
First of all, thank you very much for the helpful comments and suggestions you have
made about our manuscript. This will definitely help the improvement of the research to
a greater extent.

Major comments:

1. One major concern pertains to the classification of three weather regimes using a
machine learning (ML) method and the correlation of each identified regime with
stability or instability, determined by averaged local Lyapunov exponents. While
Charney and Devore's (1979) model is traditionally used for studying non-chaotic
weather regimes, Lorenz's (1963a) model is renowned for illustrating chaotic
features. It's crucial to note that Lorenz applied a similar approach in the early
1960s to study chaotic and nonlinear oscillatory solutions in a two-layer
quasi-geostrophic system (e.g., Lorenz 1962, 1963b; Shen, Pielke Sr., and Zeng,
2023, https://www.mdpi.com/2073-4433/14/8/1279 ). A brief review of Lorenz's
contributions is necessary, and a comparison of the QG-based models should
address the variation in the number of Fourier modes concerning chaotic features.

Thank you very much for the suggestion. It is indeed important to discuss Lorenz’s
contributions and more precisely the comparison between QG - based models in the
present context. More elaborated discussion is added in the introduction section of the
manuscript from line 45 to 75 as follows

“The pursuit of simplified models for atmospheric phenomena has a long history, dating
back to Lorenz’s seminal work in the early 1960s (Lorenz, 1960, 1962, 1963a, b). This
approach recognizes the value of sacrificing some detail in exchange for a deeper grasp
of fundamental physical processes. Lorenz demonstrated the power of this strategy by
leveraging Fourier series to distill the barotropic vorticity equation into three ordinary
differential equations (Lorenz, 1960). These equations, while omitting smaller scales of
motion, yielded valuable insights into atmospheric scenarios such as flow interactions
and current stability. Subsequently, he developed a simplified geostrophic model using
truncated Fourier-Bessel series (Lorenz, 1962). This eight-equation model captured
baroclinic instability, a critical process in atmospheric dynamics, while maintaining key
energy relationships. Notably, the model successfully reproduced observed flow regimes
and transitions in rotating fluids, suggesting its effectiveness in studying large-scale



atmospheric behavior. Lorenz's 1963 research yielded significant advancements in our
understanding of atmospheric dynamics through two key publications (Lorenz, 1963a).
The first introduced a now-iconic system of three differential equations, derived from a
further simplified model for fluid flow. This groundbreaking work unveiled the concept
of sensitive dependence on initial conditions, a cornerstone of chaos theory.

In the same year, Lorenz explored a separate avenue by investigating a simplified model
for symmetrically heated rotating viscous fluids (Lorenz, 1963b). This work resulted in a
system of fourteen ordinary differential equations governed by two external parameters:
the thermal Rossby number and the Taylor number. Analytical solutions revealed the
existence of purely zonal flow and superimposed steady waves, while numerical
integration unveiled a richer tapestry of flow behaviors. Oscillatory solutions with
periodic shape changes and irregular non-periodic flow emerged. Interestingly, increasing
the Taylor number generally led to greater flow complexity, except at very high values
where the model's truncations became unrealistic.

Perhaps most intriguing was the coexistence of unstable purely zonal, steady-wave, and
oscillatory solutions. This suggests intricate flow dynamics, with transitions between
symmetric and unsymmetric vacillation occurring independently of instability. These
findings highlight the ability of simplified models to unveil complex and nuanced
behaviors in atmospheric dynamics (Shen et al., 2023).

Lorenz's pioneering work in the early 1960s demonstrated the power of simplified models
for understanding atmospheric dynamics. By strategically neglecting certain
complexities, he was able to capture key phenomena like baroclinic instability and chaos.
However, for large-scale atmospheric simulations, computational efficiency becomes
paramount. This is where QG (quasi-geostrophic) models come in. QG models prioritize
large-scale features by making specific approximations, allowing for rapid simulations
and analyses of broad atmospheric circulation patterns. While they may not capture the
intricate details explored by Lorenz's models, QG models remain a workhorse for
studying large-scale atmospheric phenomena.”

Several issues need attention:

1. Gaussian Mixture Clustering (GMC) was employed for classification, assuming
each cluster has a Gaussian component. The suitability of this assumption for
chaotic regimes should be addressed, especially considering the regular spatial
patterns that appear in the classified regimes. Associating different weather
regimes with components of the leading Lyapunov vector, particularly in the



presence of multiple positive Lyapunov exponents, should be addressed. The
challenge is heightened by the time-varying components of each Lyapunov vector
along the solution orbit, making it difficult to link specific components to zonal or
blocking regimes.

Thank you very much for pointing it out. The distribution of the data points on the
attractor is not presumably a Gaussian distribution. But the algorithm itself approximates
the distribution as Gaussian and identifies clusters based on that approximation. This is
pointed out in the manuscript from line 442 to 445 as

“While the distribution of data points on the attractor may not align with a Gaussian
distribution, the algorithm proceeds by approximating the distribution as Gaussian and
subsequently identifies clusters based on this approximation.”

The methodology depicted in this paper is such as computing the local Lyapunov
exponents on each datapoint on the attractor, clustering the attractor using GMC and then
calculating the average of largest local Lyapunov exponents based on the identified
cluster. Even though the attractor has multiple positive Lyapunov exponents, we only
investigated the first one since the dynamics of the error will ultimately follow this
exponent. To clarify this we added in the manuscript

“Although the attractor exhibits multiple positive Lyapunov exponents, our investigation
focused solely on the first exponent, as it governs the dynamics of the error and is
therefore considered the most influential.”

2. The use of a fixed cluster number (3) in GMC for models with different numbers
of positive Lyapunov exponents (LEs) (e.g., 3 positive LEs in Figure 7 and 12
positive LEs in Figure 12) raises concerns. Various clustering values should be
explored to illustrate the relationship between the number of weather regimes and
the number of positive LEs. For example, can we observe similar weather regimes
in the 30 and 165 variable systems? If this is the case, does it imply a consistent
number of multiple regimes or equilibrium points across both systems?

Thank you for your input. Evaluating various cluster numbers in the clustering process is
crucial for obtaining meaningful outcomes. Our experimentation, spanning from 2 to 6
clusters, revealed distinct flow regimes for 2 and 3 clusters, each exhibiting notable



differences. However, as the cluster number increased to 4, we observed overlap between
two clusters, resulting in identical structures and flow patterns. This trend persisted with
further increases in cluster number. Consequently, we concluded that the attractor
achieved optimal clustering with clear and nearly equal data point distribution when
utilizing 3 clusters. This is added in the manuscript in the lines 225 to 235 as

“Through experimentation encompassing 2 to 6 clusters, discernible flow regimes
emerged for 2 and 3 clusters, showcasing significant distinctions. However, as the cluster
count reached 4, we noted convergence between two clusters, leading to identical
structures and flow characteristics. This trend persisted with additional cluster
increments. Hence, we inferred that the attractor attained optimal clustering with evident
and nearly uniform data point distribution when employing 3 clusters.”

3. Is it possible to compute Lyapunov exponents for individual weather regimes?
Could the time evolution of each weather regime be graphed for comparative
analysis?

Thank you very much for this suggestion. In our current analysis, we're computing local
Lyapunov exponents for every data point on the attractor. These exponents help us
understand the stability of trajectories in our system. Once we've classified the data points
using Gaussian mixture clustering, we determine the average of the largest local
Lyapunov exponent within each cluster. This process allows us to identify the
predictability horizon associated with each cluster. Furthermore, we analyze the flow
regimes by examining the average geopotential height at 500 hPa within each cluster.
This helps us characterize the different atmospheric circulation patterns that emerge from
the data. By combining these approaches, we gain insights into both the predictability and
the underlying dynamics of the system, enabling a deeper understanding of its behavior.

4. Concerning predictability in typical dynamical systems, characterized by systems
of ordinary differential equations (ODEs), a positive Lyapunov exponent (LE)
usually signifies temporal chaos (distinct from spatial-temporal chaos). In
estimating predictability horizons under different conditions, a higher positive LE,
on average, implies a greater average growth rate, indicating faster error growth
and thus diminished predictability horizons. However, when applying this concept
to assess predictability in spatial-temporal systems, it becomes imperative to



account for errors related to spatial movement. The analogy of whether more
intense hurricanes (with higher growth rates) are less predictable encourages
authors to contemplate the influence of spatial movement on error predictions.
Therefore, in contrast to a zonal flow, although a blocking regime is linked to
instability manifested by a larger LE, the consideration of spatial movement is
essential when comparing errors in zonal and blocking cases in order to compare
their predictability horizons.

The QGS land atmosphere coupled model is a spectral model where we project ODEs on
several basis functions that represent different spatial patterns. Precisely in the

manuscript we used 10 different basis functions which represent the spatial pattern shown
in the figure above. So computing the perturbations of the spatial mode or computation of
Lyapunov exponents in the spectral space is indeed considering both spatial and temporal
chaos. In this context, spatial amplification of the modes will not be calculated. As you
mentioned, the spatial evolution of error is of considerable interest, its significance
becoming more pronounced in higher resolution runs, which we intend to explore in a
subsequent investigation.

Specific Comments.

Page 5: Please indicate whether and how Eqs. (1) and (2) are coupled with Eqs. (3) and
(4).

Thank you for the comment. Discussion about the coupling is included in the revised
manuscript from line 177 to 185 as



“The hydrostatic relation in pressure coordinates ∂Φ = −1/ρa where the geopotential
height Φi = f0ψi

a and the ideal gas relation p = ρaRTa allow one to write the spatially
dependent atmospheric temperature anomaly δTa = 2f0θa/R ,with θa as the baroclinic
stream function. This can be used to eliminate the vertical velocity ω. This changes the
independent dynamical field to the stream function field ψa and the spatially dependent
temperatures δTa and δTg.”

Page 7: Please indicate the equation(s) that contains Cg.

Indicated in the revised manuscript as

“The dimensional meridional differential shortwave solar radiation absorbed by the land
and the atmosphere are given by δRg = √2Cgcos(y/L) and δRa = √2Cacos(y/L)
respectively. Hence we decide to provide Ca = 0.4Cg. The variable Cg is a dimensional
parameter, which is an indicator of the meridional difference in solar heating absorbed by
the land between the walls, and it is the crucial parameter in our land atmosphere coupled
model.”

Page 7, Figure 1c with ACC. Is it possible to identify a time scale of approximately 36
days within the timeframe spanning 20 to 80 days?

Yes, Through a comprehensive examination of the power spectrum, we found it
inconclusive to find oscillations every 36 days since we are observing several peaks



during the course of 80 days.

Page 7: Can a figure analogous to Figure 1 be generated for each of the categorized
regimes?



Thank you for the comment. Yes, it could be drawn by giving different colors to the data
points belonging to different flow regimes or respective clusters. In the above figure,
phase space dynamics of the model projected on the (ψa,3, ψa,2)-plane is shown in panel (a)
for kd = 0.08 . The figure illustrates the Gaussian mixture clustering results, where each
data point is colored according to its corresponding cluster or flow regime. Panel (b), (c)
and (d) represents the temporal evolution of barotropic (ψa,1) and baroclinic (θa,1)
atmospheric stream function along with the ground temperature (Tg,1) for Cg= 300 W m−2

and kd = 0.08 with colors corresponding to their respective clusters. We included this
figure into the appendix as another way of representing clusters.

Page 9: The discussions on the Oseledec method should be expanded to incorporate
insights from Lorenz's contributions. (e.g., Lorenz 1965; please see a review by Shen,
Pielke Sr, and Zeng, 2023).

Thank you very much for drawing our attention toward this paper. In Lorenz’s 1965
paper, he uses a 28-variable atmospheric model which is developed by extending the
equations of a two-level geostrophic model using truncated double-Fourier series. This
model accounts for nonlinear interactions among disturbances of varying wavelengths.
Numerical integration is employed to find nonperiodic time-dependent solutions. By
comparing solutions with slightly different initial conditions, the rate of growth of small
initial errors is investigated. Lorenz’s error growth estimation is based on using singular
value decomposition which is not the direction we wanted to proceed with the current
paper as we computed the Lyapunov exponents that are asymptotic properties of the
attractor. Hence we will not use that reference in the current context.

Page 11: Please add Figure B3 to include flows for Cg = 400 or kd = 0.12, for periodic
flows.



System enters into periodic behavior when kd = 0.105 to 0.115. Hence we added figure
B3 with Cg=300 W/m2 and kd= 0.105.

Pages 12 and 13: while 𝛌1 and 𝛌2 are used for representing the 1st and 2nd LEs,
respectively, the symbol lambda indicates heat exchange. Please consider making
changes to reduce confusion.

Thank you very much for pointing this out. 𝛌1 and 𝛌2 are changed into LE1 and LE2 for

avoiding confusions in figure 6 and 8.



Page 12, line 280. Does the selection of lambda = 0 result in an uncoupled model? How
can this be contrasted with the models proposed by Charney and Devore, Lorenz (1962)
and/or Lorenz (1963b)?

Selection of lambda = 0 will not result in an uncoupled model. It only ceases the heat
exchange between land and the atmosphere. The land and atmosphere components in the
model are still interacting via incoming shortwave radiations, outgoing long wave
radiations as per the equations. The model proposed by Charney and Devore has similar
dynamics where the only difference is the energy balance system. The land atmosphere
coupled model has a realistic energy balance system as in Barsugli and Battisti (1998).
The coupling of the atmospheric components with the ground is constituted by the
surface friction and the radiative flux whereas Charney and Devore are using an energy
balancing system based on Newtonian cooling coefficient.

Pages 12 & 17, (in Figures 7 & 12), please offer perspectives on whether the presence of
the plateau suggests the existence of singular eigenvalues with higher multiplicity.

After analyzing the uncertainty using bootstrap method, we can now say confidently that
the values forming the plateau are very close to each other, suggesting the existence of a
potential degeneracy of the eigenvalues. Whether or not it corresponds to a geometrical
degeneracy of the Lyapunov vectors (a tangency) as in Vannitsem & Lucarini (J. Phys. A,
2016) remains to be investigated.


