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Abstract. This study delves into the predictability of atmospheric blocking, zonal, and transition patterns utilizing a simplified

coupled model. This model, implemented in Python, emulates midlatitude atmospheric dynamics with a two-layer quasi-

geostrophic channel atmosphere on a beta-plane, encompassing simplified land effects. Initially, we comprehensively scrutinize

the model’s responses to environmental parameters like solar radiation, surface friction, and atmosphere-ground heat exchange.

Our findings confirm that the model faithfully replicates real-world Earth-like flow regimes, establishing a robust foundation for5

further analysis. Subsequently, employing Gaussian mixture clustering, we successfully delineate distinct blocking, zonal, and

transition flow regimes, unveiling their dependencies on surface friction. To gauge predictability and persistence, we compute

the averaged local Lyapunov exponents for each regime. Our investigation uncovers the presence of zonal, blocking, and

transition regimes, particularly under conditions of reduced surface friction. As surface friction increases further, the system

transitions to a state characterized by two blocking regimes and a transition regime. Intriguingly, periodic behavior emerges10

under specific surface friction values, returning to patterns observed under low friction coefficients. Model resolution increase

impacts the system in a way that only two regimes are then obtained with the clustering: the transition phase disappears and

the predictability drops to roughly 2 days for both of the remaining regimes. In accordance with previous research findings, our

study underscores that when all three regimes coexist, zonal patterns exhibit a more extended predictability horizon compared

to blocking patterns. Remarkably, transition patterns exhibit reduced predictability when coexisting with the other regimes. In15

addition, within a specified range of surface friction values where two blocking regimes are found, it is observed that blocked

atmospheric situations in the west of the applied topography are marked by instabilities and reduced predictability in contrast

to the blockings appearing on the eastern side of the topography.
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1 Introduction and motivation

Low-Frequency Variability (LFV) encompasses a wide range of atmospheric and climate processes, including atmospheric20

blockings, heat waves, cold spells, and long-term oscillations like the Madden-Julian Oscillation (MJO), the North Atlantic

OScillation (NAO), and the El-Ni/ño - Southern Oscillation (ENSO). Despite extensive research, a comprehensive understand-

ing of the nature of these LFVs remains elusive. In practical terms, exploiting these LFVs to achieving accurate extended-range

forecasts beyond two weeks at midlatitudes remains a formidable challenge. On the climate front, comprehending how climate

change affects the low-frequency variability of the atmosphere also remains an area of incomplete knowledge. Previous works,25

as reported in Ghil and Robertson (2002), Lucarini and Gritsun (2020), have highlighted this gap in understanding.

Blocking systems - a notable form of LFV observed in the atmosphere - can be described as long-lasting, quasi-stationary

flow patterns in the troposphere (Liu, 1994). These patterns are characterized by a significant meridional flow component,

leading to a disruption or deceleration of the zonal westerly flow at midlatitudes (Nakamura and Huang, 2018). While the

blocking systems persist, strong zonal flows may simultaneously exist to the north and south of them. The evolution of blocking30

systems involves transitions between more zonal and more meridional flow patterns during their onset and decay phases,

posing challenges for forecast models (Frederiksen et al., 2004). Moreover, the dynamics of blocking systems are complex,

involving interactions across different spatial and temporal scales, both internally within the system and with the surrounding

flow environment (Shutts, 1983; Lupo and Smith, 1995). Researchers have highlighted the intricate nature of these dynamics

and the connections between various scales, contributing to the challenges in understanding and predicting the behavior of35

blocking systems. As blocking systems have the potential to induce weather extreme like heatwaves, there is a notable interest

in understanding how the characteristics of these blocking events might evolve in the future and how such changes could

subsequently impact the occurrence and features of surface extreme weather events. The investigation of these potential changes

is of significant importance to assess the risks associated with extreme weather events and to enhance our understanding of

the complex interactions between blocking patterns and surface weather conditions in a changing climate context (Kautz et al.,40

2022).

Eventhough the concerns above matters, identifying and evaluating LFVs in GCMs is computationally expensive, so in this

study an idealised reduced order coupled model is used. It is a climate model ‘stripped to the bone’, which links theoretical

understanding to the complexity of more realistic models, made by key ingredients and approximations; which hence helps

us to study a particular phenomenon by tweaking the parameters affecting them with less computational cost. The pursuit of45

simplified models for atmospheric phenomena has a long history, dating back to Lorenz’s seminal work in the early 1960s

(Lorenz, 1960, 1962, 1963a, b). This approach recognizes the value of sacrificing some detail in exchange for a deeper grasp

of fundamental physical processes.

Lorenz demonstrated the power of this strategy by leveraging Fourier series to distill the barotropic vorticity equation into

three ordinary differential equations (Lorenz, 1960). These equations, while omitting smaller scales of motion, yielded valu-50

able insights into atmospheric scenarios such as flow interactions and current stability. Subsequently, he developed a simplified

geostrophic model using truncated Fourier-Bessel series (Lorenz, 1962). This eight-equation model captured baroclinic insta-
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bility, a critical process in atmospheric dynamics, while maintaining key energy relationships. Notably, the model successfully

reproduced observed flow regimes and transitions in rotating fluids, suggesting its effectiveness in studying large-scale at-

mospheric behavior. Lorenz’s 1963 research yielded significant advancements in our understanding of atmospheric dynamics55

through two key publications (Lorenz, 1963a). The first introduced a now-iconic system of three differential equations, de-

rived from a further simplified model for fluid flow. This groundbreaking work unveiled the concept of sensitive dependence

on initial conditions, a cornerstone of chaos theory.

In the same year, Lorenz explored a separate avenue by investigating a simplified model for symmetrically heated rotating

viscous fluids (Lorenz, 1963b). This work resulted in a system of fourteen ordinary differential equations governed by two60

external parameters: the thermal Rossby number and the Taylor number. Analytical solutions revealed the existence of purely

zonal flow and superimposed steady waves, while numerical integration unveiled a richer tapestry of flow behaviors. Oscillatory

solutions with periodic shape changes and irregular non-periodic flow emerged. Interestingly, increasing the Taylor number

generally led to greater flow complexity, except at very high values where the model’s truncations became unrealistic.

Perhaps most intriguing was the coexistence of unstable purely zonal, steady-wave, and oscillatory solutions. This suggests65

intricate flow dynamics, with transitions between symmetric and unsymmetric vacillation occurring independently of instabil-

ity. These findings highlight the ability of simplified models to unveil complex and nuanced behaviors in atmospheric dynamics

(Shen et al., 2023). Lorenz’s pioneering work in the early 1960s demonstrated the power of simplified models for understanding

atmospheric dynamics. By strategically neglecting certain complexities, he was able to capture key phenomena like baroclinic

instability and chaos. However, for large-scale atmospheric simulations, computational efficiency becomes paramount. This is70

where Qg (quasi-geostrophic) models come in. Qg models prioritize large-scale features by making specific approximations,

allowing for rapid simulations and analyses of broad atmospheric circulation patterns. While they may not capture the intricate

details explored by Lorenz’s models, Qg models remain a workhorse for studying large-scale atmospheric phenomena. Hence

the trend continued with Charney and DeVore (1979) in which a quasi-geostrophic model, projected onto Fourier modes for

a more efficient and concise representation, has been developed. It also incorporates an idealized parameterization closure to75

account for subgrid-scale processes. By imposing in addition a meridional temperature gradient over a topography, the model

becomes a forced-dissipative system, which exhibits multiple stable equilibria, representing distinct atmospheric flow pat-

terns. Charney and Devore hypothesized that the transitions between these solutions were primarily influenced by small-scale

perturbations or the presence of baroclinic instability within the system.

Charney and Straus (1980) partially confirmed this hypothesis and found out that these transitions were indeed the result of80

baroclinic instability. Their study sheds light on the complex interactions between atmospheric flow, orography and propagating

planetary waves in baroclinic systems. They discovered that the interactions between atmospheric flow and orography induces

form-drag instability, generating eddies and perturbations, and leading to multiple stable equilibria with distinct flow patterns

under consistent forcing conditions.

Charney’s seminal study sparked significant interest in the low-order spectral model and the theory of multiple flow equi-85

libria. Zhengxin and Baozhen (1982) and Zhu (1985) employed a two-layer low-order spectral model, discovering stable

equilibrium states resembling actual blocking, with zonally asymmetric thermal and topographic forcings and flow nonlinear-
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ity playing critical roles in blocking dynamics. The summarized version of the evolution of numerical weather prediction and

predictability tools are included in Yoden (1983a, b, 2007).

Reinhold and Pierrehumbert (1982, 1985) extended Charney’s model, incorporating additional synoptic-scale waves, reveal-90

ing two distinct weather regime states influenced by wave-wave interactions causing transitions between equilibrium states.

Cehelsky and Tung (1987) demonstrated that the behavior of a reduced-order model exhibits notable disparities at higher

resolutions, primarily attributed to the inadequate representation of energy upscaling and vorticity downscaling pathways. They

coined this phenomenon as ’spurious chaos’, denoting the emergence of irregular dynamics that are not genuinely represen-

tative of the underlying physical processes. Although this is a valid point, high resolution models are usually hard to analyze95

in detail. There is therefore a need for investigating first reduced coupled model in order to get qualitative conclusions on a

problem at hand. We started this journey by using a reduced order land atmospheric model to investigate the impact of coupling

between the land and the atmosphere on LFV.

Legras and Ghil (1985) employed a higher-order barotropic spectral spherical model to investigate blocking and zonal

flow regimes dynamics, suggesting that their model displayed properties akin to an index cycle, and later stochastic forcing100

was introduced to Charney’s deterministic model, leading to transitions between high- and low-index states (Benzi et al.,

1984; Egger, 1981; Sura, 2002). The impact of stochastic forcing on the stability of atmospheric regimes was also recently

considered in a highly-truncated barotropic model by Dorrington and Palmer (2023), where they provide a mechanism to

explain the increased persistence of blocking due to the noise in such simple models.

Legras and Ghil (1985) also discussed the realistic existence of blocked and zonal flow regimes which are obtained as105

unstable stationary solutions due to the barotropic influence of the LFVs in the atmosphere. More persistent zonal flows are

also identified in several occasions which seems to be a deviation from the earlier studies. Later the stability studies by Weeks

et al. (1997) recreating zonal and blocked regimes in an experimental annulus setup further substantiated the findings of Legras

and Ghil (1985).

Schubert and Lucarini (2016)’s numerical investigation employing a QG model revealed a counter-intuitive finding that110

during blocking events, the global growth rates of the fastest growing covariant Lyapunov vectors (CLVs) are significantly

higher, indicating stronger instability compared to typical zonal conditions. The difficulty in predicting the specific timing

of blocking onset and decay further contributes to the observed instability behavior, aligning with Kwasniok (2019) findings

associating anomalously high values of finite time largest Lyapunov exponents with blocked atmospheric flows.

Lucarini and Gritsun (2020) demonstrated that blocking phenomena exhibit higher instability compared to typical atmo-115

spheric conditions, irrespective of whether they occur in the Atlantic, Pacific, or globally. This analysis utilized the simpli-

fied atmospheric model proposed by Marshall and Molteni (1993) and assessed stability based on unstable periodic orbits

(UPOs). Importantly, this research dispelled the misconception that the increased stability of zonal flows solely resulted from

the barotropic nature of the model in the study of Legras and Ghil (1985) and Weeks et al. (1997) apparatus. Consistent results

were obtained by Faranda et al. (2016, 2017), utilizing extreme value theory for dynamical systems, which identified blocking120

regimes with unstable fixed points in a heavily reduced phase space. Their findings indicated that blockings exhibit higher

instability in the circulation, linked to an increased effective dimensionality of the system. This agreement with Lucarini and
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Gritsun (2020) study further supports the notion that blocking events display stronger turbulence and instability, challenging

conventional expectations.

We here aim at extensively investigating the predictability of blocking, zonal, and transition regimes utilizing backward125

Lyapunov exponents (BLVs) in the context of a recently developed reduced-order land-atmosphere model, providing a more

comprehensive understanding of the system’s behavior and regime predictability.

The classic Charney’s model lacks feedback from atmospheric flow to the artificially specified "thermal forcing," leading

to potential unrealistic effects on large-scale atmospheric motions. To address this limitation, a new land atmospheric coupled

model is proposed in Li et al. (2018), which incorporate an energy balance scheme to allow atmospheric motions to influ-130

ence the land temperature distribution and vice-versa. By considering horizontally inhomogeneous radiative input fields as the

driving force for land-atmosphere dynamics, this coupled model offers a more realistic representation of the interactions be-

tween the land and the atmosphere. The model bears resemblance to the low-order coupled ocean-atmosphere model proposed

by Vannitsem et al. (2015), but with a heat bath featuring the land and an idealized topography.

Prior to conducting the investigation on the predictability of blocking, zonal, and transition regimes using backward Lya-135

punov exponents (BLVs), we performed a characterization of the sensitivity of the quasi-geostrophic land-atmosphere coupled

model embedded in the qgs framework (Demaeyer et al., 2020) with respect to various environmental parameters that are

essential for the functioning of the atmosphere.

The structure of the paper is as follows. Section 2 introduces the model, outlining its structure, main properties, and the

parameters employed in the study. Additionally, this section includes a discussion on the stability properties of the system and140

temporal evolution of the modes (barotropic stream function, baroclinic streamfunction and ground temperature). In Section 3,

the methodology used for the investigation is explained. Section 4 presents the stability and the Lyapunov properties of the

model corresponding to various environmental factors, and in Section 5, predictability properties of different weather regimes

are discussed. Effects of the model resolution are presented in section 6 and the conclusions drawn from the research are

provided in section 7, along with future perspectives for further studies.145

2 Land atmosphere coupled model

2.1 Model Characteristics

qgs is a Python framework in which several reduced-order climate models are implemented for midlatitudes (Demaeyer et al.,

2020). It models the dynamics of a 2-layer quasi-geostrophic (QG) channel atmosphere on a beta-plane, coupled to a simple

surface component that could be a land or an ocean. In the current study, we are using the quasi-geostrophic land-atmosphere150

coupled model version (Li et al., 2018).

The atmospheric part of the model is represented as a 2-layered, quasi-geostrophic flow defined on a β plane within the zonal

walls y = 0 and πL (Reinhold and Pierrehumbert, 1982). The thermodynamic equations of the baroclinic atmosphere includes

the energy exchanges between land, atmosphere and space similar to the radiative and heat flux scheme provided in Barsugli

and Battisti (1998). The coupling of the atmospheric components with the ground is constituted by the surface friction and the155

5



radiative and heat exchanges between the atmosphere and the ground. As usual in such types of models, channel atmosphere is

considered with no-flux boundary conditions on the north and south borders and periodic boundary conditions on the east and

west border.

The equations governing the time evolution of barotropic and baroclinic streamfunction of the atmospheric part are as

follows:160

∂

∂t

(
∇2ψa

)
+ J(ψa,∇2ψa)+J(θa,∇2θa)+

1

2
J(ψa − θa,f0h/Ha)+β

∂ψa

∂x
(1)

=−kd
2
∇2(ψa − θa)

∂

∂t

(
∇2θa

)
+ J(ψa,∇2θa)+J(θa,∇2ψa)−

1

2
J(ψa − θa,f0h/Ha)+β

∂θa
∂x

(2)

=−2k′d∇2θa +
kd
2
∇2(ψa − θa)+

f0
∆p

ω165

where ω is the verical velocity of the system. ψa is the barotropic streamfunction and θa is the baroclinic streamfunction of the

atmosphere. The constants kd and k′d multiply the surface friction term and the internal friction between layers, respectively.

The temperature equation of the baroclinic atmosphere and ground are :

γa

(
∂Ta

∂t
+ J(ψa,Ta)−σω

p

R

)
=−λ(Ta −Tg)+ ϵaσBT

4
g − 2ϵaσBT

4
a +Ra (3)

γg
∂Tg

∂t
=−λ(Tg −Ta)−σBT

4
g + ϵaσBT

4
a +Rg (4)170

where Tg and Ta are the ground and atmospheric temperature respectively. σ is the static stability with p as the pressure. R

is the gas constant for dry air. γa is the heat capacity of the atmosphere for a 1000-hPa deep column where as γg is the heat

capacity of the active layer of the land for a mean thickness of 10 m (Monin, 1986). λ is the heat transfer coefficient between

the land and atmosphere. σB is the Stefan-Boltzmann constant and ϵa is the longwave emissivity of the atmosphere. Ra is175

the shortwave solar radiation directly absorbed by the atmosphere whereas Rg is the shortwave solar radiation absorbed by

the land. The hydrostatic relation in pressure coordinates ∂Φ
∂p = −1

ρa
where the geopotential height Φi = f0ψ

i
a and the ideal gas

relation p= ρaRTa allow one to write the spatially dependent atmospheric temperature anomaly δTa = 2f0θa
R , with θa as the

baroclinic streamfunction. This can be used to eliminate the vertical velocity ω.This changes the independent dynamical field

to the streamfunction field ψa and the spatially dependent temperatures δTa and δTg . The dimensional meridional differential180

shortwave solar radiation absorbed by the land and the atmosphere are given by δRg =
√
2Cg cos

y
L and δRa =

√
2Ca cos

y
L
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respectively. Hence we decide to provide Ca = 0.4Cg . The variable Cg is a dimensional parameter, which is an indicator of the

meridional difference in solar heating absorbed by the land between the walls, and it is the crucial parameter in our land atmo-

sphere coupled model. As in Vannitsem et al. (2015) and De Cruz et al. (2016), quartic terms of the temperature equations are

linearised. Upon nondimensionalization, the qgs framework represents the above equations as ordinary differential equations185

by projecting them on to a set of basis functions, a procedure which is also known as Galerkin expansion. We investigate the

(2, 2) resolution configuration of the modelfor the current study, which means that basis functions up to wavenumber 2 in each

coordinate of the model are used. Consequently, the following list of 10 basis functions was used for the study:

F1(x,y) =
√
2 cos(y),

F2(x,y) = 2 cos(nx) sin(y),

F3(x,y) = 2 sin(nx) sin(y),

F4(x,y) =
√
2 cos(2y),

F5(x,y) = 2cos(nx)sin(2y),

F6(x,y) = 2sin(nx)sin(2y),

F7(x,y) = 2cos(2nx)sin(y),

F8(x,y) = 2sin(2nx)sin(y),

F9(x,y) = 2cos(2nx)sin(2y),

F10(x,y) = 2sin(2nx)sin(2y),

(5)

This configuration yields therefore a set of 30 variables, including 10 barotropic variables, 10 baroclinic variables, and 10190

ground temperature variables. Note that as explained in the qgs documentation, the basis functions of the model can be easily

altered.

2.2 Model Parameters

Even though the model that we are using is a highly truncated spectral model, its comparability towards the original atmosphere

and ground coupling is of great importance. Simulations produced by the model will be more meaningful if it charecterizes195

earthlike properties. This can be obtained by tweaking and tuning the model parameters. In the present scenario, the parameters

used are derived from Reinhold and Pierrehumbert (1982), where they specifically estimated realistic parameter ranges that

result in midlatitude terrestrial flow characteristics and regimes. The typical dimensional parameter values used for this study

are displayed in Table 1.

2.3 Model trajectories and mean fields200

Figure 1 displays the time evolution of the first barotropic (ψa,1) and baroclinic (θa,1) streamfunction modes of the atmosphere

and the ground temperature (Tg,1) for about 10 years starting after 10000 days of transient integration. Fluctuations are more

erratic in the atmospheric part, which denotes its key role in the dynamics of the system. The variable representing the land
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Table 1. Typical values of the model used for the study

Parameter value Parameter value

a 6371 km σB 5.67 ×10−8 Wm−2K−4

πL 5000 km γa 1.0 ×107 Jm−2K−1

H 8.5 km γg 1.6 ×107 Jm−2K−1

ϕo 50◦ N λ 10 Wm−2K−1

n 1.3 fo 0.0001032 s−1

ϵ 0.76 R 287.058 Jkg−1K−1

kd 1.2384 ×10−5 s−1 k′d 2.068 ×10−6 s−1

σ 2.158 ×10−6 m2s−2Pa−2

Values of λ,n,kd are varied beyond the displayed value to study the model sensitivity.

Figure 1. Temporal evolution of barotropic (ψa1) and baroclinic (θa1) atmospheric streamfunction and the ground temperature (Tg1) for Cg

= 300 Wm−2 and kd = 0.085 .

component of the system is comparatively slower and less erratic. This difference suggests that the land component has a longer

typical time scale than the atmosphere in this system.205

Figure 2(a) emphasizes the observation above, where the autocorrelation of the first barotropic atmospheric mode and the

first ground temperature mode for Cg = 300 Wm−2 and kd = 0.085 are displayed. These, evaluated on a time series of 10000

days, helps us estimate the memory loss of the variables.

Indeed, the typical timescale of the processes at hand can be evaluated by the e-folding time which is the time beyond which

the correlation has decreased by 1/e. As expected the e-folding time of the atmospheric part is approximately 1.9 days which210

is comparitatively lower than that of the land part (≈ 7.6 days) indicating that the system is a multiscale model with a typical

timescale ratio of 10 for the specific parameter values considered.

Figure 2(b) is depicting the power spectra of modes ψa,1 and Tg,1 calculated by the Fourier transformation of the auto-

correlation function using again timeseries of 10000 days. Atmospheric mode has a flat spectrum for lower frequencies and

decays rapidly for higher frequencies. The spectrum for the ground mode is initially following the path of the atmosphere215

(lower frequencies up to 0.001) but starts to decay earlier which indicates more structured variabilities at lower frequencies
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(b)


Figure 2. (a) Autocorrelation of barotropic (ψa1) atmospheric streamfunction and the ground temperature (Tg1) for Cg = 300 Wm−2 and
kd = 0.085. (b) Powerspectrum of the same variables.

than the atmosphere. The existence of a substantial continuous part in the spectrum is an indication of the complexity of the

deterministic dynamics in time and suggests the presence of a chaotic dynamics (Arbabi and Mezić, 2017; Mezić, 2020).

3 Methodology

The objective of this research - besides introducing the basic equations, energy balance scheme and its sensitivity - is to220

explore the predictability of blocking and zonal weather regimes. By analyzing the peculiarities and the patterns of the land

atmospheric coupled model, the study concludes that, when utilizing the parameters described in section 2.2, the system shows

a qualitatively similar behaviour as the large scale actual atmosphere at midlatitudes (examples are illustrated in Appendix B).

Moreover, varying the surface friction term, kd, within the range of 0.06 to 0.12 yields numerous instances of realistic flow

regimes, including blocking, zonal, and transition phases between these two states. To isolate between these flow regimes, a225

machine learning algorithm called Gaussian Mixture Clustering (GMC) is employed, which will be described in Appendix

A. After classifying the data, the average geopotential height at 500 hPa of each cluster is calculated to identify different

flow regimes. Through experimentation encompassing 2 to 6 clusters, discernible flow regimes emerged for 2 and 3 clusters,

showcasing significant distinctions. However, as the cluster count reached 4, we noted convergence between two clusters,

leading to identical structures and flow patterns. This trend persisted with additional cluster increments. Hence, we inferred230

that the attractor attained optimal clustering with evident and nearly uniform data point distribution when employing 3 clusters.

Each flow regime is equally important due to its presence in the actual atmosphere. The cluster containing the lowest fraction

of points in percentage being designated as the transition regime. The predictability horizon of each regime is evaluated by

computing the inverse of the average largest local Lyapunov exponents of the clusters, which are calculated at each point of

the attractor before clustering. Although the attractor exhibits multiple positive Lyapunov exponents, our investigation focused235

solely on the first exponent, as it governs the dynamics of the error and is therefore considered the most influential.
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4 Regime stability and Lyapunov properties of the low order land atmospheric coupled model

Characterizing the instability properties of different flow regimes and their dependence with respect to important parameters

are investigated as follows: The first part is exploring the sensitivity of the model about essential parameters which play a key

role in structuring the output of the system. In the second part, the predictability properties of zonal, blocking and transition240

flow regimes using the Lyapunov exponents is investigated.

4.1 Stability properties of the model

Stability properties of the land-atmosphere coupled model at their equilibrium states are well depicted in Li et al. (2018). They

also defined high-index equilibria and low-index equilibria based on the value of the streamfunction in the upper and lower

atmospheric layer when the model solutions are equilibrium states. Even though stability of the model’s equilibrium states is245

interesting and insightful, the actual atmosphere displays time-dependent solutions. Moreover, realistic atmospheric models

are chaotic and acutely sensitive to the initial conditions. Hence in this section, we investigated the stability properties of the

land atmosphere model when its behavior is similar to earthlike situations with erratic dynamics.

Chaotic dynamical systems which exhibit sensitivity to the initial conditions can be qualitatively analysed by computing

Lyapunov exponents and vectors.250

4.2 Theory

Sensitivity to initial conditions is usually estimated using Lyapunov exponents. Let us consider an initial state, x(to) = xo, a

small perturbation δxo is added to it which produces eventually a completely different trajectory. The dynamics of the error

growth of the system can be linearized provided the perturbation is infinitesimally small as

dδx

dt
=
∂f

∂x

∣∣∣∣
x(t)

δx (6)255

and its solution is

δx(t) =M(t,x(to))δx(to) (7)

where M is known as the resolvent or propagator matrix. The Euclidean norm of the error can be computed as

Et = |δx(t)|2 = δx(t)T δx(t)

Et = δx(to)
TM(t,x(to))

TM(t,x(to))δx(to) (8)260

hence indicating that the error growth is provided by the eigenvalues of MTM, where MT denotes the transpose of the

resolvent matrix M. By the multiplicative ergodic theorem of Oseledec (Eckmann and Ruelle, 1985; Kuptsov and Parlitz,

2012), a double limit is considered with perturbation amplitude going to 0 and time going to infinity. The logarithm of the
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Figure 3. Lyapunov spectra of the land atmospheric coupled model for Cg = 300 Wm−2 and kd = 0.085. The values of the Lyapunov
exponents are given in days−1 .

eigenvalues of matrix (MTM)2(t−to) within these limits, which are known as Lyapunov exponents, quantifies the divergence

of the initially close trajectories. The complete set of Lyapunov exponents that are usually represented in decreasing order265

constitutes the Lyapunov spectrum. Different types of Lyapunov vectors existed based on the method of calculation like forward

Lyapunov vectors, backward Lyapunov vectors and covariant Lyapunov vectors whose properties are described in details

in (Kuptsov and Parlitz, 2012; Legras and Vautard, 1996).

In the current study, we are using backward Lyapunov vectors (BLVs) which are obtained by considering the eigenvalues

of the matrix (MTM)2(t−to) by taking initial state to →−∞. Several numerical techniques exist for the calculation of the270

Lyapunov exponents. The most common method is using Gram-Schmidt orthonormalization (Shimada and Nagashima, 1979;

Parker and Chua, 2012): A set of orthonormal random vectors are propagated in the tangent space of the trajectory, according to

equation (6), frequently re-orthonormalizing this basis to avoid the collapse of all the vectors towards the most unstable direc-

tion which is associated with the largest Lyapunov exponent. After a transient, these vectors provide the BLVs and concurrently

the sought Lyapunoc exponents. The complete set of these vectors give the full picture of the instability of the trajectory in275

phase space.

4.3 Lyapunov spectra and averaged variance of the model

Figure 3 displays the Lyapunov spectrum of the land-atmosphere coupled model when Cg = 300Wm−2 and kd = 0.085. All

other parameters are provided in Table 1. The system has 3 positive, 1 zero and 26 negative Lyapunov exponents. Similarly to

the ocean-atmospheric coupled model (Vannitsem et al., 2015; Vannitsem and Lucarini, 2016; Vannitsem, 2017), the spectrum280

contains a set of Lyapunov exponents forming a plateau close to 0, but the amplitude of the Lyapunov exponents around

this plateau is however quite substantial as compared to the coupled ocean-atmosphere model. This plateau is expected to be

associated with the presence of the land whose typical time scales of variability are slower than the atmosphere.

The coupling between land and atmosphere plays a key role in the behaviour of the model. Hence quantifying the extent of

this coupling and its instabilities is essential for interpreting the properties of the model. Therefore, the averaged variance of285

the Lyapunov vectors is displayed in figure 4 to elucidate this information along each variable.

11



Figure 4. Values of the time-averaged and normalized variance of the BLVs as a function of the variables of the model (log10 scale). The
20 first modes correspond to the variables of the atmosphere and the next 10 ones correspond to the temperature of the ground. Parameters’
value: Cg = 300 Wm−2 and kd = 0.085. The Euclidean norm is used for all BLVs, and their squared norm is normalized to 1

The first ten variables represent the barotropic streamfunction of the atmosphere, the next ten represent the baroclinic stream-

function of the atmosphere, and the last ten represent the ground temperature. The variance of the BLVs is primarily residing

in the atmospheric part, indicating that this part primarily contributes to the system’s dynamics. It should also be noted that

the atmospheric part includes the most unstable BLVs (corresponding to the first two Lyapunov exponents) as well as the most290

stable BLVs (21 to 30 corresponds to large negative LEs).

Conversely, variance is predominantly projected on the temperature variables of the ground part for the BLVs 3 to 20. These

BLVs are associated with the plateau formed by the near-zero LEs visible in Fig. 3. The observation of comparable variance in

both the atmospheric and ground parts describes (horizontally) the coupling in the model, which is thus represented for BLVs

3-7. For BLVs 21 to 30, variance projection is almost non-existent in the ground part, indicating that the ground part makes295

almost no contribution to the stabilization of the system.

Figure 5 displays Lyapunov spectra calculated for various energy input levels (Cg) ranging from 300 to 400 Wm−2.

When Cg is lower, the model exhibits chaotic behavior, indicated by two positive exponents, one zero exponent, and 26

negative exponents. Surprisingly, the amount of incoming shortwave radiation doesn’t significantly affect the spectrum between

Cg values of 300 and 360 Wm−2.300
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Figure 5. Lyapunov spectra of the land atmospheric coupled model for different values ofCg . Each color represents correspondingCg values
used for calculating the spectrum. The values of the Lyapunov exponents are given in days−1

Figure 6. First and second Lyapunov exponents of the land atmospheric coupled model for different values of Cg for a fixed value of kd =
0.08. blue line represents first and orange line represents second Lyapunov exponents respectively. The values of the Lyapunov exponents
are given in days−1

However, as Cg increases, the system shifts to periodic behavior, characterized by one zero exponent and 29 negative

Lyapunov exponents, before switching back to chaos.

This is illustrated in Figure 6 where the first and second Lyapunov exponents are positive for the system for the lower values

of Cg and then system enters in to a periodic window for the Cg values and revert back again to chaotic behaviour later.

The surface friction kd is also affecting stability of the system to a great extent. In order to investigate the sensitivity of the305

model towards kd, Lyapunov spectra were drawn with the parameter values exhibited in table 1 with different kd values as

displayed in Fig. 7.

The non-dimensional kd values depicted in the figure were obtained from Reinhold and Pierrehumbert (1982), where they

asserted that flow regimes generated using these values exhibit realistic midlatitude terrestrial properties. Among the system

configurations with kd values of 0.06, 0.075, 0.09, and 0.12, there are 3 positive, 1 zero, and 26 negative Lyapunov exponents.310

Up to the point of plateau formation, all these spectra display similar behavior. Note that the spectrum corresponding to kd
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Figure 7. Lyapunov spectra of the land atmosphere coupled model for different values of kd. Each color represents corresponding kd values
used for calculating the spectrum. The values of the Lyapunov exponents are given in days−1.

Figure 8. First and second Lyapunov exponents of the land-atmosphere coupled model for different non-dimensional values of kd. Blue line
represents the first and orange line represents the second Lyapunov exponents, respectively.Cg = 300 Wm−2. The values of the Lyapunov
exponents are given in days−1

.

= 0.12 exhibits notably strong negative Lyapunov exponents, while the spectrum for kd = 0.06 demonstrates comparatively

weaker negative values, as expected from the increased associated dissipation.

From Figure 4, we identified that BLVs 20 - 30 are actually depicting the variance of temperature of the atmosphere. Given

the significant variation in BLVs 20 - 30 within the current context, it can be inferred that the atmospheric temperature gradient,315

and hence baroclinic instability is becoming weaker and the system is stabilizing due to the changes in the surface friction.

As thoroughly explained in section 4.2, the largest Lyapunov exponent serves as an indicator of the system’s highest degree

of instability, while the second positive Lyapunov exponent represents the second most unstable characteristic, and so forth. In

Fig. 8, the results demonstrate that at lower values of kd, the system exhibits a highly chaotic nature. However, as we increase

kd towards higher values, the system stabilizes, revealing a periodic window. This can also be seen with the Lyapunov spectrum320

for kd = 0.105 in Fig. 7.
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Figure 9. Lyapunov spectra of the land atmospheric coupled model for different values of λ. Each color represents corresponding λ values
used for calculating the spectrum. The values of the Lyapunov exponents are given in days−1.

Subsequently, with further increment in kd, the system returns to a more chaotic behavior, illustrating the complex role of

dissipative features.

The primary interaction between land and atmosphere in the model is facilitated through heat exchange denoted by λ.

Therefore, it is crucial to understand and analyze how alterations in the heat exchange mechanism influence the behavior of325

the model. This is illustrated in figure 9.

When λ is set to zero, the system displays a periodic behavior characterized by one zero and 29 negative Lyapunov exponents.

However, for all other non-zero λ values, the system exhibits chaos with 3 positive exponents, 1 zero, and 26 negative Lyapunov

exponents. Smaller values of λ (e.g., λ= 10,25, and 50) yield a smooth spectrum with a plateau which is similar to the typical

Lyapunov spectrum encountered before. Note that with higher λ values, an anomalous bend is observed in the spectrum,330

specifically from the 20th exponent onward, indicating unrealistic stability. It is also interesting to note that the spectrum

associated with the intersection of the land part (between 20th and 21st exponent) is becoming steeper with the increase of λ.

The increased heat exchange leads to a reduced temperature difference between the atmosphere and the ground, thereby giving

rise to this particular situation. This can be further explained by the averaged variance of Lyapunov exponents for different

values of heat exchange λ in Figure 10.335

A clear separation between land and atmosphere exists at λ = 0, when there is no exchange of heat between them, resulted in

to respective spectrum. For λ = 10, 25, and 50, the distribution remains similar, with variances concentrated predominantly in

the atmospheric component for the first three BLVs and the last ten BLVs. BLVs 3-20 represent a plateau-like pattern, indicat-

ing a coupling between the atmosphere and the ground. Despite variance distribution, it’s notable that there is a uniform spread

rather than strong concentration or absence of variance. For λ = 75 and 100, the variance distribution becomes compartmental-340

ized. Variance is now concentrated within the first 20 BLVs for the barotropic streamfunction and ground temperature, while

the last 10 BLVs primarily represent atmospheric temperature or baroclinic streamfunction. In contrast to earlier cases, there

is a clear absence of variance within the middle portion, specifically confined to BLVs 20-30. This compartmentalized energy

distribution leads to a characteristic jump in the corresponding spectrum.
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Figure 10. Values of the time-averaged and normalized variance of the BLVs as a function of the variables of the model (log10 scale) for
different λ values in Wm−2K−1. The 20 first modes corresponds to the variables of the atmosphere and the next 10 ones corresponds to the
temperature of the ground. Parameters’ value: Cg = 300 Wm−2 and kd = 0.085. The Euclidean norm is used for all BLVs, and their squared
norm is normalized to 1.

5 Predictability properties of zonal, blocking and transition flow regimes345

Upon concluding our investigation of the land-atmosphere coupled model’s utility in studying low-frequency variability in

the atmosphere, we have identified zonal, blocking, and transition regimes concerning different kd values, as explained in

section 3. For the range of kd values between 0.06 and 0.12, the lower values (0.06 to 0.075) encompass all three regimes:

zonal, blocking, and transition. As we progress from 0.08 onward, we observe two blocking regimes and a transitional regime

between them until kd = 0.10. Subsequently, the system exhibits periodic behavior. At kd = 0.115, two blocking regimes are350

observed, and further, at kd = 0.12, three flow regimes are identified. These findings demonstrate the model’s capability to

capture various flow regimes and their transitions based on the selected range of kd values.

The predictability horizon of the zonal regimes is found to be longer compared to the blocking regimes in the range of kd

values where all three regimes coexist (kd = 0.06 to 0.075). This implies that the blocking regimes exhibit higher instability

in agreement with previous findings(Schubert and Lucarini, 2016; Faranda et al., 2016, 2017; Lucarini et al., 2016). The355

transition regimes, on the other hand, show notably lower predictability in comparison to the other regimes. Within the interval

of kd values encompassing only two blocking regimes and a transition regime (kd = 0.08 to 0.10), both blocking regimes

display significantly different predictability horizons. At the outset (kd = 0.08), they demonstrate a predictability difference

of approximately 1 day. Subsequently, this difference increases and reaches about 10 days at kd = 0.095. However, it then

decreases again to a difference of 1 day when kd = 0.10. Moreover, it is observed that the stability of the transition regime360
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Figure 11. Predictability horizon of zonal, blocking and transition flow regimes for different non-dimensional kd. The numbers represents
the percentage of the total number of points included in the respective regime. Predictability horizon is depicted in days

surpasses that of one of the blocking regimes. This indicates the occurrence of a qualitative change in the predictability of the

blocking regimes within this particular range of kd values.

In these instances, it is noteworthy that situations characterized by lower predictability or significant instability tend to occur

when atmospheric blocking takes place on the western side of topographical features. Conversely, when blocking occurs on the

eastern side of such topography, it exhibits greater stability and a longer predictability horizon. This observation draws parallels365

with real-world scenarios, such as the persistence of North Pacific blocking patterns (Breeden et al., 2020; Kim and Kim, 2019).

The morphology of the identified blocking events bears resemblance to North Pacific blocks, where a high-pressure system is

situated either to the west or east of the underlying topography. These locations correspond to the windward and leeward sides

of the mountain ranges in the model.

The system is entering a periodic window after kd = 0.10. Then it again become chaotic with 2 blocking regimes and a370

transition regime and later on with 3 distinct regimes. Figure 11 depicts all the findings obtained from this study.
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Figure 12. Lyapunov spectrum of the land-atmosphere coupled model for Cg = 300 Wm−2 and kd = 0.085 in (5,5) model configuration.
The values of the Lyapunov exponents are given in days−1.

6 Impact of model resolution

As per Cehelsky and Tung (1987), resolution of the model can affect the output in various ways. For instance, the nonlinear

interaction between the modes (as number of modes increases, resolution of the system increases) is quite altered if different

number of modes are considered, resulting in entirely different dynamics for the same set of parameters. Hence, analysis of high375

resolution runs and its Lyapunov properties is inevitable. In this section, the system is ran with a higher resolution configuration

(5,5) with 55 modes being used for both the atmospheric and land part, giving a system with a total of 165 variables. Parameter

values are the same as that of the earlier analysis listed in Table 1. Figure 12 is depicting the Lyapunov spectrum and Figure 13

is representing the time-averaged variance of the BLVs of the high resolution run.

The Lyapunov spectrum exhibits structural similarity when compared to the low-resolution spectra, except that more positive380

exponents are present. Specifically, it comprises 12 positive, one zero, and 152 negative exponents. Notably, there is a distinctive

plateau observable within the range of 20 to 75, which is a characteristic feature attributed to the interaction between the land

and the atmosphere in the model. This plateau phenomenon arises due to the disparity in timescales resulting from the intricate

interplay between land and atmosphere dynamics.

In Fig. 13, higher variances in the atmosphere are observed on first 40 BLVs and also at the BLVs greater than 70 indicating385

that the most chaotic and stable dynamics are resulting from the atmospheric component. Furthermore, it is noteworthy that a

greater concentration of variance is observed to be shifted towards the variables that specifically represent the ground temper-

ature, particularly within the range of BLVs 20 to 75. This shift is a key factor contributing to the formation of a plateau within

the spectrum in question. It becomes evident that there is a distinct compartmentalization between each set of variables, includ-

ing the barotropic, baroclinic, and ground temperature variables, which is more pronounced when compared to the variance390

illustration at lower resolutions.

The outcome of the clustering analysis has delineated two clearly defined patterns: one marked by zonal flow and the other

by instances of blocking. The intermediate pattern that once existed between these two regimes is now absent. Notably, both the

zonal and blocking events exhibit an identical predictability horizon, specifically spanning a period of two days. This feature
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Figure 13. Values of the time-averaged and normalized variance of the BLVs as a function of the variables of the model (log10 scale) in (5,5)
model configuration. The 110 first modes corresponds to the variables of the atmosphere and the next 55 ones corresponds to the temperature
of the ground. Parameters’ value: Cg = 300 Wm−2 and kd = 0.085. The Euclidean norm is used for all BLVs, and their squared norm is
normalized to 1.

is contrasting with what is found at the lower resolution and also in the current literature on this topic. This aspect is worth395

investigating further in the future by exploring other sets of parameters and other resolutions.

7 Discussions

This study focused on characterizing the variability and instability properties of different flow regimes and their dependence

on important parameters in an idealized coupled model, namely the quasi-geostrophic land atmosphere coupled model. The

investigation also aimed at exploring the predictability of zonal, blocking, and transition flow regimes using Lyapunov expo-400

nents.

The analysis revealed that the model is less sensitive to variations in meridional differences in solar heating absorbed by

the land, represented by Cg . Based on observations, a fixed value of 300 Wm−2 for Cg was chosen for further analysis. The

study found that the model’s stability is significantly affected by surface friction kd. Different values of kd were explored,

and it was observed that at lower kd values, the system exhibits chaotic behavior, while at higher kd values, periodic windows405
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alternate with chaotic behaviors. Within this range, the systems solutions meander between various flow regimes, including

zonal, blocking, and transition.

The heat exchange mechanism, represented by λ, was also analyzed, and it was found that when λ is set to zero, the

system displays periodic behavior, while for non-zero λ values, the system exhibits considerable chaos. Overall, the model

demonstrated the capability to capture various flow regimes and their transitions based on the selected range of kd values,410

providing insights into the potential behavior of the atmosphere.

The predictability properties of three distinct flow regimes were investigated: zonal, blocking, and transition, which were

the fundamental components of low-frequency variability (LFV) in the model. The predictability horizon of the zonal regimes

was found to be longer compared to the blocking regimes which is consistent with earlier results (Schubert and Lucarini, 2016;

Faranda et al., 2016, 2017; Lucarini et al., 2016), when all three regimes coexist. The transition regimes showed notably lower415

predictability compared to the other regimes. Within a specific range of kd values, the blocking regimes displayed different

predictability horizons, indicating the occurrence of a qualitative change in the predictability of the blocking regimes.

Weather patterns that involve atmospheric blocking to the west of a given topographical feature tend to have reduced pre-

dictability and show instability when contrasted with blocking occurrences situated to the east of such topographical elements.

This finding aligns with actual meteorological occurrences, such as the persistence of North Pacific blocking patterns (Breeden420

et al., 2020; Kim and Kim, 2019). The shape and characteristics of the identified blocking events closely resemble North Pacific

blocks, where a high-pressure system exists either on the western or eastern side of the underlying topography. In the physical

world, these positions correspond to the windward and leeward sides of mountain ranges composed of rocky terrain. Despite

qgs models being regarded as less comprehensive, their utilization in this study allows for a more relevant impact, akin to

real-world situations as described above.425

Upon increasing the model resolution, Lyapunov properties exhibited a remarkable resemblance to those observed at lower

resolutions. However, the distribution of points on the attractor gave rise to two distinct clusters, delineating the blocking and

zonal regimes, thereby extinguishing the potential for the transition regime. Notably, both the blocking and zonal regimes

displayed a predictability horizon limited to 2 days.

In the backdrop of rising global temperatures and the escalation of climate extremes, comprehending the intricate dynam-430

ics governing atmospheric blocking occurrences and their predictability becomes paramount, given that blocking events are

consistently linked to extreme weather phenomena. The impact of climate change can also be explored in the current study by

modifying the emissivity of the atmosphere. This will be explored in the future.

The knowledge acquired through this study holds potential significance for climate and weather prediction models, con-

tributing to the advancement of our understanding of the crucial atmospheric dynamics shaping the Earth’s climate system. In435

future investigations, we will assess the influence of the same parameters within more complex models, enabling us to conduct

comparisons that will aid in identifying alterations in land-atmosphere interactions as atmospheric complexity intensifies. This

undertaking will further our comprehension of how the interaction between land and the atmosphere evolves with increasing

intricacies in atmospheric systems and how it affect the predictability of the weather regimes.
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Code availability. The code used to obtain the results is a new version (v0.2.7) of qgs (Demaeyer et al., 2020) that was recently released on440

GitHub.

Appendix A: Gaussian Mixture Clustering (GMC)

Gaussian Mixture Clustering (GMC) is a prevalent unsupervised machine learning technique utilized for partitioning data

points into clusters by modeling their underlying distribution.While the distribution of data points on the attractor may not align

with a Gaussian distribution, the algorithm proceeds by approximating the distribution as Gaussian and subsequently identifies445

clusters based on this approximation. Each cluster is characterized by a Gaussian component, and the primary objective is to

accurately estimate the parameters of these components to optimally describe the data. It comprises several steps.

– Initialization: GMC starts by randomly selectingK initial centers (means) µi for each cluster. Additionally, it initializes

the covariance matrices Σi and the mixing coefficients πi, which represent the probabilities of data points belonging to

each cluster, where i= 1,2, ...,K. The mixing coefficients must sum up to 1, and each must be between 0 and 1.450

– Expectation - Maximization (EM) Algorithm: GMC employs the EM algorithm (Dempster et al., 1977) to iteratively

estimate the parameters of the Gaussian components. The algorithm comprises two steps, the Expectation step (E-step)

and the Maximization step (M-step).

– Expectation Step (E-Step): During this step, the algorithm computes the responsibility (γi,j) of each data point

xj for each cluster i. The responsibility represents the probability that data point xj belongs to cluster i, given the455

current parameters. This is calculated using Bayes’ theorem:

γi,j =
πi · N (xj ;µi,Σi)∑K

k=1πk · N (xj ;µi,Σi)
(A1)

where γi,j is the responsibility of cluster i for data point xj , πi is the mixing coefficient for cluster i. µi and Σi

are the mean and covariance matrix for cluster i, respectively. N (xj ;µi,Σi) is the Gaussian probability density

function for data point xj with mean µi and covariance Σi.460

– Maximization Step (M-Step): In this step, the algorithm updates the parameters of the Gaussian distributions

(mean, covariance, and mixing coefficients) based on the responsibilities calculated in the E-step:

New mean ,µi =

∑N
j=1 γi,j ·xj∑N

j=1 γi,j
(A2)

465

New covariance matrix ,Σi =

∑N
j=1 γi,j · (xj −µi) · (xj −µi)

T∑N
j=1 γi,j

(A3)
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New mixing coefficient ,πi =
1

N

N∑
j=1

γi,j (A4)

where N is the number of data points. µi, Σi, and πi are the updated mean, covariance matrix, and mixing coeffi-

cient for cluster i, respectively. γi,j is the responsibility of cluster i for data point xj (computed in the E-step). xj

is the j-th data point.470

– Convergence: The E-step and M-step are repeated iteratively until the algorithm converges. Convergence happens when

the change in the likelihood of the data between iterations becomes very small or when a predefined number of iterations

is reached.

– Cluster Assignment: Once the algorithm converges, each data point is assigned to the cluster with the highest probability

(highest responsibility).475

– Number of Clusters (K): The number of clusters,K, is typically determined either by the user based on prior knowledge

or by using techniques like the Bayesian Information Criterion (BIC) or cross-validation to find the optimal number of

clusters.

In our study, we used cross-validation method and decided K as 3 for obtaining realistic results. Further explanation regarding

the clustering algorithm can be obtained from recent literature on that subject (Hastie et al., 2009; Bishop and Nasrabadi, 2006;480

Dempster et al., 1977).

Appendix B: Examples of blocking and zonal patterns evolved from the study

As previously indicated, employing the parameter configuration outlined in Table 1, we have successfully generated earthlike

flow patterns. These flow regimes are visually represented in figures B2 and B1, corresponding to different values of the

parameter kd. Specifically, for lower values of kd, we observe the coexistence of zonal, blocking, and transitional flow regimes,485

as depicted in figure B1. Conversely, when kd assumes higher values, we observe the emergence of two blocking flow regimes

along with a transition regime, as illustrated in figure B2.
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Figure B1. Phase space dynamics of the model projected on the (ψa,3, ψa,2)-plane is shown in panel (a) for kd = 0.065 . Gaussian mixture
clusters covariance are represented with orange, green and red ellipsis. Orange cluster is associated with a zonal regime which can be
identified by the geopotential height at 500 hPa in panel (b). Red and green clusters are respectively transition and blocking regimes attributed
in panel (c) and (d), also at 500hPa geopotential height. The orographic profile of the domain is depicted in panels (b), (c) and (d).

Figure B2. Same as Fig. B1 but for kd = 0.08 . Here the red (panel (c)) and green clusters (panel (d)) are both blocking regimes and the
orange one (panel (b)) is a transition regime.
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Figure B3. Same as Fig. B1 but for kd = 0.105 where the system exhibits periodic behavior results in to non identifiable flow regimes and
indistinguishable clusters

24



Figure B4. Phase space dynamics of the model projected on the (ψa,3, ψa,2)-plane is shown in panel (a) for kd = 0.08. The figure illustrates
the Gaussian mixture clustering results, where each data point is colored according to its corresponding cluster or flow regime. Panels (b), (c),
and (d) depict the temporal evolution of barotropic (ψa,1) and baroclinic (θa,1) atmospheric streamfunction, along with ground temperature
(Tg,1) for Cg = 300 Wm−2 and kd = 0.08, with colors corresponding to their respective clusters.
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