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Abstract. Inverse model intercomparison projects (MIPs) provide a chance to assess the uncertainties in inver-
sion estimates arising from various sources. However, accurately quantifying ensemble CO2 flux errors remains
challenging and often relies on the ensemble spread. This study proposes a method for quantifying the errors in
regional net surface–atmosphere CO2 flux estimates from models taken from the Orbiting Carbon Observatory-2
(OCO-2) v10 MIP by using independent airborne CO2 measurements for the period 2015–2017. We first cal-
culate the root mean square error (RMSE) between the ensemble mean of posterior CO2 concentrations and
airborne observations and then isolate the CO2 concentration errors caused solely by the ensemble mean of
posterior net fluxes by subtracting the observation, representation, and transport errors from seven regions. Our
analysis reveals that the flux errors projected onto CO2 space account for 55 %–85 % of the regional average
RMSE over the 3 years, ranging from 0.88 to 1.91 ppm. In five regions, the error estimates based on observa-
tions exceed those computed from the ensemble spread of posterior fluxes by a factor of 1.33–1.93, implying
an underestimation of the actual flux errors, while their magnitudes are comparable in two regions. The adjoint
sensitivity analysis identifies that the underestimation of flux errors is prominent where the magnitudes of fossil
fuel emissions exceed those of terrestrial-biosphere fluxes by a factor of 3–31 over the 3 years. This suggests
the presence of systematic biases in the inversion estimates associated with errors in the prescribed fossil fuel
emissions common to all models. Our study emphasizes the value of airborne measurements for quantifying
regional errors in ensemble net CO2 flux estimates.
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1 Introduction

Atmospheric CO2 inverse modeling is a widely employed
approach for estimating net surface–atmosphere CO2 fluxes
by assimilating observed atmospheric CO2 concentrations.
Most inverse-modeling approaches are based on Bayesian
theory, wherein posterior flux is estimated from prior knowl-
edge and atmospheric CO2 observations, weighted by their
uncertainties. This approach estimates a posterior probabil-
ity distribution that can be represented as a maximum a pos-
teriori solution (referred to as x̂) and an error covariance ma-
trix, following the notation of Rodgers (2000). Theoretically,
since atmospheric CO2 observations generally have a lower
uncertainty than prior flux estimates, incorporating more ob-
servations causes the posterior fluxes to approach the true
values (Liu et al., 2014).

However, concerns have been raised that inverse-modeling
results are sensitive to the selection of transport models, prior
flux datasets, and data assimilation techniques that are not
accounted for in the Bayesian framework (Basu et al., 2018;
Philip et al., 2019; Schuh et al., 2019). In order to obtain
more robust flux estimates and assess their uncertainties,
resulting from various sources (e.g., atmospheric transport
and assimilation techniques), inverse model intercomparison
projects (MIPs) have been conducted. These projects include
the TransCom project (Gurney et al., 2004; Houweling et
al., 2015), which was first initiated in the 1990s, as well
as subsequent projects, such as the Global Carbon Project
(GCP; Ciais et al., 2022; Friedlingstein et al., 2023) and the
Orbiting Carbon Observatory-2 (OCO-2) MIP (Crowell et
al., 2019; Peiro et al., 2022; Byrne et al., 2023). These MIPs
involve different inverse-modeling groups using state-of-the-
art transport modeling and assimilation techniques that as-
similate in situ and satellite CO2 data. Through these MIPs,
researchers have analyzed differences in the maximum a
posteriori solution across models. The OCO-2 MIP has re-
vealed general agreement with regard to global flux estimates
among ensemble models but significant discrepancies in re-
gional fluxes, regardless of whether in situ and/or satellite
data are assimilated (Crowell et al., 2019; Peiro et al., 2022).

Realistic error quantification of posterior fluxes from at-
mospheric flux inversions is essential for understanding how
well regional fluxes are constrained by the current CO2 ob-
serving network and for identifying regions with high un-
certainty, allowing us to prioritize efforts to mitigate the er-
ror. The Bayesian formulation provides a method for calcu-
lating uncertainties in posterior fluxes based on uncertain-
ties in prior fluxes and assimilated data. These uncertain-
ties can be calculated analytically or approximated using a
Monte Carlo method for variational methods (Chevallier et
al., 2007; Feng et al., 2009; Liu et al., 2014); however, this

is often computationally prohibitive for many inversion sys-
tems. This Bayesian posterior uncertainty accounts for ran-
dom errors in the prior fluxes and observations but does not
explicitly incorporate systematic errors, thus providing a po-
tential underestimation of the total posterior error.

Errors in the maximum a posteriori fluxes are also com-
monly characterized through comparisons between indepen-
dent atmospheric CO2 measurements and posterior atmo-
spheric CO2 (Houweling et al., 2015; Crowell et al., 2019;
Byrne et al., 2023). This approach can provide insights into
the biases of current inverse modeling at global, latitudinal,
or site-specific scales. However, as atmospheric CO2 concen-
trations are influenced by both local and remote sources, it
is difficult to identify regions where the observation–model
comparison results are representative. Furthermore, these
comparisons include not only posterior flux errors but also er-
rors arising from transport, representation, and measurement.
Because of these limitations, regional posterior flux errors in
the ensemble mean have generally been defined as the en-
semble spread among ensemble posterior fluxes. However,
this method does not have an observational and theoretical
basis and may not reflect actual errors (Byrne et al., 2023).

This study aims to develop a framework for quantify-
ing errors in regional net surface–atmosphere CO2 fluxes
(terrestrial-biosphere fluxes + fossil fuel emissions) esti-
mated from an ensemble of inverse models by using air-
borne CO2 measurements, transport modeling, and an ad-
joint sensitivity analysis. Our target ensemble results are
derived from 10 ensemble members of the OCO-2 v10
MIP for the period 2015–2017, which provide both poste-
rior CO2 fluxes and posterior CO2 concentrations sampled
at observation sites and times. The ensemble assimilates
OCO-2 column-averaged dry-air mole fraction (XCO2) re-
trievals (v10; O’Dell et al., 2018) and in situ CO2 measure-
ments (Tohjima et al., 2005; Nara et al., 2017; Schuldt et
al., 2021a, b). This study uses more than 833 000 airborne
CO2 measurements collected at altitudes of 1–5 km above
ground level (a.g.l.) from 20 different measurement projects
(e.g., NOAA Carbon Cycle Group ObsPack Team, 2018;
Baier et al., 2021; Miller et al., 2021; Schuldt et al., 2021a, b).
These data have a broader spatial coverage and are less in-
fluenced by local sources compared to surface CO2 data,
thereby capturing signals from regional surface CO2 fluxes.
We quantify the errors in ensemble mean estimates of poste-
rior atmospheric CO2 by comparing them with the airborne
CO2 data. We then estimate the contributions of various er-
ror components (e.g., representation, observation, transport,
and flux errors) to the observation–model difference in atmo-
spheric CO2 and isolate the contribution of flux errors. Next,
we identify the areas to which these airborne CO2 measure-
ments are most sensitive and quantify the annual net flux er-
rors in these areas.



J. Yun et al.: Quantification of regional net CO2 flux errors in the OCO-2 v10 MIP ensemble 3

2 Data and methodology

The aim of this study is to quantify the true errors in the en-
semble net surface–atmosphere CO2 fluxes generated by the
OCO-2 v10 MIP using airborne observations. Here, the term
“error” refers to the magnitude of the differences between
the true and estimated flux values, without considering the
sign. To achieve this, we employ three steps of analysis, as
described in Fig. 1. First, we define two quantities: (1) the
root mean square error (RMSE) between the ensemble mean
of posterior CO2 concentrations and observed CO2 concen-
trations and (2) ERRTOT (Sect. 2.3). RMSE2 represents the
true error in the OCO-2 MIP ensemble mean of CO2 con-
centrations, including the representation error (σ 2

r ), observa-
tion error (σ 2

o ), true flux error projected onto CO2 concen-
trations (σ 2

ft
), transport error (σ 2

t ), and error covariance be-
tween the preceding two terms (cov(σft ,σt)). ERR2

TOT is the
sum of the estimated error components, defined as the sum of
ERR2

REP, ERR2
OBS, and ERR2

MIP. ERR2
REP and ERR2

OBS de-
note the representation error (σ 2

r ) and observation error (σ 2
o ),

respectively. ERR2
MIP represents the sum of the estimated

flux error projected onto CO2 space (σ 2
fe

) and the transport
error (σ 2

t ), along with the corresponding error covariance
(cov(σfe ,σt)), computed from an ensemble spread of poste-
rior CO2 concentrations. Here, we separate representation
errors from transport errors for computational purposes. The
ratio between ERRTOT and the RMSE is then used to eval-
uate whether the estimated flux errors, computed from the
ensemble spread of posterior fluxes, overestimate or under-
estimate the true errors in the ensemble mean fluxes. Next,
we calculate the estimated flux error projected onto atmo-
spheric CO2 (h(errfe )) through atmospheric transport simu-
lations (Sect. 2.4). With h(errfe ), ERRTOT, and the RMSE,
we derive the true error in the ensemble mean of posterior
fluxes projected onto CO2 space (h(errft )). Then, we identify
the areas to which these airborne observations are most sen-
sitive using an adjoint sensitivity analysis and calculate the
estimated posterior flux error (errfe ) over these regions. As-
suming a linear observation operator, the study finally com-
putes the true error in the ensemble mean posterior fluxes
over the identified sensitive area (errft ) by applying the ratio
between h(errft ) and h(errfe ) to errfe .

2.1 The OCO-2 v10 MIP datasets

The OCO-2 v10 MIP provides multiple results from in-
verse models that assimilate different combinations of at-
mospheric CO2 measurements for the period 2015–2020.
Our study focuses on the results from the “LNLGIS” ex-
periment, which assimilates the most observations except
with respect to the OCO-2 ocean glint XCO2 retrievals,
which cause significant biases in inversion results (Byrne
et al., 2023). The LNLGIS experiment incorporates OCO-
2 v10 land nadir (LN) and land glint (LG) XCO2 re-
trievals, along with global in situ (IS) data (including sur-

face, ship-based, and airborne measurements) taken from
obspack_co2_1_OCO2MIP_v3.2.1_2021-09-14. A total of
10 different inverse-modeling groups provided monthly pos-
terior surface CO2 flux estimates interpolated to a 1°× 1°
horizontal resolution and co-sampled posterior atmospheric
CO2 data corresponding to the times and locations of all
types of observations. All of the inversion groups used the
same fossil fuel emission estimates, based on the Open-
source Data Inventory for Anthropogenic CO2 (ODIAC)
dataset (Basu and Nassar, 2021), but they independently
chose their transport models, assimilation techniques, and
prior flux estimates. Further details are provided in Table
S1 in the Supplement, and more detailed explanations for
each inverse-modeling approach can be found in Byrne et
al. (2023). Although the OCO-2 MIP provides data for the
period 2015–2020, we use data from the first 3 years due
to the limited number of airborne measurements available
during the later years. To minimize the influence of local
sources and maximize the influence of regional fluxes, we ex-
clude surface measurements and only consider airborne mea-
surements taken between 1 and 5 km a.g.l. In addition, only
airborne measurement data that were not assimilated in the
LNLGIS experiment are used for analysis.

2.2 Airborne CO2 measurement data

Figure 2a shows the spatial distribution of the total number
of airborne CO2 measurements used in this study within each
1°× 1° grid cell. The dataset includes data from two air-
borne measurement campaigns conducted over the ocean –
the Atmospheric Tomography Mission (ATom; Thompson et
al., 2022) and the O2/N2 Ratio and CO2 Airborne Southern
Ocean (ORCAS) study (Stephens et al., 2018) – as well as 18
campaigns conducted over land. Specific airborne campaigns
and their references are detailed in Table 1. The majority of
the datasets used in the study are from North America, ac-
counting for 37 % of the total observations for the period
2015–2017, followed by East Asia (35 %) and Alaska (7 %).
The duration and extent of the airborne observations vary
across different regions and time periods. Figure 2b illus-
trates the number of 1°× 1° grid points in each of the seven
regions where more than 10 observations are available per
month. For Alaska, observations were concentrated during
the Arctic–Boreal Vulnerability Experiment (ABoVE) cam-
paign in 2017 (Sweeney et al., 2022). North America had ob-
servations for most of the analysis period, including observa-
tions from the Atmospheric Carbon and Transport – Amer-
ica (ACT-America) campaign, covering the eastern United
States (Davis et al., 2021). The long-term Comprehensive
Observation Network for TRace gases by AIrLiner (CON-
TRAIL; Machida et al., 2008) project provides sparse obser-
vations for Europe and continuous observations for East and
Southeast Asia for the period 2015 to 2017, as well as for
Australia for 2015–2016. In South America, measurements
were conducted at six different sites in 2017, with the major-
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Figure 1. Flow chart summarizing the process of evaluating and quantifying errors in the ensemble mean of regional posterior fluxes.
RMSE2 represents the mean square error between the ensemble mean of posterior CO2 concentrations and observed CO2 concentrations.
ERR2

REP and ERR2
OBS denote estimates of representation errors and observation errors, respectively. ERR2

MIP represents the ensemble
spread of posterior CO2 concentrations. ERR2

TOT is defined as the sum of ERR2
REP, ERR2

OBS, and ERR2
MIP, while errfe and errft represent

estimates of flux errors, defined as the ensemble spread of posterior fluxes, and their true values, respectively. Moreover, h(errfe ) and h(errft )
denote estimates of flux errors projected onto CO2 concentrations and their true values, respectively, while σ 2

o , σ 2
r , σ 2

ft
(σ 2

fe
), σ 2

t , and
cov(σft ,σt)(cov(σfe ,σt)) TS1 refer to the types of errors represented by the error statistics – namely, observation errors, representation errors,
true (estimated) flux errors projected onto CO2 concentrations, transport errors, and error covariances between the preceding two terms,
respectively.

ity of these observations coming from five flask measurement
sites provided by the National Institute for Space Research
(INPE), which likely exhibit a low bias in measured flask
sample CO2 mole fractions (∼ 1 ppm or greater) when am-
bient water vapor mole fractions are above ∼ 1.5 %. These
biases have been noted in some aircraft flask CO2 measure-
ments in the previous literature (Baier et al., 2020; Gatti et
al., 2023), and impacted data have been removed from all
other aircraft flask datasets. Despite the potential limitations
of these South American observations, our analysis, aimed
at introducing a method for quantifying flux errors, incorpo-
rates these data to offer guidance for future studies leveraging

bias-corrected observations from this region. As discussed in
more detail below, readers should keep in mind that our re-
sults from South America may exhibit lower reliability com-
pared to those from other regions.

2.3 Evaluation of the ensemble posterior CO2 fluxes

We first employ the two matrixes defined in Eqs. (1) and (2)
to evaluate the ensemble posterior net flux errors proposed
by Liu et al. (2021). One matrix is the RMSE between the
ensemble mean of posterior atmospheric CO2 from OCO-2
MIP models and the atmospheric CO2 from airborne mea-



J. Yun et al.: Quantification of regional net CO2 flux errors in the OCO-2 v10 MIP ensemble 5

Ta
bl

e
1.

D
at

a
de

sc
ri

pt
io

ns
fo

rt
he

ai
rb

or
ne

m
ea

su
re

m
en

tc
am

pa
ig

ns
.

Si
te

co
de

Si
te

na
m

e
M

ea
su

re
m

en
t

M
ea

su
re

m
en

t
D

at
a

pr
ov

id
er

O
bs

Pa
ck

(o
ri

gi
na

l)
R

ef
er

en
ce

ca
m

pa
ig

n
na

m
e

ty
pe

da
ta

se
ti

de
nt

ifi
er

A
C

G
A

la
sk

a
C

oa
st

G
ua

rd
,

N
at

io
na

lO
ce

an
ic

an
d

In
si

tu
N

O
A

A
G

M
L

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
20

12
04

a
K

ar
io

n
et

al
.(

20
13

)
A

la
sk

a,
U

SA
A

tm
os

ph
er

ic
A

dm
in

is
tr

at
io

n
(N

O
A

A
)G

lo
ba

lM
on

ito
ri

ng
L

ab
or

at
or

y
(G

M
L

)A
ir

cr
af

tP
ro

gr
am

A
C

T
A

tm
os

ph
er

ic
C

ar
bo

n
A

C
T-

A
m

er
ic

a
In

si
tu

N
at

io
na

lA
er

on
au

tic
s

an
d

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
20

12
04

a
B

ai
er

et
al

.(
20

20
),

an
d

Tr
an

sp
or

t–
an

d
fla

sk
Sp

ac
e

A
dm

in
is

tr
at

io
n

ht
tp

s:
//d

oi
.o

rg
/1

0.
33

34
/O

R
N

L
D

A
A

C
/1

59
3

D
iG

an
gi

et
al

.(
20

21
),

A
m

er
ic

a
(A

C
T-

A
m

er
ic

a)
,

L
an

gl
ey

R
es

ea
rc

h
C

en
te

r
W

ei
et

al
.(

20
21

)
U

SA
(N

A
SA

L
aR

C
),

N
O

A
A

G
M

L

A
ir

C
or

eN
O

A
A

N
O

A
A

A
ir

C
or

e
N

O
A

A
A

ir
C

or
e

B
al

lo
on

N
O

A
A

G
M

L
N

o
O

bs
Pa

ck
D

O
Ib

K
ar

io
n

et
al

.(
20

10
)

pr
og

ra
m

pr
og

ra
m

ai
rs

am
pl

er
ht

tp
s:

//d
oi

.o
rg

/1
0.

15
13

8/
6A

V
0-

M
Y

81

A
L

F
A

lta
Fl

or
es

ta
,

Fl
as

k
N

at
io

na
lI

ns
tit

ut
e

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
18

10
30

c
G

at
ti

et
al

.(
20

23
)

B
ra

zi
l

fo
rS

pa
ce

R
es

ea
rc

h
ht

tp
s:

//d
oi

.o
rg

/1
0.

15
94

/P
A

N
G

A
E

A
.9

26
83

4
R

es
ea

rc
h

(I
N

PE
)

C
A

R
B

ri
gg

sd
al

e,
C

ol
or

ad
o,

U
SA

Fl
as

k
N

O
A

A
G

M
L

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
21

05
17

d
Sw

ee
ne

y
et

al
.(

20
15

)

C
O

N
C

om
pr

eh
en

si
ve

O
bs

er
va

tio
n

In
si

tu
N

at
io

na
lI

ns
tit

ut
e

fo
r

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
20

12
04

a
M

ac
hi

da
et

al
.(

20
08

)
N

et
w

or
k

fo
rT

R
ac

e
ga

se
s

E
nv

ir
on

m
en

ta
lS

tu
di

es
ht

tp
s:

//d
oi

.o
rg

/1
0.

17
59

5/
20

18
02

08
.0

01
by

A
Ir

L
in

er
(C

O
N

T
R

A
IL

)
(N

IE
S)

,M
et

eo
ro

lo
gi

ca
l

R
es

ea
rc

h
In

st
itu

te
(M

R
I)

C
RV

C
ar

bo
n

in
A

rc
tic

A
rc

tic
–B

or
ea

l
In

si
tu

N
O

A
A

G
M

L
ht

tp
s:

//d
oi

.o
rg

/1
0.

25
92

5/
20

20
12

04
a

Sw
ee

ne
y

et
al

.(
20

22
)

R
es

er
vo

ir
s

V
ul

ne
ra

bi
lit

y
ht

tp
s:

//d
oi

.o
rg

/1
0.

33
34

/O
R

N
L

D
A

A
C

/1
58

2
V

ul
ne

ra
bi

lit
y

E
xp

er
im

en
t

E
xp

er
im

en
t

(A
B

oV
E

)
(C

A
RV

E
),

A
la

sk
a,

U
SA

G
SF

C
A

ct
iv

e
Se

ns
in

g
of

C
O

2
A

SC
E

N
D

S
In

si
tu

N
A

SA
G

od
da

rd
Sp

ac
e

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
20

12
04

a
K

aw
a

et
al

.(
20

18
)

E
m

is
si

on
s

ov
er

N
ig

ht
s,

Fl
ig

ht
C

en
te

r
D

ay
s,

an
d

Se
as

on
s

(N
A

SA
G

SF
C

)
(A

SC
E

N
D

S)
,U

SA

IA
G

O
S

In
-s

er
vi

ce
A

ir
cr

af
t

C
iv

il
A

ir
cr

af
tf

or
In

si
tu

K
ar

ls
ru

he
In

st
itu

te
of

ht
tp

s:
//d

oi
.o

rg
/1

0.
25

92
5/

20
20

12
04

a
Fi

lg
es

et
al

.(
20

15
)

fo
ra

G
lo

ba
l

th
e

R
eg

ul
ar

Te
ch

no
lo

gy
(I

M
K

-A
SF

),
O

bs
er

vi
ng

Sy
st

em
In

ve
st

ig
at

io
n

of
th

e
In

st
itu

te
fo

rA
tm

os
ph

er
ic

A
tm

os
ph

er
e

B
as

ed
on

an
d

E
nv

ir
on

m
en

ta
lS

ci
en

ce
s

an
In

st
ru

m
en

tC
on

ta
in

er
(I

A
U

),
M

ax
Pl

an
ck

In
st

itu
te

(I
A

G
O

S-
C

A
R

IB
IC

)
fo

rB
io

ge
oc

he
m

is
tr

y
(M

PI
-B

G
C

)

K
O

R
U

S
T

he
K

or
ea

–U
ni

te
d

In
si

tu
N

A
SA

L
aR

C
ht

tp
s:

//d
oi

.o
rg

/1
0.

25
92

5/
20

20
12

04
a

V
ay

et
al

.(
20

09
)

St
at

es
A

ir
Q

ua
lit

y
ht

tp
s:

//d
oi

.o
rg

/1
0.

50
67

/A
SD

C
/S

U
B

O
R

B
IT

A
L

/
(K

O
R

U
S-

A
Q

)
K

O
R

U
SA

Q
_T

ra
ce

G
as

_A
ir

cr
af

tI
nS

itu
_D

C
8_

D
at

a_
1

fie
ld

st
ud

y

https://doi.org/10.25925/20201204
https://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.15138/6AV0-MY81
https://doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.25925/20210517
https://doi.org/10.25925/20201204
https://doi.org/10.17595/20180208.001
https://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1582
https://doi.org/10.25925/20201204
https://doi.org/10.25925/20201204
https://doi.org/10.25925/20201204
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1


6 J. Yun et al.: Quantification of regional net CO2 flux errors in the OCO-2 v10 MIP ensemble

Table
1.C

ontinued.

Site
code

Site
nam

e
M

easurem
ent

M
easurem

ent
D

ata
provider

O
bsPack

(original)
R

eference
cam

paign
nam

e
type

datasetidentifier

M
A

N
M

anaus,B
razil

N
O

A
A

G
M

L
In

situ
N

O
A

A
G

M
L

https://doi.org/10.25925/20210519 e

A
ircraft

Program

O
R

C
O

2
/N

2
R

atio
and

C
O

2
In

situ
N

ationalC
enter

https://doi.org/10.25925/20201204 a
Stephens

etal.(2018)
A

irborne
Southern

O
cean

forA
tm

ospheric
https://doi.org/10.5065/D

6SB
445X

(O
R

C
A

S)study
R

esearch
(N

C
A

R
)

PA
N

Pantanal,M
ato

G
rosso

Flask
IN

PE
https://doi.org/10.25925/20181030 c

do
Sul,B

razil
https://doi.org/10.25925/20181030 c

PFA
PokerFlat,A

laska,U
SA

N
O

A
A

G
M

L
Flask

N
O

A
A

G
M

L
https://doi.org/10.25925/20210517 d

Sw
eeney

etal.(2015)
A

ircraft
Program

R
B

A
-B

R
io

B
ranco,B

razil
Flask

IN
PE

https://doi.org/10.25925/20181030 c
G

attietal.(2023)
https://doi.org/10.1594/PA

N
G

A
E

A
.926834

SA
N

Santarém
,B

razil
Flask

IN
PE

https://doi.org/10.25925/20181030 c
G

attietal.(2023)
https://doi.org/10.1594/PA

N
G

A
E

A
.926834

SG
P

Southern
G

reat
N

O
A

A
G

M
L

Flask
T

he
U

S
D

epartm
entofE

nergy
(D

O
E

)
https://doi.org/10.25925/20210517 d

B
iraud

etal.(2013),
Plains,O

klahom
a,

A
ircraft

L
aw

rence
B

erkeley
N

ational
Sw

eeney
etal.(2015)

U
SA

Program
L

aboratory
(L

B
N

L
),

N
O

A
A

G
M

L

SO
N

G
N

E
X

2015
T

he
2015

Shale
O

iland
T

he
2015

Shale
O

iland
In

situ
N

O
A

A
C

hem
ical

https://doi.org/10.25925/20201204 a

N
aturalG

as
N

exus
air

N
aturalG

as
N

exus
Sciences

L
aboratory

cam
paign,U

SA
aircam

paign
(C

SL
)

T
E

F
Tefé,B

razil
Flask

IN
PE

https://doi.org/10.25925/20181030 c
G

attietal.(2023)
https://doi.org/10.1594/PA

N
G

A
E

A
.926834

TO
M

A
tm

ospheric
Tom

ography
A

tm
ospheric

Tom
ography

In
situ

N
O

A
A

G
M

L
,

https://doi.org/10.25925/20201204 a
T

hom
pson

etal.(2022)
M

ission
(A

Tom
)

M
ission

(A
Tom

)
H

arvard
U

niversity
https://doi.org/10.3334/O

R
N

L
D

A
A

C
/1581

a
obspack_co2_1_G

L
O

B
A

LV
IE

W
plus_v6.1_2021-03-01

(Schuldtetal.,2021b).
b

obspack_co2_1_A
irC

ore_v4.0_2020-12-28.
c

obspack_co2_1_IN
PE

_R
E

ST
R

IC
T

E
D

_v2.0_2018-11-13
(N

O
A

A
C

arbon
C

ycle
G

roup
O

bsPack
Team

,2018).
d

obspack_co2_1_N
R

T
_v6.1.1_2021-05-17

(Schuldtetal.,2021a).
e

obspack_m
ulti-species_1_m

anaus_profiles_v1.0_2021-05-20
(M

illeretal.,2021).

https://doi.org/10.25925/20210519
https://doi.org/10.25925/20201204
https://doi.org/10.5065/D6SB445X
https://doi.org/10.25925/20181030
https://doi.org/10.25925/20181030
https://doi.org/10.25925/20210517
https://doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.25925/20210517
https://doi.org/10.25925/20201204
https://doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1581


J. Yun et al.: Quantification of regional net CO2 flux errors in the OCO-2 v10 MIP ensemble 7

Figure 2. (a) The total number of airborne measurement data points used in this study at each 1°× 1° grid point and (b) the number of
1°× 1° grid points with more than 10 data points available within each region and for each month during the period 2015–2017.

surements, which can be written as

RMSE2
=

1
N

∑N

i=1

[
hi
(
x̂
)
− yo,i

][
hi
(
x̂
)
− yo,i

]T
,

where hi
(
x̂
)
=

1
M

∑M

j=1
hi,j

(
x̂j
)
. (1)

Here, hi(x̂) is the ensemble mean of posterior atmospheric
CO2 sampled at the time and location of the ith airborne ob-
servation, yo,i , within each 1°× 1° grid cell for each month.
N is the monthly total number of sampled data points in each
grid cell. M is the number of ensemble members (i.e., 10).
A single monthly RMSE value is computed using N mea-
surement data points for each grid cell. The total number
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of RMSE values computed per month within each region
corresponds to the number of grid cells shown in Fig. 2b.
The RMSE indicates the magnitude of the actual CO2 er-
rors in the ensemble estimates, which is also a metric broadly
used to evaluate the accuracy of posterior fluxes (Crowell et
al., 2019; Peiro et al., 2022; Byrne et al., 2023). As illustrated
in Fig. 1 and described in Appendix A (Eq. A3), RMSE2

includes not only the projection of the true flux error onto
CO2 concentrations (σ 2

ft
) but also the transport error (σ 2

t ),
the error covariance between these two terms (cov(σft ,σt)),
the representation error (σ 2

r ), and the airborne observation
error (σ 2

o ). Both transport errors and representation errors
stem from transport models. Transport errors include errors
in model structures and meteorological fields, while repre-
sentation errors arise from a mismatch in resolution between
model simulations and observations.

In practice, true flux errors are often approximated by the
spread of ensemble fluxes, so the sum of projection of true
flux errors to CO2 concentrations and transport errors is ap-
proximated by the ensemble spread of simulated CO2 con-
centrations in the OCO-2 MIP, as shown in Appendix A. To
evaluate whether this approximation represents the true er-
rors in the ensemble mean fluxes and mean simulated CO2
concentrations, we define another quantity, ERR2

TOT (Fig. 1).
Unlike the RMSE, the variance terms of the flux error (σ 2

fe
)

and transport error (σ 2
t ), as well as the covariance term be-

tween these errors (cov(σfe ,σt)), are replaced by the spread
of the ensemble (i.e., variance) of posterior atmospheric CO2
concentrations (ERR2

MIP), defined as

ERR2
MIP =

1
N

∑N

i=1

1
M

∑M

j=1

[
hi,j

(
x̂j
)
−hi

(
x̂
)]

[
hi,j

(
x̂j
)
−hi

(
x̂
)]T

. (2)

Unlike in Liu et al. (2021), which used only one transport
model, ERR2

MIP accounts for transport errors because pos-
terior atmospheric CO2 was generated by multiple types of
transport models in the OCO-2 MIP, driven by different me-
teorology fields. Thus, the ERR2

MIP term accounts for trans-
port errors but not representation errors, due to the coarse
spatial resolution of these transport models, with the highest
spatial resolution being 2°× 2.5°.

To obtain representation errors and observation errors not
captured by ERR2

MIP, we additionally calculate ERR2
REP and

ERR2
obs, respectively. ERR2

REP denotes the representation er-
ror (σ 2

r ) in RMSE2, as shown in Fig. 1. It is defined as the
spatial variability in atmospheric CO2 within a 2°× 2.5° grid
cell and is written as

ERR2
REP =

1
N

∑N

i=1
VARCO2, i . (3)

Using high-resolution (0.5°× 0.625°) 3-hourly GEOS-5
simulation results for 2018 from the NASA Goddard Space
Flight Center (Weir et al., 2021), we calculate the variance of

atmospheric CO2 concentrations within each 2°× 2.5° grid
cell at each 3 h interval. Then, we sample the CO2 variance
(VARCO2, i) value corresponding to the grid cell containing
the ith observation and at the time closest to that of the ob-
servation. Subsequently, the monthly mean value of the N
co-sampled variances is derived (ERR2

REP). We assume that
the variances do not vary significantly across years, given the
lower monthly variability in ERRREP compared to that in the
RMSE and ERRMIP (as will be shown in Sect. 3.2). The rea-
son for calculating the CO2 variance within a 2°× 2.5° grid
is that this grid represents the finest resolution among the
OCO-2 MIP models. We evaluate whether the representation
errors derived from simulated atmospheric CO2 fields repre-
sent the actual spatial variability in CO2 concentrations by
comparing the simulated CO2 variance with the spatial vari-
ance of airborne measurement data from the ACT-America
project (see the Supplement and Fig. S1). The evaluation re-
sults support our approach.

ERR2
OBS represents the observation error (σ 2

o ) in RMSE2,
as shown in Fig. 1. Unfortunately, this information is missing
from many of the airborne measurement datasets included in
the given OCO-2 MIP ObsPack format, even though uncer-
tainties may be included in the original datasets. The World
Meteorological Organization (WMO) community has estab-
lished network compatibility objectives for the precision of
atmospheric CO2 measurements: 0.1 ppm for the Northern
Hemisphere and 0.05 ppm for the Southern Hemisphere. As-
suming an ideal situation without any systematic bias, we
set the observation error (ERROBS) for all airborne observa-
tions to 0.1 ppm. However, in reality, systematic errors could
be present in airborne observations, stemming from instru-
ment or setup biases, calibration offsets, and other factors.
In particular, CO2 measurements from INPE taken in South
America might exhibit higher measurement errors compared
to those taken in other regions due to unresolved water vapor
contamination issues in the flask measurements, which may
result in both a low bias (∼ 1–3 ppm at 3 % absolute humid-
ity) and spurious variability (Baier et al., 2020). The poten-
tial effects of these systematic errors on our findings will be
addressed in Sect. 4. This study employs only ERR2

OBS for
calculating ERR2

TOT and does not compare it with other error
quantities from Sect. 3.

Therefore, ERRTOT, the approximation for the RMSE, is
defined as

ERR2
TOT = ERR2

OBS+ERR2
REP+ERR2

MIP. (4)

By applying 1000 bootstrap resamplings to the monthly grid-
based error statistics (e.g., the RMSE, ERRMIP, ERRREP, and
ERRTOT) within each region, we obtain regional mean values
for these error statistics, along with their corresponding 95 %
confidence intervals.

To evaluate whether the spread of ensemble CO2 fluxes
from the OCO-2 MIP represents the true flux errors in the
ensemble mean, we calculate the ratio between monthly
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ERRTOT and RMSE values as follows:

Ratio2
=

ERR2
TOT

RMSE2 . (5)

Given that ERR2
REP reasonably depicts actual representation

errors, Ratio2 can indicate whether posterior flux and trans-
port errors computed from the ensemble spread overestimate
or underestimate the true flux and transport errors. In this
study, we assume that the estimated transport errors from
the ensemble spread among the transport models used in the
OCO-2 MIP represent the true transport errors and that the
difference between RMSE2 and ERR2

TOT mainly arises from
the difference in the flux error variances (σ 2

ft
and σ 2

fe
). Thus, a

ratio close to 1 indicates that the estimated posterior flux er-
rors derived from the ensemble model spread are close to the
true posterior flux errors in the ensemble mean fluxes. A ratio
greater than 1 means that the posterior flux errors are overes-
timated and vice versa. However, our assumption regarding
the transport errors may be a strong one given that they are
derived from 10 ensemble members covering four different
transport models, which might not fully capture the actual
transport errors. We discuss how this assumption affects our
key results in Sect. 4.

2.4 Quantification of uncertainties in the ensemble
mean of the posterior CO2 fluxes

In addition to qualitative evaluations of posterior flux errors
using the ratios between ERRTOT and the RMSE, we propose
a method for quantitatively assessing the ensemble posterior
flux errors (i.e., the variance of flux errors) in both CO2 space
and flux space. To do this, we first need to calculate the vari-
ance of atmospheric CO2 errors due solely to the ensemble
spread of posterior fluxes from the OCO-2 MIP (h

(
errfe

)2).
As shown in Appendix A, this term can be written as

h
(
errfe

)2
=

1
N

∑N

i=1

1
M

∑M

k=1

1
M

∑M

j=1[
hk
(
x̂k,i

)
−hk

(
x̂j,i

)][
hk
(
x̂k,i

)
−hk

(
x̂j,i

)]T
. (6)

All transport models engaged in the OCO-2 MIP would ide-
ally be used to derive h

(
errfe

)2. However, in this study, we
approximate this error term using the GEOS-Chem model,
as depicted in the following:

h
(
errfe

)2
≈ hGC

(
errfe

)2
=

1
N

∑N

i=1

1
M

∑M

j=1[
hGC

(
x̂i
)
−hGC

(
x̂j,i

)][
hGC

(
x̂i
)
−hGC

(
x̂j,i

)]T
, (7)

where hGC
(
x̂i
)
=

1
M

∑M
j=1hGC

(
x̂j,i

)
.

To obtain hGC
(
errfe

)2, we conduct a set of forward simu-
lations using the GEOS-Chem transport model (within the
GEOS-Chem adjoint model (v35j); Henze et al., 2007).

In all 10 experiments, consistent meteorology and emis-
sion forcing data from version 2 of the Modern-Era Retro-
spective analysis for Research and Applications (MERRA-
2; Gelaro et al., 2017) and the Open-source Data Inven-
tory for Anthropogenic CO2 (ODIAC; Oda and Maksyu-
tov, 2015) are used. Identical monthly balanced, hourly
terrestrial-biosphere fluxes from SiB4 (Haynes et al., 2021)
are also employed. However, in each experiment, the pre-
scribed monthly fluxes of terrestrial ecosystems and oceans
are based on posterior fluxes from the respective 10 OCO-2
MIP ensemble members. All experiments are performed at a
2°× 2.5° horizontal resolution and with 47 vertical levels for
the period 2015–2017. By calculating the mean of the vari-
ances of simulated CO2 concentrations among the 10 exper-
iments for the ith airborne observation within each 1°× 1°
grid cell, we derive hGC

(
errfe

)2.
Because we assume that the spread of ensemble transport

models used in the OCO-2 MIP represents the true transport
errors included in RMSE2, the transport errors, along with
the observation errors and representation errors, cancel out
when we calculate the difference between monthly RMSE2

and ERR2
TOT values. Consequently, the difference between

monthly RMSE2 and ERR2
TOT values arises from the dif-

ferences in the flux error variances (σ 2
ft

and σ 2
fe

). The dif-

ference between the monthly true flux error (h
(
errft

)2) and

the estimated flux error (h
(
errfe

)2
≈ hGC

(
errfe

)2) projected
onto CO2 space can be derived from the difference between
RMSE2 and ERR2

TOT as follows:

h
(
errft

)2
−h

(
errfe

)2
= RMSE2

−ERR2
TOT. (8)

From Eq. (8), we can derive the true error in the ensemble
mean fluxes in CO2 space, h

(
errft

)2. In 158 out of 181 cases,
representing the total number of observation months across
all seven regions, h

(
errft

)
can be derived using this equa-

tion. In 23 cases (13 % of the cases), h
(
errft

)
cannot be de-

rived when ERRTOT and/or h
(
errfe

)
values fall outside the

applicable range. Around 40 % of the exception cases occur
in South America, where observations cover only one to six
1°× 1° grid cells per month, suggesting that observations are
insufficient for quantifying the monthly flux errors in this re-
gion.

In order to link these terms with flux errors in flux space,
we first identify the areas sensitive to airborne CO2 mea-
surements by conducting sensitivity experiments using the
GEOS-Chem adjoint model. Seven sets of adjoint sensitivity
experiments are conducted to examine the sensitivity of air-
borne measurements in each region (as defined in Fig. 2a) to
surface CO2 fluxes for the month of observations. The sensi-
tivity experiments use the same meteorology and CO2 emis-
sion datasets as the forward simulations, along with the en-
semble mean of posterior terrestrial-biosphere flux and ocean
flux values. The following explanation of the sensitivity anal-
ysis uses the same notation as Liu et al. (2015). The cost
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function (J ) is defined as the sum of the simulated CO2 con-
centrations at the locations of airborne observations within
each region and for each month:

J =
∑N

i=1
hi(x̂). (9)

The sensitivity of observations to surface fluxes at the lth grid
cell and t th time is derived from the partial derivative of J
with respect to surface fluxes (x̂l,k), expressed as

γl,t =
∂J

∂x̂l,t
. (10)

The monthly cumulative sensitivity (β) with respect to sur-
face fluxes is determined by integrating γl,t from the mea-
surement time (t0) to the initial time (t−T ) for each month:

βl =
∑t−T

t=t0
γl,t . (11)

In order to identify the areas most sensitive to the airborne
observations, we select the areas accounting for 50 % of the
global total values of β for each region and month. Areas
with sensitivity values lower than 0.1 % (0.15 % for Alaska,
Australia, and Southeast Asia) of the total value of β are ex-
cluded due to occasional cases where observations are uni-
formly influenced across excessively wide regions as a result
of active atmospheric mixing. Additionally, to avoid the ex-
cessive consideration of localized effects caused by a large
number of observations occurring in a single location, re-
gions with sensitivity values greater than 1 % are included
in the effective area. We then compute the estimated pos-
terior flux error in flux space (err2

fe
= σ 2

fe
) by calculating

the ensemble spread of the total posterior flux values (and
area-averaged mean values) over the effective area for each
month during the period 2015–2017, as illustrated in Fig. 1.
The estimated mean posterior flux error (errfe ) over the se-
lected areas for each month exhibits a significant correlation
(p≤ 0.05) with monthly h

(
errfe

)
values across all regions,

except for Australia, where the observational campaign was
conducted during specific months (Fig. S2). While the ob-
served atmospheric CO2 concentration is influenced by both
land and ocean sources, a comparison of the magnitudes of
errfe between ocean and land within the effective areas re-
veals that, on average, land flux errors contribute more than
95 % to the total flux errors in all regions (Fig. S3). This
result indicates that our evaluation results, based on atmo-
spheric CO2, can be applied to deriving the actual errors in
posterior net land CO2 fluxes within the selected areas in flux
space.

This study provides both monthly and 3-year mean val-
ues of regional flux error statistics for the period 2015–2017.
Technically, it is possible to derive monthly true errors in the
ensemble mean of net land CO2 fluxes using monthly error
statistics. However, to obtain more robust results, we com-
pute the true errors in annual total fluxes over the analysis pe-
riod. To identify the areas contributing most to the computed

mean error statistics, we calculate the number of months se-
lected as effective areas for monthly airborne observations.
These grid cells, at a 2°× 2.5° resolution (corresponding to
the effective areas), are assigned a value of 1, while the re-
maining cells are assigned a value of 0 for each month. We
then calculate composite values for each grid cell over the
3 years. A higher number of months indicates that more in-
formation from those grid cells is utilized in calculating the
3-year regional mean error statistics. We define our 3-year
mean error statistics as mostly representing the areas where
the composite values exceed 8, corresponding to 20 % of the
total months analyzed (i.e., 36 months).

The observation operator, which converts surface CO2
fluxes to atmospheric CO2, is generally assumed to be lin-
ear. Therefore, in these areas, we can obtain the true error
in the ensemble annual total net land fluxes, errft

(
= σft

)
,

by multiplying the ratio between the 3-year mean values of
h
(
errft

)
and h

(
errfe

)
by the ensemble spread of the annual

total net land flux estimates (errfe ) within the effective areas.
The equation can be written as

errft =
h
(
errft

)
h
(
errfe

) × errfe . (12)

One thing readers should keep in mind is that errfe is identi-
cal to the ensemble spread of posterior terrestrial-biosphere
fluxes because all OCO-2 MIP models used uniform fossil
fuel emission estimates and assumed them to be perfectly
known. Lastly, to explore the characteristics of regions where
the average annual total errft value is significantly underesti-
mated, we compute the ensemble mean of the average annual
posterior terrestrial-biosphere CO2 fluxes and the fossil fuel
CO2 emissions (from the ODIAC dataset) for the effective
area.

3 Results

3.1 Spatiotemporal variations in ensemble posterior
CO2 concentration errors and other major error
components

Because the magnitude of land–atmosphere CO2 fluxes
is generally over 10 times greater than that of ocean–
atmosphere CO2 fluxes, the observed atmospheric CO2 over
the oceans carries signals from nearby land fluxes. The four
ATom campaigns, spanning four seasons, and the ORCAS
campaign, conducted during austral summer, covered wide
latitudinal ranges, primarily over the oceans, providing a
unique opportunity for analyzing the latitudinal distributions
of inverse-modeling errors and the contributions of major
error sources. We compare the ensemble posterior CO2 to
airborne CO2 measurements taken between 1 and 5 km a.g.l.
and then calculate the mean error statistics for the entire cam-
paign period. Comparisons with observations from the ATom
and ORCAS campaigns reveal a general increase in RMSE
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values toward the northern high latitudes, reaching 1.2 ppm
at 40° N (Fig. 3a and f). The latitudinal gradient becomes
particularly evident during the summer season, with RMSE
values exceeding 1.5 ppm over North America (Fig. S4), sug-
gesting significant contributions of the errors in land fluxes
to the differences between observed and simulated atmo-
spheric CO2. Additionally, consistently elevated RMSE val-
ues (> 1.5 ppm) commonly appear over the west coast of
Africa throughout the seasons.

Both ERRMIP and ERRREP exhibit spatial distributions
similar to that of the RMSE (Fig. 3a–c and f). However,
ERRMIP has a stronger positive correlation with the RMSE
(r = 0.57 and 0.58 for the ATom and ORCAS campaigns,
respectively) than ERRREP (r = 0.35 and 0.32), with an av-
erage magnitude (0.49 and 0.32 ppm) greater than that of
ERRREP (0.27 and 0.20 ppm) globally across both campaign
periods. In particular, ERRMIP (ERRREP) accounts for 75 %
(37 %) of the anomalously high RMSE values (1.5 ppm) in
North America (32–50° N and 85–124° W) and 75 % (30 %)
of the RMSE values (1.2 ppm) along the west coast of Africa.
These findings indicate that ERRMIP, representing errors in
posterior fluxes and transport, is the most significant factor
in explaining the RMSE.

Next, in order to assess the proximity of the estimated pos-
terior flux errors, based on the spread of the OCO-2 MIP en-
semble fluxes, to the true posterior flux errors in the ensem-
ble mean, we compare the RMSE with the sum of ERRMIP,
ERRREP, and ERROBS (referred to as ERRTOT). The ratio
of ERRTOT to the RMSE exceeds 1 over the tropical Pacific
and the Southern Ocean (Fig. 3d and e), indicating that the
ensemble spread of posterior fluxes overestimates true flux
errors over regions sensitive to these observations. This over-
estimation pattern consistently appears for both the ATom
and ORCAS campaigns across all seasons (Fig. S5). Air-
borne CO2 measurements for this area are predominantly in-
fluenced by ocean fluxes due to the limited land extent and
the significant distance from land (Yun et al., 2022), suggest-
ing that the true posterior ocean flux errors may be smaller
than the spread of the ensemble posterior flux estimates. In
contrast, a ratio between ERRTOT and the RMSE of less than
1 was observed along the African coast during the ATom
campaigns, with the exception of the 2018 spring campaign,
which was conducted in a region relatively far from Africa.
Considering that these airborne observations are known to
be sensitive to terrestrial-biosphere fluxes in tropical Africa
(Liu et al., 2021), our results imply that the true errors in
the ensemble mean terrestrial-biosphere fluxes in this region
may be larger than the estimated errors based on the OCO-2
MIP ensemble spread. These findings agree with Gaubert et
al. (2023), who show that most inverse models assimilating
OCO-2 XCO2 retrievals tend to overestimate the net carbon
sources in this region due to potential positive biases in the
OCO-2 retrievals.

In the northern mid-to-high latitudes, characterized by sig-
nificant land CO2 flux impacts on atmospheric CO2 varia-

tions (Yun et al., 2022), the ratio between ERRTOT and the
RMSE exhibits substantial variation across space and time.
The ratio between ERRTOT and the RMSE is greater than 1
within the North American continent during summer and fall.
However, in other areas, there is a mixed pattern involving ra-
tios both below and above 1, although the majority of areas
exhibit ratios less than 1 during winter. These findings high-
light that the degree of underestimation or overestimation of
true flux errors, based on the ensemble spread, can vary de-
pending on the region and season, emphasizing the need for
a more detailed evaluation of flux errors at the regional level
using long-term independent observations.

3.2 Evaluation of OCO-2 v10 MIP ensemble posterior
CO2 flux errors by region

In this section, we calculate regionally averaged monthly er-
ror statistics by comparing the ensemble posterior CO2 to air-
borne measurements taken over seven regions during 2015–
2017. RMSE values across all these regions exhibit signifi-
cant monthly variations, with values falling within the range
of 1–3 ppm and no clear seasonality, possibly due to varia-
tions in observation routes (Fig. 4). Consistent with the re-
sults shown in Sect. 3.1, ERRMIP is the most significant fac-
tor explaining the variations in the RMSE. Among the seven
regions, significant positive correlations (p< 0.05) between
monthly RMSE and ERRMIP values are observed in Alaska
(r = 0.46), midlatitude North America (r = 0.63), Europe
(r = 0.60), and East Asia (r = 0.60). Furthermore, the cor-
relation coefficient is greater than or comparable to that con-
cerning ERRREP. This suggests that, in these regions, tem-
poral variations in the errors in posterior fluxes and trans-
port are the major contributors to temporal variations in the
RMSE. On the other hand, the RMSE does not exhibit a sig-
nificant correlation with either ERRMIP or ERRREP in South-
east Asia, Australia, and South America. This implies that the
estimated posterior flux errors based on the ensemble spread
may not represent the temporal variations in true flux errors
in these regions.

RMSE values exhibit significant variability not only over
time but also across regions. The 3-year average RMSE is
highest in East Asia (mean: 1.98 ppm; 95 % confidence in-
tervals: [1.90, 2.06] ppm), followed by Europe (1.57, [1.41,
1.74] ppm), and lowest in Australia (0.88, [0.79, 0.97] ppm),
with Alaska having a slightly higher RMSE (1.19, [1.12,
1.25] ppm). ERRMIP is the primary error component of the
RMSE, accounting for 58 %–83 % of the RMSE and sur-
passing the ERRREP values for all the regions by a factor
of 1.2–2.1. In East Asia, the difference between ERRMIP
and ERRREP is relatively small compared to that observed in
other regions. This could be attributed to the presence of nu-
merous significant carbon sources, particularly along coastal
areas, resulting in increased spatial variability in CO2 within
the coarse grid cells of the OCO-2 MIP inverse modeling.
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Figure 3. Spatial distributions of (a) RMSE, (b) ERRMIP, (c) ERRREP, and (d) Ratio
(√

(ERROBS)2+ERR2
REP+ERR2

MIP/RMSE
)

values with respect to where ATom airborne measurements (circles) and ORCAS airborne measurements (triangles) were taken and (e, f) their
latitudinal distributions, smoothed by a 10° moving average with 95 % confidence intervals derived from 1000 bootstrap samples of datasets
(error bars).

The ratio between ERRTOT and the RMSE also shows sig-
nificant variability across regions. Our results indicate that,
on average, the estimated flux errors for Alaska and South
America closely match the true flux errors, with ratios of 0.98
[0.89, 1.08] and 0.99 [0.79, 1.24], respectively, while mid-
latitude North America, Europe, East Asia, Southeast Asia,
and Australia show significant underestimations at the 95 %
confidence level, with ratios of 0.90 [0.83, 0.97], 0.79 [0.61,
0.97], 0.84 [0.78, 0.91], 0.75 [0.65, 0.86], and 0.73 [0.59,
0.87], respectively, throughout the analysis period. Further-
more, the monthly variability (i.e., standard deviation) of the
ratios is much greater in regions with diverse campaign dura-
tions and routes, such as South America (0.87), than in East
Asia (0.21), characterized by a consistent 3-year observation
campaign along the same paths. This suggests that the spa-
tial variability in the degree of flux error underestimation or
overestimation may exceed the temporal variability.

3.3 Error quantification of OCO-2 v10 MIP ensemble
posterior net CO2 fluxes by region

Next, by incorporating the monthly RMSE, ERRTOT, and
h
(
errfe

)
values, we derive the monthly true posterior flux

error in CO2 space (i.e., h
(
errft

)
) for each region with re-

spect to the period 2015–2017 (Fig. 5). Regionally averaged
h
(
errft

)
values exhibit different seasonal and monthly vari-

ability compared to h
(
errfe

)
values. In the northern midlat-

itude regions, h
(
errfe

)
shows clear seasonal cycles for the

entire analysis period, despite there being different obser-
vation routes for each month. For example, in midlatitude
North America and East Asia, the growing season (May to
October) exhibits higher h

(
errfe

)
values (0.6 and 0.9 ppm,

respectively) than the non-growing season (November to
April; 0.4 and 0.7 ppm, respectively). Seasonal variations
in h

(
errft

)
are also observed in East Asia and partially ob-

served in midlatitude North America with respect to 2017,
but they are not discernible in Alaska and Europe. In addi-
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tion, monthly h
(
errft

)
values do not exhibit a significant cor-

relation (p< 0.05) with monthly h
(
errfe

)
values in Alaska,

Southeast Asia, and South America. Moreover, h
(
errft

)
dis-

plays greater monthly variability than h
(
errfe

)
. For example,

in midlatitude North America and East Asia, the standard de-
viation of monthly h

(
errft

)
values is 1.8 and 2.3 times greater

than that of monthly h
(
errfe

)
values respectively.

The comparison between the 3-year average h
(
errft

)
value and the RMSE highlights the substantial contri-
butions of posterior flux errors to the differences be-
tween airborne observations and simulated atmospheric CO2
from OCO-2 MIP ensemble models. The h

(
errft

)
value

tends to be larger in regions with a higher RMSE, peak-
ing in East Asia (h

(
errft

)
= 1.32 ppm; RMSE= 1.98 ppm)

and reaching a minimum in Australia (h
(
errft

)
= 0.75 ppm;

RMSE= 0.88 ppm) (Figs. 4h and 5h). The h
(
errft

)
value ac-

counts for up to 85 % of the RMSE in Australia, followed
by Southeast Asia (80 %), and accounts for a minimum of
60 % of the RMSE in South America, with the contribution
in midlatitude North America being slightly higher (64 %).
This indicates the dominant contributions of posterior flux
errors to the RMSE, surpassing the contributions of repre-
sentation and transport errors in the first two regions.

Throughout the analysis period, the regional mean ratios
between h

(
errfe

)
and h

(
errft

)
indicate significant underesti-

mations, at a 95 % confidence level, of true posterior flux er-
rors in midlatitude North America, Europe, East Asia, South-
east Asia, and Australia by factors of 0.74 [0.61, 0.88], 0.52
[0.27, 0.78], 0.59 [0.48, 0.70], 0.56 [0.41, 0.72], and 0.59
[0.34, 0.87], respectively (Fig. 5h). In contrast, Alaska and
South America exhibit comparable estimates of true flux er-
rors, with factors of 0.96 [0.76, 1.17] and 0.97 [0.49, 1.54],
respectively. The regions with significant underestimations
align with those identified in the previous analysis based on
the ratios between ERRTOT and the RMSE (Sect. 3.2), but
the ratios between h

(
errfe

)
and h

(
errft

)
imply a stronger un-

derestimation of the true flux errors. The ratios have larger
uncertainty ranges in regions where observations were con-
ducted over limited durations and locations, such as Europe,
Australia, and South America, than in midlatitude North
America and East Asia, where observations cover wider ar-
eas and occur more frequently.

Finally, using the 3-year regional mean ratios between
h
(
errfe

)
and h

(
errft

)
, we compute the true errors in the an-

nual net land fluxes over the effective areas, averaged for
the period 2015–2017 (Fig. 6). We find that the actual flux
errors are underestimated, particularly in regions where an-
nual fossil fuel CO2 emissions exceed annual terrestrial-
biosphere fluxes by a factor of 3–31. The airborne mea-
surements carried out in midlatitude North America, East
Asia, and Southeast Asia are influenced by a broad re-
gion encompassing the United States, the eastern part of
East Asia, and the western part of Southeast Asia, where
fossil fuel CO2 emissions correspond to values of 1341,
2443, and 815 Tg C yr−1, respectively. The first two areas

are estimated as significant terrestrial-biosphere CO2 sinks,
with estimated fluxes of −414± 279 (ensemble mean± 1σ )
and −561± 380 Tg C yr−1, in contrast to Southeast Asia
(26± 118 Tg C yr−1). However, the CO2 sinks are more than
3 and 4 times smaller than the fossil fuel CO2 emissions,
respectively. The recalculated net land flux errors in these re-
gions exceed the ensemble spread, with values of 374, 643,
and 211 Tg C yr−1, respectively. Observations across Europe
and Australia, conducted over limited periods and at specific
locations, mainly represent certain areas in western Europe
and the southeastern part of Australia, where fossil fuel emis-
sions (234 and 53 Tg C yr−1, respectively) are around 4 and 5
times greater than terrestrial-biosphere sinks (−51± 34 and
−10± 67 Tg C yr−1, respectively). The recalculated net land
flux errors in these regions are also larger than the ensem-
ble spread, with estimates of 65 and 114 Tg C yr−1, respec-
tively. In contrast, the most influential areas for observations
in Alaska and South America, encompassing the southeast-
ern region of Alaska and the northern part of Brazil, are char-
acterized as terrestrial-biosphere sinks of −8± 11 Tg C yr−1

and sources of 625± 387 Tg C yr−1, respectively. These val-
ues are comparable to, or more than 10 times greater than,
those of fossil fuel emissions (10 and 38 Tg C yr−1, respec-
tively). The observation-based estimates of true net land flux
errors are almost identical to the ensemble spread in both re-
gions, with values of 11 and 398 Tg C yr−1, respectively.

4 Discussion and conclusions

Our results show that errors in posterior net land CO2 fluxes
are a major contributor to the RMSE between simulated pos-
terior CO2 and airborne observations for the period 2015–
2017. Our findings reaffirm the feasibility of evaluating in-
version performance on land flux estimates through a di-
rect comparison between airborne observations and model
data (Houweling et al., 2015; Chevallier et al., 2019; Crow-
ell et al., 2019; Byrne et al., 2023). However, when evalu-
ating inversion estimates at regional scales, the significance
of representation and transport errors becomes pronounced.
Our results show that regional variations in representation er-
rors, along with the sum of transport errors and their covari-
ances with flux errors (inferred from the difference between
ERRMIP and h

(
errfe

)
; Fig. S6), exceed those in true flux er-

rors projected onto CO2 space, indicating that regional dif-
ferences in the RMSE do not directly correspond to differ-
ences in flux errors. For example, although the 3-year mean
errors in representation and transport for East Asia exceed
those for Southeast Asia by 0.5 and 0.3 ppm, respectively,
the disparity in the mean true flux errors projected onto CO2
space between the two regions is only 0.2 ppm. This result is
supported by previous studies, highlighting that spatial dis-
tributions of simulated CO2 concentrations can vary signifi-
cantly depending on the transport model (Schuh et al., 2019)
and its spatial resolution (Stanevich et al., 2020). Therefore,
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Figure 4. (a–g) Monthly RMSE, ERRMIP, ERRREP, and Ratio values for each region and (h, i) the corresponding mean values for the
period 2015–2017. The upper-right numbers in panels (a)–(g) indicate the correlation coefficient between the RMSE and ERRMIP and that
between the RMSE and ERRREP. The shaded areas and error bars represent 95 % confidence intervals derived from 1000 bootstrap samples
of datasets.

Figure 5. (a–g) Monthly values of h
(
errfe

)
and h

(
errft

)
for each region and (h) the corresponding mean values for the period 2015–2017. In

panels (a–g), the upper-right corner displays a number indicating the correlation coefficient between h
(
errfe

)
and h

(
errft

)
. The shaded areas

and error bars represent 95 % confidence intervals derived from 1000 bootstrap samples of datasets.
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Figure 6. (a) Number of months selected as the effective areas for airborne measurements. The outlined areas represent selected areas for 8
months or more. (b) Annual total terrestrial-biosphere CO2 fluxes obtained from the ensemble mean of 10 OCO-2 MIP models and annual
total fossil fuel CO2 emissions estimated from ODIAC data for each outlined area, averaged over the period 2015–2017. The black error bars
each represent ±1 standard deviation of the posterior net land fluxes, identical to the standard deviation of the posterior terrestrial-biosphere
fluxes. The red error bars indicate newly estimated ranges of errors in the posterior net land fluxes from this study.

when utilizing airborne CO2 measurements (and potentially
other CO2 observations) to analyze the detailed character-
istics of ensemble posterior flux estimates at a regional (or
latitudinal) level, it is crucial to account for the contributions
of representation and transport errors.

Our analysis reveals that true errors in the ensemble mean
of the posterior net CO2 flux estimates are significantly
greater than the ensemble spread of the flux estimates in
five out of the seven regions where fossil fuel emissions are
higher than terrestrial-biosphere fluxes. A possible explana-
tion for this result is the presence of errors in the prescribed
fossil fuel emissions common to all OCO-2 MIP models.
The OCO-2 MIP models treated fossil fuel emissions as per-
fectly known values and adjusted terrestrial-biosphere and
ocean CO2 fluxes to minimize the difference between the
simulated and observed CO2 concentrations. Thus, if there
are errors in the prescribed fossil fuel emission estimates,
these errors propagate into the posterior natural flux esti-
mates. The assumption used in the OCO-2 MIP models is,
in fact, one that is often applied in conventional global atmo-
spheric inverse models as errors in fossil fuel emission esti-
mates are considered to be lower than those in natural flux
estimates at national scales (4 %–20 %; Andres et al., 2014).
However, the emission errors become substantial when con-
sidering spatial distributions at model grid scales and tem-
poral variability over a year (Zhang et al., 2016; Gurney et
al., 2021). Oda et al. (2023) showed the significant impacts
of differences in fossil fuel emission estimates on posterior
terrestrial-biosphere flux estimates near the source regions.
The OCO-2 MIP models used identical fossil fuel emission
estimates, and thus their posterior net flux estimates share
common biases, induced by errors in the fossil fuel emission
estimates. Because these systematic biases are not captured
by the ensemble spread of the flux estimates, the true flux er-
rors exceed the errors computed from the ensemble spread

in the main source regions. In addition, the regional and
seasonal sampling biases of CO2 measurements and satel-
lite retrieval errors may contribute to these systematic bi-
ases (Kulawik et al., 2019). Using eight prior flux datasets
may also not adequately represent the errors in the terrestrial-
biosphere fluxes, which exhibit significant variations across
the estimates (Feng et al., 2019). Therefore, further studies
are needed to uncover the causes of underestimation in true
flux errors and thus to understand the uncertainty sources
overlooked in current ensemble inverse-modeling estimates.

The reliability of our observation-based regional flux error
estimates depends on the availability of airborne measure-
ment data. Although our approach is generally effective for
estimating regional means of monthly h

(
errft

)
values, it is

not applicable in TS215 % of our cases (shown in Fig. 5),
where measurements were mostly taken in local areas cov-
ering one to six 1°× 1° grid cells within each region. This
limitation may be attributed to the application of a com-
mon method for calculating observation errors across all data
points, which might not adequately identify specific outliers.
Caution is required when applying our approach to monthly-
scale analyses, especially when using observations made lo-
cally. Extending the calculation period to several months or
longer (e.g., Fig. 5h) is a suitable strategy for mitigating the
impact of outliers and obtaining more robust results. In fact,
the ratios between the 3-year mean values of h

(
errfe

)
and

h
(
errft

)
, which serve as key metrics for quantifying regional

flux errors (Fig. 5h), exhibit smaller uncertainties over mid-
latitude North America and East Asia, where consistent air-
borne data covering broad areas are available, than over Eu-
rope and South America, where airborne observations are
sparse and data coverage is intermittent. In addition, it is
noteworthy that the h

(
errfe

)
-to-h

(
errft

)
ratios derived from

continuous observations enable the computation of unbiased
true errors in the ensemble mean of annual posterior net
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fluxes, averaged over the analysis period, compared to those
derived from limited observation periods (e.g., for Alaska).
These results highlight the importance of frequent airborne
measurements with extensive spatial coverage for reliably
quantifying errors in regional net flux estimates derived from
inverse models.

The performance of inverse models in simulating atmo-
spheric CO2 may vary by season. However, airborne mea-
surements were not uniformly conducted across all seasons
in most analyzed regions. Among the seven regions analyzed,
East Asia was monitored by the CONTRAIL program, which
continuously conducted CO2 measurements over 3 years,
with routes repeated throughout all seasons. This resulted
in the area most sensitive to the measurements exhibiting
similar spatial patterns during the vegetation growing season
(from May to October) and the non-growing season, covering
the northeastern part of China, Korea, and Japan (Fig. S7).
The airborne measurements taken in East Asia offer a unique
opportunity to explore seasonal variations in regional error
statistics. For the period 2015–2017, the regional averages of
both the RMSE and ERRTOT are, on average, 12 % and 11 %
higher, respectively, during the non-growing season than dur-
ing the growing season (Fig. S8). In contrast, the regional
averages of h

(
errfe

)
and h

(
errft

)
are higher during the grow-

ing season (0.90 [0.84, 0.97] and 1.37 [1.13, 1.62] ppm, re-
spectively) than during the non-growing season (0.66 [0.62,
0.70] and 1.30 [1.06, 1.54] ppm, respectively) because CO2
errors tend to increase proportionally with the magnitude of
the flux values. Consequently, the ratio of h

(
errfe

)
to h

(
errft

)
is slightly lower during the non-growing season, with a value
of 0.51 [0.39, 0.64], than during the growing season, with
a value of 0.66 [0.50, 0.83], indicating a greater underesti-
mation of true flux errors when the terrestrial-biosphere CO2
sinks are relatively smaller. This result aligns with our find-
ing that true net land flux errors are significantly underes-
timated when fossil fuel emissions are larger in magnitude
than terrestrial-biosphere fluxes. Furthermore, the consistent
ratio of h

(
errfe

)
to h

(
errft

)
below 1, without significant sea-

sonal variations in East Asia, suggests that our conclusions,
drawn from the analysis of seven regions, may not be season-
ally dependent.

To capture the signals from regional surface CO2 fluxes,
we use atmospheric CO2 data observed and simulated within
the 1–5 km a.g.l. altitude range. The choice of this altitude
range may have influenced the regional error statistics as the
performance of the inverse models could vary with altitude.
To gauge this sensitivity, we compare error statistics derived
from atmospheric CO2 data across two altitude ranges: 1–3
and 1–5 km a.g.l. Among the seven analyzed regions, Aus-
tralia and South America are excluded from this additional
analysis because the airborne observations for these two re-
gions cover fewer than 100 grid cells with respect to the anal-
ysis period, and narrowing the altitude range resulted in the
loss of over 30 % of the grid cells. The areas sensitive to
airborne CO2 measurements within the two altitude ranges

exhibit nearly identical spatial patterns across Alaska, mid-
latitude North America, Europe, East Asia, and Southeast
Asia, indicating that observations corresponding to lower al-
titudes are more sensitive to surface CO2 fluxes (Fig. S9).
Because of the higher sensitivity, error statistics for all re-
gions have larger values when calculated using data from the
1–3 km a.g.l. altitude range than when determined using data
from the 1–5 km a.g.l. altitude range (Fig. S10). For exam-
ple, in midlatitude North America, the regional averages of
the RMSE, ERRTOT, h

(
errfe

)
, and h

(
errft

)
are 1.42 [1.36,

1.49], 1.34 [1.30, 1.39], 0.72 [0.69, 0.76], and 0.86 [0.72,
1.01] ppm, respectively, when calculated using data from the
1–3 km a.g.l. altitude range. In comparison, when computed
using data from the 1–5 km a.g.l. altitude range, these values
are 1.21 [1.15, 1.26], 1.09 [1.06, 1.13], 0.57 [0.55, 0.60], and
0.77 [0.66, 0.88] ppm, respectively. However, the ratio be-
tween the 3-year mean values of h

(
errfe

)
and h

(
errft

)
does

not show significant differences based on the altitude ranges,
with differences ranging from 0.02 to 0.11. Again, these re-
sults suggest that our observation-based regional flux error
estimates are not sensitive to the choice of altitude range over
longer time periods.

Our study computes the true flux errors for the ensemble
mean estimates by comparing RMSE2 and ERR2

TOT. How-
ever, discrepancies between the true and estimated values of
observation, representation, and transport errors, as well as
covariances between flux errors and transport errors, may
contribute to variations in RMSE2 and ERR2

TOT. Due to a
lack of information across all datasets, we set the observation
errors under ideal conditions (i.e., 0.1 ppm). In reality, inad-
equate quality control could have resulted in significant sys-
tematic biases for specific regions and time periods (Masarie
et al., 2011; Baier et al., 2020), impacting our results, espe-
cially those concerning South America. For instance, if the
average measurement error had been 0.5 ppm instead of the
assumed value of 0.1 ppm during the analysis period, the
calculated true flux error would have decreased from 398
to 334 Tg C yr−1 for South America and from 374 to 260
Tg C yr−1 for midlatitude North America.

Representation errors and h
(
errfe

)
are derived using the

GEOS-5 and GEOS-Chem models, but these values depend
on the transport model and meteorological fields used. Em-
ploying our approach across all participating MIP models
to compute these two error terms and subsequently averag-
ing them would lead to more realistic flux error quantifica-
tion in future studies. Employing all transport models also
would facilitate the calculation of variances of flux errors and
their covariance with transport errors included in ERRMIP, as
shown in Appendix A, and subsequently enable the determi-
nation of the total true flux errors, including both diagonal
and off-diagonal terms. In addition, previous studies show
that 8–10 different ensemble members are required for ro-
bust transport error estimates (Feng et al., 2019; Lauvaux et
al., 2019). However, out of the 10 ensemble members in the
OCO-2 MIP, 3 employed TM5 and 5 utilized GEOS-Chem
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(Table S1). This ensemble size may not be sufficient for fully
capturing the range of true transport errors. We further in-
vestigate how our main results would be affected if the es-
timated transport errors deviated by 20 % or 40 % from the
actual errors, based on the difference between RMSE2 and
ERR2

TOT. The ratio of the regional mean of h
(
errfe

)
to that of

h
(
errft

)
increases, on average, by only up to 0.04 and 0.09,

respectively, in the seven regions throughout the analysis pe-
riod (Fig. S11). In both cases, the estimated flux errors for
midlatitude North America, Europe, East Asia, and South-
east Asia still show significant underestimations at a 95 %
confidence level, whereas this is not observed for Alaska and
South America. In Australia, characterized by a wide uncer-
tainty range, significant underestimation is also observed in
the “20 % deviation” cases, supporting the robustness of our
findings. In future versions of the OCO-2 MIP, the participa-
tion of inverse-modeling groups using other transport models
or meteorological forcing data might contribute to the esti-
mation of transport errors closer to actual values.

This study uses monthly posterior flux estimates for the
calculation of monthly h

(
errfe

)
values. However, poste-

rior flux estimates from each OCO-2 MIP model have dif-
ferent sub-monthly patterns, which could modify the sub-
monthly variations in posterior atmospheric CO2 concentra-
tions and, in turn, affect their ensemble spread. To examine
their potential impact on the results, we conduct an anal-
ysis with different publicly available hourly (or 3-hourly)
terrestrial-biosphere fluxes (Chevallier et al., 2019; Jacob-
son et al., 2020; Ott, 2020; Haynes et al., 2021; Liu and
Bowman, 2024), which are from seven OCO-2 MIP prior
flux models (Ames, Baker, CAMS, CMS-Flux, CT, OU, and
WOMBAT; Table S1). By incorporating the monthly bal-
anced hourly flux estimates into the monthly posterior fluxes,
we generate hourly posterior terrestrial-biosphere flux esti-
mates for these seven models. Since the assimilation win-
dow for each OCO-2 MIP model ranges from 1 week to
1 month, the weekly variations in the posterior fluxes may
differ from those in the prior fluxes. Nonetheless, with only
the monthly posterior flux estimates being publicly avail-
able, this approach offers valuable insights into how dif-
ferent sub-monthly patterns of posterior fluxes might affect
our main results. Our analysis shows that the regional aver-
ages of h

(
errfe

)
derived from the monthly posterior flux es-

timates from the 7 models are, on average, within ±10 % of
the values originally obtained using flux estimates from all
10 models for the period 2015–2017, except with respect to
Europe (13 % lower) (Fig. S12a). When accounting for dif-
ferent sub-monthly patterns of posterior fluxes across mod-
els, the regional averages of h

(
errfe

)
increase by 10 %–22 %

(0.06–0.14 ppm) across six regions, with a 45 % (0.23 ppm)
increase for Europe. These results suggest that our earlier
calculation, assuming identical sub-monthly flux variations,
underestimates h

(
errfe

)
. We further investigated whether our

main finding remains robust even when adjusting the orig-
inal values of h

(
errfe

)
using the potential-underestimation

rate. After making this correction, we found that the ratios
between the regional average values of h

(
errfe

)
and h

(
errft

)
increased the most in Europe (by 0.14) and by only up to
0.07 in the other six regions as h

(
errft

)
also increases with

h
(
errfe

)
according to Eq. (8) (Fig. S12b). Moreover, h

(
errft

)
still exhibits significant underestimation (p< 0.05) in mid-
latitude North America, Europe, East Asia, Southeast Asia,
and Australia. This indicates that our main results are robust
to the inclusion or exclusion of sub-monthly flux patterns in
the calculation of h

(
errfe

)
.

In summary, our study provides an observation-based
method for quantifying errors in the ensemble mean of re-
gional net CO2 flux estimates, which can be widely applied
in inverse model intercomparison projects, such as the OCO-
2 MIP. The evaluation results of the OCO-2 MIP ensem-
ble members reveal that the true errors in ensemble poste-
rior fluxes are larger than the ensemble spread in regions
with high anthropogenic CO2 emissions. This result pro-
vides observation-based evidence supporting previous stud-
ies (Wang et al., 2020; Oda et al., 2023) that emphasized
the impact of fossil fuel emission errors on global atmo-
spheric CO2 inversions. This finding offers important in-
sights into understanding the sources of errors in current in-
verse modeling and highlights the need for improving fossil
fuel emission estimates and developing inversion methods
that optimize both fossil fuel emissions and natural fluxes.
Airborne observations provide a broader footprint compared
to ground-based observations. Leveraging this advantage,
our study evaluates 19 % of the total global land cover (ex-
cluding Antarctica and Greenland), but data scarcity limits
the evaluation of the remaining 81 %. In addition to ongo-
ing airborne measurement programs – including the CON-
TRAIL and IAGOS-CARIBIC programs, as well as various
airborne programs hosted by INPE, NASA, and NOAA – air-
borne observations have been conducted in unexplored re-
gions, including Siberia (e.g., Narbaud et al., 2023), Africa
(e.g., Barker et al., 2020), and northern Europe (e.g., Barker
et al., 2021). Sustained efforts to maintain and expand air-
borne observations, along with a collaborative data-sharing
and management system (e.g., ObsPack), will contribute to
accurately estimating and reducing uncertainties in regional
surface CO2 fluxes.

Appendix A

Following Eq. (1) in the main text,

RMSE2
=

1
N

∑N

i=1

[
yo,i −h

(
x̂i
)][

yo,i −h
(
x̂i
)]T

,

where h(x̂i)=
1
M

∑M

j=1
hj
(
x̂j, i

)
. (A1)

Here, h(x̂i) denotes the ensemble mean of the posterior CO2
concentrations from the OCO-2 MIP models corresponding
to the ith airborne observation (yo,i) within each 1°× 1° grid
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cell for each month.N is the total number of data points from
airborne measurements sampled in each grid cell monthly.M
is the ensemble size (i.e., 10 members).

Equation (A1) can be rewritten as TS3

RMSE2
=

1
N

∑N

i=1

[(
yo,i −ht

(
x̂t,i
))
−

(
h
(
x̂i
)
−ht

(
x̂t,i
))]

[(
yo,i −ht

(
x̂t,i
))
−

(
h
(
x̂i
)
−ht

(
x̂t,i
))]T

(A2)

=
1
N

∑N

i=1

[
yo,i −ht

(
x̂t,i
)][
yo,i −ht

(
x̂t,i
)]T

− 2
(
yo−ht

(
x̂t,i
))
×

(
h
(
x̂i
)
−ht

(
x̂t,i
))

+

[
h
(
x̂i
)
−ht

(
x̂t,i
)][

h
(
x̂i
)
−ht

(
x̂t,i
)]T

,

(A3)

where ht(x̂t) denotes the estimated CO2 concentration ob-
tained from an error-free atmospheric transport model (ht)
and a set of true CO2 fluxes (x̂t). The three terms on the right-
hand side of Eq. (A3) represent (i) the variances of observa-
tion and representation errors, (ii) the covariances between
errors in observation and representation and errors in flux
and transport, and (iii) the variances of flux and transport er-
rors in the ensemble estimates. Assuming the independence
of observation and representation errors from transport and
flux errors, Eq. (A3) can be simplified as

RMSE2
=

1
N

∑N

i=1

[
yo,i −ht

(
x̂t,i
)][
yo,i −ht

(
x̂t,i
)]T

+

[
h
(
x̂i
)
−ht

(
x̂t,i
)][

h
(
x̂i
)
−ht

(
x̂t,i
)]T

. (A4)

Further, the second term on the right-hand side of Eq. (A4)
can be rewritten by separating the flux error and transport
error terms as follows:

1
N

∑N

i=1

[
h
(
x̂i
)
−ht

(
x̂t,i
)][

h
(
x̂i
)
−ht

(
x̂t,i
)]T

=
1
N

∑N

i=1

[(
h
(
x̂i
)
−h

(
x̂t,i
))
−

(
ht
(
x̂t,i
)
−h

(
x̂t,i
))]

[(
h
(
x̂i
)
−h

(
x̂t,i
))
−

(
ht
(
x̂t,i
)
−h

(
x̂t,i
))]T

(A5)

=
1
N

∑N

i=1

[
h
(
x̂i
)
−h

(
x̂t,i
)][

h
(
x̂i
)
−h

(
x̂t,i
)]T

− 2
(
h
(
x̂i
)
−h

(
x̂t,i
))(

ht
(
x̂t,i
)
−h

(
x̂t,i
))

+

[
ht
(
x̂t,i
)
−h

(
x̂t,i
)][

ht
(
x̂t,i
)
−h

(
x̂t,i
)]T

. (A6)

The three terms on the right-hand side of Eq. (A6) repre-
sent (i) the variances of flux errors in concentration space,
(ii) the covariances between flux errors and transport errors,
and (iii) the variances of transport errors.

In the OCO-2 MIP, by approximating the ensemble spread
of the posterior fluxes as true errors in the mean fluxes, it is
assumed that the values of the first and second terms on the
right-hand side of Eq. (A4) can be written as the sum of the

set of observation errors (ERR2
OBS), the set of representation

errors (ERR2
REP), and the ensemble spread of posterior CO2

concentrations across the OCO-2 MIP models (ERR2
MIP):

RMSE2
≈ ERR2

TOT = ERR2
OBS+ERR2

REP+ERR2
MIP. (A7)

We assume that the observation errors are independent of the
representation errors.

ERR2
MIP can be also rewritten by separating the flux error

and transport error terms as follows:

ERR2
MIP =

1
N

∑N

i=1

1
M

∑M

j=1[
h
(
x̂i
)
−hj

(
x̂j,i

)][
h
(
x̂i
)
−hj

(
x̂j,i

)]T
(A8)

=
1
N

∑N

i=1

1
M

∑M

j=1

1
M

∑M

k=1[(
hk
(
x̂k,i

)
−hk

(
x̂j,i

))
−
(
hj
(
x̂j,i

)
−hk

(
x̂j,i

))][(
hk
(
x̂k,i

)
−hk

(
x̂j,i

))
−
(
hj
(
x̂j,i

)
−hk

(
x̂j,i

))]T (A9)

=
1
N

∑N

i=1

1
M

∑M

k=1

1
M

∑M

j=1[
hk
(
x̂k,i

)
−hk

(
x̂j,i

)][
hk
(
x̂k,i

)
−hk

(
x̂j,i

)]T
−2

(
hk
(
x̂k,i

)
−hk

(
x̂j,i

))(
hj
(
x̂j,i

)
−hk

(
x̂j,i

))
+
[
hj
(
x̂j,i

)
−hk

(
x̂j,i

)][
hj
(
x̂j,i

)
−hk

(
x̂j,i

)]T
.

(A10)

As in Eq. (A6), the three terms on the right-hand side of
Eq. (A10) correspond to the (i) approximated variances of
flux errors, (ii) the approximated covariances between flux
errors and transport errors, and (iii) the approximated vari-
ances of transport errors. For the calculation of the first term,
utilizing all participating transport models from the OCO-2
MIP would be ideal; however, in this study, we approximate
it using the GEOS-Chem model.

Code and data availability. The TS4 inverse-modeling
results and airborne CO2 measurement data from the
OCO-2 v10 MIP are available on the official website
of the NOAA/ESRL Global Monitoring Laboratory at
https://www.gml.noaa.gov/ccgg/OCO2_v10mip/download.php
(NOAA/ESRL Global Monitoring Laboratory, 2022). The high-
resolution global GEOS-Chem simulation results used to calculate
the representation errors can be obtained upon request from Brad
Weir (brad.weir@nasa.gov) or Lesley Ott (lesley.e.ott@nasa.gov).
The forward and adjoint sensitivity simulations for this work
were conducted using the publicly available GEOS-Chem adjoint
model. This model can be downloaded from http://wiki.seas.
harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint (Henze
et al., 2007). ODIAC fossil fuel CO2 emission data are available
at https://doi.org/10.17595/20170411.001 (Oda and Maksyutov,
2015). Hourly (or 3-hourly) terrestrial-biosphere carbon flux
datasets from CASA-GFED3, CASA-GFED4.1s, SiB4, CAR-
DAMOM, and ORCHIDEE – all OCO-2 v10 MIP prior flux
models – are available at https://doi.org/10.5067/VQPRALE26L20
(Ott, 2020), https://doi.org/10.25925/20201008 (Jacobson et al.,

https://www.gml.noaa.gov/ccgg/OCO2_v10mip/download.php
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint
https://doi.org/10.17595/20170411.001
https://doi.org/10.5067/VQPRALE26L20
https://doi.org/10.25925/20201008
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2020), https://doi.org/10.3334/ORNLDAAC/1847 (Haynes
et al., 2021), https://doi.org/10.5067/1XO0PZEZOR1H
(Liu and Bowman, 2024), and on the official website of
the CAMS (https://ads.atmosphere.copernicus.eu/datasets/
cams-global-greenhouse-gas-inversion?tab=download, Copernicus
Atmosphere Monitoring Service, 2020).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-25-1-2025-supplement.
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