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RC: Reviewer Comment, AR: Author Response

RC: This research paper presents a study on using denoising diffusion
models for data-driven representation learning of dynamical systems.
The research demonstrates the utility of such networks with the Lorenz
63 system, showing that the trained network can produce samples almost
indistinguishable from those on the attractor, indicating the network has
learned an internal representation of the system. This representation
is then used for surrogate modeling and generating ensembles out of
a deterministic run. Overall I found this paper very well written and
the contribution of introducing diffusion model into dynamical systems
in geoscience novel and of clear contribution. Here lists my comments
before I can recommend acceptance of this manuscript:

AR: We thank Dr. Cheng for the constructive feedback on our manuscript, especially
with the remarks related to small dimensionality of the here-tested Lorenz 1963
system. In the following, we will discuss the raised comments and indicate what we
will change in the revised manuscript.

RC: If I understand correctly, the objective of this study is to explore
the possibility of using diffusion model for high-dimension systems in
geoscience. The numerical experiments are carried out using a three
dimensional Lorenz model. To enhance the discussion, It would be
beneficial if the authors could explain how generalizable their approach
is to a high-dimensional spatial temporal system (e.g. by adding CNN
or transformer layers for feature extractions (encoding) and decoding
etc).

AR: The goal of this study is foremost to give a proof-of-concept on representation learn-
ing for dynamical systems with denoising diffusion models. We tackle the question,
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what would happen if we would have much more data and much more parameters
in denoising diffusion models than in the system. Consequently, we selected the
Lorenz 1963 as system of interest as the system has only three dimensions and
we can easily generate millions of data points and train networks with millions of
parameters. Our results indicate that in such settings, denoising diffusion models
can generalize to the system and be used for downstream tasks. While there is still
the question if the generalization also holds for high-dimensional and large-scale
systems, the results gives us hope that it can be the case. To take this comment into
account, we will strengthen in the abstract and introduction the proof-of-concept
character of the study. In Sect. 5 (Summary and Discussion), we will additionally
elucidate more on an outlook how these might hold for higher-dimensional systems,
e.g., hypothesizing what happens if we would add transformer layers.

RC: As a consequence of the small dimension, the ”latent space” in your
diffusion model (256) is much larger the one of the physics space (3).
Therefore, you have little risk in losing any information when using the
denoising network for surrogate modelling. The authors may consider
adding a baseline of transfer learning from an untrained (randomly
initialized denoising NN) in Fig 7. The authors have shown the results
of untrained NN in Tab 3 but only with a linear fine-tuning. What
happens if you fine-tune with a non-linear NN of an untrained denoising
NN?

AR: The dimensionality of the feature space (avoiding latent space to circumvent issues
with the latent/noised space from diffusion models) spanned by the denoising
diffusion model is indeed much larger than the dimensionality of the system,
a consequence of the study’s character as proof-of-concept. Independently, the
question that we answer is if this features space can be used for surrogate modelling.
The trained diffusion model has the ”right” features for surrogate modelling, whereas
a randomly initialized model fails to have them. The correct features for surrogate
modelling are hence learned and not by chance. Consequently, features that are
needed to generate states on the system’s attractor seem to be useful for surrogate
modelling. We deliberately neglected the baseline of the untrained diffusion model in
Fig. 7: the surrogate model with the untrained feature extractor rapidly converges
to a nRMSE of 1 as also visible in Table 3. Including this baseline would not provide
additional information to the table and could distract from the main message of
the Figure that the trained features are more stable than random Fourier features.
Consequently, in the revised version of manuscript, we will still omit this baseline
from the Figure. For completeness, we nevertheless include the baseline in the
modified Fig. 1 of this answer. As the linear probing already shows, the features
extracted by the untrained diffusion model are unaligned to the dynamical system,
hence, we neglected the experiment with the small NN. In the revised version of
the manuscript, we will include the scores for this experiment.

RC: In figure 7, it seems that the dense neural network with two layers trained

2



from scratch outperforms your transfer learning from the diffusion model.
Is that the case? In fact, results in tab 3 also show that the model trained
from scratch (dense *3 and resnet) performs similarly to the fine-tuning
from your diffusion model? The authors may want to add some comments
regarding this

AR: Figure 7 shows the performance over long lead times and used here to show the
stability of the surrogate models. Since the models were trained for lead times of
0.1MTU, we cannot expect that they perform as well for very long lead times. To
improve the performance therein, one could apply autoregressive training steps as
often done in surrogate models for the atmosphere, e.g. in GraphCast. Furthermore,
the difference between the transfer learned surrogate model and the surrogate models
learned from scratch are in fact smaller than the difference caused by different
random seeds and might be a result from chance. Consequently, we stay at our
claim that transfer learning can perform better than NNs trained from scratch. To
nevertheless take the comment into account, we will add something like ”Since the
models are trained for lead times of 0.1MTU without autoregressive steps, their
performance for longer lead times is heavily impacted by randomness as shown by
the spread between seeds in Fig. 7. The difference between the NN models is much
smaller than the effect of randomness, which makes it difficult to discriminate if
the differences are by chance” to the explanation of Fig. 7 in the manuscript.

RC: Page 3, ‘generative training is rarely used for pre-training and repres-
entation learning of high-dimensional systems’. There are some works
tried to use diffusion model for contrastive models, e.g,

– Yang, X. and Wang, X., 2023. Diffusion model as representation
learner. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (pp. 18938-18949).

– Mittal, S., Abstreiter, K., Bauer, S., Schölkopf, B. and Mehrjou, A.,
2023, July. Diffusion based representation learning. In International
Conference on Machine Learning (pp. 24963-24982). PMLR.

The authors may want to include some references and discuss the dif-
ference/similarity compared to the method used in this paper. This
paper is probably the first one to propose diffusion-based representation
learning in dynamical systems(?)

AR: The intention of this specific sentence was to show the gap. We understand that this
sentence might be missleading and will change it to ”Since training deep generative
models remains difficult yet, generative training is less often used for pre-training
and representation learning of high-dimensional systems than other methods like
contrastive learning (e.g., SimCLR from Chen et al., 2020).” A smaller literature
review is given in the paragraph afterwards. Caused by the timeliness of the topic,
we have however missed these recent publications and we will add them to the
literature review, thanks for pointing to them. Hence, we will add: ”Concurrently
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to our study, Mittal el al., 2023 and Yang and Wang, 2023, propose to directly use
denoising difufsion models for representation learning from images. However, to
our knowledge, we are the first introducing these models for representation learning
from dynamical systems.”

RC: Page 9, ‘show that this representation is entangled’ why it is important
for the learned features to be entangled?

AR: Entangled features are more difficult to interpret and also more difficult to use in
downstream tasks, as indicated by the need of features from several pseudo times
steps and a small NN for surrogate modelling. Consequently, this can be seen as
one drawback of the learned representation.

RC: Page 11, check the sentence ‘As we will see later, the bigger the Because
of the state-dependency, the resulting distribution is implicitly represen-
ted by the ensemble and could extend beyond a Gaussian assumption’

AR: Thank you for spotting this incomplete sentence and left over from the internal
revision process. We will remove the part ”As we will see later, the bigger the ”
since it is covered in the next paragraph.

RC: Page 13, it seems that you have used a lot of training samples (1.6*E7)
for your diffusion model for the Lorenz system of dimension 3. I was
wondering if a standard surrogate model will require that much. That is
saying maybe a standard surrogate model can outperform the diffusion-
based one with less training data. I am curious to see the authors’
thought.

AR: We used this many samples to be unconstrained from the training dataset size. It
is very likely that much less training samples are needed for surrogate modelling
and representation learning, yet, we do not know when forecast performance drops.
While many samples might be needed to learn a representation, we agree with you
that standard surrogate models need much less samples as they are more specialized.
The premise of representation learning is however that the learned features can
be then transferred to other problems like surrogate modelling, where we would
need much less training samples than for representation learning, and possibly
even less than for standard surrogate models. Since the forecast error of surrogate
models in the Lorenz 1963 system is very low, this hypothesis should be tested
with higher-dimensional and more difficult systems.

RC: fig 5 (a) and 1(b). if I understand correctly, the x-axis is the pseudo
time instead of the real time in the dynamical system. if it is the case,
it would be benificial to add an x-axis label to avoid any confusion.

AR: Yes the axis is in pseudo-time and we will add this labeling to avoid confusion,
thanks for spotting this.
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Figure 1: The normalized root-mean-squared error (nRMSE) as function of integration
time steps for random Fourier features (RFF) with 1536 features and a linear
regression, a dense neural network with two layers trained from scratch, and
transfer learned models (Transfer) with features from six tipseudo-time steps
with a linear regression and from two pseudo-time steps with a neural network.
Shown is the median across ten different random seeds. Additionally, for the
RFF (1536, linear) and the Transfer (2× τ , NN) experiments, the 5th and 95th
percentile is depicted as shading.
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