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Abstract. Multi-inverse modeling inter-comparison projects (MIPs) provide a chance to assess the uncertainties in inversion 

estimates arising from various sources such as atmospheric CO2 observations, transport models, and prior fluxes. However, 

accurately quantifying ensemble CO2 flux errors remains challenging, often relying on the ensemble spread as a surrogate. 15 

This study proposes a method to quantify the errors of regional terrestrial biosphere CO2 flux estimates from 10 inverse 

models within the Orbiting Carbon Observatory-2 (OCO-2) MIP by using independent airborne CO2 measurements for the 

period 2015–2017. We first calculate the root-mean-square error (RMSE) between the ensemble mean of posterior CO2 

concentration estimates and airborne observations and then isolate the CO2 concentration error caused solely by the 

ensemble mean of posterior terrestrial biosphere CO2 flux estimates by subtracting the errors of observation and transport in 20 

seven regions. Our analysis reveals significant regional variations in the average monthly RMSE over three years, ranging 

from 0.88 to 1.91 ppm. The ensemble flux error projected into CO2 space is a major component that accounts for 55-85% of 

the mean RMSE. We further show that in five regions, the observation-based error estimates exceed the ensemble spread of 

posterior CO2 errors by 1.33-1.93 times, implying an underestimation of the actual ensemble flux errors, while their 

magnitudes are comparable in two regions. By identifying the most sensitive areas to airborne measurements through adjoint 25 

sensitivity analysis, we find that the underestimation of biosphere flux errors is prominent in eastern parts of Australia and 

East Asia, western parts of Europe and Southeast Asia, and midlatitude North America where the magnitudes of annual 

fossil fuel emissions exceed those of annual biosphere fluxes by 3-31 times over the three years. The regions with no 

underestimation are southeastern Alaska and northeastern South America where fossil fuel emissions are comparable to or 

less than biosphere fluxes. Our study emphasizes the value of independent airborne measurements not only for the overall 30 

evaluation of inversion performance but also for quantifying regional errors in ensemble terrestrial biosphere flux estimates. 
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1 Introduction 

Understanding the sources and sinks of atmospheric CO2 is essential for developing efficient strategies for climate 

change mitigation and accurate climate predictions. Terrestrial ecosystems have acted as major carbon sinks by absorbing 

around 30% of anthropogenic fossil and land-use CO2 emissions over the past few decades (Friedlingstein et al., 2023). 35 

However, this uptake is highly variable both spatially and temporally as carbon exchange processes are sensitive to 

environment and climate change (Liu et al., 2017; Bastos et al., 2019; Piao et al., 2020). Accurate estimates of regional 

terrestrial biosphere carbon fluxes and their uncertainties are, therefore, crucial for monitoring changes in terrestrial carbon 

sinks. 

 40 

Atmospheric CO2 inverse modeling is a widely employed approaches to estimate terrestrial and air-sea CO2 fluxes 

by assimilating observed atmospheric CO2 concentrations. Most inverse modeling approaches are based on the Bayesian 

theory, wherein posterior flux is estimated from prior knowledge and atmospheric CO2 observations weighted by their 

uncertainties. This approach estimates a posterior probability distribution that can be represented as a maximum a posterori 

solution (referred to as 𝑥̂) and an error covariance matrix, following the notation of Rodgers (2000). Theoretically, since 45 

atmospheric CO2 observations generally have lower uncertainty than prior terrestrial flux estimates, more observations lead 

to posterior fluxes approaching true values (Liu et al., 2014). 

 

However, concerns have been raised that the inverse modeling results are sensitive to the selection of transport 

models, prior flux datasets, and data assimilation techniques that are not accounted for in the Bayesian framework (Basu et 50 

al., 2018; Philip et al., 2019; Schuh et al., 2019). In order to obtain more robust terrestrial flux estimates and assess their 

uncertainties resulting from various sources (e.g., atmospheric transport and assimilation techniques), inverse modeling 

intercomparison projects (MIPs) have been conducted. These projects include the TransCom project (Gurney et al., 2004; 

Houweling et al., 2015), which was first initiated in 1990s, as well as subsequent projects such as the Global Carbon Project 

(GCP; Friedlingstein et al., 2023; Ciais et al., 2022) and the Orbiting Carbon Observatory-2 (OCO-2) MIP (Crowell et al., 55 

2019; Peiro et al., 2022; Byrne et al., 2023). These MIPs involve different inverse modeling groups using state-of-the-art 

transport modeling and assimilation techniques that assimilate in situ and satellite CO2 data. Through these MIPs, 

researchers have analyzed differences in the maximum posteriori solution across models. The OCO-2 MIP has revealed a 

general agreement on global flux estimates among ensemble models, but significant discrepancies in regional fluxes, 

regardless of whether in-situ and/or satellite data are assimilated (Crowell et al., 2019; Peiro et al., 2022).  60 

 

Realistic error quantification of posterior fluxes from atmospheric flux inversions is essential for understanding how 

well the regional fluxes are constrained by current CO2 observing network and identify regions with high uncertainty, 

allowing us to prioritize efforts to mitigate the error. The Bayesian formulation provides a method for calculating 
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uncertainties on posterior fluxes based on uncertainties in prior fluxes and assimilated data. This can be calculated 65 

analytically or approximated using a Monte Carlo method for variational methods (Chevallier et al., 2007; Feng et al., 2009; 

Liu et al., 2014), however, this is often computationally prohibitive for many inversion systems. This Bayesian posterior 

uncertainty accounts for random errors in the prior fluxes and observations but does not explicitly incorporate systematic 

errors, thus providing a potential underestimate of the total posterior error.  

 70 

Errors in the maximum a posteriori fluxes are also commonly characterized through comparisons between 

independent atmospheric CO2 measurements and posterior atmospheric CO2 (Houweling et al., 2015; Crowell et al., 2019; 

Byrne et al., 2023). This approach can provide insights into the biases of current inverse modeling at the global, latitudinal, 

or site-specific scales. However, as atmospheric CO2 concentrations are influenced by both local and remote sources, it is 

difficult to identify regions where the observation-model comparison results are representative. Furthermore, these 75 

comparisons include not only posterior flux errors, but also errors arising from transport, representation, and measurement. 

Because of these limitations, regional posterior flux errors of the ensemble mean have been generally defined as the 

ensemble spread among ensemble posterior fluxes, but this method does not have an observational and theoretical basis and 

may not reflect actual errors (Byrne et al., 2023). 

 80 

This study aims to develop a framework to quantify the errors in regional terrestrial biosphere CO2 fluxes estimated 

from an ensemble of inverse models by using airborne CO2 measurements, transport modeling, and adjoint sensitivity 

analysis. Our target ensemble results are derived from 10 ensemble members in the v10 OCO-2 MIP for the period 2015–

2017, which provide both posterior CO2 fluxes and posterior CO2 concentrations sampled at observation sites and times. The 

ensemble assimilates OCO-2 column-averaged dry-air mole fraction (XCO2) retrievals (ACOS v10; O'Dell et al., 2018) and 85 

in situ CO2 measurements (Tohjima et al., 2005; Nara et al., 2017; Schuldt et al., 2021a; 2021b). This study uses more than 

833,000 airborne CO2 measurements collected at 1-5 km altitude above ground level (AGL) from 20 different measurement 

projects (e.g., Baier et al., 2021; Miller et al., 2021; NOAA Carbon Cycle Group ObsPack Team, 2018; Schuldt et al., 2021a; 

2021b). These data have broader spatial coverage and are less influenced by local sources compared to surface CO2 data, 

thus capturing signals from regional surface CO2 fluxes. We quantify the errors in ensemble mean estimates of posterior 90 

atmospheric CO2 by comparing them with the airborne CO2 data. We then estimate the contributions of various error 

components (e.g., representation, observation, transport, and flux errors) to the observation-model difference in atmospheric 

CO2 and isolate the contribution of biosphere flux errors. Next, we identify the areas to which these airborne CO2 are most 

sensitive to and quantify the annual biosphere flux errors in these areas. 
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2 Data and methodology 95 

The aim of this study is to quantify the true errors of the ensemble terrestrial biosphere CO2 fluxes generated by the 

v10 OCO-2 MIP using airborne observations. Here, "error" refers to the magnitude of the differences between the true and 

estimated flux values, without considering the sign. To achieve this, we employ three steps of analysis as described in Figure 

1. First, we define two quantities: 1) the root mean square errors (RMSE) between the ensemble mean of posterior CO2 

concentrations and observed CO2 concentrations, and 2) ERRTOT (Section 2.3). RMSE2 represents the true errors in OCO-2 100 

MIP ensemble mean of CO2 concentrations including representation errors (𝜎𝑟
2), observation errors (𝜎𝑜

2), true flux errors 

projected onto CO2 concentration (𝜎𝑓𝑡

2 ), transport errors (𝜎𝑡
2), and error covariances between the preceding two terms 

(cov(σft,σt)). 𝐸𝑅𝑅𝑇𝑂𝑇
2  is the sum of the estimated error components, defined as the sum of 𝐸𝑅𝑅𝑅𝐸𝑃

2 , 𝐸𝑅𝑅𝑂𝐵𝑆
2  and 𝐸𝑅𝑅𝑀𝐼𝑃

2 . 

𝐸𝑅𝑅𝑅𝐸𝑃
2  and 𝐸𝑅𝑅𝑂𝐵𝑆

2  indicate representation errors (𝜎𝑟
2) and observation errors (𝜎𝑜

2), respectively. 𝐸𝑅𝑅𝑀𝐼𝑃
2  is the sum of 

estimated flux errors projected onto CO2 space (𝜎𝑓𝑒

2 ) and transport errors (𝜎𝑡
2), and their error covariances (cov(σfe,σt)), 105 

computed from an ensemble spread of posterior CO2 concentrations. Here we separate representation errors from transport 

errors for computational purpose. The ratio between ERRTOT and RMSE is then used to evaluate whether the estimated flux 

errors, computed from the ensemble spread of posterior fluxes, overestimate or underestimate the true errors in the ensemble 

mean fluxes. Next, we calculate the estimated flux errors projected onto atmospheric CO2 (ℎ(𝑒𝑟𝑟𝑓𝑒
)) through atmospheric 

transport simulations (Section 2.4). With ℎ(𝑒𝑟𝑟𝑓𝑒
), ERRTOT, and RMSE, we derive the true errors in ensemble mean of 110 

posterior fluxes projected onto CO2 space (ℎ(𝑒𝑟𝑟𝑓𝑡
)). Then, we identify the areas where these airborne observations are most 

sensitive to using an adjoint sensitivity analysis and calculate the estimated posterior flux errors over these regions (𝑒𝑟𝑟𝑓𝑒
). 

Assuming a linear observation operator, the study finally computes the true errors of the ensemble mean posterior fluxes 

over the identified sensitive areas (𝑒𝑟𝑟𝑓𝑡
) by applying the ratio between ℎ(𝑒𝑟𝑟𝑓𝑡

) and ℎ(𝑒𝑟𝑟𝑓𝑒
) to 𝑒𝑟𝑟𝑓𝑒

.  
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 115 
Figure 1: Flow chart summarizing the process of evaluating and quantifying errors in ensemble mean of regional posterior fluxes. 

RMSE2 is the mean square errors between the ensemble mean of posterior CO2 concentrations and observed CO2 concentrations. 

𝑬𝑹𝑹𝑹𝑬𝑷
𝟐  and 𝑬𝑹𝑹𝑶𝑩𝑺

𝟐  denote estimates of observation errors and representation errors, respectively. 𝑬𝑹𝑹𝑴𝑰𝑷
𝟐  is an ensemble spread 

of posterior CO2 concentrations. 𝑬𝑹𝑹𝑻𝑶𝑻
𝟐  is defined as the sum of 𝑬𝑹𝑹𝑹𝑬𝑷

𝟐 , 𝑬𝑹𝑹𝑶𝑩𝑺
𝟐 , and 𝑬𝑹𝑹𝑴𝑰𝑷

𝟐 . 𝒆𝒓𝒓𝒇𝒆
 and 𝒆𝒓𝒓𝒇𝒕

 are estimates of 

flux errors, defined as an ensemble spread of posterior fluxes, and their true values. 𝒉(𝒆𝒓𝒓𝒇𝒆
) and 𝒉(𝒆𝒓𝒓𝒇𝒕

) are estimates of flux 120 
errors projected onto CO2 concentrations and their true values. 𝝈𝒐

𝟐, 𝝈𝒓
𝟐, 𝝈𝒇𝒕

𝟐  (𝝈𝒇𝒆

𝟐  ), 𝝈𝒕
𝟐, and cov(𝛔𝐟𝐭,𝛔𝐭) indicate the types of errors 

represented by the error statics, namely observation errors, representation errors, true (estimated) flux errors projected onto CO2 

concentration, transport errors, and error covariances between the preceding two terms, respectively. 

 

2.1 v10 OCO-2 MIP datasets 125 

The v10 OCO-2 MIP provides multiple results from inverse models that assimilate different combinations of 

atmospheric CO2 measurements for 2015–2020. Our study focused on the results from "LNLGIS" experiment, which 

assimilates the most observations except OCO-2 ocean glint XCO2 retrievals that cause significant biases on inversion 

results (Byrne et al., 2023). The “LNLGIS” experiment incorporates v10 OCO-2 land nadir (LN) and glint (LG) XCO2 

retrievals, along with global in situ (IS) data (including surface, ship-based, and airborne measurements) included in the 130 

obspack_co2_1_OCO2MIP_v3.2.1_2021-09-14. Ten different inverse modeling groups provided monthly posterior flux 
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estimates interpolated to 1×1 horizontal resolution and co-sampled posterior atmospheric CO2 data at the time and location 

of all types of observations. All of the inversion groups used the same fossil fuel emission dataset, but they independently 

chose their transport models, assimilation techniques, and prior flux estimates. These details are provided in Table S1, and 

more detailed explanations for each inverse modeling approach can be found in Byrne et al. (2023). Although the OCO-2 135 

MIP provides data for the period 2015–2020, we use data for the first three years due to the limited number of airborne 

measurements available during the later years. To minimize the influence of local sources and maximize the influence of 

regional fluxes, we exclude surface measurements and only consider airborne measurements made between 1 and 5 km 

AGL. In addition, only airborne measurement data that were not assimilated in the LNLGIS experiment are used for 

analysis. 140 

2.2 Airborne CO2 measurement data 

Figure 2a shows the spatial distribution of the total number of airborne CO2 measurements used in this study within 

each 1x1 grid cell. The dataset includes two airborne measurement campaigns over the ocean (Atmospheric Tomography 

Mission; ATom; Thompson et al. 2022 and O2/N2 Ratio and CO2 Airborne Southern Ocean Study; ORCAS; Stephens et al. 

2018), as well as 18 campaigns over land. Specific airborne campaigns and their references are elaborated in Table 1. The 145 

majority of the datasets used in the study are from North America, accounting for 37% of the total number of observations 

for the period of 2015-2017, followed by East Asia with 35% and Alaska with 7%. The duration and extent of the airborne 

observations vary across different regions and time periods. Figure 2b illustrates the number of 1×1 grid points in each of 

the seven regions where more than 10 observations are available per month. For Alaska, observations were concentrated 

during the Arctic-Boreal Vulnerability Experiment (ABoVE) campaign in 2017 (Sweeney et al. 2022). North America had 150 

observations for most of the analysis period, including observations from the Atmospheric Carbon and Transport – America 

(ACT–America) campaign covering the eastern United States (Davis et al., 2021). The Long-term Comprehensive 

Observation Network for TRace gases by AIrLiner (CONTRAIL; Machida et al., 2008) project provides sparse observation 

in Europe and continuous observation in East and Southeast Asia from 2015 to 2017, as well as for Australia during 2015–

2016. In South America, measurements were conducted at six different sites in 2017: the majority of these observations 155 

come from five flask measurement sites provided by the National Institute for Space Research (INPE), which likely have a 

low bias in measured flask sample CO2 mole fractions of ~1 ppm or greater when ambient water vapor mole fractions are 

above ~1.5%. These biases in some aircraft flask CO2 measurements have been noted in previous literature (Baier et al., 

2020; Gatti et al., 2023) and impacted data have been removed from all other aircraft flask datasets. Despite the potential 

limitation of these South American observations, our analysis, aimed at introducing a method for quantifying flux errors, 160 

incorporates these data to offer guidance for future studies leveraging bias-corrected observations from this region. As 

discussed in more detail below, readers should keep in mind that our results from South America may have lower reliability 

compared to those from other regions. 
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Figure 2: (a) Total number of airborne measurement data used in this study at each 1×1 grid point and (b) the number of 1×1 165 
grid-points, where more than 10 data is available, within each region and each month for the period 2015–2017. 

 

Table 1. Data description for each airborne measurement campaign.  
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Site code Site name  Measurement campaign 

name 

Measurement 

type 

Data provider ObsPack (original) dataset 

identifier 

Reference 

ACG Alaska Coast Guard, 

Alaska, USA 

NOAA/GML Aircraft 

Program 

In situ National Oceanic and Atmospheric 

Administration (NOAA) Global 

Monitoring Laboratory (GML) 

http://doi.org/10.25925/20

201204a 
 

Karion et al. 

(2013) 

ACT Atmospheric Carbon and 

Transport – America 

(ACT-America), USA 

ACT-America In situ and 

flask 

National Aeronautics and Space 

Administration Langley Research 

Center (NASA-LaRC), NOAA/GML 

http://doi.org/10.25925/20

201204a 

https://doi.org/10.3334/OR
NLDAAC/1593  

Baier et al. 

(2020) 

DiGangi et al. 
(2021) 

Wei et al. 

(2021) 

AirCore

NOAA 

NOAA AirCore Program NOAA AirCore Program Balloon air 

sampler 

NOAA/GML No Obspack DOIb 

https://doi.org/10.15138/6

AV0-MY81 

Karion et al. 

(2010) 

ALF Alta Floresta, Brazil 
 

Flask National Institute for Space Research 

(INPE) 

http://dx.doi.org/10.25925/

20181030c  

https://doi.org/10.1594/PA

NGAEA.926834 

Gatti et al. 

(2023) 

CAR Briggsdale, Colorado  Flask NOAA/GML http://doi.org/10.25925/20

210517d  

Sweeney et al. 

(2015) 

CON Comprehensive 

Observation Network for 
TRace gases by AIrLiner 

(CONTRAIL) 

 
In situ  National Institute for Environmental 

Studies (NIES), Meteorological 
Research Institute (MRI) 

http://doi.org/10.25925/20

201204a 

https://doi.org/10.17595/2

0180208.001   

Machida et al. 

(2008)  

CRV Carbon in Arctic 

Reservoirs Vulnerability 
Experiment (CARVE), 

Alaska 

Arctic-Boreal 

Vulnerability 
Experiment 

(ABoVE) 

In situ NOAA/GML http://doi.org/10.25925/20

201204a 

https://doi.org/10.3334/OR

NLDAAC/1582  

Sweeney et al. 

(2022) 

GSFC Active Sensing 

of CO2 Emissions over 

Nights, Days and Seasons 

(ASCENDS), USA 

ASCENDS In situ NASA Goddard Space Flight Center 

(NASA-GSFC) 

http://doi.org/10.25925/20

201204a 
 

Kawa et al. 

(2018) 

IAGOS In-service Aircraft for a 

Global Observing System 

Civil Aircraft for the 

Regular Investigation of 

the atmosphere Based on 
an Instrument Container 

(IAGOS-CARIBIC) 

In situ Karlsruhe Institute of Technology 

(IMK-ASF), Institute for Atmospheric 

and Environmental Sciences (IAU), 
Max Planck Institute for 

Biogeochemistry (MPI-BGC) 

http://doi.org/10.25925/20

201204a 

 

Filges et al. 

(2015) 

 

KORUS The Korea-United States 

Air Quality (KORUS-

AQ) field study 

  In situ NASA-LaRC http://doi.org/10.25925/20

201204a 

https://doi.org/10.5067/AS

DC/SUBORBITAL/KORU

SAQ_TraceGas_AircraftIn

Situ_DC8_Data_1   

Vay et al., 

(2009) 

MAN Manaus, Brazil NOAA/GML Aircraft 

Program  
In situ NOAA/GML https://doi.org/10.25925/2

0210519e  

 

ORC O2/N2 Ratio and CO2 

Airborne Southern Ocean 

Study (ORCAS) 

 
In situ National Center for Atmospheric 

Research (NCAR) 

http://doi.org/10.25925/20

201204a 

https://doi.org/10.5065/D6

SB445X  

Stephens et al. 

(2018) 

PAN Pantanal, Mato Grosso do 

Sul, Brazil 

 
Flask INPE http://dx.doi.org/10.25925/

20181030c  

 

PFA Poker Flat, Alaska NOAA/GML Aircraft 

Program 

Flask NOAA/GML http://doi.org/10.25925/20

210517d  

Sweeney et al. 

(2015) 

RBA-B Rio Branco, Brazil 
 

Flask INPE http://dx.doi.org/10.25925/

20181030c 

https://doi.org/10.1594/PA

NGAEA.926834 

Gatti et al. 

(2023) 

SAN Santarém, Brazil 
 

Flask INPE http://dx.doi.org/10.25925/

20181030c  

https://doi.org/10.1594/PA
NGAEA.926834 

Gatti et al. 

(2023) 

http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.15138/6AV0-MY81
https://doi.org/10.15138/6AV0-MY81
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.17595/20180208.001
https://doi.org/10.17595/20180208.001
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1582
https://doi.org/10.3334/ORNLDAAC/1582
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.5067/ASDC/SUBORBITAL/KORUSAQ_TraceGas_AircraftInSitu_DC8_Data_1
https://doi.org/10.25925/20210519e
https://doi.org/10.25925/20210519e
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.5065/D6SB445X
https://doi.org/10.5065/D6SB445X
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
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SGP Southern Great Plains, 

Oklahoma, USA 

NOAA/GML Aircraft 

Program 

Flask The US Department of Energy 

(DOE)/Lawrence Berkeley National 
Laboratory (LBNL), NOAA/GML 

http://doi.org/10.25925/20

210517d  

Biraud et al. 

(2013) 
Sweeney et al. 

(2015) 

SONGN

EX2015 

Shale Oil and Natural Gas 

Nexus 2015 (air 

campaign), USA 

Shale Oil and Natural 

Gas Nexus 2015 (air 

campaign) 

In situ NOAA Chemical Sciences Laboratory 

(CSL) 

http://doi.org/10.25925/20

201204a 

 

TEF Tefé, Brazil  

 
Flask INPE http://dx.doi.org/10.25925/

20181030c  

https://doi.org/10.1594/PA

NGAEA.926834  

Gatti et al. 
(2023) 

TOM Atmospheric Tomography 

Mission (ATom) 

Atmospheric 

Tomography Mission 

(ATom) 

In situ NOAA/GML, Harvard University http://doi.org/10.25925/20

201204a 

https://doi.org/10.3334/OR

NLDAAC/1581 

Thompson et 

al. (2022) 

a: obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 (Schuldt et al., 2021b) 
b: obspack_co2_1_AirCore_v4.0_2020-12-28 
c: obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-13 (NOAA Carbon Cycle Group ObsPack Team, 2018) 
d: obspack_co2_1_NRT_v6.1.1_2021-05-17 (Schuldt et al., 2021a) 
e: obspack_multi-species_1_manaus_profiles_v1.0_2021-05-20 (Miller et al., 2021) 

 

 

2.3 Evaluation of ensemble posterior fluxes 170 

We first employ the two matrixes defined in Eq. (1) and (2) below to evaluate ensemble posterior flux errors 

proposed by Liu et al. (2021). One is RMSE between the ensemble mean of posterior atmospheric CO2 from OCO-2 MIP 

models and the atmospheric CO2 from airborne measurements, which can be written as: 

𝑅𝑀𝑆𝐸2 =
1

𝑁
∑ [ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑜,𝑖][ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ − 𝑦𝑜,𝑖]

𝑇𝑁
𝑖=1 , where ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ =

1

𝑀
∑ ℎ𝑖,𝑗(𝑥̂𝑗)𝑀

𝑗=1      (1) 

ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ is the ensemble mean of posterior atmospheric CO2 sampled at the time and location of the ith airborne observation 175 

𝑦𝑜,𝑖, within each 1×1 grid-cell in each month. N is the monthly total number of sampled data at each grid-cell. M is the 

number of ensemble members (i.e., 10). A single monthly RMSE value is computed using N measurement data at each grid-

cell. The number of RMSE values is calculated per month within each region corresponds to the number of grid-cells shown 

in Figure 2b. The RMSE indicates the magnitude of the actual CO2 errors in the ensemble estimates, which is also a quantity 

broadly used to evaluate the accuracy of posterior fluxes (Crowell et al., 2019; Peiro et al., 2022; Byrne et al., 2023). As 180 

illustrated in Figure 1 and as described in Appendix A (Eq. A3), RMSE2 includes not only the projection of true flux errors 

on CO2 concentration (𝜎𝑓𝑡

2 ), but also transport errors (𝜎𝑡
2), their error covariances (cov(σft,σt)), representation errors (𝜎𝑟

2), 

and airborne observation errors (𝜎𝑜
2). Both transport errors and representation errors stem from transport models. Transport 

errors include the errors in model structures and meteorological fields, while representation errors arise from a mismatch in 

resolution between model simulations and observations.  185 

 

In practice, the true flux errors are often approximated by the spread of ensemble fluxes, so the projection of true 

flux errors to CO2 concentrations and transport errors are approximated by the ensemble spread of the simulated CO2 

http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20210517d
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://dx.doi.org/10.25925/20181030c
http://dx.doi.org/10.25925/20181030c
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1581
https://doi.org/10.3334/ORNLDAAC/1581
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concentrations in OCO-2 MIP as shown in Appendix A. To evaluate whether this approximation represents the true errors in 

the ensemble mean fluxes and mean simulated CO2 concentrations, we define another quantity 𝐸𝑅𝑅𝑇𝑂𝑇
2  (Figure 1). Different 190 

from RMSE, the variance terms of flux errors (𝜎𝑓𝑒

2 ) and transport errors (𝜎𝑡
2) and covariance terms between them (cov(𝜎𝑓𝑒,𝜎𝑡)) 

are replaced by the spread of ensemble (i.e., variance) posterior atmospheric CO2 concentrations (𝐸𝑅𝑅𝑀𝐼𝑃
2 ) defined as:  

𝐸𝑅𝑅𝑀𝐼𝑃
2 =  

1

𝑁
∑

1

𝑀
∑ [ℎ𝑖,𝑗(𝑥̂𝑗) − ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ ]𝑀

𝑗=1 [ℎ𝑖,𝑗(𝑥̂𝑗) − ℎ𝑖(𝑥̂)̅̅ ̅̅ ̅̅ ̅ ]𝑇𝑁
𝑖=1       (2)  

Different from Liu et al. (2021) which used only one transport model, 𝐸𝑅𝑅𝑀𝐼𝑃
2  accounts transport errors because posterior 

atmospheric CO2 were generated by multiple types of transport models in OCO-2 MIP driven by different meteorology 195 

fields. Thus, 𝐸𝑅𝑅𝑀𝐼𝑃
2  term accounts for transport errors, but not representation errors due to the coarse spatial resolution of 

these transport models with the highest spatial resolution being 2°×2.5°. 

 

To obtain representation errors and observation errors not captured by 𝐸𝑅𝑅𝑀𝐼𝑃
2 , we additionally calculate 𝐸𝑅𝑅𝑅𝐸𝑃

2  

and 𝐸𝑅𝑅𝑜𝑏𝑠
2 , respectively. 𝐸𝑅𝑅𝑅𝐸𝑃

2  indicates the representation errors (𝜎𝑟
2) in RMSE2 as shown in Figure 1 and is defined as a 200 

spatial variability of atmospheric CO2 within a 2×2.5 grid cell written as: 

𝐸𝑅𝑅𝑅𝐸𝑃
2 =  

1

𝑁
∑ 𝑉𝐴𝑅𝐶 𝑂2,𝑖

 𝑁
𝑖=1           (3)   

With the high-resolution (0.5ºx0.625º) 3-hourly GEOS-5 simulation results for 2018 from NASA Goddard Space Flight 

Center (Weir et al., 2021), we calculate the variance of atmospheric CO2 concentration within each 2×2.5 grid cell at every 

3-hour interval. Then, we sample the CO2 variance value (𝑉𝐴𝑅𝐶𝑂2,𝑖) at the grid cell containing the ith observation and the 205 

time closest to the observation. Subsequently, the monthly mean values of the N co-sampled variances are derived (𝐸𝑅𝑅𝑅𝐸𝑃
2 ). 

We assume that the variances do not vary significantly across years, given relatively lower monthly variability of 𝐸𝑅𝑅𝑅𝐸𝑃
  

compared to that of RMSE and ERRMIP (to be shown in Section 3.2). The reason for calculating CO2 variance value within 

2×2.5 is because it is the finest resolution among the OCO-2 MIP models. We evaluate whether the representation errors, 

derived from simulated atmospheric CO2 fields, represent the actual spatial variability of CO2 concentration by comparing 210 

simulated CO2 variance with the spatial variance of aircraft measurement data from ACT-America project (Supplement Text 

and Fig. S1). The evaluation results support our approach.  

 

𝐸𝑅𝑅𝑂𝐵𝑆
2  represents the observation errors (𝜎𝑜

2) in RMSE2 as shown in Figure 1. Unfortunately, this information is 

missing from many of the airborne measurement datasets included in the given OCO-2 MIP ObsPack format, even though 215 

uncertainties may be included in the original datasets. The World Meteorological Organization (WMO) community has 

established network compatibility objectives for the precision of atmospheric CO2 measurements: 0.1 ppm in the Northern 

Hemisphere and 0.05 ppm in the Southern Hemisphere. Assuming an ideal situation without systematic bias, we set the 

observation error (𝐸𝑅𝑅𝑂𝐵𝑆
 ) for all airborne observations at 0.1 ppm. However, in reality, systematic errors could be present 

in airborne observation stemming from instrument or setup biases, calibration offsets, and other factors. Especially, 220 
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CO2 measurements in South America from INPE might exhibit a higher measurement error compared to other regions 

because of unresolved water vapor contamination issues in those flask measurements, which could result in both a low bias 

(~1-3 ppm at 3% absolute humidity, respectively) and spurious variability (Baier et al., 2020). The potential effects of these 

systematic errors on our findings will be addressed in Section 4. This study only employs 𝐸𝑅𝑅𝑂𝐵𝑆
2  for calculating 𝐸𝑅𝑅𝑇𝑂𝑇

2  

and does not compare it with other error quantities in Section 3. 225 

 

Therefore, ERRTOT, the approximation for RMSE, is defined as: 

𝐸𝑅𝑅𝑇𝑂𝑇
2 = 𝐸𝑅𝑅𝑂𝐵𝑆

2 + 𝐸𝑅𝑅𝑅𝐸𝑃
2 + 𝐸𝑅𝑅𝑀𝐼𝑃

2          (4)  

By applying 1000 bootstrap resampling to the monthly grid-based error statistics (e.g., RMSE, 𝐸𝑅𝑅𝑀𝐼𝑃
 , 𝐸𝑅𝑅𝑅𝐸𝑃

 , and 

𝐸𝑅𝑅𝑇𝑂𝑇
 ) within each region, we obtain regional mean values of these error statistics, along with their corresponding 95% 230 

confidence intervals. 

 

To evaluate whether the spread of ensemble CO2 fluxes from OCO-2 MIP represents the true flux errors in the 

ensemble mean, we calculate the ratio between monthly ERRTOT and RMSE: 

𝑅𝑎𝑡𝑖𝑜2 =  
𝐸𝑅𝑅𝑇𝑂𝑇

2

𝑅𝑀𝑆𝐸2 ,           (5)   235 

Given that 𝐸𝑅𝑅𝑅𝐸𝑃
2  reasonably depict actual representation errors, 𝑅𝑎𝑡𝑖𝑜2 can indicate whether posterior flux and transport 

errors computed from the ensemble spread is an overestimation or underestimation of true flux and transport errors. In this 

study, we assume that the estimated transport errors from the ensemble spread among transport models used in OCO-2 MIP 

represent the true transport errors and the difference between 𝑅𝑀𝑆𝐸2 and 𝐸𝑅𝑅𝑇𝑂𝑇
2  mainly arises from the difference in the 

flux error variances (𝜎𝑓𝑡

2  𝑎𝑛𝑑 𝜎𝑓𝑒

2 ). Thus, a ratio close to 1 indicates that the estimated posterior flux errors derived from the 240 

ensemble model spread are close to the true posterior flux error in the ensemble mean fluxes. A ratio greater than 1 means 

that the posterior flux errors are overestimated, and vice versa. However, our assumption regarding transport errors may be a 

strong assumption given that the transport errors are derived from 10 ensemble members, covering four different transport 

models, which might not fully capture the actual transport errors. We discuss how this assumption affects our key results in 

Section 4. 245 

2.4 Quantification of the uncertainties of ensemble mean of posterior fluxes  

In addition to the qualitative evaluations of posterior flux errors using the ratios between ERRTOT and RMSE, we 

propose a method to quantitatively assess the ensemble posterior flux errors (i.e., variance of flux errors) in both CO2 space 

and flux space. To do this, we first need to calculate the variance of atmospheric CO2 errors due to only the ensemble spread 

of posterior fluxes from OCO-2 MIP (ℎ(𝑒𝑟𝑟𝑓𝑒
)

2
). As shown in the Appendix A, this term can be written as: 250 

ℎ(𝑒𝑟𝑟𝑓𝑒
)

2
=

1

𝑁
∑

1

𝑀
∑

1

𝑀
∑ [ℎ𝑘(𝑥𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)]𝑀

𝑗=1 [ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)]
𝑇𝑀

𝑘=1
𝑁
𝑖=1      (6) 
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Using all transport models engaged in the OCO-2 MIP would be ideal to derive ℎ(𝑒𝑟𝑟𝑓𝑒
)

2
, but, in this study, we approximate 

this error term using the GEOS-Chem model as depicted: 

ℎ(𝑒𝑟𝑟𝑓𝑒
)

2
≈  ℎ𝐺𝐶(𝑒𝑟𝑟𝑓𝑒

)
2

=  
1

𝑁
∑

1

𝑀
∑ [ℎ𝐺𝐶 (𝑥𝑖̂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − ℎ𝐺𝐶(𝑥̂𝑗,𝑖)]𝑀

𝑗=1 [ℎ𝐺𝐶 (𝑥𝑖̂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − ℎ𝐺𝐶(𝑥̂𝑗,𝑖)]
𝑇𝑁

𝑖=1 ,    (7) 

where ℎ𝐺𝐶(𝑥𝑖̂)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  = 
1

𝑀
∑ ℎ𝐺𝐶(𝑥̂𝑗,𝑖)𝑀

𝑗=1  255 

 

To get ℎ𝐺𝐶 (𝑒𝑟𝑟𝑓𝑒
)

2
, we conduct a set of forward simulations using the GEOS-Chem transport model (within the 

GEOS-Chem Adjoint model v8.2j; Henze et al., 2007). In all ten experiments, consistent meteorology and emission forcing 

data are used from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2; Gelaro et 

al., 2017) and Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda and Maksyutov, 2015); identical annually 260 

balanced hourly terrestrial biosphere fluxes from SiB4 (Haynes et al., 2021) were also employed. However, in each 

experiment, the prescribed monthly fluxes of terrestrial ecosystems and oceans are based on the posterior fluxes from the 

respective ten OCO-2 MIP ensemble members. All experiments are performed at 2×2.5 horizontal resolution and 47 

vertical levels for the period 2015–2017. By calculating the mean of variances of simulated CO2 concentrations among the 

ten experiments at ith airborne observations within each 1×1 grid-cell, we derive ℎ𝐺𝐶(𝑒𝑟𝑟𝑓𝑒
)

2
. 265 

 

Because we assume that the spread of ensemble transport models used in OCO-2 MIP represents the true transport 

errors included in RMSE2, the transport errors along with observation errors and representation errors would cancel out when 

we calculate the difference between monthly RMSE2 and 𝐸𝑅𝑅𝑇𝑂𝑇
2 . Consequently, the difference between monthly RMSE2 

and 𝐸𝑅𝑅𝑇𝑂𝑇
2  arises from the difference in the flux error variances (𝜎𝑓𝑡

2  𝑎𝑛𝑑 𝜎𝑓𝑒

2 ). The difference between monthly true flux 270 

errors (ℎ(𝑒𝑟𝑟𝑓𝑡
)

2
) and estimated flux errors (ℎ(𝑒𝑟𝑟𝑓𝑒

)
2

≈  ℎ𝐺𝐶 (𝑒𝑟𝑟𝑓𝑒
)

2
) projected onto CO2 space can be derived from the 

difference between RMSE2 and 𝐸𝑅𝑅𝑇𝑂𝑇
2  as shown: 

ℎ(𝑒𝑟𝑟𝑓𝑡
)

2
− ℎ(𝑒𝑟𝑟𝑓𝑒

)
2

= 𝑅𝑀𝑆𝐸 
2 − 𝐸𝑅𝑅𝑇𝑂𝑇

2         (8) 

 

From Eq. (8), we can derive the true errors of the ensemble mean fluxes in CO2 space, ℎ(𝑒𝑟𝑟𝑓𝑡
)

2
. Out of 181 cases, 275 

representing the total months of observations across all seven regions, ℎ(𝑒𝑟𝑟𝑓𝑡
) can be derived using this equation in 158 

cases. In 23 cases (13% of total cases), ℎ(𝑒𝑟𝑟𝑓𝑡
) cannot be derived when ERRTOT and/or ℎ(𝑒𝑟𝑟𝑓𝑒

) values fell outside the 

applicable range. Around 40% of the exception cases occur in South America where observation cover only one to six 1×1 

grid cells per month, suggesting that observations are insufficient to quantify the monthly flux errors in this region.  

 280 

In order to link those terms with flux errors in flux space, we first identify the areas sensitive to airborne CO2 

measurements by conducting sensitivity experiments using the GEOS-Chem Adjoint model. Seven sets of adjoint sensitivity 
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experiments are conducted to examine the sensitivity of airborne measurements in each region (defined in Figure 2a) to 

terrestrial biosphere and air-sea CO2 fluxes for the month of observations. The sensitivity experiments use the same 

meteorology and CO2 emission datasets as the forward simulations, along with the ensemble mean of posterior terrestrial 285 

biosphere and air-sea flux values. The following explanation of the sensitivity analysis uses the same notation as Liu et al. 

(2015). The cost function (J) is defined as the sum of simulated CO2 concentrations where airborne observations were made 

within each region and month: 

𝐽 =  ∑ ℎ𝑖(𝑥̂)
𝑁 
𝑖=1 ,             (9) 

The sensitivity of observations to surface fluxes at lth grid-cell and tth time is derived from the partial derivative of J with 290 

respect to surface fluxes (𝑥̂𝑙,𝑘) written as: 

𝛾𝑙,𝑡 =  
𝜕𝐽

𝜕𝑥𝑙,𝑡
 ,             (10) 

Monthly cumulative sensitivity (𝛽) with respect to surface fluxes is determined by integrating 𝛾𝑙,𝑡 from the measurement 

time (t0) to the initial time (t-T) for each month: 

𝛽𝑙 =  ∑ 𝛾𝑙, 𝑡
𝑡−𝑇
𝑡=𝑡0

,             (11) 295 

 

In order to find the most sensitive areas to the airborne observations, we select the areas accounting for 50% of the 

global total values of 𝛽 for each region and month. Areas with sensitivity values lower than 0.1% (0.15% for Alaska, 

Australia, and Southeast Asia) of the total value of β are excluded due to occasional cases where observations are influenced 

uniformly across too wide regions as a result of active atmospheric mixing. Additionally, to avoid excessive consideration of 300 

localized effects due to a large number of observations occurring in a single location, regions with sensitivity values greater 

than 1% are included in the effective area. We then compute the estimated posterior flux errors in flux space (𝑒𝑟𝑟𝑓𝑒

2 = 𝜎𝑓𝑒

2 ) by 

calculating the ensemble spread of the total posterior flux values (and area-averaged mean values) over the effective area for 

each month for the period 2015–2017, as illustrated in Figure 1. The estimated mean posterior fluxes (𝑒𝑟𝑟𝑓𝑒
) over the 

selected areas in each month, exhibits a significant correlation (p≤0.05) with the monthly ℎ(𝑒𝑟𝑟𝑓𝑒
) in all regions, except for 305 

Australia where the observational campaign was conducted in specific months (Fig. S2). While the observed atmospheric 

CO2 concentration is influenced by both terrestrial biosphere and ocean sources, a comparison of the magnitudes of 𝑒𝑟𝑟𝑓𝑒
 

between ocean and land within the effective areas reveals that, on average, the terrestrial biosphere flux error contributes 

more than 95% to the total posterior flux errors in all regions (Fig. S3). This result indicates that our evaluation results based 

on atmospheric CO2 can be applied to deriving the actual errors of posterior terrestrial biosphere flux within the selected area 310 

in flux space.  

 

This study provides both monthly and three-year mean values of regional flux error statistics for the period 2015–

2017. Technically, it is possible to derive the monthly true errors in the ensemble mean of terrestrial biosphere fluxes within 
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the effective areas using the monthly error statistics. However, to obtain more robust results, we compute the true errors of 315 

annual total terrestrial biosphere fluxes over the analysis period. To identify the areas contributing most to the computed 

mean error statistics, we calculate the number of months selected as the effective areas for monthly airborne observations. 

Those grid cells, at 2×2.5 resolution, corresponding to the effective areas are assigned a value of 1, while the remaining 

cells are assigned a value of 0 for each month. We then calculate composite values for each grid cell over the three years. A 

higher number of months indicates more information in those grid cells was utilized in calculating the three-year regional 320 

mean error statistics. We define that our three-year mean error statistics mostly represent the areas where the composite 

values exceed eight, corresponding to 20% of the total analysis months (i.e., 36).  

 

The observation operator, which converts surface fluxes to atmospheric CO2, is generally assumed linear. 

Therefore, we can obtain the true annual total terrestrial biosphere flux errors in those areas, 𝑒𝑟𝑟𝑓𝑡
 (= 𝜎𝑓𝑡

 ), by multiplying 325 

the ratio between three-year mean values of ℎ(𝑒𝑟𝑟𝑓𝑡
) and ℎ(𝑒𝑟𝑟𝑓𝑒

) by the ensemble spread of the mean annual total 

terrestrial biosphere flux estimates (𝑒𝑟𝑟𝑓𝑒
) within the effective areas. The equation can be written as:  

𝑒𝑟𝑟𝑓𝑡
=

ℎ(𝑒𝑟𝑟𝑓𝑡
) 

ℎ(𝑒𝑟𝑟𝑓𝑒)
× 𝑒𝑟𝑟𝑓𝑒

                                                                (12) 

Lastly, to explore characteristics of regions where average annual total 𝑒𝑟𝑟𝑓𝑡
 is significantly underestimated, we also 

compute the average annual fossil fuel CO2 emissions in the effective area using ODIAC data. 330 

3 Results 

3.1 Spatiotemporal variations of the ensemble posterior CO2 concentration errors and other major error components   

Because the magnitude of terrestrial biosphere CO2 fluxes is generally over 10 times greater than air-sea fluxes, the 

observed atmospheric CO2 over the oceans carries signals from nearby land fluxes. The four ATom campaigns spanning four 

seasons and the ORCAS campaign during austral summer spanned wide latitudinal ranges, primarily over the oceans, 335 

providing a unique opportunity to analyze the latitudinal distributions of inverse modeling errors and contributions of main 

error sources. We compare the ensemble posterior CO2 to airborne CO2 measurements taken between 1-5 km AGL and then 

calculate the mean error statistics for the entire campaign period. Comparisons to observations from ATom and ORCAS 

campaigns reveal a general increase in RMSE values towards the northern high latitudes, reaching 1.2 ppm at 40°N (Figure 

3a, f). The latitudinal gradient becomes particularly evident during the summer season, with RMSE values exceeding 1.5 340 

ppm over North America (Fig. S4), suggesting significant contributions of errors in terrestrial biosphere fluxes to the 

differences between observed and simulated atmospheric CO2. Additionally, consistently elevated RMSE values (>1.5 ppm) 

commonly appear over the west coast of Africa throughout the seasons.  
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 345 
Figure 3: Spatial distributions of (a) RMSE, (b) ERRMIP, (c) ERRREP, and (d) Ratio (= 

√(𝑬𝑹𝑹𝑶𝑩𝑺 (= 𝟎. 𝟏 𝒑𝒑𝒎))𝟐 + 𝑬𝑹𝑹𝑹𝑬𝑷
𝟐 + 𝑬𝑹𝑹𝑴𝑰𝑷

𝟐  / 𝑹𝑴𝑺𝑬) where ATom (circle) and ORCAS (triangle) airborne measurements 

were taken and (e and f) their latitudinal distributions smoothed by 10° moving average with 95% confidence intervals derived from 

1000 bootstrap samples of datasets (error bar).  

 350 

Both ERRMIP and ERRREP exhibit similar spatial distributions as RMSE (Figure 3a-c, f). However, ERRMIP has a 

stronger positive correlation with RMSE (r = 0.57 and 0.58 for ATom and ORCAS, respectively) compared to ERRREP (r = 

0.35 and 0.32), with an average greater magnitude (0.49 and 0.32 ppm) than ERRREP (0.27 and 0.20 ppm) globally for the 

whole campaign periods. Particularly, ERRMIP and ERRREP account for 75% and 37% of the anomalous high RMSE values 

(1.5 ppm) in Northern America (32-50N and 85-124W), and 75% and 30% of the RMSE values (1.2 ppm) along the west 355 

coast of Africa. These findings indicate that ERRMIP which represents errors in posterior fluxes and transport is the most 

significant factor in explaining RMSE. 
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Next, in order to assess the proximity of the estimated posterior flux errors, based on the spread of OCO-2 MIP 

ensemble fluxes, to the true posterior flux errors of the ensemble mean, we compare RMSE with the sum of ERRMIP, ERRREP, 360 

and ERROBS (referred to as ERRTOT). The ratio of ERRTOT to RMSE exceeds one over the tropical Pacific and the Southern 

Ocean (Figure 3d, e), indicating that the ensemble spread of posterior fluxes overestimates true flux errors over the regions 

sensitive to these observations. This overestimation pattern consistently appears for both the ATom and ORCAS campaigns 

across all seasons (Fig. S5). Airborne CO2 measurements in this area are predominantly influenced by air-sea fluxes due to 

the limited land extent and the significant distance from land (Yun et al., 2022), suggesting the true posterior air-sea flux 365 

errors may be smaller than the spread of the ensemble posterior flux estimates. In contrast, a ratio of ERRTOT to RMSE less 

than one was observed along the African coast during the ATom campaigns, with the exception of the 2018 spring campaign 

conducted in a relatively distant region from Africa. Considering that these airborne observations are known to be sensitive 

to terrestrial biosphere fluxes in tropical Africa (Liu et al., 2021), our results imply that true errors of the ensemble mean 

terrestrial biosphere fluxes in this region may be larger than the estimated errors based on the OCO-2 MIP ensemble spread. 370 

These findings agree with Liu et al. (2021), which demonstrated an underestimation of posterior flux errors in CMS-Flux 

inverse model, suggesting most of the inverse models in OCO-2 MIP have significant errors for this region. 

 

In the northern mid-to-high latitudes, characterized by significant terrestrial CO2 flux impacts on atmospheric CO2 

variations (Yun et al., 2022), the ratio of ERRTOT to RMSE exhibits substantial variation across space and time. The ratio 375 

between ERRTOT to RMSE is greater than one within the North American continent during summer and autumn. However, in 

other areas, there is a mixed pattern with ratios both below and above one, although the majority of the areas exhibit ratios 

less than one during winter. These findings highlight that the degree of underestimation or overestimation of true terrestrial 

biosphere flux errors based on ensemble spread can differ depending on regions and seasons, emphasizing the need for a 

more detailed evaluation of terrestrial biosphere flux errors at a regional level based on long-term independent observation.  380 

3.2 Evaluation of v10 OCO-2 MIP ensemble posterior CO2 flux errors by regions 

In this section, we calculate the regionally averaged monthly error statistics by comparing the ensemble posterior 

CO2 to airborne measurements over seven regions for 2015–2017. RMSE values in all these regions exhibit significant 

monthly variations, with values falling within the range of 1-3 ppm, with no clear seasonality possibly due to variations in 

observation routes (Figure 4). Consistent with the results shown in Section 3.1, ERRMIP is the most significant factor 385 

explaining the variations of RMSE. Among the seven regions, significant positive correlations (p<0.05) between monthly 

RMSE and ERRMIP exist in Alaska (r=0.46), mid-latitude North America (r=0.63), Europe (r=0.60) and East Asia (r=0.60). 

Furthermore, the correlation coefficient is greater than or comparable to that with ERRREP. This suggests that in these 

regions, temporal variations of the errors in posterior fluxes and transport are the major contributors to the temporal 

variations of RMSE. On the other hand, RMSE does not exhibit a significant correlation with either ERRMIP or ERRREP in 390 
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Southeast Asia, Australia, and South America. This implies that the estimated posterior flux errors based on ensemble spread 

may not represent the temporal variations in true flux errors in those regions.  

 

 
Figure 4: (a-g) Monthly values of RMSE, ERRMIP, ERRREP, and Ratio for each region and (h, i) their mean values for the period 395 
2015–2017. The upper right number in (a-g) indicates the correlation coefficients between RMSE and ERRMIP and ERRREP. The 

shaded areas and error bars represent the 95% confidence intervals derived from 1000 bootstrap samples of datasets. 

 

RMSE values exhibit significant variability not only over time but also across regions. The three-year average 

RMSE is the largest in East Asia (1.98 [1.90, 2.06] ppm: mean [95% confidence intervals]), followed by Europe (1.57 [1.41, 400 

1.74] ppm) and the lowest in Australia (0.88 [0.79, 0.97] ppm), followed by Alaska (1.19 [1.12, 1.25] ppm). ERRMIP is the 

primary error component for RMSE, accounting for 58-83% of the RMSE, surpassing the ERRREP in all the regions by 1.2-2.1 

time. In East Asia, the difference between ERRMIP and ERRREP is relatively small compared to other regions. This could be 

attributed to the presence of numerous significant carbon sources, particularly along the coastal areas, resulting in increased 

spatial variability of CO2 within the coarse grid cell of OCO-2 MIP inverse modeling. 405 
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The ratio between ERRTOT and RMSE also show significant variability across regions. Our results indicate that, on 

average, the estimated flux errors in Alaska and South America closely match the true flux errors with ratios of 0.98 [0.89, 

1.08] and 0.99 [0.79, 1.24], respectively, while mid-latitude North America, Europe, East Asia, Southeast Asia, and 

Australia show significant underestimation at a 95% confidence level with ratios of 0.90 [0.83, 0.97], 0.79 [0.61, 0.97], 0.84 410 

[0.78, 0.91], 0.75 [0.65, 0.86], and 0.73 [0.59, 0.87], respectively, throughout the analysis period. Furthermore, the monthly 

variabilities (i.e., standard deviation) of the ratios are much greater in regions with diverse campaign durations and routes, 

such as South America (0.87), than in East Asia (0.21), characterized by a consistent three-year observation campaign along 

the same paths. This suggests that the spatial variability in the degree of flux error underestimation or overestimation may 

exceed the temporal variability. 415 

3.3 Error quantification of v10 OCO-2 MIP ensemble posterior terrestrial biosphere CO2 fluxes by regions 

Next, by incorporating the monthly RMSE, ERRTOT, and 𝒉(𝒆𝒓𝒓𝒇𝒆
), we derive monthly true posterior flux errors in 

CO2 space (i.e., 𝒉(𝒆𝒓𝒓𝒇𝒕
)) for each region during the period 2015–2017 (Figure 5). Regionally averaged 𝒉(𝒆𝒓𝒓𝒇𝒕

) exhibits 

different seasonal and monthly variability compared to 𝒉(𝒆𝒓𝒓𝒇𝒆
). In the northern mid-latitude regions, 𝒉(𝒆𝒓𝒓𝒇𝒆

) shows clear 

seasonal cycles for the entire analysis period, despite different observation routes in each month. For example, in mid-latitude 420 

North America and East Asia, the growing season (May to October; 0.6 and 0.9 ppm, respectively) experiences higher 

𝒉(𝒆𝒓𝒓𝒇𝒆
) than the non-growing season (November to April; 0.4 and 0.7 ppm). The seasonal variations are also observed in 

𝒉(𝒆𝒓𝒓𝒇𝒕
) in East Asia and partially in mid-latitude North America for 2017, but they are not discernible in Alaska and Europe. 

In addition, monthly 𝒉(𝒆𝒓𝒓𝒇𝒕
)  does not exhibit a significant correlation (p<0.05) with monthly 𝒉(𝒆𝒓𝒓𝒇𝒆

)  in Alaska, 

midlatitude North America, Southeast Asia, and South America. 𝒉(𝒆𝒓𝒓𝒇𝒕
) displays greater monthly variability than 𝒉(𝒆𝒓𝒓𝒇𝒆

). 425 

For example, in mid-latitude North America and East Asia, the standard deviation of monthly 𝒉(𝒆𝒓𝒓𝒇𝒕
) is 1.8 and 2.3 times 

greater than that of monthly 𝒉(𝒆𝒓𝒓𝒇𝒆
).  
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Figure 5: (a-g) Monthly values of 𝒉(𝒆𝒓𝒓𝒇𝒆

) and 𝒉(𝒆𝒓𝒓𝒇𝒕
) for each region and (h) their mean values for the period 2015–2017. The 430 

upper right number indicates the correlation coefficient between them. The shaded areas and error bars represent the 95% 

confidence intervals derived from 1000 bootstrap samples of datasets. 

 

The comparison between the three-year average ℎ(𝑒𝑟𝑟𝑓𝑡
) and RMSE highlights the substantial contributions of 

posterior flux errors to the differences between airborne observations and simulated atmospheric CO2 from OCO-2 MIP 435 

ensemble models. The ℎ(𝑒𝑟𝑟𝑓𝑡
) tends to be larger in regions with higher RMSE, peaking in East Asia (ℎ(𝑒𝑟𝑟𝑓𝑡

)=1.32 ppm 

and RMSE=1.98 ppm) and reaching a minimum in Australia (ℎ(𝑒𝑟𝑟𝑓𝑡
)=0.75 ppm and RMSE=0.88 ppm) (Figures 4h and 5h). 

The ℎ(𝑒𝑟𝑟𝑓𝑡
) accounts for up to 85% of the RMSE in Australia, followed by Southeast Asia (80%) and a minimum of 60% 

of the RMSE in South America, followed by mid-latitude North America (64%). This indicates dominant contributions of 

posterior flux errors to RMSE, surpassing representation and transport errors in the first two regions. 440 

 

The regional mean ratios between ℎ(𝑒𝑟𝑟𝑓𝑒
) and ℎ(𝑒𝑟𝑟𝑓𝑡

) throughout the analysis period indicate significant 

underestimations at a 95% confidence level of true posterior flux errors in mid-latitude North America, Europe, East Asia, 
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Southeast Asia, and Australia by a factor of 0.74 [0.61, 0.88], 0.52 [0.27, 0.78], 0.59 [0.48, 0.70], 0.56 [0.41, 0.72], and 0.59 

[0.34, 0.87], respectively (Figure 5h). In contrast, Alaska and South America exhibit comparable estimates of true flux errors 445 

by factors of 0.96 [0.76, 1.17] and 0.97 [0.49, 1.54], respectively. The regions with significant underestimation align with 

those identified in the previous analysis based on ratios between ERRTOT and RMSE (Section 3.2), but the ℎ(𝑒𝑟𝑟𝑓𝑒
) to 

ℎ(𝑒𝑟𝑟𝑓𝑡
) ratios imply weaker underestimation of true flux errors. The ratios have larger uncertainty range in the regions 

where observations conducted over limited times and locations, such as those in Europe, Australia, and South America than 

in the mid-latitude North America and East Asia where observations cover wider areas and occur more frequently. 450 

 

Finally, by using the three-year regional mean ratios between  ℎ(𝑒𝑟𝑟𝑓𝑒
) and ℎ(𝑒𝑟𝑟𝑓𝑡

), we compute the true errors in 

the annual terrestrial biosphere fluxes over the effective areas averaged for the period 2015–2017 (Figure 6). We find that the 

actual terrestrial biosphere flux errors are underestimated, particularly in regions where annual CO2 emissions from fossil 

fuel combustion exceed annual terrestrial biosphere fluxes by 3-31 times. The airborne measurements carried out in mid-455 

latitude North America, East Asia, and Southeast Asia are influenced by a broad region encompassing the United States, the 

eastern part of East Asia, and the western part of Southeast Asia where fossil fuel CO2 emissions are 1,341, 2,443, and 815 

Tg C year-1, respectively. The first two regions are estimated as significant terrestrial biosphere CO2 sinks, with estimated 

fluxes of −414 ± 279 (ensemble mean  1) and −561 ± 380 Tg C year-1, in contrast to Southeast Asia (26  118 Tg C year-

1). However, the CO2 sinks are more than 3 and 4 times smaller than the fossil fuel CO2 emissions, respectively. The 460 

recalculated terrestrial biosphere flux errors in these regions exceed the ensemble spread with values of 374, 643, and 211 Tg 

C year-1. Observations in Europe and Australia, conducted over limited periods and specific locations, mainly represent 

certain areas in the western Europe and the southeastern part of Australia, where fossil fuel emissions (234 and 53 Tg C year-

1, respectively) are around four and five times greater than terrestrial biosphere sinks (−51  34 and −10  67 Tg C year-1). 

The recalculated terrestrial biosphere flux errors in these regions are also larger than the ensemble spread, estimated at 65 465 

and 114 Tg C year-1, respectively. On the contrary, the most influential areas for the observation in Alaska and South 

America, encompassing the southeastern region of Alaska and the northern part of Brazil, characterized as a terrestrial 

biosphere sinks of −8  11 Tg C year-1 and sources of 625  387 Tg C year-1, respectively, which are comparable to or more 

than 10 times greater than fossil fuel emissions (10 and 38 Tg C year-1). The observation-based estimates of true terrestrial 

biosphere flux errors are almost identical to the ensemble spread in both regions with values of 11 and 398 Tg C year-1, 470 

respectively. 
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Figure 6: (a) Number of months selected as the effective area for airborne measurements. The outlined area represents selected 

areas for more than eight months or equal. (b) Annual total terrestrial biosphere CO2 fluxes obtained from the ensemble mean of 475 
ten OCO-2 MIP models and annual total fossil fuel CO2 emissions estimated from ODIAC data for each outlined area averaged over 

the period 2015–2017. The error bars in black and red indicate the one standard deviation of the inversion estimates and the newly 

estimated error range from this study, respectively. 

4. Discussion and conclusions 

Our results show that the true errors in the ensemble mean of posterior terrestrial biosphere CO2 fluxes is a major 480 

factor contributing to the RMSE between posterior simulated CO2 and aircraft observations for the period 2015–2017. Our 

findings reaffirm the feasibility of evaluating inversion performance on terrestrial biosphere flux estimates through a direct 

comparison between airborne observations and model data (Houweling et al., 2015; Chevallier et al., 2019; Crowell et al., 

2019; Byrne et al., 2023). However, when evaluating inversion estimates at regional scales, the significance of representation 

and transport errors become pronounced. Our results show that regional variations in representation errors, along with the 485 

sum of transport errors and their covariances with flux errors (inferred from the difference between ERRMIP and ℎ(𝑒𝑟𝑟𝑓𝑒
); 

Fig. S6), exceed those in true flux errors projected into CO2 space, indicating that regional differences in RMSE do not 

directly correspond to differences in flux errors. For example, although the three-year mean errors in representation and 

transport in East Asia exceed those in Southeast Asia by 0.5 and 0.3 ppm, respectively, the disparity in projected mean true 

flux errors onto CO2 space between the two regions is only 0.2 ppm. This result is supported by previous studies highlighting 490 

that the spatial distributions of simulated CO2 concentrations can vary significantly depending on the transport model 

(Schuch et al., 2023) and their spatial resolution (Stanevich et al., 2020). Therefore, when utilizing airborne CO2 

measurements (and potentially other CO2 observation) to analyze the detailed characteristics of ensemble posterior flux 

estimates at a regional (or latitudinal) level, it is crucial to account for the contributions of representation and transport 

errors. 495 

 

Our analysis reveals that the true errors of ensemble mean posterior fluxes is significantly greater than the ensemble 

spread of flux estimates in five out of seven regions. The underestimation of true flux errors can arise from multiple factors, 
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posing a challenge in determining the main cause of the underestimation. Possible reasons include errors in methodological 

assumptions and atmospheric CO2 observation commonly applied to all OCO-2 MIP ensemble members because flux errors 500 

arising from these components are not captured by the ensemble spread. OCO-2 MIP models treat the fossil fuel emissions 

as true values and use the same dataset (i.e., ODIAC). The uncertainty of fossil fuel emissions is relatively small at national 

and annual scales (4-20%; Andres et al., 2014), while it becomes substantial when considering spatial distribution at model 

grid scale and temporal variability within a year (Zhang et al., 2016; Gurney et al., 2021). The underestimation of true flux 

errors only in regions with more than three times greater fossil fuel emissions than biosphere fluxes suggests the potential 505 

presence of systematic biases originating from errors in fossil fuel emission estimates. Additionally, the regional and 

seasonal sampling biases of CO2 measurements and satellite retrieval errors could contribute to these systematic biases 

(Kulawik et al., 2019). Eight prior flux datasets also may not adequately represent the errors of terrestrial biosphere fluxes, 

which exhibit significant variations among estimates (Feng et al., 2019). Therefore, further study to uncover the causes of 

underestimation in true flux errors is required in order to understand uncertainty sources overlooked in current ensemble 510 

inverse modeling estimates.  

 

The reliability of our observation-based regional flux error estimates is based upon the data availability of airborne 

measurements. Although our approach is generally effective in estimating a regional mean of monthly ℎ(𝑒𝑟𝑟𝑓𝑡
), it is not 

applicable in 15% of our total cases (shown in Figure 5), when measurements were mostly made in local areas covering one 515 

to six 1×1 grid cells within each region. This limitation may be attributed to the application of a common method for 

calculating observation errors across all data points, which might not adequately identify specific outliers. Caution is 

required when applying our approach to monthly-scale analysis, especially when using observations made locally. Extending 

the calculation period to several months or longer (e.g., Figure 5h) is a suitable strategy for mitigating the impact of outliers 

and obtaining more robust results. In fact, the ratios of three-year mean ℎ(𝑒𝑟𝑟𝑓𝑒
) to ℎ(𝑒𝑟𝑟𝑓𝑡

), which are key metrics for 520 

quantifying regional flux errors (Figure 5h), have a smaller uncertainty in mid-latitude North America and East Asia where 

wide and consistent airborne data are available, than over Europe and South America, where aircraft observations are sparse 

and only have intermittent data coverage. In addition, it is noteworthy that the ℎ(𝑒𝑟𝑟𝑓𝑒
) to ℎ(𝑒𝑟𝑟𝑓𝑡

) ratios derived from 

continuous observations enable the computation of unbiased true errors in the ensemble mean of annual terrestrial biosphere 

fluxes averaged for the analysis period, compared to those from limited observation periods (e.g., in Alaska). These results 525 

highlight the importance of having frequent airborne measurements with extensive spatial coverage for the reliable error 

quantification of regional terrestrial biosphere flux estimates derived from inverse models. 

 

The performance of inverse models in simulating atmospheric CO2 may vary by season. However, airborne 

measurements were not uniformly conducted across all seasons in most analyzed regions. Among the seven regions 530 

analyzed, the CONTRAIL program in East Asia has continuously conducted CO2 measurements over three years with routes 

repeated throughout all seasons. This has resulted in the most sensitive area to the measurements exhibiting similar spatial 
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patterns in the NH vegetation growing season (from May to October) and non-growing season, encompassing the northeast 

part of China, Korea, and Japan (Fig. S7). The airborne measurements in East Asia offer a unique opportunity to explore the 

seasonal variations of regional error statistics. For the period of 2015–2017, the regional averages of both RMSE and ERRTOT 535 

exhibit, on average, 12% and 11% higher values during the non-growing season compared to the growing season (Fig. S8). 

In contrast, the regional averages of ℎ(𝑒𝑟𝑟𝑓𝑒
) and ℎ(𝑒𝑟𝑟𝑓𝑡

) have greater values during the growing season, 0.90 [0.84, 0.97] 

and 1.37 [1.13, 1.62] ppm respectively, compared to the non-growing season (0.66 [0.62, 0.70] and 1.30 [1.06, 1.54] ppm) 

because of the tendency for CO2 errors to increase proportionally with the magnitude of flux values. Consequently, the ratio 

of ℎ(𝑒𝑟𝑟𝑓𝑒
) to ℎ(𝑒𝑟𝑟𝑓𝑡

) is slightly lower during the non-growing season with 0.51 [0.39, 0.64] compared to the growing 540 

season with 0.66 [0.50, 0.83], indicating a relatively greater underestimation of true flux errors when the terrestrial biosphere 

CO2 sinks are relatively smaller. This result aligns with our finding that the true terrestrial biosphere flux errors are 

significantly underestimated where fossil fuel emissions have larger magnitude than terrestrial biosphere fluxes. 

Furthermore, the consistent ratio of ℎ(𝑒𝑟𝑟𝑓𝑒
) to ℎ(𝑒𝑟𝑟𝑓𝑡

) below 1, without significant seasonal variations in East Asia, 

suggests that our conclusions, drawn from the analysis of seven regions, may not be seasonally dependent.  545 

  

To capture the signals from regional surface CO2 fluxes, we used atmospheric CO2 data observed and simulated 

within the 1-5 km AGL altitude range. The choice of this altitude range may influence regional error statistics, as the 

performance of inverse models could vary with altitude. To gauge this sensitivity, we compared error statistics derived from 

atmospheric CO2 data with two altitude ranges: 1-3 km AGL and 1-5 km AGL. Among the seven analyzed regions, Australia 550 

and South America were excluded in this additional analysis because the airborne observation in these two regions cover 

fewer than 100 grid cells for the analysis period and narrowing the altitude range resulted in the loss of over 30% of the grid 

cells. The areas sensitive to airborne CO2 measurements within the two altitude ranges exhibit nearly identical spatial 

patterns in Alaska, mid-latitude North America, Europe, East Asia, and Southeast Asia, indicating that observations at lower 

altitudes are more sensitive to surface CO2 fluxes (Fig. S9). Because of the higher sensitivity, error statistics in all regions 555 

have larger values when calculated using data from the 1-3 km AGL altitude range compared to the 1-5 km AGL altitude 

range (Fig. S10). For example, in mid-latitude North America, the regional averages of RMSE, ERRTOT, ℎ(𝑒𝑟𝑟𝑓𝑒
), and 

ℎ(𝑒𝑟𝑟𝑓𝑡
) are 1.42 [1.36, 1.49], 1.34 [1.30, 1.39], 0.72 [0.69, 0.76], and 0.86 [0.72, 1.01] ppm when calculated using data 

within the 1-3 km AGL altitude range. In comparison, when computed from the data within the 1-5 km AGL altitude range, 

these values are 1.21 [1.15, 1.26], 1.09 [1.06, 1.13], 0.57 [0.55, 0.60], and 0.77 [0.66, 0.88] ppm. However, the ratio of three-560 

year mean ℎ(𝑒𝑟𝑟𝑓𝑒
) to ℎ(𝑒𝑟𝑟𝑓𝑡

) does not show significant differences based on the altitude ranges, with the difference being 

between 0.02 and 0.11. Again, these results suggest that our observation-based regional flux error estimates are not sensitive 

to the choice of altitude range for longer time periods. 
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Our study computes true flux errors for the ensemble mean estimates by comparing 𝑅𝑀𝑆𝐸 
2 and 𝐸𝑅𝑅𝑇𝑂𝑇

2 . However, 565 

discrepancies between true and estimated values of observation, representation, and transport errors, as well as covariances 

between flux errors and transport errors, could contribute to variations in 𝑅𝑀𝑆𝐸 
2 and 𝐸𝑅𝑅𝑇𝑂𝑇

2 . Due to a lack of information 

for all datasets, we set observation errors under ideal conditions (i.e., 0.1 ppm). In reality, inadequate quality control can 

result in significant systematic biases for specific regions and time periods (Masarie et al., 2011; Baier et al., 2020), 

impacting our results, especially in South America. For instance, if the average measurement error is 0.5 ppm instead of the 570 

assumed 0.1 ppm during the analysis period, the calculated true flux error would decrease from 398 to 334 Tg C year-1 for 

South America and from 374 to 260 Tg C year-1 for mid-latitude North America.  

 

Representation errors and ℎ(𝑒𝑟𝑟𝑓𝑒
) are derived using the GEOS-5 and GEOS-Chem models but these values depend 

on the transport model and meteorological fields used. Employing our approach across all participating MIP models to 575 

compute these two error terms and subsequently averaging them would lead to a more realistic flux error quantification in 

future studies. Employing all transport models also would facilitate the calculation of variances of flux errors and their 

covariance with transport errors included in ERRMIP as shown in Appendix A, and subsequently enable the determination of 

the total true flux errors including both diagonal and off-diagonal terms. In addition, previous studies show that 8-10 

different ensemble members are required for robust transport error estimates (Feng et al., 2019; Lauvaux et al., 2019). 580 

However, out of the 10 ensemble members in OCO-2 MIP, three employed TM5 and five utilized GEOS-Chem (Table S1). 

The ensemble size might not be enough to fully capture the range of true transport errors. We further investigate how our 

main results would be affected if the estimated transport errors deviate from actual errors by 20% and 40% of the difference 

between RMSE2 and 𝐸𝑅𝑅𝑇𝑂𝑇
2 . The ratio of regional mean of ℎ(𝑒𝑟𝑟𝑓𝑒

) to ℎ(𝑒𝑟𝑟𝑓𝑡
) increases by, on average, only up to 0.04 

and 0.09 in the seven regions throughout the analysis period, respectively (Fig. S11). In both cases, the estimated flux errors 585 

in mid-latitude North America, Europe, East Asia, and Southeast Asia still show significant underestimation at a 95% 

confidence level, while not in Alaska and South America. In Australia, characterized by a wide uncertainty range, significant 

underestimation is also observed in the 20% cases, supporting the robustness of our findings. In the future OCO-2 MIP, the 

participation of inverse modeling groups using other transport models or meteorological forcing data might contribute to 

estimating transport errors closer to actual values. 590 

 

In summary, our study provides an observation-based method for quantifying errors in the ensemble mean of 

regional terrestrial biosphere CO2 flux estimates which can be widely applied in inverse modeling inter-comparison projects 

like the OCO-2 MIP.  The evaluation results of the OCO-2 MIP ensemble members reveal the true errors of ensemble 

posterior fluxes are larger compared to the ensemble spread in regions with higher fossil fuel emissions compared to 595 

terrestrial biosphere fluxes. This finding offers important insights into understanding the sources of errors in current inverse 

modeling and guides future research aimed at resolving the errors in terrestrial biosphere fluxes. Airborne observations 



 

25 

 

provide a broader footprint compared to ground-based observations. Leveraging this advantage, our study evaluates 19% of 

the total global land cover (excluding Antarctica and Greenland) but data scarcity limits the evaluation of the remaining 

81%. In addition to the ongoing airborne measurement programs including CONTRAIL, IAGOS-CARIBIC, and various 600 

airborne programs under INPE, NASA, and NOAA, airborne observations have been conducted in unexplored regions, 

including Siberia (e.g., Narbaud et al., 2023), Africa (e.g., Barker et al., 2020), and Northern Europe (e.g., Barker et al., 

2021). The sustained efforts to maintain and expand airborne observations along with a collaborative data-sharing and 

management system (e.g., ObsPack) will contribute to accurately estimating and reducing the uncertainties of regional 

terrestrial biosphere fluxes. 605 

Appendix A 

Following Eq. (1) in the main text, 

𝑅𝑀𝑆𝐸2 =
1

𝑁
∑ [𝑦𝑜,𝑖 − ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅] [𝑦𝑜,𝑖 − ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅]𝑇𝑁

𝑖=1 ,  where ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ = 
1

𝑀
∑ ℎ𝑗(𝑥̂𝑗,𝑖)𝑀

𝑗=1    (A1) 

where ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ denotes ensemble mean of posterior CO2 concentrations in OCO-2 MIP models corresponding to ith airborne 

observation (𝑦𝑜,𝑖) within each 1×1 grid-cell in each month. N is the total number of airborne measurement data sampled at 610 

each grid-cell monthly. M is the ensemble size (i.e., 10 members).  

The Eq. (A1) can be rewritten as, 

𝑅𝑀𝑆𝐸2 =
1

𝑁
∑ [(𝑦𝑜,𝑖 − ℎ𝑡(𝑥̂𝑡,𝑖)) − (ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖))] [(𝑦𝑜 − ℎ𝑡(𝑥̂𝑡,𝑖)) − (ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖))]

𝑇
𝑁
𝑖=1   (A2) 

                =  
1

𝑁
∑ [𝑦𝑜,𝑖 − ℎ𝑡(𝑥̂𝑡,𝑖)]

 
[𝑦𝑜,𝑖 − ℎ𝑡(𝑥̂𝑡,𝑖)]

𝑇
− 2 (𝑦𝑜 − ℎ𝑡(𝑥̂𝑡,𝑖)) ∗ (ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖))𝑁

𝑖=1    

       + [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖)][ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖)]
𝑇

,  (A3) 615 

where ℎ𝑡(𝑥̂𝑡) denotes the estimated CO2 concentration obtained from an error-free atmospheric transport model (ℎ𝑡) and true 

CO2 fluxes (𝑥̂𝑡). The three terms on the right-hand side of Eq. (A3) indicate the (i) variances of observation and 

representation errors, (ii) covariances between errors of observation and representation and errors of flux and transport, and 

(iii) variances of flux and transport errors in the ensemble estimates, respectively. Assuming the independence of observation 

and representation errors from transport and flux errors, Eq. (A3) can be simplified to: 620 

𝑅𝑀𝑆𝐸2 =  
1

𝑁
∑ [𝑦𝑜,𝑖 − ℎ𝑡(𝑥̂𝑡,𝑖)]

 
[𝑦𝑜,𝑖 − ℎ𝑡(𝑥̂𝑡,𝑖)]

𝑇
 + [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖)][ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖)]

𝑇𝑁
𝑖=1    (A4)  

 

Further, the second term on the right-hand side of Eq. (A4) can be rewritten by separating the flux error and 

transport error terms as follows: 

 
1

𝑁
∑  [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥̂𝑡,𝑖)][ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑡(𝑥𝑡,𝑖)]

𝑇𝑁
𝑖=1  625 

  =
1

𝑁
∑ [(ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ(𝑥̂𝑡,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ) − (ℎ𝑡(𝑥̂𝑡,𝑖) − ℎ(𝑥̂𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ )] [(ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ(𝑥̂𝑡,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ) − (ℎ𝑡(𝑥̂𝑡,𝑖) −  ℎ(𝑥̂𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ )]

𝑇
𝑁
𝑖=1    (A5) 
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  =
1

𝑁
∑ [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ(𝑥̂𝑡,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ] [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ(𝑥̂𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ]

𝑇
− 2 (ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ(𝑥̂𝑡,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ) (ℎ𝑡(𝑥̂𝑡,𝑖) − ℎ(𝑥̂𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ )𝑁

𝑖=1   

       + [ℎ𝑡(𝑥̂𝑡,𝑖) −  ℎ(𝑥̂𝑡,𝑖)
̅̅ ̅̅ ̅̅ ̅̅ ] [ℎ𝑡(𝑥̂𝑡,𝑖) −  ℎ(𝑥̂𝑡,𝑖)

̅̅ ̅̅ ̅̅ ̅̅ ]
𝑇
  (A6) 

The three terms on the right-hand side of Eq. (A6) indicate the (i) variances of flux errors in concentration space (ii) 

covariances between flux errors and transport errors, and (iii) variances of transport errors, respectively.  630 

 

In OCO-2 MIP, by approximating the ensemble spread of the posterior fluxes as true errors in the mean fluxes, it 

assumes that the values of the first and second terms on the right-hand side of Eq. (A4) can be written as the sum of 

observation errors (𝐸𝑅𝑅𝑂𝐵𝑆
2 ), representation errors (𝐸𝑅𝑅𝑅𝐸𝑃

2 ), and the ensemble spread of posterior CO2 concentrations 

across OCO-2 MIP models (𝐸𝑅𝑅𝑀𝐼𝑃
2 ), respectively: 635 

𝑅𝑀𝑆𝐸2 ≈  𝐸𝑅𝑅𝑇𝑂𝑇
2 = 𝐸𝑅𝑅𝑂𝐵𝑆

2 + 𝐸𝑅𝑅𝑅𝐸𝑃
2 + 𝐸𝑅𝑅𝑀𝐼𝑃

2       (A7) 

We assume that the observation errors are independent of the representation errors. 

 

𝐸𝑅𝑅𝑀𝐼𝑃
2  can be also rewritten by separating flux error and transport error terms as follows: 

 𝐸𝑅𝑅𝑀𝐼𝑃
2 =  

1

𝑁
∑

1

𝑀
∑  [ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑗(𝑥̂𝑗,𝑖)][ℎ(𝑥̂𝑖)̅̅ ̅̅ ̅̅ ̅ − ℎ𝑗(𝑥̂𝑗,𝑖)]

𝑇𝑀
𝑗=1

𝑁
𝑖=1      (A8) 640 

=  
1

𝑁
∑

1

𝑀
∑  

1

𝑀
∑ [(ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)) − (ℎ𝑗(𝑥̂𝑗,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖))]𝑀

𝑘=1

 
𝑀
𝑗=1

𝑁
𝑖=1     

     [(ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)) − (ℎ𝑗(𝑥̂𝑗,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖))]
𝑇
   (A9) 

                 = 
1

𝑁
∑

1

𝑀
∑

1

𝑀
∑ [ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)]𝑀

𝑗=1 [ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)]
𝑇𝑀

𝑘=1
𝑁
𝑖=1   

−2 (ℎ𝑘(𝑥̂𝑘,𝑖) − ℎ𝑘(𝑥𝑗,𝑖)) (ℎ𝑗(𝑥̂𝑗,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)) 

                                  +[ℎ𝑗(𝑥̂𝑗,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖)][ℎ𝑗(𝑥̂𝑗,𝑖) − ℎ𝑘(𝑥̂𝑗,𝑖) ]
𝑇
  (A10) 645 

Same as Eq. (A6), the three terms on the right-hand side of Eq. (A10) correspond to the approximated (i) variances of flux 

errors, (ii) covariances between flux errors and transport errors, and (iii) variances of transport errors, respectively. For the 

calculation of the first term, utilizing all participating transport models in the OCO-2 MIP would be ideal but, in this study, 

we approximate it using the GEOS-Chem model. 

Code and Data availability 650 

The inverse modelling results and airborne CO2 measurement data involved in v10 OCO-2 MIP project are available at 

https://www.gml.noaa.gov/ccgg/OCO2_v10mip/download.php. The high-resolution global GEOS-Chem simulation results 

used to calculate representation error can be obtained from Brad Weir (brad.weir@nasa.gov) and Lesley Ott 

(lesley.e.ott@nasa.gov) upon request. The forward and adjoint sensitivity simulations for this work were conducted using the 

publicly available GEOS-Chem Adjoint model. The model can be downloaded from http://wiki.seas.harvard.edu/geos-655 

https://www.gml.noaa.gov/ccgg/OCO2_v10mip/download.php
mailto:brad.weir@nasa.gov
mailto:lesley.e.ott@nasa.gov
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chem/index.php/GEOS-Chem_Adjoint (Henze et al., 2007; last accessed: 29 Jun 2023). ODIAC fossil fuel CO2 emission 

data is available at 10.17595/20170411.001. 
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