
Dear Editor,

We hope this message finds you well.

We are writing to express our heartfelt gratitude for the acceptance of our manuscript
with minor corrections. Your constructive feedback and insightful suggestions have been
invaluable, and we are truly appreciative of your support throughout this process.

We have diligently incorporated all the suggestions you provided, ensuring that the
manuscript now fully aligns with the high standards of Earth System Dynamics. We
believe these adjustments have significantly enhanced the clarity and quality of our work.

Furthermore, we would like to extend our sincere thanks to the reviewers for their
thorough and thoughtful critiques. Their valuable insights and constructive comments
have greatly contributed to the improvement of our manuscript, making it a stronger and
more robust piece of research.

We are attaching the revised manuscript, which includes all the recommended changes.
We are confident that the manuscript now meets the expectations of the journal and hope
it will be well-received by the readers.

Thank you once again for your guidance and for giving us the opportunity to refine our
work. Should you need any further information or assistance, please do not hesitate to
contact us.

Warm regards,

Anupama K. Xavier, Jonathan Demaeyer, Stéphane Vannitsem



Response to the Editor:

1. Regarding reviewer 1's comment on the complexity of interpreting Lyapunov
exponents in spatio-temporal systems: While you addressed the reviewer's comment in
your response, I would encourage you to also make a brief note in the manuscript of the
fact that the LE here consider both spatial and temporal chaos. This will prevent other
readers going into the manuscript with the idea that the LE here only signifies temporal
chaos.

Thank you very much for pointing this out. Relevant explanation is added from line 190
to 195 in the manuscript in the model characteristics session as “Each basis function
represents corresponding spatial patterns.Therefore this configuration yields a set of 30
variables, including 10 barotropic variables, 10 baroclinic variables, and 10 ground
temperature variables. Note that as explained in the qgs documentation, the basis
functions of the model can be easily altered. In the context of this model, the instability
properties, i.e. the Lyapunov vectors, are affecting all the spatial modes at once, and are
therefore characterising the spatio-temporal chaotic evolution of small perturbations. The
approach adopted here is similar to the one used for instance in Vannitsem and Nicolis
(1997)” To give a connection “As Mentioned in section 2.1, Lyapunov exponents
computed here consider both spatial and temporal chaos.” is added into line 276 which
explains the theory behind the computation of Lyapunov exponents.

2. Figure B4: A significant percentage of people are colour-blind and cannot distinguish
between red and green. I would therefore suggest re-running your plotting scripts with
modified colours (e.g., choosing blue instead of green). This way, a greater number of
people will be able to read and appreciate your work.

Thank you very much for this suggestion. We changed the colour palette of the figures
suitable for people with colorblindness, especially figure B4.



3. Appendix A: I recommend also citing Smyth et al. 1999 (see reviewer 2's second
comment) when describing the Gaussian Mixture Clustering method. It may help readers
recognise a familiar method.

Thank you. Added the reference in the corresponding section

First of all, thank you very much for the helpful comments and suggestions you have
made about our manuscript. This will definitely help the improvement of the research to
a greater extent.

Reviewer 1

Major comments:

1. One major concern pertains to the classification of three weather regimes using a
machine learning (ML) method and the correlation of each identified regime with
stability or instability, determined by averaged local Lyapunov exponents. While
Charney and Devore's (1979) model is traditionally used for studying non-chaotic
weather regimes, Lorenz's (1963a) model is renowned for illustrating chaotic
features. It's crucial to note that Lorenz applied a similar approach in the early
1960s to study chaotic and nonlinear oscillatory solutions in a two-layer
quasi-geostrophic system (e.g., Lorenz 1962, 1963b; Shen, Pielke Sr., and Zeng,
2023, https://www.mdpi.com/2073-4433/14/8/1279 ). A brief review of Lorenz's
contributions is necessary, and a comparison of the QG-based models should
address the variation in the number of Fourier modes concerning chaotic features.

Thank you very much for the suggestion. It is indeed important to discuss Lorenz’s
contributions and more precisely the comparison between QG - based models in the
present context. More elaborated discussion is added in the introduction section of the
manuscript from line 45 to 75 as follows

“The pursuit of simplified models for atmospheric phenomena has a long history, dating
back to Lorenz’s seminal work in the early 1960s (Lorenz, 1960, 1962, 1963a, b). This
approach recognizes the value of sacrificing some detail in exchange for a deeper grasp
of fundamental physical processes. Lorenz demonstrated the power of this strategy by
leveraging Fourier series to distill the barotropic vorticity equation into three ordinary
differential equations (Lorenz, 1960). These equations, while omitting smaller scales of
motion, yielded valuable insights into atmospheric scenarios such as flow interactions



and current stability. Subsequently, he developed a simplified geostrophic model using
truncated Fourier-Bessel series (Lorenz, 1962). This eight-equation model captured
baroclinic instability, a critical process in atmospheric dynamics, while maintaining key
energy relationships. Notably, the model successfully reproduced observed flow regimes
and transitions in rotating fluids, suggesting its effectiveness in studying large-scale
atmospheric behavior. Lorenz's 1963 research yielded significant advancements in our
understanding of atmospheric dynamics through two key publications (Lorenz, 1963a).
The first introduced a now-iconic system of three differential equations, derived from a
further simplified model for fluid flow. This groundbreaking work unveiled the concept
of sensitive dependence on initial conditions, a cornerstone of chaos theory.

In the same year, Lorenz explored a separate avenue by investigating a simplified model
for symmetrically heated rotating viscous fluids (Lorenz, 1963b). This work resulted in a
system of fourteen ordinary differential equations governed by two external parameters:
the thermal Rossby number and the Taylor number. Analytical solutions revealed the
existence of purely zonal flow and superimposed steady waves, while numerical
integration unveiled a richer tapestry of flow behaviors. Oscillatory solutions with
periodic shape changes and irregular non-periodic flow emerged. Interestingly, increasing
the Taylor number generally led to greater flow complexity, except at very high values
where the model's truncations became unrealistic.

Perhaps most intriguing was the coexistence of unstable purely zonal, steady-wave, and
oscillatory solutions. This suggests intricate flow dynamics, with transitions between
symmetric and unsymmetric vacillation occurring independently of instability. These
findings highlight the ability of simplified models to unveil complex and nuanced
behaviors in atmospheric dynamics (Shen et al., 2023).

Lorenz's pioneering work in the early 1960s demonstrated the power of simplified models
for understanding atmospheric dynamics. By strategically neglecting certain
complexities, he was able to capture key phenomena like baroclinic instability and chaos.
However, for large-scale atmospheric simulations, computational efficiency becomes
paramount. This is where QG (quasi-geostrophic) models come in. QG models prioritize
large-scale features by making specific approximations, allowing for rapid simulations
and analyses of broad atmospheric circulation patterns. While they may not capture the
intricate details explored by Lorenz's models, QG models remain a workhorse for
studying large-scale atmospheric phenomena.”



Several issues need attention:

1. Gaussian Mixture Clustering (GMC) was employed for classification, assuming
each cluster has a Gaussian component. The suitability of this assumption for
chaotic regimes should be addressed, especially considering the regular spatial
patterns that appear in the classified regimes. Associating different weather
regimes with components of the leading Lyapunov vector, particularly in the
presence of multiple positive Lyapunov exponents, should be addressed. The
challenge is heightened by the time-varying components of each Lyapunov vector
along the solution orbit, making it difficult to link specific components to zonal or
blocking regimes.

Thank you very much for pointing it out. The distribution of the data points on the
attractor is not presumably a Gaussian distribution. But the algorithm itself approximates
the distribution as Gaussian and identifies clusters based on that approximation. This is
pointed out in the manuscript from line 442 to 445 as

“While the distribution of data points on the attractor may not align with a Gaussian
distribution, the algorithm proceeds by approximating the distribution as Gaussian and
subsequently identifies clusters based on this approximation.”

The methodology depicted in this paper is such as computing the local Lyapunov
exponents on each datapoint on the attractor, clustering the attractor using GMC and then
calculating the average of largest local Lyapunov exponents based on the identified
cluster. Even though the attractor has multiple positive Lyapunov exponents, we only
investigated the first one since the dynamics of the error will ultimately follow this
exponent. To clarify this we added in the manuscript

“Although the attractor exhibits multiple positive Lyapunov exponents, our investigation
focused solely on the first exponent, as it governs the dynamics of the error and is
therefore considered the most influential.”

2. The use of a fixed cluster number (3) in GMC for models with different numbers
of positive Lyapunov exponents (LEs) (e.g., 3 positive LEs in Figure 7 and 12



positive LEs in Figure 12) raises concerns. Various clustering values should be
explored to illustrate the relationship between the number of weather regimes and
the number of positive LEs. For example, can we observe similar weather regimes
in the 30 and 165 variable systems? If this is the case, does it imply a consistent
number of multiple regimes or equilibrium points across both systems?

Thank you for your input. Evaluating various cluster numbers in the clustering process is
crucial for obtaining meaningful outcomes. Our experimentation, spanning from 2 to 6
clusters, revealed distinct flow regimes for 2 and 3 clusters, each exhibiting notable
differences. However, as the cluster number increased to 4, we observed overlap between
two clusters, resulting in identical structures and flow patterns. This trend persisted with
further increases in cluster number. Consequently, we concluded that the attractor
achieved optimal clustering with clear and nearly equal data point distribution when
utilizing 3 clusters. This is added in the manuscript in the lines 225 to 235 as

“Through experimentation encompassing 2 to 6 clusters, discernible flow regimes
emerged for 2 and 3 clusters, showcasing significant distinctions. However, as the cluster
count reached 4, we noted convergence between two clusters, leading to identical
structures and flow characteristics. This trend persisted with additional cluster
increments. Hence, we inferred that the attractor attained optimal clustering with evident
and nearly uniform data point distribution when employing 3 clusters.”

3. Is it possible to compute Lyapunov exponents for individual weather regimes?
Could the time evolution of each weather regime be graphed for comparative
analysis?

Thank you very much for this suggestion. In our current analysis, we're computing local
Lyapunov exponents for every data point on the attractor. These exponents help us
understand the stability of trajectories in our system. Once we've classified the data points
using Gaussian mixture clustering, we determine the average of the largest local
Lyapunov exponent within each cluster. This process allows us to identify the
predictability horizon associated with each cluster. Furthermore, we analyze the flow
regimes by examining the average geopotential height at 500 hPa within each cluster.
This helps us characterize the different atmospheric circulation patterns that emerge from
the data. By combining these approaches, we gain insights into both the predictability and
the underlying dynamics of the system, enabling a deeper understanding of its behavior.



4. Concerning predictability in typical dynamical systems, characterized by systems
of ordinary differential equations (ODEs), a positive Lyapunov exponent (LE)
usually signifies temporal chaos (distinct from spatial-temporal chaos). In
estimating predictability horizons under different conditions, a higher positive LE,
on average, implies a greater average growth rate, indicating faster error growth
and thus diminished predictability horizons. However, when applying this concept
to assess predictability in spatial-temporal systems, it becomes imperative to
account for errors related to spatial movement. The analogy of whether more
intense hurricanes (with higher growth rates) are less predictable encourages
authors to contemplate the influence of spatial movement on error predictions.
Therefore, in contrast to a zonal flow, although a blocking regime is linked to
instability manifested by a larger LE, the consideration of spatial movement is
essential when comparing errors in zonal and blocking cases in order to compare
their predictability horizons.

The QGS land atmosphere coupled model is a spectral model where we project ODEs on
several basis functions that represent different spatial patterns. Precisely in the
manuscript we used 10 different basis functions which represent the spatial pattern shown
in the figure above. So computing the perturbations of the spatial mode or computation of

Figure 1. The first 10 basis functions Fi evaluated on the nondimensional domain of the model

The Lyapunov exponents in the spectral space are indeed considering both spatial and
temporal chaos. In this context, spatial amplification of the modes will not be calculated.
As you mentioned, the spatial evolution of error is of considerable interest, its
significance becoming more pronounced in higher resolution runs, which we intend to



explore in a subsequent investigation. The figure shown above depicts the first 10 basis
functions Fi evaluated on the nondimensional domain of the model.

Specific Comments.

Page 5: Please indicate whether and how Eqs. (1) and (2) are coupled with Eqs. (3) and
(4).

Thank you for the comment. Discussion about the coupling is included in the revised
manuscript from line 177 to 185 as

“The hydrostatic relation in pressure coordinates ∂Φ = −1/ρa where the geopotential
height Φi = f0ψi

a and the ideal gas relation p = ρaRTa allow one to write the spatially
dependent atmospheric temperature anomaly δTa = 2f0θa/R ,with θa as the baroclinic
stream function. This can be used to eliminate the vertical velocity ω. This changes the
independent dynamical field to the stream function field ψa and the spatially dependent
temperatures δTa and δTg.”

Page 7: Please indicate the equation(s) that contains Cg.

Indicated in the revised manuscript as

“The dimensional meridional differential shortwave solar radiation absorbed by the land
and the atmosphere are given by δRg = √2Cgcos(y/L) and δRa = √2Cacos(y/L)
respectively. Hence we decide to provide Ca = 0.4Cg. The variable Cg is a dimensional
parameter, which is an indicator of the meridional difference in solar heating absorbed by
the land between the walls, and it is the crucial parameter in our land atmosphere coupled
model.”



Page 7, Figure 1c with ACC. Is it possible to identify a time scale of approximately 36
days within the timeframe spanning 20 to 80 days?

Figure 2. (a) Autocorrelation of barotropic (ψa,1) atmospheric streamfunction and the ground
temperature (Tg,1) for C g = 300 Wm−2and kd= 0.085 (b) Powerspectrum of the same variables

in log10 scale.

Figure 3. Power spectrum same as fig. 2 against time period in normal scale instead of log10
scale



The figure below depicts the autocorrelation and power spectrum of barotropic (ψa,1)
atmospheric streamfunction and the ground temperature (Tg,1) for Cg = 300 Wm−2 and
kd= 0.085. Power spectrum in the first panel has frequency and time period depicted in
the respective x-axis in a log10 scale as in the second panel time period depicted in the
normal scale in order to clearly identify the peaks.

Through a comprehensive examination of the power spectrum, we found it inconclusive
to find oscillations every 36 days since we are observing several peaks during the course
of 80 days.

Page 7: Can a figure analogous to Figure 1 be generated for each of the categorised
regimes?

Thank you for the comment. Yes, it could be drawn by giving different colors to the data
points belonging to different flow regimes or respective clusters. In the figure below,
phase space dynamics of the model projected on the (ψa,3, ψa,2)-plane is shown in panel (a)



Figure 4. The phase space dynamics of the model projected on the (ψa,3, ψa,2)-plane is shown in
panel (a) for kd = 0.08. The figure illustrates the Gaussian mixture clustering results, where each
data point is colored according to its corresponding cluster or flow regime. Panels (b), (c), and
(d) depict the temporal evolution of barotropic (ψa,1) and baroclinic (θa,1) atmospheric stream
function along with the ground temperature (Tg,1) for Cg = 300 Wm−2 and kd = 0.08 with colors
corresponding to their respective clusters.

for kd = 0.08 . The figure illustrates the Gaussian mixture clustering results, where each
data point is colored according to its corresponding cluster or flow regime. Panel (b), (c)
and (d) represents the temporal evolution of barotropic (ψa,1) and baroclinic (θa,1)
atmospheric stream function along with the ground temperature (Tg,1) for Cg= 300 Wm−2

and kd = 0.08 with colors corresponding to their respective clusters. We included this
figure into the appendix as another way of representing clusters.

Page 9: The discussions on the Oseledec method should be expanded to incorporate
insights from Lorenz's contributions. (e.g., Lorenz 1965; please see a review by Shen,
Pielke Sr, and Zeng, 2023).

Thank you very much for drawing our attention toward this paper. In Lorenz’s 1965
paper, he uses a 28-variable atmospheric model which is developed by extending the
equations of a two-level geostrophic model using truncated double-Fourier series. This
model accounts for nonlinear interactions among disturbances of varying wavelengths.
Numerical integration is employed to find nonperiodic time-dependent solutions. By
comparing solutions with slightly different initial conditions, the rate of growth of small
initial errors is investigated. Lorenz’s error growth estimation is based on using singular
value decomposition which is not the direction we wanted to proceed with the current
paper as we computed the Lyapunov exponents that are asymptotic properties of the
attractor. Hence we will not use that reference in the current context.



Page 11: Please add Figure B3 to include flows for Cg = 400 or kd = 0.12, for periodic
flows.

Figure 5. Phase space dynamics of the model projected on the (ψa,3, ψa,2) - plane is shown in
panel (a). Gaussian mixture clusters covariance are represented with orange, green and red
ellipsis, for kd= 0.105, the system exhibits periodic behavior that results in non-identifiable flow
regimes and indistinguishable clusters.

System enters into periodic behavior when kd = 0.105 to 0.115. Hence we added figure
B3 with Cg=300 W/m2 and kd= 0.105 which depicts Phase space dynamics of the model
projected on the (ψa,3, ψa,2) - plane shown in panel (a). Gaussian mixture clusters
covariance are represented with orange, green and red ellipsis. but for kd= 0.105, the
system exhibits periodic behavior results in to non identifiable flow regimes and
indistinguishable clusters



Pages 12 and 13: while 𝛌1 and 𝛌2 are used for representing the 1st and 2nd LEs,
respectively, the symbol lambda indicates heat exchange. Please consider making
changes to reduce confusion.

Thank you very much for pointing this out. 𝛌1 and 𝛌2 are changed into LE1 and LE2 for

Figure 6. First and second Lyapunov exponents of the land atmospheric coupled model for



different values of Cg and kd. The blue line represents the first and the orange line represents the
second Lyapunov exponent respectively. The values of the Lyapunov exponents are given in
days−1

avoiding confusions in figure 6 and 8 which actually portraits

Page 12, line 280. Does the selection of lambda = 0 result in an uncoupled model? How
can this be contrasted with the models proposed by Charney and Devore, Lorenz (1962)
and/or Lorenz (1963b)?

Selection of lambda = 0 will not result in an uncoupled model. It only ceases the heat
exchange between land and the atmosphere. The land and atmosphere components in the
model are still interacting via incoming shortwave radiations, outgoing long wave
radiations as per the equations. The model proposed by Charney and Devore has similar
dynamics where the only difference is the energy balance system. The land atmosphere
coupled model has a realistic energy balance system as in Barsugli and Battisti (1998).
The coupling of the atmospheric components with the ground is constituted by the
surface friction and the radiative flux whereas Charney and Devore are using an energy
balancing system based on Newtonian cooling coefficient.



Pages 12 & 17, (in Figures 7 & 12), please offer perspectives on whether the presence of
the plateau suggests the existence of singular eigenvalues with higher multiplicity.

Figure 7. Lyapunov spectrum and standard deviation of the Lyapunov exponents calculated
using a bootstrap method. Lines with values +/- 2*standard deviation (2*std in the panels) of the
Lyapunov exponent values is also depicted in the figure in the scale of the Lyapunov spectrum.
The second panel is a zoomed version of the first figure only concentrating on the Lyapunov
exponents that caused the plateau which indexed from 3 to 14

The figures above depict the Lyapunov spectrum and standard deviation of the Lyapunov
exponents calculated using a bootstrap method. Lines with values +/- 2*standard
deviation (2*std in the figures) of the Lyapunov exponent values is also depicted in the
figure in the scale of the Lyapunov spectrum. The second figure is a zoomed version of
the first figure only concentrating on the Lyapunov exponents that caused the plateau
which indexed from 3 to 14. The exponents do not show a large uncertainty band, and
therefore one can now say confidently that the values forming the plateau are clearly
distinct to each other, suggesting the absence of a potential degeneracy of the
eigenvalues.



Reviewer 2

Given the importance of the finding on the relative predictability of the blocked and zonal
regimes, I would suggest giving a bit of history on it. Overall, the review on
low-frequency variability (LFV) of the midlatitude atmosphere in the paper’s
introduction is quite careful and complete. But the authors might wish to emphasize the
fact that Legras & Ghil (JAS, 1985) were the first to find the greater stability and hence
predictability of zonal flows in their 25-variable barotropic model on the sphere. This
result was followed in the experimental paper of Weeks et al. (Science, 1997), using a
barotropic rotating annulus, by a study of the variability and persistence of the laboratory
blocked flow that essentially confirmed the findings of Legras & Ghil (1985); see
especially Fig. 5 in Weeks et al. (1997). So did the Lucarini & Gritsun ( Dyn., 2020)
paper, which used the three-layer quasi-geostrophic model of Marshall & Molteni (JAS,
1993) and the methodology of unstable periodic orbits (UPOs). The fact that Lucarini &
Gritsun (2020) used a baroclinic model removes the doubts about the greater stability of
zonal flows being exclusively due to the barotropic character of the Legras & Ghil (1985)
model and of the Weeks et al. (1997) apparatus.

Thank you very much for the suggestion. As per the comment we included a more
elaborated introduction including all the mentioned literatures in the revised version of
the manuscript from lines 105 to 120. The included portion is

“Legras & Ghil (JAS, 1985) employed a higher-order barotropic spectral spherical model
to investigate blocking and zonal flow regimes dynamics, suggesting that their model
displayed properties akin to an index cycle, and later stochastic forcing was introduced to
Charney’s deterministic model, leading to transitions between high- and low-index states
(Benzi et al., 1984; Egger, 1981; Sura, 2002). The impact of stochastic forcing on the
stability of atmospheric regimes was also recently considered in a highly-truncated
barotropic model by Dorrington and Palmer (2023), where they provide a mechanism to
explain the increased persistence of blocking due to the noise in such simple models.

In this paper, Legras and Ghil (1985) also discussed the realistic existence of blocked and
zonal flow regimes which are obtained as unstable stationary solutions due to the
barotropic influence of the LFVs in the atmosphere. More persistent zonal flows are also
identified in several occasions which seems to be a deviation from the earlier studies.



Later the stability studies by Weeks et al. (1997) recreating zonal and blocked regimes in
an experimental annulus setup further substantiated the findings of Legras and Ghil
(1985).

Schubert and Lucarini (2016)’s numerical investigation employing a QG model revealed
a counter-intuitive finding that during blocking events, the global growth rates of the
fastest growing covariant Lyapunov vectors (CLVs) are significantly higher, indicating
stronger instability compared to typical zonal conditions. The difficulty in predicting the
specific timing of blocking onset and decay further contributes to the observed instability
behavior, aligning with Kwasniok (2019) findings associating anomalously high values of
finite time largest Lyapunov exponents with blocked atmospheric flows.

Lucarini and Gritsun (2020) demonstrated that blocking phenomena exhibit higher
instability compared to typical atmospheric conditions, irrespective of whether they occur
in the Atlantic, Pacific, or globally. This analysis utilized the simplified atmospheric
model proposed by Marshall and Molteni (1993) and assessed stability based on unstable
periodic orbits (UPOs). Importantly, this research dispelled the misconception that the
increased stability of zonal flows solely resulted from the barotropic nature of the model
in the study of Legras and Ghil (1985) and Weeks et al. (1997) apparatus. Consistent
results were obtained by Faranda et al. (2016, 2017), utilizing extreme value theory for
dynamical systems, which identified blocking regimes with unstable fixed points in a
heavily reduced phase space. Their findings indicated that blockings exhibit higher
instability in the circulation, linked to an increased effective dimensionality of the
system. This agreement with Lucarini and Gritsun (2020) study further supports the
notion that blocking events display stronger turbulence and instability, challenging
conventional expectations.”

It would be of particular interest if the authors of the present paper could take a closer
look at baroclinic vs. barotropic effects in their model, with respect to this question of the
relative stability and persistence of blocked vs. zonal flows, when the two types of
regimes coexist. See also the discussion in Ghil & Lucarini (Rev. Mod. Phys., 2020, p.
035002-36).

This is an interesting comment. Indeed it is really important to analyze the stability of
flow regimes that were influenced by the barotropic or baroclinic part of the model. In the
discussion of Ghill & Lucarini (2020), they were pointing out 4 different possibilities to
obtain an unstable blocking event compared to the zonal flow which includes slowing
down of Rossby waves or their linear interference, the existence of multiple flow
equilibria resulting slower flow regimes, the idea of oscillatory instabilities of one or



more of the multiple fixed points that can play the role of regime centroids and the last
one was the formation of blocking events when the trajectory is near an extremely
unstable periodic orbits (UPOs). As this comment says, instability could also be because
of the barotropic or baroclinic part of the model. Inorder to find out that, we tried to
average the barotropic and baroclinic stream function with respect to each cluster to
identify the existence of different stream function values between zonal and blocking
representing clusters and also studied the distribution of each baroclinic and barotropic
mode But the results are inconclusive which denotes that it needs a more extensive
methodology which we will pursue in our future works.

The authors refer to using a “machine learning algorithm called Gaussian Mixture
Clustering (GMC),” which is described in Appendix A. While machine learning and AI
are all the rage these days, I’d be curious to know how this algorithm differs from the one
that was used on observational data by Smyth et al. (JAS, 1999).

We were really sorry to use the term ‘Machine learning’ since it is more of a data driven
algorithm which we were corrected in the revised manuscript. Apparently the idea is the
same as that in the paper Smyth et al., 1999.


