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Abstract. Multi-inverse modeling inter-comparison projects (MIPs) provide a chance to assess the uncertainties in inversion 

estimates arising from various sources. However, accurately quantifying ensemble CO2 flux errors remains challenging, 

often relying on the ensemble spread. This study proposes a method to quantify the errors of regional net surface-atmosphere 15 
CO2 flux estimates from the v10 Orbiting Carbon Observatory-2 (OCO-2) MIP models by using independent airborne CO2 

measurements for the period 2015–2017. We first calculate the root-mean-square error (RMSE) between the ensemble mean 

of posterior CO2 concentrations and airborne observations and then isolate the CO2 concentration errors caused solely by the 

ensemble mean of posterior net fluxes by subtracting the observation, representation, and transport errors in seven regions. 

Our analysis reveals that the flux errors projected into CO2 space account for 55-85% of the regional average RMSE over the 20 
three years, ranging from 0.88 to 1.91 ppm. In five regions, the error estimates based on observations exceed those computed 

from the ensemble spread of posterior fluxes by 1.33-1.93 times, implying an underestimation of the actual flux errors, while 

their magnitudes are comparable in two regions. The adjoint sensitivity analysis identifies the underestimation of flux errors 

is prominent where the magnitudes of fossil fuel emissions exceed those of terrestrial biosphere fluxes by 3-31 times over 

the three years. This suggests the presence of systematic biases in the inversion estimates associated with errors in the 25 
prescribed fossil fuel emissions common to all models. Our study emphasizes the value of airborne measurements for 

quantifying regional errors in ensemble net CO2 flux estimates. 

1 Introduction 

Atmospheric CO2 inverse modeling is a widely employed approaches to estimate net surface-atmosphere CO2 

fluxes by assimilating observed atmospheric CO2 concentrations. Most inverse modeling approaches are based on the 30 
Bayesian theory, wherein posterior flux is estimated from prior knowledge and atmospheric CO2 observations weighted by 
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their uncertainties. This approach estimates a posterior probability distribution that can be represented as a maximum a 

posterori solution (referred to as 𝑥") and an error covariance matrix, following the notation of Rodgers (2000). Theoretically, 

since atmospheric CO2 observations generally have lower uncertainty than prior flux estimates, more observations lead to 

posterior fluxes approaching true values (Liu et al., 2014). 35 
 

However, concerns have been raised that the inverse modeling results are sensitive to the selection of transport 

models, prior flux datasets, and data assimilation techniques that are not accounted for in the Bayesian framework (Basu et 

al., 2018; Philip et al., 2019; Schuh et al., 2019). In order to obtain more robust flux estimates and assess their uncertainties 

resulting from various sources (e.g., atmospheric transport and assimilation techniques), inverse modeling intercomparison 40 
projects (MIPs) have been conducted. These projects include the TransCom project (Gurney et al., 2004; Houweling et al., 

2015), which was first initiated in 1990s, as well as subsequent projects such as the Global Carbon Project (GCP; 

Friedlingstein et al., 2023; Ciais et al., 2022) and the Orbiting Carbon Observatory-2 (OCO-2) MIP (Crowell et al., 2019; 

Peiro et al., 2022; Byrne et al., 2023). These MIPs involve different inverse modeling groups using state-of-the-art transport 

modeling and assimilation techniques that assimilate in situ and satellite CO2 data. Through these MIPs, researchers have 45 
analyzed differences in the maximum posteriori solution across models. The OCO-2 MIP has revealed a general agreement 

on global flux estimates among ensemble models, but significant discrepancies in regional fluxes, regardless of whether in-

situ and/or satellite data are assimilated (Crowell et al., 2019; Peiro et al., 2022).  

 

Realistic error quantification of posterior fluxes from atmospheric flux inversions is essential for understanding how 50 
well the regional fluxes are constrained by current CO2 observing network and identify regions with high uncertainty, 

allowing us to prioritize efforts to mitigate the error. The Bayesian formulation provides a method for calculating 

uncertainties on posterior fluxes based on uncertainties in prior fluxes and assimilated data. This can be calculated 

analytically or approximated using a Monte Carlo method for variational methods (Chevallier et al., 2007; Feng et al., 2009; 

Liu et al., 2014), however, this is often computationally prohibitive for many inversion systems. This Bayesian posterior 55 
uncertainty accounts for random errors in the prior fluxes and observations but does not explicitly incorporate systematic 

errors, thus providing a potential underestimate of the total posterior error.  

 

Errors in the maximum a posteriori fluxes are also commonly characterized through comparisons between 

independent atmospheric CO2 measurements and posterior atmospheric CO2 (Houweling et al., 2015; Crowell et al., 2019; 60 
Byrne et al., 2023). This approach can provide insights into the biases of current inverse modeling at the global, latitudinal, 

or site-specific scales. However, as atmospheric CO2 concentrations are influenced by both local and remote sources, it is 

difficult to identify regions where the observation-model comparison results are representative. Furthermore, these 

comparisons include not only posterior flux errors, but also errors arising from transport, representation, and measurement. 

Because of these limitations, regional posterior flux errors of the ensemble mean have been generally defined as the 65 
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ensemble spread among ensemble posterior fluxes, but this method does not have an observational and theoretical basis and 

may not reflect actual errors (Byrne et al., 2023). 

 

This study aims to develop a framework to quantify the errors in regional net surface-atmosphere CO2 fluxes 

(terrestrial biosphere fluxes + fossil fuel emissions) estimated from an ensemble of inverse models by using airborne CO2 70 
measurements, transport modeling, and adjoint sensitivity analysis. Our target ensemble results are derived from 10 

ensemble members in the v10 OCO-2 MIP for the period 2015–2017, which provide both posterior CO2 fluxes and posterior 

CO2 concentrations sampled at observation sites and times. The ensemble assimilates OCO-2 column-averaged dry-air mole 

fraction (XCO2) retrievals (ACOS v10; O'Dell et al., 2018) and in situ CO2 measurements (Tohjima et al., 2005; Nara et al., 

2017; Schuldt et al., 2021a; 2021b). This study uses more than 833,000 airborne CO2 measurements collected at 1-5 km 75 
altitude above ground level (AGL) from 20 different measurement projects (e.g., Baier et al., 2021; Miller et al., 2021; 

NOAA Carbon Cycle Group ObsPack Team, 2018; Schuldt et al., 2021a; 2021b). These data have broader spatial coverage 

and are less influenced by local sources compared to surface CO2 data, thus capturing signals from regional surface CO2 

fluxes. We quantify the errors in ensemble mean estimates of posterior atmospheric CO2 by comparing them with the 

airborne CO2 data. We then estimate the contributions of various error components (e.g., representation, observation, 80 
transport, and flux errors) to the observation-model difference in atmospheric CO2 and isolate the contribution of flux errors. 

Next, we identify the areas to which these airborne CO2 are most sensitive to and quantify the annual net flux errors in these 

areas. 

2 Data and methodology 

The aim of this study is to quantify the true errors of the ensemble net surface-atmosphere CO2 fluxes generated by 85 
the v10 OCO-2 MIP using airborne observations. Here, "error" refers to the magnitude of the differences between the true 

and estimated flux values, without considering the sign. To achieve this, we employ three steps of analysis as described in 

Figure 1. First, we define two quantities: 1) the root mean square errors (RMSE) between the ensemble mean of posterior 

CO2 concentrations and observed CO2 concentrations, and 2) ERRTOT (Section 2.3). RMSE2 represents the true errors in 

OCO-2 MIP ensemble mean of CO2 concentrations including representation errors (𝜎!"), observation errors (𝜎#"), true flux 90 
errors projected onto CO2 concentration (𝜎$!

" ), transport errors (𝜎%"), and error covariances between the preceding two terms 

(cov(σ&",σ()). 𝐸𝑅𝑅)*)
"  is the sum of the estimated error components, defined as the sum of 𝐸𝑅𝑅+,-" , 𝐸𝑅𝑅*./"  and 𝐸𝑅𝑅01-" . 

𝐸𝑅𝑅+,-"  and 𝐸𝑅𝑅*./"  indicate representation errors (𝜎!") and observation errors (𝜎#"), respectively. 𝐸𝑅𝑅01-"  is the sum of 

estimated flux errors projected onto CO2 space (𝜎$#
" ) and transport errors (𝜎%"), and their error covariances (cov(σ&$,σ()), 

computed from an ensemble spread of posterior CO2 concentrations. Here we separate representation errors from transport 95 
errors for computational purpose. The ratio between ERRTOT and RMSE is then used to evaluate whether the estimated flux 

errors, computed from the ensemble spread of posterior fluxes, overestimate or underestimate the true errors in the ensemble 
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mean fluxes. Next, we calculate the estimated flux errors projected onto atmospheric CO2 (ℎ(𝑒𝑟𝑟$#)) through atmospheric 

transport simulations (Section 2.4). With ℎ(𝑒𝑟𝑟$#), ERRTOT, and RMSE, we derive the true errors in ensemble mean of 

posterior fluxes projected onto CO2 space (ℎ(𝑒𝑟𝑟$!)). Then, we identify the areas where these airborne observations are most 100 
sensitive to using an adjoint sensitivity analysis and calculate the estimated posterior flux errors over these regions (𝑒𝑟𝑟$#). 

Assuming a linear observation operator, the study finally computes the true errors of the ensemble mean posterior fluxes 

over the identified sensitive areas (𝑒𝑟𝑟$!) by applying the ratio between ℎ(𝑒𝑟𝑟$!) and ℎ(𝑒𝑟𝑟$#) to 𝑒𝑟𝑟$#.  

 
Figure 1: Flow chart summarizing the process of evaluating and quantifying errors in ensemble mean of regional posterior fluxes. 105 
RMSE2 is the mean square errors between the ensemble mean of posterior CO2 concentrations and observed CO2 concentrations. 
𝑬𝑹𝑹𝑹𝑬𝑷𝟐  and 𝑬𝑹𝑹𝑶𝑩𝑺𝟐  denote estimates of observation errors and representation errors, respectively. 𝑬𝑹𝑹𝑴𝑰𝑷𝟐  is an ensemble spread 
of posterior CO2 concentrations. 𝑬𝑹𝑹𝑻𝑶𝑻𝟐  is defined as the sum of 𝑬𝑹𝑹𝑹𝑬𝑷𝟐 , 𝑬𝑹𝑹𝑶𝑩𝑺𝟐 , and 𝑬𝑹𝑹𝑴𝑰𝑷𝟐 . 𝒆𝒓𝒓𝒇𝒆 and 𝒆𝒓𝒓𝒇𝒕 are estimates of 
flux errors, defined as an ensemble spread of posterior fluxes, and their true values. 𝒉(𝒆𝒓𝒓𝒇𝒆) and 𝒉(𝒆𝒓𝒓𝒇𝒕) are estimates of flux 
errors projected onto CO2 concentrations and their true values. 𝝈𝒐𝟐, 𝝈𝒓𝟐, 𝝈𝒇𝒕

𝟐 	(𝝈𝒇𝒆
𝟐 	), 𝝈𝒕𝟐, and cov(𝛔𝐟𝐭,𝛔𝐭) indicate the types of errors 110 

represented by the error statics, namely observation errors, representation errors, true (estimated) flux errors projected onto CO2 
concentration, transport errors, and error covariances between the preceding two terms, respectively. 
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2.1 v10 OCO-2 MIP datasets 

The v10 OCO-2 MIP provides multiple results from inverse models that assimilate different combinations of 115 
atmospheric CO2 measurements for 2015–2020. Our study focused on the results from "LNLGIS" experiment, which 

assimilates the most observations except OCO-2 ocean glint XCO2 retrievals that cause significant biases on inversion 

results (Byrne et al., 2023). The “LNLGIS” experiment incorporates v10 OCO-2 land nadir (LN) and glint (LG) XCO2 

retrievals, along with global in situ (IS) data (including surface, ship-based, and airborne measurements) included in the 

obspack_co2_1_OCO2MIP_v3.2.1_2021-09-14. Ten different inverse modeling groups provided monthly posterior surface 120 
CO2 flux estimates interpolated to 1°×1° horizontal resolution and co-sampled posterior atmospheric CO2 data at the time 

and location of all types of observations. All of the inversion groups used the same fossil fuel emission estimates based on 

Open-source Data Inventory for Anthropogenic CO2 (ODIAC) dataset (Basu & Nassar, 2021), but they independently chose 

their transport models, assimilation techniques, and prior flux estimates. These details are provided in Table S1, and more 

detailed explanations for each inverse modeling approach can be found in Byrne et al. (2023). Although the OCO-2 MIP 125 
provides data for the period 2015–2020, we use data for the first three years due to the limited number of airborne 

measurements available during the later years. To minimize the influence of local sources and maximize the influence of 

regional fluxes, we exclude surface measurements and only consider airborne measurements made between 1 and 5 km 

AGL. In addition, only airborne measurement data that were not assimilated in the LNLGIS experiment are used for 

analysis. 130 

2.2 Airborne CO2 measurement data 

Figure 2a shows the spatial distribution of the total number of airborne CO2 measurements used in this study within 

each 1°x1° grid cell. The dataset includes two airborne measurement campaigns over the ocean (Atmospheric Tomography 

Mission; ATom; Thompson et al. 2022 and O2/N2 Ratio and CO2 Airborne Southern Ocean Study; ORCAS; Stephens et al. 

2018), as well as 18 campaigns over land. Specific airborne campaigns and their references are elaborated in Table 1. The 135 
majority of the datasets used in the study are from North America, accounting for 37% of the total number of observations 

for the period of 2015-2017, followed by East Asia with 35% and Alaska with 7%. The duration and extent of the airborne 

observations vary across different regions and time periods. Figure 2b illustrates the number of 1°×1° grid points in each of 

the seven regions where more than 10 observations are available per month. For Alaska, observations were concentrated 

during the Arctic-Boreal Vulnerability Experiment (ABoVE) campaign in 2017 (Sweeney et al. 2022). North America had 140 
observations for most of the analysis period, including observations from the Atmospheric Carbon and Transport – America 

(ACT–America) campaign covering the eastern United States (Davis et al., 2021). The Long-term Comprehensive 

Observation Network for TRace gases by AIrLiner (CONTRAIL; Machida et al., 2008) project provides sparse observation 
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in Europe and continuous observation in East and Southeast Asia from 2015 to 2017, as well as for Australia during 2015–

2016. In South America, measurements were conducted at six different sites in 2017: the majority of these observations 145 
come from five flask measurement sites provided by the National Institute for Space Research (INPE), which likely have a 

low bias in measured flask sample CO2 mole fractions of ~1 ppm or greater when ambient water vapor mole fractions are 

above ~1.5%. These biases in some aircraft flask CO2 measurements have been noted in previous literature (Baier et al., 

2020; Gatti et al., 2023) and impacted data have been removed from all other aircraft flask datasets. Despite the potential 

limitation of these South American observations, our analysis, aimed at introducing a method for quantifying flux errors, 150 
incorporates these data to offer guidance for future studies leveraging bias-corrected observations from this region. As 

discussed in more detail below, readers should keep in mind that our results from South America may have lower reliability 

compared to those from other regions. 
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Figure 2: (a) Total number of airborne measurement data used in this study at each 1°×1° grid point and (b) the number of 1°×1° 155 
grid-points, where more than 10 data is available, within each region and each month for the period 2015–2017. 

 
Table 1. Data description for each airborne measurement campaign.  
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Site code Site name  Measurement campaign 
name 

Measurement 
type 

Data provider ObsPack (original) dataset 
identifier 

Reference 

ACG Alaska Coast Guard, 
Alaska, USA 

NOAA/GML Aircraft 
Program 

In situ National Oceanic and Atmospheric 
Administration (NOAA) Global 
Monitoring Laboratory (GML) 

http://doi.org/10.25925/20
201204a  

Karion et al. 
(2013) 

ACT Atmospheric Carbon and 
Transport – America 
(ACT-America), USA 

ACT-America In situ and 
flask 

National Aeronautics and Space 
Administration Langley Research 
Center (NASA-LaRC), NOAA/GML 

http://doi.org/10.25925/20
201204a 

https://doi.org/10.3334/OR
NLDAAC/1593  

Baier et al. 
(2020) 
DiGangi et al. 
(2021) 
Wei et al. 
(2021) 

AirCore
NOAA 

NOAA AirCore Program NOAA AirCore Program Balloon air 
sampler 

NOAA/GML No Obspack DOIb 

https://doi.org/10.15138/6
AV0-MY81 

Karion et al. 
(2010) 

ALF Alta Floresta, Brazil 
 

Flask National Institute for Space Research 
(INPE) 

http://dx.doi.org/10.25925/
20181030c  
https://doi.org/10.1594/PA
NGAEA.926834 

Gatti et al. 
(2023) 

CAR Briggsdale, Colorado  Flask NOAA/GML http://doi.org/10.25925/20
210517d  

Sweeney et al. 
(2015) 

CON Comprehensive 
Observation Network for 
TRace gases by AIrLiner 
(CONTRAIL) 

 
In situ  National Institute for Environmental 

Studies (NIES), Meteorological 
Research Institute (MRI) 

http://doi.org/10.25925/20
201204a 

https://doi.org/10.17595/2
0180208.001   

Machida et al. 
(2008)  

CRV Carbon in Arctic 
Reservoirs Vulnerability 
Experiment (CARVE), 
Alaska 

Arctic-Boreal 
Vulnerability 
Experiment 
(ABoVE) 

In situ NOAA/GML http://doi.org/10.25925/20
201204a 

https://doi.org/10.3334/OR
NLDAAC/1582  

Sweeney et al. 
(2022) 

GSFC Active Sensing 
of CO2 Emissions over 
Nights, Days and Seasons 
(ASCENDS), USA 

ASCENDS In situ NASA Goddard Space Flight Center 
(NASA-GSFC) 

http://doi.org/10.25925/20
201204a  

Kawa et al. 
(2018) 

IAGOS In-service Aircraft for a 
Global Observing System 

Civil Aircraft for the 
Regular Investigation of 
the atmosphere Based on 
an Instrument Container 
(IAGOS-CARIBIC) 

In situ Karlsruhe Institute of Technology 
(IMK-ASF), Institute for Atmospheric 
and Environmental Sciences (IAU), 
Max Planck Institute for 
Biogeochemistry (MPI-BGC) 

http://doi.org/10.25925/20
201204a 

 

Filges et al. 
(2015) 
 

KORUS The Korea-United States 
Air Quality (KORUS-
AQ) field study 

  In situ NASA-LaRC http://doi.org/10.25925/20
201204a 

https://doi.org/10.5067/AS
DC/SUBORBITAL/KORU
SAQ_TraceGas_AircraftIn
Situ_DC8_Data_1   

Vay et al., 
(2009) 

MAN Manaus, Brazil NOAA/GML Aircraft 
Program  

In situ NOAA/GML https://doi.org/10.25925/2
0210519e  

 

ORC O2/N2 Ratio and CO2 
Airborne Southern Ocean 
Study (ORCAS) 

 
In situ National Center for Atmospheric 

Research (NCAR) 
http://doi.org/10.25925/20
201204a 

https://doi.org/10.5065/D6
SB445X  

Stephens et al. 
(2018) 

PAN Pantanal, Mato Grosso do 
Sul, Brazil 

 
Flask INPE http://dx.doi.org/10.25925/

20181030c  
 

PFA Poker Flat, Alaska NOAA/GML Aircraft 
Program 

Flask NOAA/GML http://doi.org/10.25925/20
210517d  

Sweeney et al. 
(2015) 

RBA-B Rio Branco, Brazil 
 

Flask INPE http://dx.doi.org/10.25925/
20181030c 
https://doi.org/10.1594/PA
NGAEA.926834 

Gatti et al. 
(2023) 

SAN Santarém, Brazil 
 

Flask INPE http://dx.doi.org/10.25925/
20181030c  
https://doi.org/10.1594/PA
NGAEA.926834 

Gatti et al. 
(2023) 

http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.15138/6AV0-MY81
https://doi.org/10.15138/6AV0-MY81
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.17595/20180208.001
https://doi.org/10.17595/20180208.001
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1582
https://doi.org/10.3334/ORNLDAAC/1582
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.25925/20210519e
https://doi.org/10.25925/20210519e
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.5065/D6SB445X
https://doi.org/10.5065/D6SB445X
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
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SGP Southern Great Plains, 
Oklahoma, USA 

NOAA/GML Aircraft 
Program 

Flask The US Department of Energy 
(DOE)/Lawrence Berkeley National 
Laboratory (LBNL), NOAA/GML 

http://doi.org/10.25925/20
210517d  

Biraud et al. 
(2013) 
Sweeney et al. 
(2015) 

SONGN
EX2015 

Shale Oil and Natural Gas 
Nexus 2015 (air 
campaign), USA 

Shale Oil and Natural 
Gas Nexus 2015 (air 
campaign) 

In situ NOAA Chemical Sciences Laboratory 
(CSL) 

http://doi.org/10.25925/20
201204a 

 

TEF Tefé, Brazil  
 

Flask INPE http://dx.doi.org/10.25925/
20181030c  
https://doi.org/10.1594/PA
NGAEA.926834  

Gatti et al. 
(2023) 

TOM Atmospheric Tomography 
Mission (ATom) 

Atmospheric 
Tomography Mission 
(ATom) 

In situ NOAA/GML, Harvard University http://doi.org/10.25925/20
201204a 

https://doi.org/10.3334/OR
NLDAAC/1581 

Thompson et 
al. (2022) 

a: obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 (Schuldt et al., 2021b) 
b: obspack_co2_1_AirCore_v4.0_2020-12-28 
c: obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-13 (NOAA Carbon Cycle Group ObsPack Team, 2018) 
d: obspack_co2_1_NRT_v6.1.1_2021-05-17 (Schuldt et al., 2021a) 
e: obspack_multi-species_1_manaus_profiles_v1.0_2021-05-20 (Miller et al., 2021) 

 

 

2.3 Evaluation of ensemble posterior CO2 fluxes 160 

We first employ the two matrixes defined in Eq. (1) and (2) below to evaluate ensemble posterior net flux errors 

proposed by Liu et al. (2021). One is RMSE between the ensemble mean of posterior atmospheric CO2 from OCO-2 MIP 

models and the atmospheric CO2 from airborne measurements, which can be written as: 

𝑅𝑀𝑆𝐸" = 2
3
∑ 0ℎ4(𝑥")1111111 − 𝑦#,540ℎ4(𝑥")1111111 − 𝑦#,54

)3
562 , where ℎ4(𝑥")1111111 = 2

0
∑ ℎ5,7(𝑥"7)0
762      (1) 

ℎ4(𝑥")1111111 is the ensemble mean of posterior atmospheric CO2 sampled at the time and location of the ith airborne observation 165 
𝑦#,5, within each 1°×1° grid-cell in each month. N is the monthly total number of sampled data at each grid-cell. M is the 

number of ensemble members (i.e., 10). A single monthly RMSE value is computed using N measurement data at each grid-

cell. The number of RMSE values is calculated per month within each region corresponds to the number of grid-cells shown 

in Figure 2b. The RMSE indicates the magnitude of the actual CO2 errors in the ensemble estimates, which is also a quantity 

broadly used to evaluate the accuracy of posterior fluxes (Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023). As 170 
illustrated in Figure 1 and as described in Appendix A (Eq. A3), RMSE2 includes not only the projection of true flux errors 

on CO2 concentration (𝜎$!
" ), but also transport errors (𝜎%"), their error covariances (cov(σ&",σ()), representation errors (𝜎!"), 

and airborne observation errors (𝜎#"). Both transport errors and representation errors stem from transport models. Transport 

errors include the errors in model structures and meteorological fields, while representation errors arise from a mismatch in 

resolution between model simulations and observations.  175 
 

In practice, the true flux errors are often approximated by the spread of ensemble fluxes, so the projection of true 

flux errors to CO2 concentrations and transport errors are approximated by the ensemble spread of the simulated CO2 

http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
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concentrations in OCO-2 MIP as shown in Appendix A. To evaluate whether this approximation represents the true errors in 

the ensemble mean fluxes and mean simulated CO2 concentrations, we define another quantity 𝐸𝑅𝑅)*)"  (Figure 1). Different 180 
from RMSE, the variance terms of flux errors (𝜎$#

" ) and transport errors (𝜎%") and covariance terms between them (cov(𝜎$#,𝜎%)) 

are replaced by the spread of ensemble (i.e., variance) posterior atmospheric CO2 concentrations (𝐸𝑅𝑅01-" ) defined as:  

𝐸𝑅𝑅01-" =	 2
3
∑ 2

0
∑ [ℎ5,7(𝑥"7)	 − ℎ4(𝑥")1111111	]0
762 [ℎ5,7(𝑥"7)	 − ℎ4(𝑥")1111111	])3

562       (2)  

Different from Liu et al. (2021) which used only one transport model, 𝐸𝑅𝑅01-"  accounts transport errors because posterior 

atmospheric CO2 were generated by multiple types of transport models in OCO-2 MIP driven by different meteorology 185 
fields. Thus, 𝐸𝑅𝑅01-"  term accounts for transport errors, but not representation errors due to the coarse spatial resolution of 

these transport models with the highest spatial resolution being 2°×2.5°. 

 

To obtain representation errors and observation errors not captured by 𝐸𝑅𝑅01-" , we additionally calculate 𝐸𝑅𝑅+,-"  

and 𝐸𝑅𝑅#89" , respectively. 𝐸𝑅𝑅+,-"  indicates the representation errors (𝜎!") in RMSE2 as shown in Figure 1 and is defined as a 190 
spatial variability of atmospheric CO2 within a 2°×2.5° grid cell written as: 

𝐸𝑅𝑅+,-" =	 2
3
∑ 𝑉𝐴𝑅:*%,5

	3
562           (3)   

With the high-resolution (0.5ºx0.625º) 3-hourly GEOS-5 simulation results for 2018 from NASA Goddard Space Flight 

Center (Weir et al., 2021), we calculate the variance of atmospheric CO2 concentration within each 2°×2.5° grid cell at every 

3-hour interval. Then, we sample the CO2 variance value (𝑉𝐴𝑅:*%,5) at the grid cell containing the ith observation and the 195 
time closest to the observation. Subsequently, the monthly mean values of the N co-sampled variances are derived (𝐸𝑅𝑅+,-" ). 

We assume that the variances do not vary significantly across years, given relatively lower monthly variability of 𝐸𝑅𝑅+,-	  

compared to that of RMSE and ERRMIP (to be shown in Section 3.2). The reason for calculating CO2 variance value within 

2°×2.5° is because it is the finest resolution among the OCO-2 MIP models. We evaluate whether the representation errors, 

derived from simulated atmospheric CO2 fields, represent the actual spatial variability of CO2 concentration by comparing 200 
simulated CO2 variance with the spatial variance of aircraft measurement data from ACT-America project (Supplement Text 

and Fig. S1). The evaluation results support our approach.  

 

𝐸𝑅𝑅*./"  represents the observation errors (𝜎#") in RMSE2 as shown in Figure 1. Unfortunately, this information is 

missing from many of the airborne measurement datasets included in the given OCO-2 MIP ObsPack format, even though 205 
uncertainties may be included in the original datasets. The World Meteorological Organization (WMO) community has 

established network compatibility objectives for the precision of atmospheric CO2 measurements: 0.1 ppm in the Northern 

Hemisphere and 0.05 ppm in the Southern Hemisphere. Assuming an ideal situation without systematic bias, we set the 

observation error (𝐸𝑅𝑅*./	 ) for all airborne observations at 0.1 ppm. However, in reality, systematic errors could be present 

in airborne observation stemming from instrument or setup biases, calibration offsets, and other factors. Especially, 210 
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CO2 measurements in South America from INPE might exhibit a higher measurement error compared to other regions 

because of unresolved water vapor contamination issues in those flask measurements, which could result in both a low bias 

(~1-3 ppm at 3% absolute humidity, respectively) and spurious variability (Baier et al., 2020). The potential effects of these 

systematic errors on our findings will be addressed in Section 4. This study only employs 𝐸𝑅𝑅*./"  for calculating 𝐸𝑅𝑅)*)"  

and does not compare it with other error quantities in Section 3. 215 
 

Therefore, ERRTOT, the approximation for RMSE, is defined as: 

𝐸𝑅𝑅)*)" = 𝐸𝑅𝑅*./" + 𝐸𝑅𝑅+,-" + 𝐸𝑅𝑅01-"          (4)  

By applying 1000 bootstrap resampling to the monthly grid-based error statistics (e.g., RMSE, 𝐸𝑅𝑅01-	 , 𝐸𝑅𝑅+,-	 , and 

𝐸𝑅𝑅)*)	 ) within each region, we obtain regional mean values of these error statistics, along with their corresponding 95% 220 
confidence intervals. 

 

To evaluate whether the spread of ensemble CO2 fluxes from OCO-2 MIP represents the true flux errors in the 

ensemble mean, we calculate the ratio between monthly ERRTOT and RMSE: 

𝑅𝑎𝑡𝑖𝑜" =	 ,++&'&
%

+0/,%
            (5)   225 

Given that 𝐸𝑅𝑅+,-"  reasonably depict actual representation errors, 𝑅𝑎𝑡𝑖𝑜" can indicate whether posterior flux and transport 

errors computed from the ensemble spread is an overestimation or underestimation of true flux and transport errors. In this 

study, we assume that the estimated transport errors from the ensemble spread among transport models used in OCO-2 MIP 

represent the true transport errors and the difference between 𝑅𝑀𝑆𝐸" and 𝐸𝑅𝑅)*)"  mainly arises from the difference in the 

flux error variances (𝜎$!
" 	𝑎𝑛𝑑	𝜎$#

" ). Thus, a ratio close to 1 indicates that the estimated posterior flux errors derived from the 230 
ensemble model spread are close to the true posterior flux errors in the ensemble mean fluxes. A ratio greater than 1 means 

that the posterior flux errors are overestimated, and vice versa. However, our assumption regarding transport errors may be a 

strong assumption given that the transport errors are derived from 10 ensemble members, covering four different transport 

models, which might not fully capture the actual transport errors. We discuss how this assumption affects our key results in 

Section 4. 235 

2.4 Quantification of the uncertainties of ensemble mean of posterior CO2 fluxes  

In addition to the qualitative evaluations of posterior flux errors using the ratios between ERRTOT and RMSE, we 

propose a method to quantitatively assess the ensemble posterior flux errors (i.e., variance of flux errors) in both CO2 space 

and flux space. To do this, we first need to calculate the variance of atmospheric CO2 errors due to only the ensemble spread 

of posterior fluxes from OCO-2 MIP (ℎA𝑒𝑟𝑟$#B
"
). As shown in the Appendix A, this term can be written as: 240 

ℎA𝑒𝑟𝑟$#B
" = 2

3
∑ 2

0
∑ 2

0
∑ 0ℎ<A𝑥"<,5B − ℎ<A𝑥"7,5B40
762 0ℎ<A𝑥"<,5B − ℎ<A𝑥"7,5B4

)0
<62

3
562      (6) 
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Using all transport models engaged in the OCO-2 MIP would be ideal to derive ℎA𝑒𝑟𝑟$#B
"
, but, in this study, we approximate 

this error term using the GEOS-Chem model as depicted: 

ℎA𝑒𝑟𝑟$#B
" ≈	ℎ=:A𝑒𝑟𝑟$#B

" =	 2
3
∑ 2

0
∑ 0ℎ=:(𝑥4D)1111111111 − ℎ=:A𝑥"7,5B40
762 0ℎ=:(𝑥4D)1111111111 − ℎ=:A𝑥"7,5B4

)3
562 ,    (7) 

where ℎ=:(𝑥4D)1111111111 = 2
0
∑ ℎ=:A𝑥"7,5B0
762  245 

 

To get ℎ=:A𝑒𝑟𝑟$#B
"
, we conduct a set of forward simulations using the GEOS-Chem transport model (within the 

GEOS-Chem Adjoint model v8.2j; Henze et al., 2007). In all ten experiments, consistent meteorology and emission forcing 

data are used from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2; Gelaro et 

al., 2017) and Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda and Maksyutov, 2015); identical annually 250 
balanced hourly terrestrial biosphere fluxes from SiB4 (Haynes et al., 2021) were also employed. However, in each 

experiment, the prescribed monthly fluxes of terrestrial ecosystems and oceans are based on the posterior fluxes from the 

respective ten OCO-2 MIP ensemble members. All experiments are performed at 2°×2.5° horizontal resolution and 47 

vertical levels for the period 2015–2017. By calculating the mean of variances of simulated CO2 concentrations among the 

ten experiments at ith airborne observations within each 1°×1° grid-cell, we derive ℎ=:A𝑒𝑟𝑟$#B
". 255 

 

Because we assume that the spread of ensemble transport models used in OCO-2 MIP represents the true transport 

errors included in RMSE2, the transport errors along with observation errors and representation errors would cancel out when 

we calculate the difference between monthly RMSE2 and 𝐸𝑅𝑅)*)" . Consequently, the difference between monthly RMSE2 

and 𝐸𝑅𝑅)*)"  arises from the difference in the flux error variances (𝜎$!
" 	𝑎𝑛𝑑	𝜎$#

" ). The difference between monthly true flux 260 

errors (ℎA𝑒𝑟𝑟$!B
"
) and estimated flux errors (ℎA𝑒𝑟𝑟$#B

" ≈	ℎ=:A𝑒𝑟𝑟$#B
"
) projected onto CO2 space can be derived from the 

difference between RMSE2 and 𝐸𝑅𝑅)*)"  as shown: 

ℎA𝑒𝑟𝑟$!B
" − ℎA𝑒𝑟𝑟$#B

" = 𝑅𝑀𝑆𝐸	" − 𝐸𝑅𝑅)*)"         (8) 

 

From Eq. (8), we can derive the true errors of the ensemble mean fluxes in CO2 space, ℎA𝑒𝑟𝑟$!B
"
. Out of 181 cases, 265 

representing the total months of observations across all seven regions, ℎA𝑒𝑟𝑟$!B can be derived using this equation in 158 

cases. In 23 cases (13% of total cases), ℎA𝑒𝑟𝑟$!B	cannot be derived when ERRTOT and/or ℎA𝑒𝑟𝑟$#B values fell outside the 

applicable range. Around 40% of the exception cases occur in South America where observation cover only one to six 1°×1° 

grid cells per month, suggesting that observations are insufficient to quantify the monthly flux errors in this region.  

 270 
In order to link those terms with flux errors in flux space, we first identify the areas sensitive to airborne CO2 

measurements by conducting sensitivity experiments using the GEOS-Chem Adjoint model. Seven sets of adjoint sensitivity 
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experiments are conducted to examine the sensitivity of airborne measurements in each region (defined in Figure 2a) to 

surface CO2 fluxes for the month of observations. The sensitivity experiments use the same meteorology and CO2 emission 

datasets as the forward simulations, along with the ensemble mean of posterior terrestrial biosphere and ocean flux values. 275 
The following explanation of the sensitivity analysis uses the same notation as Liu et al. (2015). The cost function (J) is 

defined as the sum of simulated CO2 concentrations where airborne observations were made within each region and month: 

𝐽	 =	∑ ℎ5(𝑥")
3	
562              (9) 

The sensitivity of observations to surface fluxes at lth grid-cell and tth time is derived from the partial derivative of J with 

respect to surface fluxes (𝑥">,<) written as: 280 

𝛾>,% = 	 ?@
?AB),!

	             (10) 

Monthly cumulative sensitivity (𝛽) with respect to surface fluxes is determined by integrating 𝛾>,% from the measurement 

time (t0) to the initial time (t-T) for each month: 

𝛽> = 	∑ 𝛾>,	%
%+&
%6%,              (11) 

 285 
In order to find the most sensitive areas to the airborne observations, we select the areas accounting for 50% of the 

global total values of 𝛽 for each region and month. Areas with sensitivity values lower than 0.1% (0.15% for Alaska, 

Australia, and Southeast Asia) of the total value of β are excluded due to occasional cases where observations are influenced 

uniformly across too wide regions as a result of active atmospheric mixing. Additionally, to avoid excessive consideration of 

localized effects due to a large number of observations occurring in a single location, regions with sensitivity values greater 290 
than 1% are included in the effective area. We then compute the estimated posterior flux errors in flux space (𝑒𝑟𝑟$#

" = 𝜎$#
"	) by 

calculating the ensemble spread of the total posterior flux values (and area-averaged mean values) over the effective area for 

each month for the period 2015–2017, as illustrated in Figure 1. The estimated mean posterior flux errors (𝑒𝑟𝑟$#) over the 

selected areas in each month exhibits a significant correlation (p≤0.05) with the monthly ℎA𝑒𝑟𝑟$#B in all regions, except for 

Australia where the observational campaign was conducted in specific months (Fig. S2). While the observed atmospheric 295 
CO2 concentration is influenced by both land and ocean sources, a comparison of the magnitudes of 𝑒𝑟𝑟$# between ocean and 

land within the effective areas reveals that, on average, the land flux errors contribute more than 95% to the total flux errors 

in all regions (Fig. S3). This result indicates that our evaluation results based on atmospheric CO2 can be applied to deriving 

the actual errors of posterior net land CO2 fluxes within the selected area in flux space.  

 300 
This study provides both monthly and three-year mean values of regional flux error statistics for the period 2015–

2017. Technically, it is possible to derive the monthly true errors in the ensemble mean of net land CO2 fluxes using the 

monthly error statistics. However, to obtain more robust results, we compute the true errors of annual total fluxes over the 

analysis period. To identify the areas contributing most to the computed mean error statistics, we calculate the number of 
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months selected as the effective areas for monthly airborne observations. Those grid cells, at 2°×2.5° resolution, 305 
corresponding to the effective areas are assigned a value of 1, while the remaining cells are assigned a value of 0 for each 

month. We then calculate composite values for each grid cell over the three years. A higher number of months indicates 

more information in those grid cells was utilized in calculating the three-year regional mean error statistics. We define that 

our three-year mean error statistics mostly represent the areas where the composite values exceed eight, corresponding to 

20% of the total analysis months (i.e., 36).  310 
 

The observation operator, which converts surface CO2 fluxes to atmospheric CO2, is generally assumed linear. 

Therefore, we can obtain the true errors in the ensemble annual total net land fluxes in those areas, 𝑒𝑟𝑟$! 	(= 𝜎$!
	 ), by 

multiplying the ratio between three-year mean values of ℎA𝑒𝑟𝑟$!B and ℎA𝑒𝑟𝑟$#B by the ensemble spread of the annual total net 

land flux estimates (𝑒𝑟𝑟$#) within the effective areas. The equation can be written as:  315 

𝑒𝑟𝑟$! =
CDE!!-!F	

CGE!!-#H
× 𝑒𝑟𝑟$#                                                                (12) 

One thing readers should keep in mind is that the 𝑒𝑟𝑟$# is identical to the ensemble spread of posterior terrestrial biosphere 

fluxes because all OCO-2 MIP models used uniform fossil fuel emission estimates and assumed them to be perfectly known. 

Lastly, to explore characteristics of regions where average annual total 𝑒𝑟𝑟$! is significantly underestimated, we compute the 

ensemble mean of average annual posterior terrestrial biosphere CO2 fluxes and fossil fuel CO2 emissions (from ODIAC) in 320 
the effective area. 

3 Results 

3.1 Spatiotemporal variations of the ensemble posterior CO2 concentration errors and other major error components   

Because the magnitude of land-atmosphere CO2 fluxes is generally over 10 times greater than ocean-atmosphere 

CO2 fluxes, the observed atmospheric CO2 over the oceans carries signals from nearby land fluxes. The four ATom 325 
campaigns spanning four seasons and the ORCAS campaign during austral summer spanned wide latitudinal ranges, 

primarily over the oceans, providing a unique opportunity to analyze the latitudinal distributions of inverse modeling errors 

and contributions of main error sources. We compare the ensemble posterior CO2 to airborne CO2 measurements taken 

between 1-5 km AGL and then calculate the mean error statistics for the entire campaign period. Comparisons to 

observations from ATom and ORCAS campaigns reveal a general increase in RMSE values towards the northern high 330 
latitudes, reaching 1.2 ppm at 40°N (Figure 3a, f). The latitudinal gradient becomes particularly evident during the summer 

season, with RMSE values exceeding 1.5 ppm over North America (Fig. S4), suggesting significant contributions of errors in 

land fluxes to the differences between observed and simulated atmospheric CO2. Additionally, consistently elevated RMSE 

values (>1.5 ppm) commonly appear over the west coast of Africa throughout the seasons.  
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 335 

 
Figure 3: Spatial distributions of (a) RMSE, (b) ERRMIP, (c) ERRREP, and (d) Ratio (= 

,(𝑬𝑹𝑹𝑶𝑩𝑺	(= 𝟎. 𝟏	𝒑𝒑𝒎))𝟐 +𝑬𝑹𝑹𝑹𝑬𝑷𝟐 +𝑬𝑹𝑹𝑴𝑰𝑷𝟐 	/	𝑹𝑴𝑺𝑬) where ATom (circle) and ORCAS (triangle) airborne measurements 

were taken and (e and f) their latitudinal distributions smoothed by 10° moving average with 95% confidence intervals derived from 
1000 bootstrap samples of datasets (error bar).  340 

 

Both ERRMIP and ERRREP exhibit similar spatial distributions as RMSE (Figure 3a-c, f). However, ERRMIP has a 

stronger positive correlation with RMSE (r = 0.57 and 0.58 for ATom and ORCAS, respectively) compared to ERRREP (r = 

0.35 and 0.32), with an average greater magnitude (0.49 and 0.32 ppm) than ERRREP (0.27 and 0.20 ppm) globally for the 

whole campaign periods. Particularly, ERRMIP and ERRREP account for 75% and 37% of the anomalous high RMSE values 345 
(1.5 ppm) in Northern America (32-50N and 85-124W), and 75% and 30% of the RMSE values (1.2 ppm) along the west 

coast of Africa. These findings indicate that ERRMIP which represents errors in posterior fluxes and transport is the most 

significant factor in explaining RMSE. 
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Next, in order to assess the proximity of the estimated posterior flux errors, based on the spread of OCO-2 MIP 350 
ensemble fluxes, to the true posterior flux errors of the ensemble mean, we compare RMSE with the sum of ERRMIP, ERRREP, 

and ERROBS (referred to as ERRTOT). The ratio of ERRTOT to RMSE exceeds one over the tropical Pacific and the Southern 

Ocean (Figure 3d, e), indicating that the ensemble spread of posterior fluxes overestimates true flux errors over the regions 

sensitive to these observations. This overestimation pattern consistently appears for both the ATom and ORCAS campaigns 

across all seasons (Fig. S5). Airborne CO2 measurements in this area are predominantly influenced by ocean fluxes due to 355 
the limited land extent and the significant distance from land (Yun et al., 2022), suggesting the true posterior ocean flux 

errors may be smaller than the spread of the ensemble posterior flux estimates. In contrast, a ratio of ERRTOT to RMSE less 

than one was observed along the African coast during the ATom campaigns, with the exception of the 2018 spring campaign 

conducted in a relatively distant region from Africa. Considering that these airborne observations are known to be sensitive 

to terrestrial biosphere fluxes in tropical Africa (Liu et al., 2021), our results imply that true errors of the ensemble mean 360 
terrestrial biosphere fluxes in this region may be larger than the estimated errors based on the OCO-2 MIP ensemble spread. 

These findings agree with Gaubert et al. (2023), which showing most of the inverse models in v10 OCO-2 MIP have 

significant errors because of potential positive biases in OCO-2 XCO2 measurements for this region. 

 

In the northern mid-to-high latitudes, characterized by significant land CO2 flux impacts on atmospheric CO2 365 
variations (Yun et al., 2022), the ratio of ERRTOT to RMSE exhibits substantial variation across space and time. The ratio 

between ERRTOT to RMSE is greater than one within the North American continent during summer and autumn. However, in 

other areas, there is a mixed pattern with ratios both below and above one, although the majority of the areas exhibit ratios 

less than one during winter. These findings highlight that the degree of underestimation or overestimation of true flux errors 

based on ensemble spread can differ depending on regions and seasons, emphasizing the need for a more detailed evaluation 370 
of flux errors at a regional level based on long-term independent observation.  

3.2 Evaluation of v10 OCO-2 MIP ensemble posterior CO2 flux errors by regions 

In this section, we calculate the regionally averaged monthly error statistics by comparing the ensemble posterior 

CO2 to airborne measurements over seven regions for 2015–2017. RMSE values in all these regions exhibit significant 

monthly variations, with values falling within the range of 1-3 ppm, with no clear seasonality possibly due to variations in 375 
observation routes (Figure 4). Consistent with the results shown in Section 3.1, ERRMIP is the most significant factor 

explaining the variations of RMSE. Among the seven regions, significant positive correlations (p<0.05) between monthly 

RMSE and ERRMIP exist in Alaska (r=0.46), mid-latitude North America (r=0.63), Europe (r=0.60) and East Asia (r=0.60). 

Furthermore, the correlation coefficient is greater than or comparable to that with ERRREP. This suggests that in these 

regions, temporal variations of the errors in posterior fluxes and transport are the major contributors to the temporal 380 
variations of RMSE. On the other hand, RMSE does not exhibit a significant correlation with either ERRMIP or ERRREP in 
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Southeast Asia, Australia, and South America. This implies that the estimated posterior flux errors based on ensemble spread 

may not represent the temporal variations in true flux errors in those regions.  

 

 385 
Figure 4: (a-g) Monthly values of RMSE, ERRMIP, ERRREP, and Ratio for each region and (h, i) their mean values for the period 
2015–2017. The upper right number in (a-g) indicates the correlation coefficients between RMSE and ERRMIP and ERRREP. The 
shaded areas and error bars represent the 95% confidence intervals derived from 1000 bootstrap samples of datasets. 

 

RMSE values exhibit significant variability not only over time but also across regions. The three-year average 390 
RMSE is the largest in East Asia (1.98 [1.90, 2.06] ppm: mean [95% confidence intervals]), followed by Europe (1.57 [1.41, 

1.74] ppm) and the lowest in Australia (0.88 [0.79, 0.97] ppm), followed by Alaska (1.19 [1.12, 1.25] ppm). ERRMIP is the 

primary error component for RMSE, accounting for 58-83% of the RMSE, surpassing the ERRREP in all the regions by 1.2-2.1 

time. In East Asia, the difference between ERRMIP and ERRREP is relatively small compared to other regions. This could be 

attributed to the presence of numerous significant carbon sources, particularly along the coastal areas, resulting in increased 395 
spatial variability of CO2 within the coarse grid cell of OCO-2 MIP inverse modeling. 
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The ratio between ERRTOT and RMSE also show significant variability across regions. Our results indicate that, on 

average, the estimated flux errors in Alaska and South America closely match the true flux errors with ratios of 0.98 [0.89, 

1.08] and 0.99 [0.79, 1.24], respectively, while mid-latitude North America, Europe, East Asia, Southeast Asia, and 400 
Australia show significant underestimation at a 95% confidence level with ratios of 0.90 [0.83, 0.97], 0.79 [0.61, 0.97], 0.84 

[0.78, 0.91], 0.75 [0.65, 0.86], and 0.73 [0.59, 0.87], respectively, throughout the analysis period. Furthermore, the monthly 

variabilities (i.e., standard deviation) of the ratios are much greater in regions with diverse campaign durations and routes, 

such as South America (0.87), than in East Asia (0.21), characterized by a consistent three-year observation campaign along 

the same paths. This suggests that the spatial variability in the degree of flux error underestimation or overestimation may 405 
exceed the temporal variability. 

3.3 Error quantification of v10 OCO-2 MIP ensemble posterior net CO2 fluxes by regions 

Next, by incorporating the monthly RMSE, ERRTOT, and 𝒉A𝒆𝒓𝒓𝒇𝒆B, we derive monthly true posterior flux errors in 

CO2 space (i.e., 𝒉A𝒆𝒓𝒓𝒇𝒕B) for each region during the period 2015–2017 (Figure 5). Regionally averaged 𝒉A𝒆𝒓𝒓𝒇𝒕B exhibits 

different seasonal and monthly variability compared to 𝒉A𝒆𝒓𝒓𝒇𝒆B. In the northern mid-latitude regions, 𝒉A𝒆𝒓𝒓𝒇𝒆B shows clear 410 
seasonal cycles for the entire analysis period, despite different observation routes in each month. For example, in mid-latitude 

North America and East Asia, the growing season (May to October; 0.6 and 0.9 ppm, respectively) experiences higher 

𝒉A𝒆𝒓𝒓𝒇𝒆B than the non-growing season (November to April; 0.4 and 0.7 ppm). The seasonal variations are also observed in 

𝒉A𝒆𝒓𝒓𝒇𝒕B in East Asia and partially in mid-latitude North America for 2017, but they are not discernible in Alaska and Europe. 

In addition, monthly 𝒉A𝒆𝒓𝒓𝒇𝒕B  does not exhibit a significant correlation (p<0.05) with monthly 𝒉A𝒆𝒓𝒓𝒇𝒆B  in Alaska, 415 
midlatitude North America, Southeast Asia, and South America. 𝒉A𝒆𝒓𝒓𝒇𝒕B displays greater monthly variability than 𝒉A𝒆𝒓𝒓𝒇𝒆B. 

For example, in mid-latitude North America and East Asia, the standard deviation of monthly 𝒉A𝒆𝒓𝒓𝒇𝒕B is 1.8 and 2.3 times 

greater than that of monthly 𝒉A𝒆𝒓𝒓𝒇𝒆B.  

 



 

19 
 

 420 
Figure 5: (a-g) Monthly values of 𝒉6𝒆𝒓𝒓𝒇𝒆7 and 𝒉6𝒆𝒓𝒓𝒇𝒕7 for each region and (h) their mean values for the period 2015–2017. The 
upper right number indicates the correlation coefficient between them. The shaded areas and error bars represent the 95% 
confidence intervals derived from 1000 bootstrap samples of datasets. 

 

The comparison between the three-year average ℎA𝑒𝑟𝑟$!B and RMSE highlights the substantial contributions of 425 
posterior flux errors to the differences between airborne observations and simulated atmospheric CO2 from OCO-2 MIP 

ensemble models. The ℎA𝑒𝑟𝑟$!B tends to be larger in regions with higher RMSE, peaking in East Asia (ℎA𝑒𝑟𝑟$!B=1.32 ppm 

and RMSE=1.98 ppm) and reaching a minimum in Australia (ℎA𝑒𝑟𝑟$!B=0.75 ppm and RMSE=0.88 ppm) (Figures 4h and 5h). 

The ℎA𝑒𝑟𝑟$!B accounts for up to 85% of the RMSE in Australia, followed by Southeast Asia (80%) and a minimum of 60% 

of the RMSE in South America, followed by mid-latitude North America (64%). This indicates dominant contributions of 430 
posterior flux errors to RMSE, surpassing representation and transport errors in the first two regions. 

 

The regional mean ratios between ℎA𝑒𝑟𝑟$#B and ℎA𝑒𝑟𝑟$!B throughout the analysis period indicate significant 

underestimations at a 95% confidence level of true posterior flux errors in mid-latitude North America, Europe, East Asia, 
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Southeast Asia, and Australia by a factor of 0.74 [0.61, 0.88], 0.52 [0.27, 0.78], 0.59 [0.48, 0.70], 0.56 [0.41, 0.72], and 0.59 435 
[0.34, 0.87], respectively (Figure 5h). In contrast, Alaska and South America exhibit comparable estimates of true flux errors 

by factors of 0.96 [0.76, 1.17] and 0.97 [0.49, 1.54], respectively. The regions with significant underestimation align with 

those identified in the previous analysis based on ratios between ERRTOT and RMSE (Section 3.2), but the ℎA𝑒𝑟𝑟$#B to 

ℎA𝑒𝑟𝑟$!B ratios imply weaker underestimation of true flux errors. The ratios have larger uncertainty range in the regions 

where observations conducted over limited times and locations, such as those in Europe, Australia, and South America than 440 
in the mid-latitude North America and East Asia where observations cover wider areas and occur more frequently. 

 

Finally, by using the three-year regional mean ratios between  ℎA𝑒𝑟𝑟$#B and ℎA𝑒𝑟𝑟$!B, we compute the true errors in 

the annual net land fluxes over the effective areas averaged for the period 2015–2017 (Figure 6). We find that the actual flux 

errors are underestimated, particularly in regions where annual CO2 emissions from fossil fuel combustion exceed annual 445 
terrestrial biosphere fluxes by 3-31 times. The airborne measurements carried out in mid-latitude North America, East Asia, 

and Southeast Asia are influenced by a broad region encompassing the United States, the eastern part of East Asia, and the 

western part of Southeast Asia where fossil fuel CO2 emissions are 1,341, 2,443, and 815 Tg C year-1, respectively. The first 

two regions are estimated as significant terrestrial biosphere CO2 sinks, with estimated fluxes of −414 ± 279 (ensemble mean 

± 1s) and −561 ± 380 Tg C year-1, in contrast to Southeast Asia (26 ± 118 Tg C year-1). However, the CO2 sinks are more 450 
than 3 and 4 times smaller than the fossil fuel CO2 emissions, respectively. The recalculated net land flux errors in these 

regions exceed the ensemble spread with values of 374, 643, and 211 Tg C year-1. Observations in Europe and Australia, 

conducted over limited periods and specific locations, mainly represent certain areas in the western Europe and the 

southeastern part of Australia, where fossil fuel emissions (234 and 53 Tg C year-1, respectively) are around four and five 

times greater than terrestrial biosphere sinks (−51 ± 34 and −10 ± 67 Tg C year-1). The recalculated net land flux errors in 455 
these regions are also larger than the ensemble spread, estimated at 65 and 114 Tg C year-1, respectively. On the contrary, the 

most influential areas for the observation in Alaska and South America, encompassing the southeastern region of Alaska and 

the northern part of Brazil, characterized as a terrestrial biosphere sinks of −8 ± 11 Tg C year-1 and sources of 625 ± 387 Tg 

C year-1, respectively, which are comparable to or more than 10 times greater than fossil fuel emissions (10 and 38 Tg C 

year-1). The observation-based estimates of true net land flux errors are almost identical to the ensemble spread in both 460 
regions with values of 11 and 398 Tg C year-1, respectively. 
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Figure 6: (a) Number of months selected as the effective area for airborne measurements. The outlined area represents selected 
areas for more than eight months or equal. (b) Annual total terrestrial biosphere CO2 fluxes obtained from the ensemble mean of 465 
ten OCO-2 MIP models and annual total fossil fuel CO2 emissions estimated from ODIAC data for each outlined area averaged over 
the period 2015–2017. The black error bars denote ± one standard deviation of the posterior net land fluxes, identical to those of the 
posterior terrestrial biosphere fluxes. The error bars in red indicate the newly-estimated range of errors in the posterior net land 
fluxes from this study. 

4. Discussion and conclusions 470 

Our results show that the errors in the posterior net land CO2 fluxes is a major factor contributing to the RMSE 

between posterior simulated CO2 and aircraft observations for the period 2015–2017. Our findings reaffirm the feasibility of 

evaluating inversion performance on land flux estimates through a direct comparison between airborne observations and 

model data (Houweling et al., 2015; Chevallier et al., 2019; Crowell et al., 2019; Byrne et al., 2023). However, when 

evaluating inversion estimates at regional scales, the significance of representation and transport errors become pronounced. 475 
Our results show that regional variations in representation errors, along with the sum of transport errors and their covariances 

with flux errors (inferred from the difference between ERRMIP and ℎA𝑒𝑟𝑟$#B; Fig. S6), exceed those in true flux errors 

projected into CO2 space, indicating that regional differences in RMSE do not directly correspond to differences in flux 

errors. For example, although the three-year mean errors in representation and transport in East Asia exceed those in 

Southeast Asia by 0.5 and 0.3 ppm, respectively, the disparity in projected mean true flux errors onto CO2 space between the 480 
two regions is only 0.2 ppm. This result is supported by previous studies highlighting that the spatial distributions of 

simulated CO2 concentrations can vary significantly depending on the transport model (Schuh et al., 2023) and their spatial 

resolution (Stanevich et al., 2020). Therefore, when utilizing airborne CO2 measurements (and potentially other CO2 

observation) to analyze the detailed characteristics of ensemble posterior flux estimates at a regional (or latitudinal) level, it 

is crucial to account for the contributions of representation and transport errors. 485 
 



 

22 
 

Our analysis reveals that the true errors in the ensemble mean of posterior net CO2 flux estimates is significantly 

greater than the ensemble spread of flux estimates in five out of seven regions with higher fossil fuel emissions compared to 

terrestrial biosphere fluxes. Possible explanation for this result is the presence of errors in the prescribed fossil fuel emissions 

common to all OCO-2 MIP models. OCO-2 MIP models treated fossil fuel emissions as perfectly known values and adjusted 490 
terrestrial biosphere and ocean CO2 fluxes to minimize the difference between the simulated and observed CO2 

concentrations. Thus, if there are errors in the prescribed fossil fuel emission estimates, these errors propagate into the 

posterior natural flux estimates. The assumption used in the OCO-2 MIP models is, in fact, the one often applied in 

conventional global atmospheric inverse models as it is considered that the errors in fossil fuel emission estimates are 

relatively lower than those in natural flux estimates at national scales (4-20%; Andres et al., 2014). However, the emission 495 
errors become substantial when considering spatial distribution at model grid scale and temporal variability within a year 

(Zhang et al., 2016; Gurney et al., 2021). Oda et al. (2023) showed significant impacts of differences in fossil fuel emission 

estimates on posterior terrestrial biosphere flux estimates near the source regions. OCO-2 MIP models used identical fossil 

fuel emission estimates and thus their posterior net flux estimates share common biases induced by the errors in the fossil 

fuel emission estimates. Because these systematic biases are not captured by the ensemble spread of flux estimates, true flux 500 
errors exceed the errors computed from the ensemble spread in the main source regions. In addition to this, the regional and 

seasonal sampling biases of CO2 measurements and satellite retrieval errors could contribute to these systematic biases 

(Kulawik et al., 2019). Eight prior flux datasets also may not adequately represent the errors of terrestrial biosphere fluxes, 

which exhibit significant variations among estimates (Feng et al., 2019). Therefore, further study to uncover the causes of 

underestimation in true flux errors is required in order to understand uncertainty sources overlooked in current ensemble 505 
inverse modeling estimates.  

 

The reliability of our observation-based regional flux error estimates is based upon the data availability of airborne 

measurements. Although our approach is generally effective in estimating a regional mean of monthly ℎA𝑒𝑟𝑟$!B, it is not 

applicable in 15% of our total cases (shown in Figure 5), when measurements were mostly made in local areas covering one 510 
to six 1°×1° grid cells within each region. This limitation may be attributed to the application of a common method for 

calculating observation errors across all data points, which might not adequately identify specific outliers. Caution is 

required when applying our approach to monthly-scale analysis, especially when using observations made locally. Extending 

the calculation period to several months or longer (e.g., Figure 5h) is a suitable strategy for mitigating the impact of outliers 

and obtaining more robust results. In fact, the ratios of three-year mean ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B, which are key metrics for 515 
quantifying regional flux errors (Figure 5h), have a smaller uncertainty in mid-latitude North America and East Asia where 

wide and consistent airborne data are available, than over Europe and South America, where aircraft observations are sparse 

and only have intermittent data coverage. In addition, it is noteworthy that the ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B	ratios derived from 

continuous observations enable the computation of unbiased true errors in the ensemble mean of annual posterior net fluxes 
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averaged for the analysis period, compared to those from limited observation periods (e.g., in Alaska). These results 520 
highlight the importance of having frequent airborne measurements with extensive spatial coverage for the reliable error 

quantification of regional net flux estimates derived from inverse models. 

 
The performance of inverse models in simulating atmospheric CO2 may vary by season. However, airborne 

measurements were not uniformly conducted across all seasons in most analyzed regions. Among the seven regions 525 
analyzed, the CONTRAIL program in East Asia has continuously conducted CO2 measurements over three years with routes 

repeated throughout all seasons. This has resulted in the most sensitive area to the measurements exhibiting similar spatial 

patterns in the NH vegetation growing season (from May to October) and non-growing season, encompassing the northeast 

part of China, Korea, and Japan (Fig. S7). The airborne measurements in East Asia offer a unique opportunity to explore the 

seasonal variations of regional error statistics. For the period of 2015–2017, the regional averages of both RMSE and ERRTOT 530 
exhibit, on average, 12% and 11% higher values during the non-growing season compared to the growing season (Fig. S8). 

In contrast, the regional averages of ℎA𝑒𝑟𝑟$#B and ℎA𝑒𝑟𝑟$!B have greater values during the growing season, 0.90 [0.84, 0.97] 

and 1.37 [1.13, 1.62] ppm respectively, compared to the non-growing season (0.66 [0.62, 0.70] and 1.30 [1.06, 1.54] ppm) 

because of the tendency for CO2 errors to increase proportionally with the magnitude of flux values. Consequently, the ratio 

of ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B is slightly lower during the non-growing season with 0.51 [0.39, 0.64] compared to the growing 535 
season with 0.66 [0.50, 0.83], indicating a relatively greater underestimation of true flux errors when the terrestrial biosphere 

CO2 sinks are relatively smaller. This result aligns with our finding that the true net land flux errors are significantly 

underestimated where fossil fuel emissions have larger magnitude than terrestrial biosphere fluxes. Furthermore, the 

consistent ratio of ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B below 1, without significant seasonal variations in East Asia, suggests that our 

conclusions, drawn from the analysis of seven regions, may not be seasonally dependent.  540 
  

To capture the signals from regional surface CO2 fluxes, we used atmospheric CO2 data observed and simulated 

within the 1-5 km AGL altitude range. The choice of this altitude range may influence regional error statistics, as the 

performance of inverse models could vary with altitude. To gauge this sensitivity, we compared error statistics derived from 

atmospheric CO2 data with two altitude ranges: 1-3 km AGL and 1-5 km AGL. Among the seven analyzed regions, Australia 545 
and South America were excluded in this additional analysis because the airborne observation in these two regions cover 

fewer than 100 grid cells for the analysis period and narrowing the altitude range resulted in the loss of over 30% of the grid 

cells. The areas sensitive to airborne CO2 measurements within the two altitude ranges exhibit nearly identical spatial 

patterns in Alaska, mid-latitude North America, Europe, East Asia, and Southeast Asia, indicating that observations at lower 

altitudes are more sensitive to surface CO2 fluxes (Fig. S9). Because of the higher sensitivity, error statistics in all regions 550 
have larger values when calculated using data from the 1-3 km AGL altitude range compared to the 1-5 km AGL altitude 

range (Fig. S10). For example, in mid-latitude North America, the regional averages of RMSE, ERRTOT, ℎA𝑒𝑟𝑟$#B, and 
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ℎA𝑒𝑟𝑟$!B are 1.42 [1.36, 1.49], 1.34 [1.30, 1.39], 0.72 [0.69, 0.76], and 0.86 [0.72, 1.01] ppm when calculated using data 

within the 1-3 km AGL altitude range. In comparison, when computed from the data within the 1-5 km AGL altitude range, 

these values are 1.21 [1.15, 1.26], 1.09 [1.06, 1.13], 0.57 [0.55, 0.60], and 0.77 [0.66, 0.88] ppm. However, the ratio of three-555 
year mean ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B does not show significant differences based on the altitude ranges, with the difference being 

between 0.02 and 0.11. Again, these results suggest that our observation-based regional flux error estimates are not sensitive 

to the choice of altitude range for longer time periods. 

 
Our study computes true flux errors for the ensemble mean estimates by comparing 𝑅𝑀𝑆𝐸	" and 𝐸𝑅𝑅)*)" . However, 560 

discrepancies between true and estimated values of observation, representation, and transport errors, as well as covariances 

between flux errors and transport errors, could contribute to variations in 𝑅𝑀𝑆𝐸	" and 𝐸𝑅𝑅)*)" . Due to a lack of information 

for all datasets, we set observation errors under ideal conditions (i.e., 0.1 ppm). In reality, inadequate quality control can 

result in significant systematic biases for specific regions and time periods (Masarie et al., 2011; Baier et al., 2020), 

impacting our results, especially in South America. For instance, if the average measurement error is 0.5 ppm instead of the 565 
assumed 0.1 ppm during the analysis period, the calculated true flux error would decrease from 398 to 334 Tg C year-1 for 

South America and from 374 to 260 Tg C year-1 for mid-latitude North America.  

 

Representation errors and ℎA𝑒𝑟𝑟$#B are derived using the GEOS-5 and GEOS-Chem models but these values depend 

on the transport model and meteorological fields used. Employing our approach across all participating MIP models to 570 
compute these two error terms and subsequently averaging them would lead to a more realistic flux error quantification in 

future studies. Employing all transport models also would facilitate the calculation of variances of flux errors and their 

covariance with transport errors included in ERRMIP as shown in Appendix A, and subsequently enable the determination of 

the total true flux errors including both diagonal and off-diagonal terms. In addition, previous studies show that 8-10 

different ensemble members are required for robust transport error estimates (Feng et al., 2019; Lauvaux et al., 2019). 575 
However, out of the 10 ensemble members in OCO-2 MIP, three employed TM5 and five utilized GEOS-Chem (Table S1). 

The ensemble size might not be enough to fully capture the range of true transport errors. We further investigate how our 

main results would be affected if the estimated transport errors deviate from actual errors by 20% and 40% of the difference 

between RMSE2 and 𝐸𝑅𝑅)*)" . The ratio of regional mean of ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B increases by, on average, only up to 0.04 

and 0.09 in the seven regions throughout the analysis period, respectively (Fig. S11). In both cases, the estimated flux errors 580 
in mid-latitude North America, Europe, East Asia, and Southeast Asia still show significant underestimation at a 95% 

confidence level, while not in Alaska and South America. In Australia, characterized by a wide uncertainty range, significant 

underestimation is also observed in the 20% cases, supporting the robustness of our findings. In the future OCO-2 MIP, the 

participation of inverse modeling groups using other transport models or meteorological forcing data might contribute to 

estimating transport errors closer to actual values. 585 
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This study uses monthly mean posterior flux estimates for the calculation of monthly ℎA𝑒𝑟𝑟$#B but posterior flux 

estimates from each OCO-2 MIP models have different sub-monthly patterns. This could modify the sub-monthly variations 

in posterior atmospheric CO2 and affect the ensemble spread of posterior CO2 concentrations. However, due to absence of 

information on sub-monthly variations in posterior flux estimates, this study assumes that the contributions of the inter-590 
model variability of sub-monthly flux variations to our monthly mean error quantities (ℎA𝑒𝑟𝑟$#B and 𝐸𝑅𝑅01-	 ) are not 

significant. This assumption is supported by comparing ℎA𝑒𝑟𝑟$#B with 𝐸𝑅𝑅01-	 . 𝐸𝑅𝑅01-	  resulted from variabilities in not 

only hourly posterior flux estimates but also transport models. Despite ℎA𝑒𝑟𝑟$#B not accounting for the impacts of inter-

model variability of sub-monthly flux patterns, the regional mean of monthly ℎA𝑒𝑟𝑟$#B (0.44-0.93 ppm), on average, 

accounts for 58-86% of regional mean of monthly 𝐸𝑅𝑅01-	  (0.51-1.34 ppm) over the three years (Figure 5h and Fig. S6). 595 
Furthermore, we found that our main results remain robust across the potential range of ℎA𝑒𝑟𝑟$#B when it includes the impact 

of sub-monthly flux variations. For example, if ℎA𝑒𝑟𝑟$#B increases, on average, by 0.2 ppm, the ratio of regional mean of 

ℎA𝑒𝑟𝑟$#B to ℎA𝑒𝑟𝑟$!B increases from 0.74 [0.61, 0.88] to 0.83 [0.71, 0.96] in midlatitude North America and from 0.59 [0.48, 

0.70] to 0.67 [0.57, 0.78] in East Asia throughout the analysis period. 

 600 
In summary, our study provides an observation-based method for quantifying errors in the ensemble mean of 

regional net CO2 flux estimates which can be widely applied in inverse modeling inter-comparison projects like the OCO-2 

MIP.  The evaluation results of the OCO-2 MIP ensemble members reveal the true errors of ensemble posterior fluxes are 

larger compared to the ensemble spread in regions with high anthropogenic CO2 emissions. This result provides observation-

based evidence supporting previous studies (Oda et al., 2023; Wang et al., 2020) that emphasized the impact of fossil fuel 605 
emission errors on global atmospheric CO2 inversions. This finding offers important insights into understanding the sources 

of errors in current inverse modeling and highlights the need for improving fossil fuel emission estimates and developing 

inversion methods that optimize both fossil fuel emissions and natural fluxes. Airborne observations provide a broader 

footprint compared to ground-based observations. Leveraging this advantage, our study evaluates 19% of the total global 

land cover (excluding Antarctica and Greenland) but data scarcity limits the evaluation of the remaining 81%. In addition to 610 
the ongoing airborne measurement programs including CONTRAIL, IAGOS-CARIBIC, and various airborne programs 

under INPE, NASA, and NOAA, airborne observations have been conducted in unexplored regions, including Siberia (e.g., 

Narbaud et al., 2023), Africa (e.g., Barker et al., 2020), and Northern Europe (e.g., Barker et al., 2021). The sustained efforts 

to maintain and expand airborne observations along with a collaborative data-sharing and management system (e.g., 

ObsPack) will contribute to accurately estimating and reducing the uncertainties of regional surface CO2 fluxes. 615 



 

26 
 

Appendix A 

Following Eq. (1) in the main text, 

𝑅𝑀𝑆𝐸" = 2
3
∑ [𝑦#,5 − ℎ(𝑥"4)1111111]	[𝑦#,5 − ℎ(𝑥"4)1111111])3
562 ,  where ℎ(𝑥"4)1111111 = 2

0
∑ ℎ7A𝑥"7,5B0
762    (A1) 

where ℎ(𝑥"4)1111111 denotes ensemble mean of posterior CO2 concentrations in OCO-2 MIP models corresponding to ith airborne 

observation (𝑦#,5) within each 1°×1° grid-cell in each month. N is the total number of airborne measurement data sampled at 620 
each grid-cell monthly. M is the ensemble size (i.e., 10 members).  

The Eq. (A1) can be rewritten as, 

𝑅𝑀𝑆𝐸" = 2
3
∑ OP𝑦#,5 − ℎ%A𝑥"%,5BQ − Pℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5BQR OP𝑦# − ℎ%A𝑥"%,5BQ − Pℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5BQR

)
3
562   (A2) 

																= 	 2
3
∑ 0𝑦#,5 − ℎ%A𝑥"%,5B4

	0𝑦#,5 − ℎ%A𝑥"%,5B4
) − 2P𝑦# − ℎ%A𝑥"%,5BQ ∗ Pℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5BQ3

562    

      	+	0ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B40ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B4
) ,  (A3) 625 

where ℎ%(𝑥"%) denotes the estimated CO2 concentration obtained from an error-free atmospheric transport model (ℎ%) and true 

CO2 fluxes (𝑥"%). The three terms on the right-hand side of Eq. (A3) indicate the (i) variances of observation and 

representation errors, (ii) covariances between errors of observation and representation and errors of flux and transport, and 

(iii) variances of flux and transport errors in the ensemble estimates, respectively. Assuming the independence of observation 

and representation errors from transport and flux errors, Eq. (A3) can be simplified to: 630 

𝑅𝑀𝑆𝐸" =	 2
3
∑ 0𝑦#,5 − ℎ%A𝑥"%,5B4

	0𝑦#,5 − ℎ%A𝑥"%,5B4
)	+	0ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B40ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B4

)3
562 	  (A4)  

 

Further, the second term on the right-hand side of Eq. (A4) can be rewritten by separating the flux error and 

transport error terms as follows: 

 2
3
∑ 	0ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B40ℎ(𝑥"4)1111111 − ℎ%A𝑥"%,5B4

)3
562  635 

		= 2
3
∑ OPℎ(𝑥"4)1111111 − ℎA𝑥"%,4B11111111Q − Pℎ%A𝑥"%,5B − ℎA𝑥"%,4B11111111QR OPℎ(𝑥"4)1111111 − ℎA𝑥"%,4B11111111Q − Pℎ%A𝑥"%,5B − 	ℎA𝑥"%,4B11111111QR

)
3
562    (A5) 

		= 2
3
∑ Oℎ(𝑥"4)1111111 − ℎA𝑥"%,4B11111111R Oℎ(𝑥"4)1111111 − ℎA𝑥"%,4B11111111R

)
− 2Pℎ(𝑥"4)1111111 − ℎA𝑥"%,4B11111111Q Pℎ%A𝑥"%,5B − ℎA𝑥"%,4B11111111Q3

562  	

       +Oℎ%A𝑥"%,5B − 	ℎA𝑥"%,4B11111111R Oℎ%A𝑥"%,5B − 	ℎA𝑥"%,4B11111111R
)
  (A6) 

The three terms on the right-hand side of Eq. (A6) indicate the (i) variances of flux errors in concentration space (ii) 

covariances between flux errors and transport errors, and (iii) variances of transport errors, respectively.  640 
 

In OCO-2 MIP, by approximating the ensemble spread of the posterior fluxes as true errors in the mean fluxes, it 

assumes that the values of the first and second terms on the right-hand side of Eq. (A4) can be written as the sum of 
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observation errors (𝐸𝑅𝑅*./" ), representation errors (𝐸𝑅𝑅+,-" ), and the ensemble spread of posterior CO2 concentrations 

across OCO-2 MIP models (𝐸𝑅𝑅01-" ), respectively: 645 
𝑅𝑀𝑆𝐸" ≈ 	𝐸𝑅𝑅)*)" = 𝐸𝑅𝑅*./" + 𝐸𝑅𝑅+,-" + 𝐸𝑅𝑅01-"       (A7) 

We assume that the observation errors are independent of the representation errors. 

 

𝐸𝑅𝑅01-"  can be also rewritten by separating flux error and transport error terms as follows: 

 𝐸𝑅𝑅01-" =	 2
3
∑ 2

0
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																																		+0ℎ7A𝑥"7,5B − ℎ<A𝑥"7,5B40ℎ7A𝑥"7,5B − ℎ<A𝑥"7,5B	4
)
  (A10) 655 

Same as Eq. (A6), the three terms on the right-hand side of Eq. (A10) correspond to the approximated (i) variances of flux 

errors, (ii) covariances between flux errors and transport errors, and (iii) variances of transport errors, respectively. For the 

calculation of the first term, utilizing all participating transport models in the OCO-2 MIP would be ideal but, in this study, 

we approximate it using the GEOS-Chem model. 

Code and Data availability 660 

The inverse modelling results and airborne CO2 measurement data involved in v10 OCO-2 MIP project are available at 

https://www.gml.noaa.gov/ccgg/OCO2_v10mip/download.php. The high-resolution global GEOS-Chem simulation results 

used to calculate representation error can be obtained from Brad Weir (brad.weir@nasa.gov) and Lesley Ott 

(lesley.e.ott@nasa.gov) upon request. The forward and adjoint sensitivity simulations for this work were conducted using the 
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