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RC: Reviewer Comment, AR: Author Response

1 Response to Referee 1

RC: This research paper presents a study on using denoising diffusion
models for data-driven representation learning of dynamical systems.
The research demonstrates the utility of such networks with the Lorenz
63 system, showing that the trained network can produce samples almost
indistinguishable from those on the attractor, indicating the network has
learned an internal representation of the system. This representation
is then used for surrogate modeling and generating ensembles out of
a deterministic run. Overall I found this paper very well written and
the contribution of introducing diffusion model into dynamical systems
in geoscience novel and of clear contribution. Here lists my comments
before I can recommend acceptance of this manuscript:

AR: We thank Dr. Cheng for the constructive feedback on our manuscript, especially
with the remarks related to small dimensionality of the here-tested Lorenz 1963
system. In the following, we will discuss the raised comments and indicate what we
have changed in the revised manuscript.

RC: If I understand correctly, the objective of this study is to explore
the possibility of using diffusion model for high-dimension systems in
geoscience. The numerical experiments are carried out using a three
dimensional Lorenz model. To enhance the discussion, It would be
beneficial if the authors could explain how generalizable their approach
is to a high-dimensional spatial temporal system (e.g. by adding CNN
or transformer layers for feature extractions (encoding) and decoding
etc).
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AR: The goal of this study is foremost to give a proof-of-concept on representation learn-
ing for dynamical systems with denoising diffusion models. We tackle the question,
what would happen if we would have much more data and much more parameters
in denoising diffusion models than in the system. Consequently, we selected the
Lorenz 1963 as system of interest as the system has only three dimensions and
we can easily generate millions of data points and train networks with millions of
parameters. Our results indicate that in such settings, denoising diffusion models
can generalize to the system and be used for downstream tasks. While there is still
the question if the generalization also holds for high-dimensional and large-scale
systems, the results gives us hope that it can be the case. To take this comment
into account, we have strengthen the proof-of-concept character of the study by
adding the keyword proof-of-concept to the abstract and signifying that the study
is done with the Lorenz 1963 system to the first paragraph of the introduction. We
have added a paragraph in Sect. 5 (Summary and Discussion), elucidating more on
how the proposed methods might perform for higher-dimensional systems.

RC: As a consequence of the small dimension, the ”latent space” in your
diffusion model (256) is much larger the one of the physics space (3).
Therefore, you have little risk in losing any information when using the
denoising network for surrogate modelling. The authors may consider
adding a baseline of transfer learning from an untrained (randomly
initialized denoising NN) in Fig 7. The authors have shown the results
of untrained NN in Tab 3 but only with a linear fine-tuning. What
happens if you fine-tune with a non-linear NN of an untrained denoising
NN?

AR: The dimensionality of the feature space (avoiding latent space to circumvent issues
with the latent/noised space from diffusion models) spanned by the denoising
diffusion model is indeed much larger than the dimensionality of the system,
a consequence of the study’s character as proof-of-concept. Independently, the
question that we answer is if this features space can be used for surrogate modelling.
The trained diffusion model has the ”right” features for surrogate modelling,
whereas a randomly initialized model fails to have them. The correct features for
surrogate modelling are hence learned and not by chance. Consequently, features
that are needed to generate states on the system’s attractor seem to be useful
for surrogate modelling. We deliberately neglected the baseline of the untrained
diffusion model in Fig. 7: the surrogate model with the untrained feature extractor
rapidly converges to a nRMSE of 1 as also visible in Table 3. Including this baseline
would not provide additional information to the table and could distract from the
main message of the Figure that the trained features are more stable than random
Fourier features. Consequently, in the revised version of manuscript, we have still
omitted this baseline from the Figure. For completeness, we nevertheless include
the baseline in the modified Fig. 1 of this answer. Additionally, we have added
to Tab. 3 of the revised manuscript an experiment where we use a shallow neural
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network after an untrained feature extractor.

RC: In figure 7, it seems that the dense neural network with two layers trained
from scratch outperforms your transfer learning from the diffusion model.
Is that the case? In fact, results in tab 3 also show that the model trained
from scratch (dense *3 and resnet) performs similarly to the fine-tuning
from your diffusion model? The authors may want to add some comments
regarding this

AR: Figure 7 shows the performance over long lead times and used here to show the
stability of the surrogate models. Since the models were trained for lead times of
0.1MTU, we cannot expect that they perform as well for very long lead times. To
improve the performance therein, one could apply autoregressive training steps as
often done in surrogate models for the atmosphere, e.g. in GraphCast. Furthermore,
the difference between the transfer learned surrogate model and the surrogate models
learned from scratch are in fact smaller than the difference caused by different
random seeds and might be a result from chance. Consequently, we stay at our
claim that transfer learning can perform similarly or better than NNs trained from
scratch. To nevertheless account for the comment, we have revised the result section
for the surrogate models and added ”Since the models are trained for lead times
of 0.1 MTU without autoregressive steps, their performance for longer lead times
is impacted by randomness as shown by the spread between difference seeds in Fig.
7. Compared to this spread, the transfer learned models and the NNs trained from
scratch perform similarly”.

RC: Page 3, ‘generative training is rarely used for pre-training and repres-
entation learning of high-dimensional systems’. There are some works
tried to use diffusion model for contrastive models, e.g,

– Yang, X. and Wang, X., 2023. Diffusion model as representation
learner. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 18938-18949).

– Mittal, S., Abstreiter, K., Bauer, S., Schölkopf, B. and Mehrjou, A.,
2023, July. Diffusion based representation learning. In International
Conference on Machine Learning (pp. 24963-24982). PMLR.

The authors may want to include some references and discuss the dif-
ference/similarity compared to the method used in this paper. This
paper is probably the first one to propose diffusion-based representation
learning in dynamical systems(?)

AR: The intention of this specific sentence was to show the gap. We understand that this
sentence might be misleading and have change it to ”generative training is rarely
less often used for pre-training and representation learning of high-dimensional
systems than other methods like contrastive learning (e.g., Chen et al., 2020)”.
A smaller literature review is given in the paragraph afterwards. Caused by the
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timeliness of the topic, we have however missed these recent publications and we
have added them to the literature review, thanks for pointing to them. Hence, we
have added to the introduction: ”Concurrently to this study, Mittal et al. (2023);
Yang and Wang (2023) propose to directly use DDMs for representation learning
from images. However, to our knowledge, we are the first introducing these models
for representation learning from dynamical systems”.

RC: Page 9, ‘show that this representation is entangled’ why it is important
for the learned features to be entangled?

AR: Entangled features are more difficult to interpret and also more difficult to use in
downstream tasks, as indicated by the need of features from several pseudo times
steps and a small NN for surrogate modelling. Consequently, this can be seen as
one drawback of the learned representation.

RC: Page 11, check the sentence ‘As we will see later, the bigger the Because
of the state-dependency, the resulting distribution is implicitly represen-
ted by the ensemble and could extend beyond a Gaussian assumption’

AR: Thank you for spotting this incomplete sentence and left over from the internal
revision process. We have removed the part ”As we will see later, the bigger the”
since it is covered in the next paragraph.

RC: Page 13, it seems that you have used a lot of training samples (1.6*E7)
for your diffusion model for the Lorenz system of dimension 3. I was
wondering if a standard surrogate model will require that much. That is
saying maybe a standard surrogate model can outperform the diffusion-
based one with less training data. I am curious to see the authors’
thought.

AR: We used this many samples to be unconstrained from the training dataset size. It
is very likely that much less training samples are needed for surrogate modelling
and representation learning, yet, we do not know when forecast performance drops.
While many samples might be needed to learn a representation, we agree with you
that standard surrogate models need much less samples as they are more specialized.
The premise of representation learning is however that the learned features can
be then transferred to other problems like surrogate modelling, where we would
need much less training samples than for representation learning, and possibly
even less than for standard surrogate models. Since the forecast error of surrogate
models in the Lorenz 1963 system is very low, this hypothesis should be tested
with higher-dimensional and more difficult systems.

RC: fig 5 (a) and 1(b). if I understand correctly, the x-axis is the pseudo
time instead of the real time in the dynamical system. if it is the case,
it would be benificial to add an x-axis label to avoid any confusion.
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AR: Yes the axis is in pseudo-time and we have added this labeling in Fig. 1 and Fig. 5
to avoid confusion, thanks for spotting this.

2 Response to Referee 2

RC: This is a very interesting and novel study on the use of denoising diffusion
model for representation learning. The manuscript is well written and
describes very nicely the context, how these approaches (rooted in image
applications) can be adapted to geosciences, and illustrates two distinct
relevant applications, surrogate modelling and ensemble generations,
that are both extremely important in high dimensional settings.
I think the manuscript can be accepted almost as it is, but I have a few
minor comments I would encourage the Authors to look at.

AR: We thank the second referee for the constructive feedback on our manuscript,
especially with the remarks related to the theory of dynamical systems. In the
following, we discuss the raised comments and indicate what we have changed in
the revised manuscript.

RC: While there are little spaces for doubts, I would strongly suggest
the Authors to specify that their approach applies to ergodic chaotic
dynamics for which an invariant distribution exists that describe the
state distribution on the system’s attractor. An obvious counterexample
would be a stable system having an equilibrium point (or a limit cycle)
as attractor.

AR: Thank you for the suggestion to sharpen the focus of the manuscript around ergodic
chaotic dynamics. To sharpen the introduction and take this suggestion into account,
we have added to the second paragraph in the introduction ”This generation process
is expected to be successful if there is an invariant state distribution on the system’s
attractor, which exists for ergodic chaotic dynamics”

RC: When mentioning the Schrodinger Bridge (page 2), you may want to
refer to Reich S. 2019 (doi:10.1017/S0962492919000011) as an exemplar
study of the same analogy but in the area of data assimilation.

AR: Thank you for pointing us to the seminal work of S. Reich on the connection between
the Schrödinger Bridge and data assimilation. Originally, we left this work out as
our study is focused on machine learning. However, since we apply diffusion models
on a data assimilation problem, we have added this work to the third paragraph in
the introduction by ”Notably, the Schrödinger Bridge has been already exploited for
discrete- and continuous-time data assimilation (Reich, 2019)”.
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RC: Line 27. ”..dynamical systemS ...”

AR: Thank you for spotting this inconsistency, we have used the plural of dynamical
systems as proposed.

RC: In the caption of Fig1b, use (left/right) to point the reader.

AR: Thank you for the suggestion, we have added (left) and (right) to the caption of
Fig. 1.

RC: Line 44. I think you should always order references chronologically.

AR: Thank you for spotting the chronological inconsistency here, we have swapped the
citations.

RC: Line 53–59. While I understand and I like the Authors narrative and
choice of references. Nevertheless, and particularly for the readers of
NPG, it would be appropriate to also mention the large bulk of work on
the generation of ensemble members based on dynamical systems’s theory
and data assimilation. A good recent reference is 10.1029/2021MS002828

AR: Thank you for the suggestion of adding references about the generation of ensemble
members based on the properties of the dynamical system. To take these works into
account, we have added to the paragraph ”Another method to generate an ensemble
for data assimilation would be to make use of the knowledge about the system’s
error propagation, in form of singular vectors (Molteni et al., 1996) or bred vectors
(Toth and Kalnay, 1993), as similarly used to initialize ensemble weather forecasts
(Buizza et al., 2005) or sub-seasonal forecasts (Demaeyer et al., 2022)”.

RC: I am a bit of an inconvenience with the use of the term ”latent”. On the
one side I agree with a comment from the other Reviewer. On the other
I do also see in line 100 that you state z=x which makes one deduce
the latent and actual state have the same dimension. Finally, while it is
true that latent variables are defined in relation to their indirect (often
hidden) relation with the observables quantities, with no reference to
their number (or space dimension), in many practical applications the
latent space is assumed/defined/used as being of smaller dimension.

AR: We agree with both referees about the confusion with the latent space of diffusion
models, especially if they are used for representation learning where the features of
the trained NN span another space. The latent space of diffusion models usually
describes the space of noised data, while the other is rather a feature space. The
noised data space is called latent space as diffusion models can be seen as hierarchical
variational autoencoder (Luo, 2022), where one can also learn a mapping from data
space into this latent space with a possibly reduced dimensionality (e.g., Rombach
et al., 2022). Diffusion models that act in data space can be seen as special version
of these variational diffusion models, where the mapping between spaces is the
identity function.
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RC: Line 115. I would add ”.... prior distribution FOR THE DENOISING
PROCESS.”

AR: Thank you for the suggestion and we have added ”for the diffusion process” to
make the writing clearer.

RC: Equations (8). Wouldn’t be better to (re)state clearly that we do not
have access to x in practice?

AR: Thank you for the suggestion and we have added ”Note, during generation, the
state x is unknown, and we have to approximate Eq. (8b) to generate data, as we
discuss in the following” to clarify the use of Eq. 8 for generation.

RC: Line 145. Is that because they do not depend on x?

AR: As the neural network just approximates the denoised state by Tweedie’s formula,
we have defined in Eq. (10), that the covariances between the analytical denoising
step and the approximated step match, other definition are possible though (e.g., Ho
et al., 2020, Nichol and Dhariwal, 2021). With the definition of the diffusion process,
we can then specify the Kullback-Leibler divergence with different quantities, e.g., if
we would directly predict the state xθ(zτ , τ) or the noise ϵθ(zτ , τ). The simplification
of the loss can be traced in Ho et al. (2020) or in Luo (2022).

RC: Line 153. I think ”Equation” must be written at the beginning of the
sentence.

AR: Thank you for spotting this, yes, we agree that Equation should be written at the
beginning of a sentence and we have corrected the sentence accordingly.

RC: Line 176. Instead of ”normally” I would suggest ”most of the times”.

AR: Thank you for the nice suggestion, ”most of the times” sounds indeed better and
we have changed the words accordingly.

3 General changes in the manuscript

While incorporating the additional experiment into Tab. 3, we decided to revise the
ordering and structure of Section 4.2.1, exceeding the comment from Referee 1. The
changes in this subsection have no impact on the results and their conclusions.
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Figure 1: The normalized root-mean-squared error (nRMSE) as function of integration
time steps for random Fourier features (RFF) with 1536 features and a linear
regression, a dense neural network with two layers trained from scratch, and
transfer learned models (Transfer) with features from six tipseudo-time steps
with a linear regression and from two pseudo-time steps with a neural network.
Shown is the median across ten different random seeds. Additionally, for the
RFF (1536, linear) and the Transfer (2× τ , NN) experiments, the 5th and 95th
percentile is depicted as shading.
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