Supplementary Materials

Quantification of regional terrestrial biosphere CO₂ flux errors in v10 OCO-2 MIP models using airborne measurements

Jeongmin Yun^{1*}, Junjie Liu^{1*}, Brendan Byrne¹, Brad Weir², Lesley E. Ott², Kathryn McKain³, Bianca Baier³, Luciana V. Gatti⁴

¹Jet Propulsion Laboratory, California institute of Technology, Pasadena, CA 91109, USA
²NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
³NOAA Global Monitoring Laboratory, Boulder, Colorado USA
⁴General Coordination of Earth Science (CGCT), National Institute for Space Research (INPE), São José dos Campos, Brazil

Correspondence to: Jeongmin Yun (jeongmin.yun@jpl.nasa.gov) and Junjie Liu (junjie.liu@jpl.nasa.gov)

This PDF file includes: Figures. S1 to S5 Tables S1

Simulation name	Transport model	Meteorology forcing		Prior terrestrial CO ₂ flux	Prior air-sea CO ₂ flux	Inverse method
		name	resolution			
AMES	GEOS-Chem	MERRA-2	$4^{\circ} \times 5^{\circ}$	CASA-GFED4.1s	CT2019OI	4D-Var
Baker	РСТМ	MERRA-2	1° × 1.25° prior, 4° × 5° opt	CASA-GFED3	Landschützer v4.4	4D-Var
CAMS	LMDz	ERA5	1.9° × 3.75°	ORCHIDEE (climatological)	CMEMS	Variational
CMS-Flux	GEOS-Chem	MERRA-2	$4^{\circ} \times 5^{\circ}$	CARDAMOM	MOM-6	4D-Var
COLA	GEOS-Chem	MERRA-2	$4^{\circ} \times 5^{\circ}$	VEGAS	Rödenbeck 2021	EnKF
СТ	TM5	ERA5	$2^{\circ} \times 3^{\circ}/1^{\circ} \times 1^{\circ}$	CT2019 CASA GFED4.1s	CT2019OI	EnKF
OU	TM5	ERA-Interim	$4^{\circ} \times 6^{\circ}$	CASA-GFED3	Takahashi	4D-Var
TM5-4DVar	TM5	ERA-Interim	$2^{\circ} \times 3^{\circ}$	SiB-CASA	CT2019 Opt Clim	4D-Var
UT	GEOS-Chem	GEOS-FP	$4^{\circ} \times 5^{\circ}$	BEPS	Takahashi	4D-Var
WOMBAT	GEOS-Chem	MERRA-2	$2^{\circ} \times 2.5^{\circ}$	SiB-4 w/MERRA-2	Landschutzer 2020	Synthesis with MCMC

Table S1. Description for each v10 OCO-2 MIP inverse model. The information is t	from Byrne et al.	(2023).
--	-------------------	---------

Figure S1. Spatial distributions of RMSE, ERR_{OBS} and ERR_{MIP} for each Atom campaign period. Right-hand panels show their latitudinal distributions smoothed by 10° moving average (dot) with 95% confidence intervals derived from 1000 bootstrap samples of datasets (error bar)

Figure S2. Same as Figure S1 but for Ratio.

Figure S3. Regional mean values of ERR_{MIP} and $h(err_{f_e})$ for the period 2015-2017. The error bars represent the 95% confidence intervals derived from 1000 bootstrap samples of datasets.

Figure S4. Monthly variations of $h(err_{f_e})$ (line) and err_{f_e} (bar) for each region. The upper right number indicates the correlation coefficient between them.

Figure S5. Monthly variations of one standard deviation of OCO-2 MIP inversion estimates in total terrestrial CO₂ fluxes (green line) and total air-sea CO₂ fluxes (blue line) within the effective area to aircraft measurements for each region.