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[Reply] We appreciate your constructive comments on this manuscript. We revised the manuscript to fully address 
your comments and suggestions. Detailed point-by-point responses to your comments and related revisions are 
presented below. The original comments are in black, and our responses are in blue color.  

 
1. The OCO-2 v10 MIP sampled a much wider set of aircraft data than those used in this study. In 
particular NOAA operates a light aircraft program that produces regular profiles of CO2 measurements 
over North America and Raratonga. These data should be well suited to the analysis conducted here due 
to the regular sampling frequency, nearly continuous coverage, and altitudes sampled. For some reason, 
of these timeseries stations, only the data from Dahlen, North Dakota (DND) and Marcellus, 
Pennsylvania (MRC) were included in Table 1 of the manuscript. In addition to these two sites, there are 
evaluation data in the OCO-2 MIP samples from timeseries over:  
Briggsdale, Colorado - (CAR) 
Offshore Cape May, New Jersey - (CMA) 
Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) - (CRV) 
Estevan Point,  British Columbia - (ESP) 
East Trout Lake, Saskatchewan - (ETL) 
Homer, Illinois - (HIL) 
INFLUX (Indianapolis Flux Experiment) - (INX) 
Park Falls, Wisconsin - (LEF) 
Offshore Portsmouth, New Hampshire (Isles of Shoals) - (NHA) 
Poker Flat, Alaska - (PFA) 
Rarotonga - (RTA) 
Offshore Charleston, South Carolina - (SCA) 
Southern Great Plains, Oklahoma - (SGP) 
Offshore Corpus Christi, Texas - (TGC) 
Trinidad Head, California - (THD) 
West Branch, Iowa - (WBI) 
 
[Reply] We appreciate your suggestions. In this study, only measurement data not assimilated in the LNLGIS 
experiment were utilized for analysis. Additionally, we required a minimum of 10 observations per month at each 

1x1 grid point to calculate error statistics. Consequently, many of the airborne measurement data in OCO-2 MIP 
datasets did not meet our analysis criteria. We re-evaluated the availability of the dataset and the list of data used 
(Table 1 of the revised manuscript; shown in Table R1) to include all airborne measurements that meet our 
standards at least once. Through this process, CAR, PFA, and SGP data were newly incorporated into the analysis, 
while data that did not meet the criteria, AOA and MRC, were excluded from the data list. The addition of these 
three data sets did not result in any noticeable changes in our results. 

 
Table R1 Data description for each airborne measurement campaign.  

   
 

   

Site 
code 

Site name  Measurement campaign 
name 

Measuremen
t type 

Data provider ObsPack (original) 
dataset identifier 

Reference 

ACG Alaska Coast Guard NOAA/GML Aircraft 
Program 

In situ National Oceanic and Atmospheric 
Administration (NOAA) Global 
Monitoring Laboratory (GML) 

http://doi.org/10.259
25/20201204a 
 

 

ACT Atmospheric Carbon and 
Transport – America (ACT-
America) 

ACT-America In situ and 
flask 

NASA Langley Research Center 
(NASA-LaRC), NOAA/GML 

http://doi.org/10.259
25/20201204a 

https://doi.org/10.33
34/ORNLDAAC/1593  

Baier et al. 
(2020) 
Wei et al. 
(2021) 

http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1593
https://doi.org/10.3334/ORNLDAAC/1593
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AirCore
NOAA 

NOAA AirCore NOAA AirCore Program Balloon NOAA/GML No Obspack DOIb 

https://doi.org/10.15
138/6AV0-MY81 

Karion et al. 
(2010) 

ALF Alta Floresta 
 

Flask National Institute for Space 
Research (INPE) 

http://dx.doi.org/10.
25925/20181030c 
https://doi.org/10.15
94/PANGAEA.926834 

Gatti et al. 
(2023) 

CAR Briggsdale, Colorado  Flask NOAA/GML http://doi.org/10.259
25/20210517d 

Sweeney et 
al. (2015) 

CON Comprehensive 
Observation Network for 
TRace gases by AIrLiner 
(CONTRAIL) 

 
In situ  National Institute for 

Environmental Studies (NIES), 
Meteorological Research Institute 
(MRI) 

http://doi.org/10.259
25/20201204a 

https://doi.org/10.17
595/20180208.001   

Machida et 
al. (2008)  

CRV Carbon in Arctic Reservoirs 
Vulnerability Experiment 
(CARVE) 

Arctic-Boreal 
Vulnerability Experiment 
(ABoVE) 

In situ NOAA/GML http://doi.org/10.259
25/20201204a 

https://doi.org/10.33
34/ORNLDAAC/1582  

 

GSFC NASA Goddard Space Flight 
Center Aircraft Campaign 

 
In situ NASA Goddard Space Flight Center 

(NASA-GSFC) 
http://doi.org/10.259
25/20201204a 
 

Kawa et al. 
(2018) 

IAGOS In-service Aircraft for a 
Global Observing System 

Civil Aircraft for the 
Regular Investigation of 
the atmosphere Based 
on an Instrument 
Container 
(IAGOS-CARIBIC) 

In situ Karlsruhe Institute of Technology 
(IMK-ASF), Institute for 
Atmospheric and Environmental 
Sciences (IAU), Max Planck 
Institute for Biogeochemistry 
(MPI-BGC) 

http://doi.org/10.259
25/20201204a 

 

Filges et al. 
(2015) 
 

LARC LARC - NASA Langley 
Research Center Aircraft 
Campaign 

Korea-United States Air 
Quality Study 

In situ NASA-LaRC http://doi.org/10.259
25/20201204a 
 

 

MAN Manaus 
 

In situ NOAA/GML https://doi.org/10.25
925/20210519e 

 

ORC O2/N2 Ratio and CO2 
Airborne Southern Ocean 
Study (ORCAS) 

 
In situ National Center for Atmospheric 

Research (NCAR) 
http://doi.org/10.259
25/20201204a 

https://doi.org/10.50
65/D6SB445X  

Stephens et 
al. (2018) 

PAN Pantanal, Mato Grosso do 
Sul 

 
Flask INPE http://dx.doi.org/10.

25925/20181030c 
 

PFA Poker Flat, Alaska  Flask NOAA/GML http://doi.org/10.259
25/20210517d 

Sweeney et 
al. (2015) 

RBA-B Rio Branco 
 

Flask INPE http://dx.doi.org/10.
25925/20181030c 
https://doi.org/10.15
94/PANGAEA.926834 

Gatti et al. 
(2023) 

SAN Santarem 
 

Flask INPE http://dx.doi.org/10.
25925/20181030c 
https://doi.org/10.15
94/PANGAEA.926834 

Gatti et al. 
(2023) 

SGP Southern Great Plains, 

Oklahoma 

 Flask The US Department of Energy 

(DOE)/Lawrence Berkeley National 
Laboratory (LBNL) 

http://doi.org/10.259

25/20210517d 

Biraud et al. 

(2013) 

SONGNE
X2015 

Shale Oil and Natural Gas 
Nexus 2015 (air campaign) 

 
In situ NOAA Chemical Sciences 

Laboratory (CSL) 
http://doi.org/10.259
25/20201204a 

 

TEF Tefe 
 

Flask INPE http://dx.doi.org/10.
25925/20181030c 
https://doi.org/10.15
94/PANGAEA.926834  

Gatti et al. 
(2023) 

TOM Atmospheric Tomography 

Mission (ATom) 

 
In situ NOAA/GML, Harvard University http://doi.org/10.259

25/20201204a 

https://doi.org/10.33
34/ORNLDAAC/1581 

 

https://doi.org/10.15138/6AV0-MY81
https://doi.org/10.15138/6AV0-MY81
http://dx.doi.org/10.25925/20181030
http://dx.doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20210517
http://doi.org/10.25925/20210517
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.17595/20180208.001
https://doi.org/10.17595/20180208.001
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1582
https://doi.org/10.3334/ORNLDAAC/1582
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.25925/20210519
https://doi.org/10.25925/20210519
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.5065/D6SB445X
https://doi.org/10.5065/D6SB445X
http://dx.doi.org/10.25925/20181030
http://dx.doi.org/10.25925/20181030
http://doi.org/10.25925/20210517
http://doi.org/10.25925/20210517
http://dx.doi.org/10.25925/20181030
http://dx.doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://dx.doi.org/10.25925/20181030
http://dx.doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20210517
http://doi.org/10.25925/20210517
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
http://dx.doi.org/10.25925/20181030
http://dx.doi.org/10.25925/20181030
https://doi.org/10.1594/PANGAEA.926834
https://doi.org/10.1594/PANGAEA.926834
http://doi.org/10.25925/20201204
http://doi.org/10.25925/20201204
https://doi.org/10.3334/ORNLDAAC/1581
https://doi.org/10.3334/ORNLDAAC/1581
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a: obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 (Schuldt et al., 2021b) 
b: obspack_co2_1_AirCore_v4.0_2020-12-28 
c: obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-13 (NOAA Carbon Cycle Group ObsPack Team, 2018) 
d: obspack_co2_1_NRT_v6.1.1_2021-05-17 (Schuldt et al., 2021a) 
e: obspack_multi-species_1_manaus_profiles_v1.0_2021-05-20 (Miller et al., 2021) 

 

 
 
2. This reviewer's experience with simulation of aircraft measurements is that model residuals are 
strongly affected by altitude and by season. The analysis here does not discriminate by either of these 
factors, except to choose an altitude range apparently chosen to minimize the effect of residuals closer 
to the surface. Should the model residuals have significant variability by these factors, the evaluation 
criteria would be affected and possibly dominated by those factors, which would confound the 
statistical conclusions of this work. I suggest that a factor analysis, possibly an analysis of variance, is 
needed to determine whether model residuals are driven by these factors. 
 
[Reply] Based on the reviewer’s suggestions, we conducted additional analyses to explore how our results vary 
seasonally and with changes in the chosen altitude range. 
 

First, to isolate the seasonal impacts on the regional error statistics (e.g., RMSE, ERRTOT, ℎ(𝑒𝑟𝑟𝑓𝑒), and ℎ(𝑒𝑟𝑟𝑓𝑡)), it 

is essential that other factors influencing the error quantities, such as the number of observation points and 
observation coverage within each region, remain consistent across seasons. Among the seven regions analyzed, in 
East Asia, the CONTRAIL program has continuously conducted measurements over three years with routes 
repeated throughout all seasons. The total numbers of observed grid-points per month during the vegetation 
growing season (from May to October) and non-growing season for 2015–2017 are comparable, amounting to 404 
and 428, respectively. Furthermore, the area most sensitive to airborne measurements exhibit similar spatial 
patterns in both seasons, encompassing the northeast part of China, the Korean Peninsula, and Japan (Figure R1). 
By focusing on this region, we examined how the error quantities vary by seasons.  
 
For the period 2015-2017, the regional averages of both RMSE and ERRTOT exhibit, on average, 14% and 11% higher 
values during the non-growing season compared to the growing season (Figure R2). In contrast, the regional 

averages of ℎ(𝑒𝑟𝑟𝑓𝑒) and ℎ(𝑒𝑟𝑟𝑓𝑡) have greater values during the growing season by 0.91 [0.85, 0.98] (mean [95% 

confidence interval]) and 1.29 [1.06, 1.54] ppm compared to the non-growing season (0.67 [0.63, 0.70] and 1.16 
[0.94, 1.37] ppm) because of the tendency for errors in terrestrial biosphere CO2 fluxes to increase proportionally 
with the magnitude of flux values. Consequently, transport errors, inferred from the difference between RMSE and 

ℎ(𝑒𝑟𝑟𝑓𝑡), are greater in the non-growing season. Given the higher net CO2 emissions in East Asia during the non-

growing season, when terrestrial biosphere CO2 uptake is less active, this result is consistent with a previous study 
showing that transport errors are proportional to the magnitude of the net CO2 flux (Schuh et al., 2019). In 

addition, we found that the ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒) is slightly lower during the non-growing season with 0.58 

[0.44, 0.72] compared to the growing season with 0.70 [0.53, 0.89], indicating a relatively greater underestimation 
of true flux errors when the contributions of anthropogenic CO2 emissions to atmospheric CO2 changes are higher. 
This supports our finding that the current inverse model may exhibit a systematic bias related to anthropogenic 

emissions. Furthermore, the consistent ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒) below 1, without statistically significant 

seasonal variations in East Asia, suggests that our conclusions, drawn from the analysis of seven regions, are not 
seasonally dependent. 
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Figure R1 Number of months selected as the effective area for airborne measurements in East Asia during (a) the 
vegetation growing season and (b) the non-growing season for the period 2015–2017. 

 
Figure R2 Mean values of monthly (a) RMSE, ERRMIP, ERROBS, (b) Ratio, (c) ℎ(𝑒𝑟𝑟𝑓𝑒), and ℎ(𝑒𝑟𝑟𝑓𝑡) in East Asia during 

each season for the period 2015–2017. The error bars represent the 95% confidence intervals derived from 1000 
bootstrap samples of datasets. 

 
Next, in order to capture the signals from the surface CO2 fluxes and include as much observation data as possible 
in our analysis, we used atmospheric CO2 data observed and simulated within the range of 1-5km altitude (above 
the ground). To assess the sensitivity of our results to the choice of altitude range, we compared the error 
quantities derived from atmospheric CO2 data within two altitude (above the ground) ranges: 1-3 km and 1-5 km. 
Among the seven analyzed regions, Australia and South America were excluded in this additional analysis due to 
having fewer than 100 total observed grid points for the analysis period and losing over 30% of the grid points 
when narrowing the altitude range. This exclusion was necessary as it could substantially alter the areas 
represented by our error statistics. 
 
The areas sensitive to airborne CO2 measurements within the two altitude ranges exhibit nearly identical spatial 
patterns in Alaska, Mid-latitude Norther America, Europe, East Asia, and Southeast Asia, indicating that 
observations at lower altitudes are more sensitive to surface CO2 fluxes (Figure R3). Because of the higher 
sensitivity, error statistics in all regions have larger values when calculated using data from the 1-3 km altitude 
range compared to the 1-5 km altitude range (Figure R4). For example, in Mid-latitude North America, the regional 

averages of RMSE, ERRTOT, ℎ(𝑒𝑟𝑟𝑓𝑒), and ℎ(𝑒𝑟𝑟𝑓𝑡) are 1.42 [1.35, 1.48], 1.34 [1.30, 1.39], 0.73 [0.70, 0.76], and 0.86 

[0.72, 1.00] ppm when calculated using data within the 1-3 km altitude range. In comparison, when computed 
from the data within the 1-5 km altitude range, these values are 1.20 [1.15, 1.25], 1.09 [1.06, 1.13], 0.58 [0.56, 

0.60], and 0.77 [0.66, 0.88] ppm. However, the ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒), which is a key metric for quantifying 

the true regional terrestrial biosphere flux error, did not show significant differences based on the altitude ranges, 
with the difference being between 0.02 and 0.1. Again, these results suggest that our observation-based regional 
flux error estimates are not sensitive to the choice of altitude range. 
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Figure R3 Number of months selected as the effective area for airborne measurements made within (a) the 1-5 km 
altitude range and (b) 1-3 km altitude range in Alaska, Mid-latitude Norther America, Europe, East Asia, and 
Southeast Asia for the period 2015–2017. The outlined area represents selected areas for more than eight months 
or equal. 

 

 
Figure R4 Mean values of monthly (a) RMSE, ERRMIP, ERROBS, (b) Ratio, (c) ℎ(𝑒𝑟𝑟𝑓𝑒), and ℎ(𝑒𝑟𝑟𝑓𝑡) derived from 

atmospheric CO2 data within either the 1-5 km or 1-3 km altitude range for each region for the period 2015–2017. 
The error bars represent the 95% confidence intervals derived from 1000 bootstrap samples of datasets. 

 
We have added Figures R1, R2, R3, and R4 to the revised supplementary information and added the above 
explanation on the discussion part of the revised manuscript as follow: 
 

“The performance of inverse models in simulating atmospheric CO2 may vary by season. Airborne 

measurements were not uniformly conducted across all seasons in most analyzed regions, necessitating an 

examination of whether the regional averages of error statistics (e.g., Figures 4h, 4i, and 5h) are significantly 

different with seasons. Among the seven regions analyzed, in East Asia, the Contrail program has continuously 

conducted CO2 measurements over three years with routes repeated throughout all seasons. This has resulted in 

the most sensitive area to the measurements exhibiting similar spatial patterns in the vegetation growing season 

(from May to October) and non-growing season, encompassing the northeast part of China, the Korean Peninsula, 

and Japan (Figure S6). The airborne measurements in East Asia offer a unique opportunity to isolate the seasonal 

impacts on regional error statistics. For the period of 2015–2017, the regional averages of both RMSE and ERRTOT 

exhibit, on average, 14% and 11% higher values during the non-growing season compared to the growing season 

(Figure S7). In contrast, the regional averages of ℎ(𝑒𝑟𝑟𝑓𝑒) and ℎ(𝑒𝑟𝑟𝑓𝑡) have greater values during the growing 

season by 0.91 [0.85, 0.98] and 1.29 [1.06, 1.54] ppm compared to the non-growing season (0.67 [0.63, 0.70] and 

1.16 [0.94, 1.37] ppm) because of the tendency for errors in terrestrial biosphere CO2 fluxes to increase 

proportionally with the magnitude of flux values. Consequently, transport errors, inferred from the difference 

between RMSE and ℎ(𝑒𝑟𝑟𝑓𝑡), are greater in the non-growing season. Given the higher net CO2 emissions in East 

Asia during the non-growing season, when terrestrial biosphere CO2 uptake is less active, this result is consistent 

with a previous study showing that transport errors are proportional to the magnitude of the net CO2 flux (Schuh 

et al., 2019). In addition, we found that the ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒) is slightly lower during the non-growing 
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season with 0.58 [0.44, 0.72] compared to the growing season with 0.70 [0.53, 0.89], indicating a relatively greater 

underestimation of true flux errors when the contributions of anthropogenic CO2 emissions to atmospheric CO2 

changes are higher. This supports our finding that the current inverse model may exhibit a systematic bias related 

to anthropogenic emissions. Furthermore, the consistent ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒) below 1, without statistically 

significant seasonal variations in East Asia, indicates that our conclusions, drawn from the analysis of seven 

regions, are not seasonally dependent.  

 

To capture the signals from surface CO2 fluxes and maximize observation data in our analysis, we used 

atmospheric CO2 data observed and simulated within the 1-5 km altitude range. The choice of altitude range may 

influence regional error statistics, as the performance of inverse models varies with altitude. To gauge this 

sensitivity, we compared error statistics derived from atmospheric CO2 data with two altitude (above the ground) 

ranges: 1-3 km and 1-5 km. Among the seven analyzed regions, Australia and South America were excluded in this 

additional analysis due to having fewer than 100 total observed grid points for the analysis period and losing over 

30% of the grid points when narrowing the altitude range. The areas sensitive to airborne CO2 measurements 

within the two altitude ranges exhibit nearly identical spatial patterns in Alaska, Mid-latitude Norther America, 

Europe, East Asia, and Southeast Asia, indicating that observations at lower altitudes are more sensitive to surface 

CO2 fluxes (Figure S8). Because of the higher sensitivity, error statistics in all regions have larger values when 

calculated using data from the 1-3 km altitude range compared to the 1-5 km altitude range (Figure S9). For 

example, in Mid-latitude North America, the regional averages of RMSE, ERRTOT, ℎ(𝑒𝑟𝑟𝑓𝑒), and ℎ(𝑒𝑟𝑟𝑓𝑡) are 1.42 

[1.35, 1.48], 1.34 [1.30, 1.39], 0.73 [0.70, 0.76], and 0.86 [0.72, 1.00] ppm when calculated using data within the 1-

3 km altitude range. In comparison, when computed from the data within the 1-5 km altitude range, these values 

are 1.20 [1.15, 1.25], 1.09 [1.06, 1.13], 0.58 [0.56, 0.60], and 0.77 [0.66, 0.88] ppm. However, the ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) 

to ℎ(𝑒𝑟𝑟𝑓𝑒), which is a key metric for quantifying the true regional terrestrial biosphere flux error, did not show 

significant differences based on the altitude ranges, with the difference being between 0.02 and 0.1. Again, these 

results suggest that our observation-based regional flux error estimates are not sensitive to the choice of altitude 

range.” 

 
 
3. Lines 124-125: "measurements made between 1 and 5 km altitude" does not specify whether this 
means above ground level or above sea level. This needs to be specified. Furthermore, if this altitude 
range is above sea level then it is entirely possible that highly-variable PBL measurement data are 
included in the evaluation data, since many aircraft data were collected over topography with surface 
elevations of hundreds of meters ASL. This would cloud the analysis with noisy measurements having 
strong signals of local exchange. 
 
[Reply] We really appreciate your comment. It turns out that our previous analysis was based on atmospheric CO2 
data within the 1-5 km altitude range above sea level, not ground level. We re-calculated all our results using the 
atmospheric CO2 data within 1-5 km altitude range “above ground level”. The newly computed results, particularly 

the ratio of RMSE and ERRTOT and the ratio of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒), key metrics for assessing and quantifying 

regional terrestrial biosphere flux errors, do not exhibit significant differences compared to the previous results 
(Table R2). 
 

Table R2 Mean values of the regionally averaged ratios of RMSE to ERRTOT and the ratios of ℎ(𝑒𝑟𝑟𝑓𝑡) to ℎ(𝑒𝑟𝑟𝑓𝑒) for 

2015–2017 with their 95% confidence intervals derived from 1000 bootstrap samples of datasets, calculated using 
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atmospheric CO2 datasets within the range of 1-5 km altitude above sea level (previous results) or above ground 
level (revised results). 

  Alaska Mid NA Europe East Asia Southeast 
Asia 

Australia South 
America 

Previous 
results 

RMSE/ERRTOT 1.04 
[0.93, 1.14] 

0.90 
[0.83, 0.97] 

0.79 
[0.62, 0.98] 

0.84 
[0.78, 0.91] 

0.75 
[0.66, 0.85] 

0.76 
[0.61, 0.90] 

1.01 
[0.81, 1.25] 

ℎ(𝑒𝑟𝑟𝑓𝑡)/ℎ(𝑒𝑟𝑟𝑓𝑒) 1.07 
[0.84, 1.31] 

0.73 
[0.59, 0.86] 

0.52 
[0.29, 0.77] 

0.59 
[0.48, 0.70] 

0.56 
[0.42, 0.71] 

0.61 
[0.35, 0.91] 

1.03 
[0.49, 1.59] 

Revised 
results 

RMSE/ERRTOT 0.98  
[0.89, 1.08] 

0.91  
[0.84, 0.97] 

0.79  
[0.61, 0.97] 

0.87  
[0.81, 0.94] 

0.75  
[0.65, 0.86] 

0.73  
[0.59, 0.87] 

1.03  
[0.83, 1.28] 

ℎ(𝑒𝑟𝑟𝑓𝑡)/ℎ(𝑒𝑟𝑟𝑓𝑒) 0.96  
[0.76, 1.17] 

0.75  
[0.61, 0.90] 

0.52  
[0.28, 0.78] 

0.64  
[0.53, 0.77] 

0.56  
[0.41, 0.72] 

0.59  
[0.34, 0.87] 

1.10  
[0.51, 1.79] 

 
We have clearly addressed that we used atmospheric CO2 data within 1-5 km altitude range “above ground level” 
for the analysis in the revised manuscript as follow: 
 
“To minimize the influence of local sources and maximize the influence of regional fluxes, we excluded surface 
measurements and only considered airborne measurements made between 1 and 5 km altitude above ground 

level.” 
 
4. It is not clear whether the analysis excludes measurements that were assimilated in the LNLGIS 
experiment. This is a fundamental piece of information needed to understand the analysis and should 
absolutely be explicitly stated. If assimilation data are included, then the entire analysis needs to be 
considered differently. 
 
[Reply] In this study, only airborne CO2 measurement data not assimilated in the LNLGIS experiment were utilized 
for analysis. We have clearly addressed this in the revised manuscript as follow: 

 
“In addition, only airborne measurement data not assimilated in the LNLGIS experiment were used for analysis.” 
 
 
5. The INPE PFP used in this study data have not been screened for water vapor contamination. This is a 
known problem with PFPs in humid environments and can lead to both a low bias and spurious 
variability in CO2 measurements. This is a particular concern with tropical aircraft samples due to 
expected high humidity of sampled air. There are indications that water vapor contamination can persist 
in PFP flasks so that even dry high-altitude samples may be affected. This water vapor issue in aircraft 
PFPs has been documented in Baier et al. (2019, 
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019JD031339) and reported at various meetings 
(e.g. https://gml.noaa.gov/publications/annual_meetings/2019/abstracts/74-190401-B.pdf). As 
reported to the authors in OCO-2 meetings, about one-third of historical NOAA PFP measurements have 
been flagged due to suspected water vapor contamination. In the same meetings the authors were 
cautioned about this issue affecting INPE PFP data. In ObsPack products, INPE PFP data are all flagged as 
"do not assimilate", indicating that they are neither suitable for assimilation nor for evaluation purposes. 
Finally, these data are distributed in a special ObsPack product labeled "restricted" in part to warn users 
about the problem. 
 
[Reply] We appreciate your notification regarding the water vapor contamination issue in the INPE PFP data. We 
deliberated whether to include this data in our analysis due to the mentioned issue. However, we decided to 
include it in our analysis because we believe this study can provide valuable insights for future research utilizing 
bias-corrected observations to quantify biosphere flux errors in South America, one of the most critical regions for 
terrestrial carbon cycle studies. To ensure that readers are well-informed about this issue before interpreting our 
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results, we have clearly addressed the unresolved water vapor contamination issue of this data and its potential 
impact on our findings in the revised manuscript as follow:  
 
“This dataset includes five flask measurements provided by the National Institute for Space Research (INPE), which 
might have a higher measurement error due to water vapor contamination compared to other datasets (Baier et 
al., 2019). Despite their potential limitation, our analysis, aimed at introducing a method for quantifying flux 
errors, incorporates INPE data to offer guidance for future studies leveraging bias-corrected observations from this 
region, is critical for terrestrial carbon cycle studies. Readers should keep in mind that our results from South 
America may have relatively lower reliability compared to that from other regions.” 
 
“However, in reality, systematic errors could be present in airborne observation data stemming from instrument or 
setup biases, calibration offsets, and other factors. Especially, CO2 measurements in South America from INPE 
might exhibit a higher measurement error compared to other regions because of unresolved water vapor 
contamination issues in the flask measurements, which could result in both a low bias (0.1 and 0.8 ppm at 1.75% 
and 3–4% absolute humidity, respectively) and spurious variability (Baier et al., 2019). The potential effects of 
these systematic errors on our findings will be addressed in Section 4.” 
 
“First, due to a lack of information, we set observation measurement errors under ideal conditions. In reality, 
inadequate quality control can result in significant systematic bias for specific regions and time periods (Masarie et 
al., 2011; Baier et al., 2019), impacting our results, especially in South America. For instance, if this led to an 
average measurement error of 0.5 ppm during the analysis period, the calculated true flux error would decrease 
from 351 to 277 TgC year-1 for South America and from 371 to 260 TgC year-1 for mid-latitude North America.” 
 

 
6. The CO2 measurement data used in this study have not been correctly cited. It also is not clear 
whether ObsPack data providers have been properly acknowledged. The OCO-2 ObsPack product is a 
"composite" product created from seven source ObsPacks. The source products need to be cited 
following the instructions at https://gml.noaa.gov/ccgg/obspack/citation.php (available also in the 
distributed metadata). Use of an ObsPack product also includes usage terms which suggest that it may 
be appropriate to offer coauthorship to the data providers. The seven source ObsPacks are listed in the 
metadata directory of the downloaded product. In the current draft, only the  
obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01 product is cited, whereas apparently there are data 
used from five other ObsPacks: the NRT product, the Manaus product, the INPE product, the CONTRAIL 
product, and the AirCore product. 
 
[Reply] We appreciate your guidance for properly acknowledging the ObsPack products. We have included citation 
information and the DOI for all types of ObsPack data in Table 1 of the revised manuscript (shown in Table R1). The 
OCO-2 ObsPack products, we used, are originated from following five different Obspack data: 
obspack_co2_1_GLOBALVIEWplus_v6.1_2021-03-01, obspack_co2_1_AirCore_v4.0_2020-12-28, 
obspack_co2_1_INPE_RESTRICTED_v2.0_2018-11-13, obspack_co2_1_NRT_v6.1.1_2021-05-17, obspack_multi-
species_1_manaus_profiles_v1.0_2021-05-20.  
 
We also reached out to all airborne CO2 measurement data providers and sought their guidance on proper 
acknowledgment or co-authorship for utilizing the airborne measurements dataset in this research before 
submitting this manuscript. During the revision process, SGP flask CO2 measurement data has been 
included, leading to the invitation of "Sébastien C. Biraud" as a co-author. 
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