipitations,

TOA SW fluxes, TOA LW fluxes and surface pressure. Same legend as Figure 2, the observations used are listed in Table 1.
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Figure 6. Correlations between full errors (coordinate) and EOF-based reconstructions of these errors (abscissa) using different truncation

examples : retaining 5 (left column), 10 (center column) and 102 EOF modes (right column). Results are presented for the CNRM PPE (black

dots) and for statistical predictions of the PPE using linear regressions trained on 80% of the data (green dots) and tested on the other 20%

(orange dots). For each PPE member or emulation, the error reconstruction is the sum of the parametric component of the errors pj(θi) and

the PPE mean non-parametric component uj,mean (blue line). The variability of uj among the PPE is represented by the standard deviation

σ and the range ±1σ (light blue shading).
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4.2 Candidate selection in a multi-variate context

The method to select optimal but diverse model candidates is similar to what is described in Section 2.6. However, we will

now minimize a multi-variate metric considering nj different climatic fields. In this case, all the individual errors ej(θi) and

pj(θi) need to be aggregated in a single score. The simplest way to obtain such multi-variate skill score is to normalize each

uni-variate parametric errors pj(θi) relatively to the reference model error such as :510

ptot(θ̂i) =
1

nj
Σ

nj

j=1

pj(θ̂i)

pj(θ0)

In this case, the condition for the selection of the optimal sub-set is :

ptot(θ̂i)< 1

The model candidates should reflect the model error diversity among both the different climatic fields and the different EOF

modes of each field. So we will consider a selection based on an the average of the inter-point distances dj(θ̂i, θ̂k), normalized515

by the PPE mean inter-point distance dj .

d(θ̂i, θ̂k) =

nj∑
j=1

dj(θ̂i, θ̂k)

dj

As for the uni-variate application, an iterative process will identify the pair of emulations with the smallest inter-point

distance and randomly remove one of the calibration parameter sets, until a chosen value of nk optimal candidates remain in

the set. We propose here an application considering the 5 chosen climatic variables (nj = 5, Table 1) and retaining 4 optimal520

candidates (nk = 4).

The results in terms of integrated multi-variate skill scores etot(θi) are presented in the Figure 7. Among the 4
::
12 selected

candidates, only one shows
:
2
::::

lead
:::

to
::
an

::::::::::
incomplete

:::::::::
simulation

::::
and

::::
will

:::
not

::
be

:::::::::
presented

:::::
here.

:::::
None

::
of

:::
the

:::
10

:::::::::
remaining

::::::::
candidates

:::::
(light

::::
blue

:::::
dots)

:::::
show a multi-variate skill-score lower than the CNRM reference model

:::::::::::::
CNRM-CM6-1

::::::::
reference

:::::
model

:::::::
(orange

::::::
dashed

::::
line). However, all of them have a lower error than the PPE mean

:::
(red

::::
disk)

:
and 3 of them are in the525

low tail of the PPE distribution
::::::
(bellow

:::
the

::::
red

::::
dash). Moreover, most of the CMIP6 models have undergone a tuning process

and are considered to represent the control climate satisfactorily. We can therefore use the CMIP6 ensemble as an indicator of

the tolerance that can be given to this multi-variate error. Here we considered the outputs of 40 CMIP6 models that have been

interpolated onto the CNRM
:::::::::
CNRM-CM

:
grid before computing the error. It appears that 3 CNRM

:
9
:::::::::::

CNRM-CM candidates

selected here have a lower error than the mean of the 40 CMIP6 models . These 3 CNRM
:::::
(green

::::::
disk).

:::::
These

:
9
:::::::::::

CNRM-CM530

candidates are part of the interval of plus or minus one standard deviation of the CMIP6 error centered around the error of the

CNRM reference model
::::::::::::
CNRM-CM6-1

::::::::
reference

:::::
model

:::::::
(orange

::::
area), indicating that they can be considered "as good as" the

CNRM
:::::::::::::
CNRM-CM6-1 reference model given the tolerance considered here. The fourth

::::
10th candidate is above this interval,

but is still very close to the CMIP6 ensemble mean and better performing than several CMIP6 models.
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Figure 7. Multi-variate error etot for the available CMIP6 models, the CNRM
:::::::::
CNRM-CM PPE members, the selection of 4 diverse CNRM

::
10

:::::::::
CNRM-CM candidates and the 10 members of CNRM reference model with different initial conditions

::::::
GMMIP

:::::
dataset. Each small dots

correspond to a model, the bigger dots correpond
::::::::
correspond

:
to the ensemble means and the dashes are the standard deviations. Following

equation 16, each RMSE ej has been normalized by the CNRM reference model error and average across the 5 variables considered (Table

1), therefore etot has no units and the
:::
The

:
orange dasehd

:::::
dashed line at 1.0 represents the CNRM

:::::::::::
CNRM-CM6-1

:
reference model error.

The green
:::::
orange area indicates the interval of plus or minus one standard deviation of the CMIP6 errors, centered arounr

:::::
around

:
the CNRM

:::::::::::
CNRM-CM6-1

:
reference model error.Both the observations and the CMIP6 models have been interpolated onto the CNRM model grid

before computation.

The Figure 7 is also presenting the multi-variate error among an ensemble of
::
the

:
10 CNRM reference model simulations ,535

starting at different initial conditions. The 4
:::::::::
simulations

::::
from

:::
the

:::::::
GMMIP

:::::::
dataset.

::::
The

::
10

:
perturbed parameter candidates are

much more diverse in terms of integrated model error that the 10 perturbed initial conditions members. When considering a

multi-variate score, it is clear that the effect of internal variability is very small compared to the effect of varying the model

parameters.

540

4.3 Diversity of error patterns among candidates

As described in Figure 7, the 4 CNRM
::
10

:::::::::::
CNRM-CM candidates present a satisfactory multi-variate error compared to the

CMIP6 ensemble, with 3
:
9 of them performing comparably to the CNRM

:::::::::::::
CNRM-CM6-1 reference model, while showing a

significant diversity compared to the CNRM internal variability
::::::::::
CNRM-CM

:::::::
GMMIP

::::::::
ensemble. We are now interested to see
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how this diversity translates in terms of spatial patterns of the uni-variate errors and trade-offs among the variables.545

The Figure 8 presents the full pattern errors of
::::
Here

:::::
again,

:::
for

::::::::
practical

::::::
reason,

::
a
::::::
sub-set

::
of

::
4
:::::::::
candidates

::
is
:::::::::
presented

::
in

:::::
Figure

::
8,

:::
the

:::
rest

:::
of the

::::::::
candidates

::::
can

::
be

::::
seen

::
in

::::::
Figure

:::
E1.

::::::
Within

:::
the 4 CNRM candidates for all of the

:::::::::
candidates

::::::::
presented

::
in

:::::
Figure

:::
8,

:::
we

::::
have

:::::::
selected

:::
the

::::
best

::::::::::
performing

::::::
model

:::::::::
(Candidate

:
5variables considered for the selection. We can see a

large diversity of patterns among the candidates . Even between the Candidates 2 and 3, the closest in terms of integrated550

multi-variate score, some major differences can be observed in between the uni-variate error patterns. Both
:
)
::::
and

:::
the

:::::
worst

:::::::::
performing

::::::
model

:::::::::
(Candidate

:::
1).

:::
All

:::
the

:
candidates have features common to the CNRM reference model (Roehrig et al.,

2020) : an over-estimate of the tropical precipitation and large SW fluxes biases over the mid-latitude eastern border of At-

lantic and Pacific oceans. However, some important differences exist between them. Candidate 2 proposes
:::
they

:::
all

::::
have

:
a

better representation of the precipitation
::::::
surface

::::::::::
temperature

::::
than

:::
the

::::::::
reference

:::::::
model.

:::::
None

::
of

:::
the

::::::::
candidate

:::::
show

::
a

:::::
better555

:::::::::::
representation

::
of

:::::::::::
precipitation,

:::
sea

:::::
level

:::::::
pressure

::
or

:::
LW

::::::::
outgoing

:::::
fluxes

::::
than

:::
the

::::::::
reference

:::
and

:::::::::
Candidates

::
1,

::
2,

:
5
:
and

:
9
:::::::
provide

:
a
:::::
better

::::::::::::
representation

::
of

:::
the

:::
SW

::::::::
outgoing

::::::
fluxes.

::::::::
Moreover,

:::::
some

:::::::::
differences

::::
exist

:::::::
between

:::
the

::::::
spatial

::::::
patterns

::
of

:::
the

::::::::
candidate

::::::
errors.

::::::::
Candidate

:::
10

:
is
:::
the

::::::
model

:::::::::::
configuration

::::
with

::
the

::::::
lowest

:::::
MSE

::
of

::::::::::
precipitation

:::::::::::::::::::::::
(epr(θ̂10) = 2.18 mm/day,

:::
still

::::::
higher

::::
than

:::
the

:::::::::
reference),

:::
but

::
is

:::
also

:::::::
showing

:::::::::
important560

::::::
tropical

::::::
biases

::
in

:
the surface pressure (even better than the CNRM referencemodel). However, additional biases appear in

the representation of tropical outgoing fluxes : positive in the
:::::::
radiative

:::::
fluxes

::::::::
(positive

::
in

:
SW and negative in the LW. The

simulation of tropical clouds in Candidate 2 seems biased, even though it apparently improved tropical precipitation. On
::::
LW),

::
in

:::
the

:::::
same

::::::
regions

:::::
were

:::
the

::::::
model

:::::::::::
over-estimate

:::
the

:::::::
tropical

::::::::::::
precipitation,

:::::::::
suggesting

::
a

:::::
biased

::::::::::::
representation

:::
of

:::::::
tropical

::::::
clouds.

:::::::::
Candidate

:
5
:::

on
:
the other hand, Candidate 3 shows a less biased representation of tropical outgoing fluxes

::::
have

::
a565

:::::
better

::::::::::::
representation

::
of

:::
the

::::::::
radiative

:::::
fluxes

:::
in

:::::
these

::::::
regions, with a SW pattern closer to the observation than the CNRM

reference model
::::
better

::::::::::::
representation

::
of

::::
SW

:::::
fluxes

::::
than

:::
the

::::::::
reference

:::
and

:::
the

::::
best

::::::::::::
representation

::
of

:::
LW

::::::
among

:::
the

::::::::::
candidates,

:::::::::
suggesting

:
a
:::::
better

::::::::::::
representation

:::
of

::::::
tropical

::::::
clouds. However, this is the worst candidate in terms of sea level pressure and

tropical precipitation , with a candidate that accentuate the usual features of a model too wet over the ocean and too dry over

the continents. The large positive LW biases over south
:::::::
candidate

::
5

::
is

::::::::
presenting

:::
the

:::::
same

:::::
biases

::
in
:::::::::::
precipitation

::
as

:::::::::
Candidate570

:::
10,

::::
with

::
an

::::
even

::::::
higher

:::::
MSE.

::::::::
Candidate

::
1

::
in

::
the

:::::
worst

::::::::::
performing

:::::
model

::
of

:::
the

:::::
whole

::::::::
selection,

::::
with

::
a
::::
total

::::
MSE

::
of

::::::::::::::
etot(θ̂1) = 1.56.

::::
This

::
is

:::::
mostly

::::
due

::
to

::::::::
important

:::::
biases

::
in

:::::::::::
precipitation,

:::
sea

::::
level

:::::::
pressure

::::
ans

:::
LW

:::::
fluxes

:::::::::::::
representations.

:::::::::
Candidate

:
1
:::::::
presents

::::::
strong

::::::
positive

:::::::
tropical

:::::
biases

::
in

::::
LW

:::::
fluxes,

::::
over

:::
the

::::::::
northern

:::
part

:::
of

:::::
South America, central Africa and Indonesiacould indicate that the model does575

not simulate enough clouds in these regions, which translates into dry areas on the precipitation map and a warm bias over

central Africa.
:
.
:::::
These

:::::
areas

::::::::::
corresponds

::
to
::::

dry
:::::
biases

::
in
::::

the
::::
map

::
of

:::::::::::
precipitation.

:::::
Over

:::
the

:::::::
tropical

::::::
oceans,

::
it

::
is

:::
one

:::
of

:::
the

::::::::
candidate

:::
that

::
is

:::
not

:::::::
showing

:::
the

:::::::
negative

::::
LW

:::
and

:::::::
positive

:::
SW

:::::::
tropical

::::::
biases,

::::
other

::::::::
examples

::::
can

::
be

:::::
found

::
in

:::::::::
candidates

::
3,

::
8

:::
and

:
9
:::::::
(Figure

::::
E1).

:::::
These

:::::::::
candidates

:::
all

::::
have

:::::::
positive

:::
LW

::::::
biases

::::
over

:::
the

::::::
tropical

::::::::::
continents,

:::
and

::::
less

:::::
biases

::::
over

:::
the

:::::::
tropical
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::::::
oceans.

:::::::::::
Interestingly,

:::
this

::
is

:::
one

::
of

:::
the

::::::::
candidate

::::
with

:::
the

::::
best

::::::::::::
representation

::
of

:::
SW

::::::
fluxes,

::::
with

::::::::
candidate

:
9
:::::::
(Figure

:::
E1),

::::::
which580

:::
has

:
a
:::::
lower

:::::
MSE.

::::
The

:::
SW

:::::
fluxes

::::::
biases

::::
over

:::
the

::::::::::
mid-latitude

::::::
eastern

::::::
border

::
of

:::::::
Atlantic

:::
and

::::::
Pacific

::::::
oceans

:::::
seem

::
to

::
be

:::::::
reduced

::
in

::::
these

::
2

:::::::::
candidates

::::::::
compared

::
to

:::
the

:::::
other

::::::
models

:::
and

:::
the

:::::::::
reference.

Candidate 4

Candidate 1
𝑒!"! 𝜃# = 1.56

Candidate 5
𝑒!"! 𝜃$ = 1.01

Candidate 10
𝑒!"! 𝜃#% = 1.06

Candidate 6 
𝑒!"! 𝜃& = 1.10

Figure 8.
::::::::
Differences

:::::::
between

::
the

:::::::::
simulations

:::
and

:::
the

::::::::::
observations

:::::
(Table

:::
1),

::
for

:::
the

::
4

:::::
model

::::::::
candidates

:::
and

:::
the

:
5
:::::::
variables

:::::::::
considered

:
:
:::::
surface

::::::::::
temperature,

::::::::::
precipitation,

:::
sea

::::
level

:::::::
pressure,

:::::
short

:::
and

::::
long

:::::
waves

::::::::::::::
top-of-atmosphere

:::::
fluxes.

::::
Each

::::::
column

::::::::
represents

::
a

:::::
model

:::::::
candidate

:::
and

::::
each

::::
raw

:::::::::
corresponds

::
to

::
a
:::::::
variable.

:::
The

:::::
green

::::
dots

:::::::
highlights

:::
the

:::::
cases

:::
for

:::::
which

:::
the

:::::
RMSE

::
is
:::::

lower
::::
than

:::
the

::::::
CNRM

:::::::
reference

:::::
model.
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::::::::
Candidate

::
5 is the best performing candidate in terms of multi-variate score and shows errors lower than the CNRM reference

model for all the variables except the sea level pressure
::::::
surface

::::::::::
temperature

:::
and

:::
SW

::::::
fluxes (Figure 8). Candidate 4 shows a SW585

error map very similar to Candidate 3, slightly improved over the continents. But unless Candidate 3, this is associated with a

really good representation of the outgoing LW pattern, that does not include strong positive biases over the tropic
:
5

:::::
shows

:
a
::::
LW

::::
error

::::
map

::::::
similar

::
to

::::::::
candidate

::
6

::
an

::
d

::
10

:::
but

::::
with

::
a

::::::::
reduction

::
of

:::
the

:::::
biases

::::::::::
amplitudes. We can assume that the model is better

representing tropical clouds, which translates
:::
but

:::
this

:::::
does

:::
not

:::::::
translate

:
into the best representation of tropical precipitation

within the selection. In contrast, Candidate 1 is the worst performing model of the selection, with too much outgoing SW590

radiation everywhere (Figure 8). The LW pattern is similar to Candidate 2, as well as the precipitation pattern, that is not

aberrant and not the worst of the selection. Interestingly, this is also the only model that is not showing the usual negative SW

biases over the mid-latitude eastern border of the oceans (except in a small area, very close to the continental borders), but they

are replaced with important positive biases almost everywhere on the.

Differences between the simulations and the observations (Table 1), for the 4 model candidates and the 5 variables considered595

: surface temperature, precipitation, sea level pressure, short and long waves top-of-atmosphere fluxes. Each column represents

a model candidate and each raw corresponds to a variable. The green dots highlights the cases for which the RMSE is lower

than the CNRM reference model.

4.4
::::::::

Examples
::
of

::::::::::::
discrepancy

::::
term

:::::::::::::
decomposition

4.5 Examples of discrepancy term partitioning600

Following the method described in Section 2.4, the full error patterns presented in Figure 8 can be decomposed into a parametric

components (Figure 9) and non-parametric components (Figure 10). The EOF truncation lengths used for this decomposition

are based on the examples given in Figure 5 : 18 modes for tas and pr, 8 modes for psl, 28 for SW and 22 for LW.

Parametric component of the differences between the simulations and the observations (Table 1), for the 4 model candidates605

and the 5 variables considered. Each column represents a model candidate and each raw corresponds to a variable. The

decomposition of model errors in parametric and non-parametric components is based on the methodology described in the

Section 2.4, with the EOF bases truncated following examples given in Figure 5 : 18 modes for tas and pr, 8 modes for psl, 28

modes for SW and 22 modes for LW.

As expected, the candidates parametric component error patterns resemble the full error patterns, with as much diversity in610

between the 4 candidates (Figure 9). The non-parametric components on the other ends
:::::
hands, are more patchy, are smaller in

terms of amplitude and are common to all the candidates (Figure 10). This validates the method : we were able to select a set

of candidates with diverse error patterns and to isolate the error component that is unaffected by parameter variation from the

component that varies during model tuning.

615
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Non-parametric component of the differences between the simulations and the observations (Table 1), for the 4 model

candidates and the 5 variables considered. These components are the differences between the Figure 8 and 9.

A notable feature of these candidate error decompositions is the SW error patterns. The non-parametric component of the

SW error appears very patchy, but does not show clear sign
::::::
contains

::
a
:::::
small

::::
part

:
of the negative biases over the oceanic

mid-latitude eastern border that we described in the full error patterns(Figure 10). This result suggests that such biases620

could be enhanced or reduced by varying the model parameters. However, important positive biases over Indian ocean and

south-west Asia, less notable in the full error patterns, appear in the non-parametric component of the SW error, probably due

to model inconsistencies that does not depend on the parameter choice ,
:::::::
directly

::
at

:::
the

:::::::::
continental

::::::
border

:
(Figure 10). These

non-parametric biases are compensated by negative biases over the same regions
::::
The

::::
main

::::
part

::
of

::::
these

::::::
biases

:::
are

::::::::
presented in

the parametric component (Figure 9), suggesting that the model tuning tends to reduce these initial model inconsistencies. But625

simultaneously, the correction of the Indian ocean and south-west Asia biases are associated with the emergence of negative

biases over the oceanic mid-latitude eastern border in the SW parametric component
:
of

:::
the

:::::
error (Figure 9). Looking back at

the SW full errors (Figure 8), the Indian ocean and south-west Asia
:::
This

:::::
result

::::::::
suggests

:::
that

:::::
such

:::::
biases

:::::
could

:::
be

::::::::
enhanced

::
or

:::::::
reduced

::
by

:::::::
varying

:::
the

::::::
model

::::::::::
parameters,

:::
but

::::
part

:::
of

::::
them

::
is
:

non-parametric positive biases are almost fully corrected

for Candidate 3 and 4 (the best candidates in terms of SW error), but are still visible on Candidate 2, which is also showing630

slightly less important oceanic eastern border biases than Candidate 3 and 4. We can assume that these oceanic eastern border

negative biases are sensitive to the parameter variability, but allow for the compensation of non-parametric biases elsewhere

(Indian ocean and south-west Asia) and appear when it comes to optimizing an integrated metric because the model faces the

impossibility of correcting all of these SW biases simultaneously. Candidate 1 proposes an alternative trade-off in which the

oceanic eastern border biases are almost not visible, but ends up with important positive biases almost everywhere on the map,635

which is probably a less satisfactorily option
::::::
directly

:::::
linked

::
to

:::
the

:::::::
physics

::
of

:::
the

:::::
model.

In conclusion, when considering error patterns and multi-variate illustration, the effective degrees of freedom in model

performance optimization might be smaller than expected. Our method allowed for an empirical exploration of the key trade-

offs that could be made during the tuning, providing interesting information about model non-parametric biases and examples640

of alternative model configurations.
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Candidate 1
𝑒!"! 𝜃# = 1.56

Candidate 5
𝑒!"! 𝜃$ = 1.01

Candidate 10
𝑒!"! 𝜃#% = 1.06

Candidate 6 
𝑒!"! 𝜃& = 1.10

Figure 9.
::::::::
Parametric

:::::::::
component

::
of

::
the

:::::::::
differences

::::::
between

:::
the

:::::::::
simulations

:::
and

:::
the

:::::::::
observations

:::::
(Table

:::
1),

::
for

:::
the

::
4

:::::
model

::::::::
candidates

:::
and

::
the

::
5

::::::
variables

:::::::::
considered.

::::
Each

::::::
column

::::::::
represents

:
a
:::::
model

::::::::
candidate

:::
and

:::
each

:::
raw

::::::::::
corresponds

::
to

:
a
::::::
variable.

::::
The

:::::::::::
decomposition

::
of

:::::
model

::::
errors

::
in

::::::::
parametric

:::
and

::::::::::::
non-parametric

:::::::::
components

:
is
:::::
based

::
on

:::
the

::::::::::
methodology

:::::::
described

::
in

::
the

::::::
Section

:::
2.4,

::::
with

::
the

::::
EOF

:::::
bases

:::::::
truncated

:::::::
following

:::::::
examples

:::::
given

:
in
::::::
Figure

:
5
:
:
::
18

:::::
modes

:::
for

::
tas

::
and

::
pr
:
,
:
8
:::::
modes

:::
for

:::
psl,

::
28

:::::
modes

:::
for

:::
SW

:::
and

::
22

:::::
modes

:::
for

:::
LW.
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Candidate 1
𝑒!"! 𝜃# = 1.56

Candidate 5
𝑒!"! 𝜃$ = 1.01

Candidate 10
𝑒!"! 𝜃#% = 1.06

Candidate 6 
𝑒!"! 𝜃& = 1.10

Figure 10.
::::::::::::
Non-parametric

::::::::
component

::
of

:::
the

::::::::
differences

::::::
between

:::
the

:::::::::
simulations

:::
and

::
the

::::::::::
observations

:::::
(Table

::
1),

:::
for

::
the

::
4
:::::
model

::::::::
candidates

:::
and

::
the

::
5

:::::::
variables

::::::::
considered.

:::::
These

:::::::::
components

:::
are

::
the

:::::::::
differences

::::::
between

:::
the

:::::
Figure

:
8
:::
and

::
9.

5 Conclusions

This study presented a new framework, based on a perturbed physics ensemble
::::
PPE of a CMIP6 General Circulation Model,

allowing for the empirical selection of diverse optimal
::::::::::
near-optimal

:
candidate calibrations. We have demonstrated that this

approach is practically useful for a number of reasons which we illustrate in a case study with an operational GCM (General645

Circulation Model)
:::::::
different

::::::
reasons

:
:
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1. The effective degrees of freedom in model performance response to parameter input are in fact relatively small, allowing

a convenient exploration of key tradeoffs

2. Higher modes of variability should not be included because they cannot be reliably emulated and they do not contribute

significantly to the component of model error controlled by model parameters650

3. As such, parameter configuration by hand is more tractable
:::::::
reference

::::::
model

::::::
version

:::::
shows

:::
the

:::::
lowest

:::::::::
integrated

::::::::::
performance

:::::
metric

:::
and

::::::::
historical

::::::::
common

:::::::
practices

:::
for

::::::::
parameter

::::::
tuning

:::::
could

::
be

:::::
more

:::::
robust than often assumed , and the reference

version may often be near-optimal in terms of integrated performance metrics

4. However there remains potential for comparably performing near-optimal parameter configurations making different

model trade-offs655

Using the ’best input’ assumption(Rougier, 2007)
:
,
:::::::::::::
Rougier (2007) we assume that these optimal candidates sample the dis-

tribution of atmospheric model discrepancy term. These discrepancy term examples can be partitioned
:::
can

::
be

:::::::::::
decomposed in

parametric and non-parametric components using PPE derived EOF basis. Optimal
:::
The

:
candidates are selected from a PPE

of the ARPEGE-Climat model, the atmospheric component of CNRM-CM
:::::::::
atmospheric

::::::
model. The optimization is based

on multi linear predictions from a 106 LH sampling of the perturbed parameters of the
::
of

:::
the

:
parametric components of the660

model errors
:
,
::::
from

::
a
:::::::
100,000

:::
LH

::::::::
sampling

:::
of

:::
the

::::::::
perturbed

::::::::::
parameters. The candidates are considered optimal when their

::::::::::
near-optimal

:::::
when

::::
their

::::::::
emulated

:
parametric components are lower than the reference parametric component and are selected

to exhibit
::::::
pattern errors as diverse as possible within this optimal space

::::::::::
near-optimal

:::::::::
sub-space

:::::
using

:
a
:::::::::
k-medians

:::::::::
clustering

::::::::
algorithm. As such, the sub-set of optimal candidates offer a diversity of model errors sampling the CNRM

:::::::::
CNRM-CM

::::::
model

discrepancy term distribution
:
, while exploring different trade-offs.665

The partitioning
:::::::::::
decomposition

:
of the discrepancy terms depends on the truncation choice : the non-parametric component

increases when retaining more EOF modes, at the expense of the parametric component. However, we argue that there are no

particular benefits in retaining high-order EOF modes, for two reasons. (1)
::::::
Firstly,

:
the performance of the predictions quickly

decreases for the high rank EOF modes, which suggests that these modes are not very predictable from the parameter values.670

and (2)
::::
Then,

:
the fact that the first few modes are sufficient to reconstruct the PPE variance of the model errors for the 5

climatic fields considered here and that high modes explain a very small fraction of the PPE variance. Therefore, retaining

more EOF modes will increase the part of the model error represented by the EOF basis, called the parametric component, but

will not improve the optimization.

675

In the first step, the method was validated for surface temperature error, revealing a diversity of trade-offs among different

EOF modes when considering diverse but optimal
::::::::::
near-optimal

:
candidates. These trade-offs indicate the presence of a para-

metric component in the discrepancy terms, which no candidates could eliminate completely. The non-parametric component,

on the other hand, is independent of parameter choice and very similar from one candidate to another. These model candidate
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errors are considered to represent empirical examples of the model discrepancy term for temperature and can offer insights for680

model developers.

In the second step, the framework was applied in a multi-variate context. In this case, three
::::::::
Trade-offs

:::::
were

::::::::
observed

::
in

::::
error

:::::::
patterns

:::::
across

:::::::
climatic

::::::
fields,

::::
with

:::::::
different

:::::::::
candidates

::::::::
excelling

::
in

::::::
various

:::::::
aspects.

:::
All

::
of

:::
the

:::::::::
candidates

:::::
were

:::::::
selected

::::
with

::
an

::::::::
emulated

:::::::::
parametric

:::::
error

:::::
lower

::::
than

:::
the

::::::::
reference

:::
but

:::::::
showed,

::
in

::::::::
practice,

:::::
higher

:::::::::
parametric

::::::
errors.

::::
This

:::::
result

::::
can685

::
be

::::::::
attributed

:::
to

:::
the

:::::::::
limitations

::
of

::::
the

:::::::::
emulators.

::::::::
However,

:::
as

::::::::
discussed

::
in

:::::::::
Appendix

::
C,

::::
our

:::::::
capacity

:::
to

::::
train

:::::::::
emulators

::
is

::::::::::::
fundamentally

::::::
limited

::
by

:::
the

::::::
sample

::::
size

::::::::
available,

:::::
which

::::::
rather

::::
small

::
in
::::
this

:::::
study

::::
(102

:::::::::::
simulations).

:::
The

:::
use

:::
of

:
a
:::::::::
non-linear

::::::::
emulator,

::::
such

::
as

:
a
::::::::
Gaussian

:::::::
Process,

::::
often

::::
used

::
in

::::::::
automatic

::::::
tuning

::::::::::
applications

::::::::::::::::::::::::::::::::::::::
Williamson et al. (2013); Hourdin et al. (2023)

:
,
::::
could

::::
help

::::::::
improve

::::::::::
predictions,

:::::::
provided

:::
we

:::
can

:::::::
increase

:::
the

::::
size

::
of

:::
the

:::::
PPE.

::
In

::::::::
summary,

::
9 candidates achieved integrated

multi-variate scores within CMIP6 ensemble standards, with one performing slightly
::
but

:::::
none

::
of

:::::
them

:::::::::
performed better than690

the reference model. Trade-offs were observed in error patterns across climatic fields, with different candidates excelling in

various aspects.

::::::
Though

:::
we

:::
do

:::
not

::::::
attempt

::
it

::::
here,

:::
the

::::::::::
discrepancy

:::::::
estimate

:::::
could

:::
be

::::
used

::
in

::::::
parallel

::::
with

::
a
::::::
history

::::::::
matching

::::::::
approach

::::
such

::
as

::::::::::::::::
(Salter et al., 2019),

::
or

::
a

:::::::
Bayesian

:::::::::
calibration

::::::::::::::::::
(Annan et al., 2005)

:
to

:::::
yield

:
a
::::::
formal

::::::::::
probabilistic

::::::
result.

:::::::::
Enhancing

:::
the

::::
PPE695

:::
size

::::::
would

::::
allow

:::
for

:::::
better

::::::::
statistical

::::::::::
predictions,

::::::
maybe

:::::::
through

:::
the

:::
use

::
of

::::::::
Gaussian

::::::::
Processes

::
as

::::::::
statistical

:::::::
models.

:::
We

:::::
could

:::
also

::::::::
consider

:::::::
seasonal

::::::
metrics

::::::
instead

:::
of

::::::
annual

:::::::
average,

::
as

::::::::
suggested

::
in
:::::::::::::::::::

(Howland et al., 2022)
:
.
:::::::
Another

::::::::
important

::::::
caveat

::
of

:::
this

:::::
study

::
is

::::
that

:::
we

:::
did

:::
not

:::
the

::::::::::::
observational

::::::::::
uncertainty.

::::::
Indeed,

:::::::::
additional

:::::::
analyses

:::::::
suggest

::::
that

:::
our

::::::
results

:::
are

::::::::
sensitive

::
to

:::
the

:::::::::::
observational

::::::
dataset

:::::
used.

:::::::::
Therefore,

::::::::
defining

:
a
::::::
formal

::::
way

:::
to

::::::
include

::::::::::::
observational

:::::::::
uncertainty

:::
in

:::
our

:::::::
method

:::
for

::::::::
candidate

:::::::
selection

::::::
would

::
be

::
a

:::::::
valuable

:::::::::::
improvement

::
of

:::
the

:::::::
method.

:::::::
Finally,

:::::::::
performing

:::::::::
sensitivity

:::::::
analysis

:::::
could

::::
help

:::::
better700

:::::::::
understand

:::
the

:::::
effect

::
of

::::
each

::::::::::
parameters

::
on

:::
the

:::::
biases

:::
we

:::::::::
observed,

:::::::::
potentially

::::::
leading

::
to

::
a

:::::::
selection

::
of

::
a
::::::::::
meaningful

::::::
sub-set

::
of

::::::::
parameter

:::
for

:
a
::::
new

:::::
wave

::
of

:::::::::
simulation,

::
in
:::
an

:::::::
iterative

:::::::
process.

In summary, we argue that the model discrepancy term can be represented as a sum of two parts - a component which is

insensitive to model parameter changes, and a component which represents parameter trade-offs, which manifest as an inability705

to simultaneously reduce different components of the model bias (e.g. in joint opimization
::::::::::
optimization

:
of different regions

or fields). We further argue that parameter calibration by hand could be more tractable than often assumed and the reference

versions may often be near-optimal
::
the

::::
best

::::::
model

:::::::::::
configuration

:::::::::
achievable

:
in terms of integrated multi-variate metrics. A

feature we see evidenced here by the high performance of the reference simulation, but also reported in similar past PPE

efforts (Sanderson et al., 2008; Li et al., 2019). Finally, we demonstrate a practical method for utilising these concepts for710

the identification of a set of comparably performing candidate models can inform developers on the diversity of possible

trade-offs. The selection of diverse candidates can help better understanding the limits of model tuning to reduce model error,

identify non-parametric biases that are not visible when looking at the full model error and help choose the model configuration

best suited to the research interest. Moreover, the diversity of model errors can reflect a diversity of future climate responses
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(Hourdin et al., 2023; Peatier et al., 2022)
::::::::::::::::::::::::::::::::::
(Peatier et al., 2022; Hourdin et al., 2023)) and selecting diverse candidates will help715

the quantification of uncertainty in climate change impact studies.
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Appendix A:
:::::::::
Perturbed

:::::::::
parameter

Table A1. Description of the 30 perturbed parameters

Name Minimum Maximum Reference Description Units

AKN 0.06 0.28 0.126 Strength of the turbulent mixing -

ALPHAT 0.5 3.0 1.13 Strength of the turbulent mixing for temperature (Prandtl number) -

ALD 0.5 3.0 1.18 Strength of the turbulent kinetic energy dissipation -

ALMAVE 0 30 10 Lower bound of the mixing length m

AGREF −0.5 −0.01 −0.36 Parameter in the boundary-layer-top entrainment parameterization -

AGRE1 0 10 5.5 Parameter in the boundary-layer-top entrainment parameterization -

AGRE2 0 10 0 Parameter in the boundary-layer-top entrainment parameterization -

RAUTEFR 0.5× 10−3 1× 10−2 1× 10−3 Inverse timescale for liquid autoconversion s−1

RQLCR 0.5× 10−4 1× 10−3 2× 10−4 Critical liquid water content for liquid autoconversion kg kg−1

RAUTEFS 0.5× 10−3 1× 10−2 5.2× 10−3 Inverse timescale for ice autoconversion s−1

RQICRMIN 0.1× 10−5 0.1× 10−7 0.1× 10−6 Critical ice content for ice autoconversion at low negative temperatures kg kg−1

RQICRMAX 0.05× 10−4 1× 10−4 0.21× 10−4 Critical ice content for ice autoconversion at high negative temperatures kg kg−1

TFVL 0.001 0.2 0.02 Falling speed of cloud water droplets m s−1

TFVI 0.001 0.2 0.04 Falling speed of cloud ice crystals m s−1

TFVR 0.1 6.0 3.0 Falling speed of rain m s−1

TFVS 0.1 6.0 0.6 Falling speed of snow m s−1

RKDN 3× 10−5 7× 10−5 5e-05 Minimum drag for the convective updraft vertical velocity Pa−1

RKDX 8× 10−5 6× 10−4 1× 10−4 Maximum drag for the convective updraft vertical velocity Pa−1

TENTR 2× 10−6 1× 10−5 4× 10−6 Minimum turbulent entrainment in the convective updraft Pa−1

TENTRX 3× 10−5 1× 10−4 6× 10−5 Maximum turbulent entrainment in the convective updraft Pa−1

VVN −1 −5 −2 Critical convective updraft Vertical velocity for maximum entrainment and drag Pa s−1

VVX −25 −50 −35 Critical convective updraft Vertical velocity for minimum entrainment and drag Pa s−1

ALFX 0.01 0.1 0.04 Maximum convective updraft area fraction -

FNEBC 0 20 10 Parameter for computing the convective cloud fraction -

RLWINHF_ICE 0.5 1.0 0.9 Ice cloud heterogeneity coefficient in the longwave spectrum -

RLWINHF_LIQ 0.5 1.0 0.9 Liquid cloud heterogeneity coefficient in the longwave spectrum -

RSWINHF_ICE 0.5 1.0 0.71 Ice cloud heterogeneity coefficient in the shortwave spectrum -

RSWINHF_LIQ 0.5 1.0 0.71 Liquid cloud heterogeneity coefficient in the shortwave spectrum -

RELFCAPE 0.2 10.0 2.0 Parameter used in the convection scheme Convective Available Potential Energy

closure

-

Appendix B:
:::::::::
Clustering

:::::::
analysis

::::
and

:::::::::
sensitivity

::
to

:::
the

:::::::
number

:::
of

:::::::
clusters

::::::::
Clustering

::
is
::
a

:::
data

:::::::
mining

::::::::
technique

:::
that

:::::::
divides

:
a
::::::
dataset

::::
into

:::::::
different

:::::::::
categories,

:::::
based

:::
on

::
the

:::::::::
similarity

:::::::
between

::::
data.

::::
The

::::::::
k-medians

:::::::
analysis

::
is

:
a
:::::::::::::
centroid-based

::::::::
algorithm

:::::
which

::::::
divide

:::
the

::::
data

:::
into

::
k

::::::::
categories

::
in

:::::
order

::
to

::::::::
maximize

:::
the

:::::::::
similarity

::
of720

:::
data

::::::
within

::
a

::::
same

::::::
cluster

:::::::::::::::::::::::::::::::::::
(Hastie et al., 2009; Pedregosa et al., 2011)

:
.
:::::
Here,

:::
the

:::::
index

::
to

:::::::
measure

:::::::::
similarity

:::::::
between

::::
data

::
is

::
the

:::::::::
Euclidean

::::::::
distance.

:::
The

:::::::::
k-medians

:::::::
analysis

::
is
::::::::
sensitive

::
to

:::
the

::::::
choice

::
of

::::::
cluster

:::::::
numbers

::
k,
::::::
which

:::::::
depends

:::
on

:::
the

::::::
dataset

::::
being

:::::::::
classified.
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:::
The

::::::
inertia

:::
can

:::::
help

::
to

:::::::
estimate

::::
how

::::
well

::
a
::::::
dataset

::::
was

::::::::
clustered

:::
by

:::::::::
k-medians.

::
It
::
is
:::::::
defined

::
as

:::
the

::::
sum

:::
of

:::
the

:::::::
squared725

:::::::
distances

::::::::
between

::::
each

::::
data

::::
point

::::
and

:::
the

:::::::
centroid

::::::
within

:
a
:::::
same

::::::
cluster.

::::
The

:::::
Elbow

:::::::
method

:::::::
consists

::
in

::::::
finding

:::
the

::::::::
inflexion

::::
point

::
in

:::
the

:::::::
k-means

:::::::::::
performance

::::::
curve,

:::::
where

:::
the

:::::::
decrease

::
in
::::::
inertia

::::::
begins,

::
to

::::
find

:::
the

::::
good

::::::::
trade-off

:
:
:
a
:::::
good

:::::
model

::
is
::::
one

::::
with

:::
low

::::::
inertia

:::
and

::::
low

::::::
number

:::
of

::::::
clusters

::
k
::::::::::::::
(Cui et al., 2020)

:
.
:::::::
Another

::::::
criteria

:::
we

:::
can

::::
look

::
at
::

is
:::
the

:::::
Dunn

:::::
index

:
:
:::

the
:::::

ratio

:::::::
between

:::
the

:::::::
minimal

::::::::::
inter-cluster

::::::::
distances

:::
and

:::
the

::::::::
maximal

::::::::::
intra-cluster

::::::::
distances.

::
A
::::::
higher

:::::
Dunn

:::::
index

:::::::::
represents

:
a
::::::
higher

:::::::
distance

::
in

:::::::
between

:::
the

::::::::
centroids

:::::::
(clusters

:::
are

:::
far

:::::
away

::::
from

::::
each

::::::
other)

:::
and

:
a
::::::

lower
:::::::
distance

::
in

:::::::
between

:::
the

::::
data

:::::
points

::::
and730

::
the

:::::::
centroid

:::
of

:
a
:::::
same

:::::
cluster

::::::::
(clusters

:::
are

::::::::
compact).

:

Uni-variate application (tas)

Multi-variate application

(a) (b)

(c) (d)

Figure B1.
:::::::
Sensitivity

:::
test

::
of
:::
the

::::::::
clustering

::::::
analyses

:::
for

:::
the

::::::::
uni-variate

::::
(first

::::
row)

:::
and

::::::::::
multi-variate

::::::
(second

::::
row)

:::::::::
applications.

::::
The

:::::
inertia

:::::
criteria

::::
((a),

:::
(b))

:::
and

:::
the

::::
Dunn

::::::
indexes

::::
((b),

:::
(d))

:::
are

:::::
shown

::::::::
depending

:::
on

::
the

::::::
number

::
of
::::::

clusters
:::

(x
::::
axes).

::::
The

::::
green

::::::
shaded

::::
areas

::::::
present

::
the

::::::::
acceptable

::::::
number

::
of
:::::::

clusters
:::::::
following

:::
the

:::::
Elbow

::::::
method

::::::
applied

::
to

::
the

::::::
inertia.

:::
The

:::::
green

::::::
dashed

:::
line

:::::
shows

:::
the

::::::
number

::
of

::::::
clusters

::::::
retained

::
for

:::
our

:::::::
analyses

:
:
:::::
k = 12

::
in

::::
both

:::::::::
applications.

:::
For

::::
both

:::::::::::
applications,

:::
the

:::::::::
k-medians

:::::::
analysis

::
is

:::::::
repeated

:::
10

:::::
times

:::
for

:::::::
different

::::::
values

::
of

::
k

:::
and

:::
the

:::::::
average

::
of
::::::

inertia
::::
and

::::
Dunn

:::::::
indexes

:::
are

:::::::::
presented

::
in

::::::
Figure

:::
B1.

::::
The

::::::
inertia

:::::::::
sensitivity

:::
test

::::::::
suggests

:::
that

:::
we

:::::
could

::::::
chose

:
a
:::::
value

::
of

::
k
::
in
::::::::

between

::
10

::::
and

::
20

::
to
:::

be
::
in

:::
the

::::::
Elbow

:::
of

:::
the

:::::
curve,

:::
for

::::
both

:::::::::::
applications.

::::::
Then,

::::
even

::::::
though

::
it
::
is

::::
less

:::::::
obvious

:::
for

:::
the

:::::::::::
multi-variate
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:::::::::
application,

:::
the

::::::
results

:::::::
suggest

:::
that

:::
we

::::::
should

:::
not

::::
take

::
a
:::::
value

::
of

::
k

:::
too

::::
high,

:::
as

:::
the

:::::
Dunn

:::::
index

:::::
tends

::
to

::::::::
decrease.

:::::
Based

:::
on735

::::
these

::::
two

::::::
criteria,

:::
we

::::
have

:::::::
decides

::
to

::::
keep

:::
12

::::::
number

::
of

:::::::
clusters

:::
for

:::
the

:::::::
analysis

:
:
::::::
k = 12.

:

Appendix C:
:::::::::
Evaluation

::
of

::::
the

::::::::
statistical

::::::::::
predictions

:::
The

:::::::::
emulators

::::
used

::
in

::::
this

:::::
study

:::
are

:::::
Multi

::::::
Linear

::::::::::
Regressions

::::::
(MLR)

::::::
taking

:::
the

::::::
model

:::::::::
parameters

:::
as

::::
input

::::
and

:::::::::
predicting

::
the

::::::::
Principal

:::::::::::
Components

::::
(PC)

:::::
used

::
to

::::::::::
reconstruct

:::
the

:::
3D

::::::::
variables

:::
and

:::
the

:::::::::
parametric

::::::
model

:::::
errors

:::::
when

::::::::::
comparing

::::
with

:::::::::::
observations.

:::
The

::::::::
ensemble

:::
size

:::
of

::
the

::::
PPE

::
is

::::
very

::::::
limited

::::
(102

::::::::::
simulations)

:::
and

:::
our

::::::::
capacity

:
to
::::
train

:::::::::
emulators

:
is
::::::::::::
fundamentally740

::::::
limited

::
by

::::
the

::::::
sample

::::
size

:::::::::
available.

::::::::
However,

::
in

:::
10

:::::::
random

:::::::::
selections

::
of

::::::::::::
out-of-sample

::::
test

::::
sets,

:::
we

::::::
obtain

:::
an

:::::::
average

:::::::::
correlation

::
of

:::
0.7

:::::::
between

:::
the

:::::::::
predictions

::::
and

:::
the

:::
true

::::::
values

::
of

::::
total

:::::
error

::::::
(Figure

:::
C1

::::
(c)),

::::
with

:
a
::::::
RMSE

:::::::
between

::::::::::
predictions

:::
and

:::
true

::::::
values

::::::::::
representing

:::
8%

::
of

:::
the

::::
total

:::::::::
parametric

:::::
error

::::::
(Figure

:::
C1

:::
(f)),

::::::
which

:
is
::::::::
sufficient

::
to

:::::::
validate

:::
the

:::
use

::
of

:::
this

::::::
model

::
for

:::
our

::::::
study.

(a) (b)

(f)(e)(d)

(c)

Figure C1.
:::::::::
Correlations

:::
and

::::::
RMSE

::
(in

::
%

::::::::
compared

::
to

:::
the

:::
true

::::::
values)

:::::::
between

:::::::
emulated

:::
and

:::
true

:::::::::
parametric

:::::::::
components

::
of

:::
the

:::::
errors

:::::
within

:
a
:::
test

::
set

::::::::::
representing

::::
10%

:
of
:::

the
::::::
dataset.

:::
The

::::::::
evaluation

::
is

::::::
repeated

:::
10

::::
times

::::
with

::::::
random

:::::::
sampling

::
of

::::::
training

:::
and

:::
test

:::
sets

:::
and

:::
the

::::
mean

:::
and

:::::::
standard

:::::::
deviation

:::::
among

:::::
these

::
10

:::::::::
evaluations

::
are

:::::::::
represented

:::
by

::
the

::::
bars

:::
and

:::
the

::::::
dashed

::::
lines,

:::::::::
respectively.

:::::::::::
Performances

:::
are

:::::
shown

::
for

:::
(a),

:::
(d)

:
a
::::::
Random

::::::
Forest,

:::
(b),

::
(e)

:
a
:::::::

LASSO
:::::::
regression

:::
and

:::
(c),

:::
(f)

::
the

:::::
Multi

:::::
Linear

::::::::
Regression

::::
used

::
in

:::
this

::::::
analysis

::::
and.

:::
The

::::
EOF

:::::::
truncation

::::::
lengths

::::
used

::
to

::::::
compute

:::
the

::::::::
parametric

::::
error

:::
are

:::::::
presented

::
in

:::::
Figure

:
2
:::
and

::
5.

::::::::
However,

:::::
results

:::::::
suggest

:::
that

:::::
there

::
is

::::
room

:::
for

::::::::::::
improvement,

::::::::
especially

::
in
:::
the

:::::::::
prediction

::
of

:::
the

::::
LW

:::::
errors,

::::
and

:::
that

:::::::
another745

:::::
model

:::::
could

:::::::
improve

:::
the

::::::::::
predictions,

::
as

:
it
::
is

:::
the

::::
case

::
of

:::
the

:::::::
Random

:::::
Forest

::::::
model.

::::
The

::::
error

::::
bars

::::::::
associated

::::
with

:::
the

:::::::::
prediction
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::
of

:::
the

:::
total

:::::
error

:::::::
suggests

:::
that

:::
the

:::::
MLR

::::::::::
performance

::
is

:::::::
sensitive

::
to
:::
the

:::
test

:::
set

:::::::
selected

:::
and

::::
that

::
the

::::::
model

:::
will

:::::::
perform

::::::::
unevenly

:::::
across

:::
the

::::::::
parameter

::::::
space.

::::::
Thanks

::
to

:::::::
variable

:::::::
selection

::::
and

:::::::::::
regularization,

:::
the

:::::
Lasso

::::::
model

:::::
seems

:
a
:::
bit

:::
less

::::::::
sensitive

::
to

:::
the

:::
test

::
set

::::::::
selection

:::
for

:::
the

::::::::
prediction

::
of

::::
total

:::::
error,

:::
but

:::
the

:::::::::
prediction

::
of

:::
LW

:::::
error

::
is

:::
still

:
a
:::::::::
limitation.

::
It

:::::
seems

::::
that

:::::
using

:
a
:::::::::
non-linear

:::::::
emulator

:::::
could

:::::::
improve

::::::
certain

:::::::
aspects

::
of

:::
the

::::::::::
predictions,

::::::
though

:::::::::
enhancing

:::
the

::::
size

::
of

:::
the

:::::::::
ensemble

:::::
would

:::
be

:
a
:::::::::
necessary750

:::::::::
prerequisite

::
to
:::
try

::
to

:::::::
improve

::::
our

::::::::
statistical

:::::::::
predictions.

:
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Appendix D:
::::
First

::::::::::
application

:
:
:::::::::
additional

::::::::::
candidates

Full error
E(θ$!)

Parametric error
P"#$% θ$!

Non–param. error
U = E θ$! − P"#$%(θ$!)

Emulations 
P"#$%(θ$!)

Figure D1.
:::::::::::
Decomposition

:
of
::::::

surface
:::::::::
temperature

::::
error

::
in

::
the

::::
first

:::::
sub-set

::
of

:::::::::
candidates.

::::
Same

::::::
caption

::
as

:::::
Figure

:
4
:::
for

:::::::
additional

:::::::::
candidates.
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Appendix E:
::::::
Second

::::::::::
application

:
:
:::::::::
additional

::::::::::
candidates
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::

Full
:::::
model

:::::
errors

::
in

:::
the

:::::
second

::::::
sub-set

:
of
:::::::::

candidates.
::::
Same

::::::
caption

::
as

:::::
Figure

::
8

::
for

::::::::
additional

:::::::
canidates.
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Figure E2.
:::::::

Parametric
:::::
model

:::::
errors

::
in

::
the

::::::
second

:::::
sub-set

::
of
:::::::::
candidates.

::::
Same

::::::
caption

::
as

:::::
Figure

:
9
:::

for
::::::::
additional

:::::::
canidates.
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Figure E3.
:::::::::::

Non-parametric
:::::
model

:::::
errors

:
in
:::
the

:::::
second

::::::
sub-set

::
of

::::::::
candidates.

:::::
Same

::::::
caption

::
as

:::::
Figure

::
10

:::
for

:::::::
additional

::::::::
canidates.
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