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Abstract. How do social networks tip? A popular theory is that a small minority can trigger population-wide social change. 

This aligns with the Pareto principle, a semi-quantitative law which suggests that, in many systems, 80% of effects arise from 

20% of the causes. In the context of the transition to net-zero emissions, this vital 20% can be a critical instigator of social 

tipping, a process which can rapidly change social norms. In this work, we asked whether the Pareto effect can be observed in 15 

social systems by conducting a literature review, placing a focus on social norm diffusion and complex contagion via social 

networks. By analysing simulation and empirical results of social tipping events across disciplines and a large parametric 

space, we identified consistent patterns across studies and key factors which help or hinder social tipping. We show evidence 

supporting a tipping point near 25% of the total population within our compiled dataset. Near this critical mass, we observe a 

high likelihood for a social tipping event, where a large majority quickly adopt new norms. Our findings illustrate slight 20 

variations between modelling and empirical results, with average tipping points at 24% and 27%, respectively. Additionally, 

we show a range of critical masses where social tipping is possible; these values lie between 10% and 43%. These results 

indicate the potential, but not inevitability, of rapid social change in certain susceptible populations and contexts. Finally, we 

provide practical guidance for facilitating difficult norm changes by: (1) leveraging trusted community structures and building 

critical mass in clustered networks (particularly in the 10-43% threshold range), (2) adapting strategies based on norm type 25 

and context, and (3) targeting groups with moderate preferences and network positions—avoiding reliance on highly central 

or well-connected individuals—to enable endogenous spread. 

1 Introduction 

Nonlinear dynamical systems, under which social tipping processes (social tipping) can be considered, have been studied 

comprehensively by both natural (Strogatz, 2019) and social scientists over the last century. Famous examples are Granovetter 30 

(1973), who showed that a select minority can alter the macro scale information flow in certain social network structures, and 
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Schelling (1971), who demonstrated that a slight individual racial preference can lead to completely segregated 

neighbourhoods. Some contemporary authors have focussed on rapid shifts in smoking behaviour (Nyborg et al., 2016) and 

the “critical mass phenomenon”, whereby the participation of a minority (25-30%) in a collective event can engage the 

remaining majority (Andreoni et al., 2021; Centola et al., 2018). As recognition of the close coupling between social and 35 

physical systems characteristic of the Anthropocene has increased (Lenton, 2020; Steffen et al., 2018), so has research on 

social tipping processes in the context of climate and global environmental change, since these can act as mechanisms of rapid 

societal transformation (Constantino et al., 2022; David Tàbara et al., 2018; Lenton, 2020; Nyborg et al., 2016; Otto et al., 

2020b; Westley et al., 2011). This new area of tipping scholarship is centred around deliberately bringing about social change 

through targeted action on tipping elements at “sensitive intervention points” (Farmer et al., 2019) or at moments of opportunity 40 

that trigger a tipping point. It is important to note that the definitions of tipping points in a Socio-Ecological Systems (SES) 

context are not uniform. In section 2.1 of this paper, we provide a concise summary as a guide for understanding these 

definitions in the context of this work.  

 

New research in this sector can be broken down into analyses and analytical frameworks. Key examples of the former are seen 45 

in Otto et al. (2020), who identified several concrete societal tipping elements and timescales through expert elicitation, while 

Farmer et al. (2019) and Lenton (2020) also indicated critical points for intervention in financial, energy, resource and 

governance systems, to name a few. Frameworks refer more generally to processes, phases, and conceptualisations of “radical” 

socioecological transitions (Feola, 2015). More recent work (Winkelmann et al., 2020) proposed a framework that includes a 

more detailed description of social tipping mechanisms and explicitly incorporated critical elements such as social network 50 

properties (e.g. polarisation, clustering, and modularity), agency, temporospatial scales, and dynamics like social contagion 

and network adaptation. Much of this work emphasises the existence or identification of social tipping points, the need to 

trigger them, and their value in the sustainability transition. Many theories specific to modelling social tipping in social-

environmental systems as opposed to general social systems have been proposed (Lade et al., 2017; Müller-Hansen et al., 

2017; Schwarz et al., 2020; Schwarz and Ernst, 2009), and a body (Andersson et al., 2020; Frei et al., 2023; Geier et al., 2019; 55 

Schleussner et al., 2016; Schunck et al., 2021) of recent empirical work in the fields of statistical physics, network science, 

and computational social science also acknowledges their applications to the SES transformation.  

 

One theme critically discussed in recent literature is the prediction of social tipping points, and whether social tipping is 

possible at large scales in complex social-ecological systems (Bentley et al., 2014). It is largely understood that any general 60 

tipping point is difficult to predict due to the system’s complexity, heterogeneity, and dependence on context (Bentley et al., 

2014; Constantino et al., 2022; Winkelmann et al., 2020). In some circumstances, these points may not even exist (Ferraz de 

Arruda et al., 2023). Despite this, evidence for tipping seems to exist, or at least for tipping as it is conceptualised in network 

theory (Guilbeault et al., 2018), across and between societies, scopes, and organisms (Dodds and Watts, 2004). A significant 
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number of overlaps or co-occurrences observed in empirical and modelling results for social contagion processes from various 65 

disciplines confirm this (Andreoni et al., 2021; Centola et al., 2018; Wiedermann et al., 2020; Xie et al., 2011). While it is 

highly unlikely that the employed methods will ever be quantitatively used to predict tipping points across systems, the results 

obtained can be used to identify a range of scenarios where tipping is more likely.  

 

Social networks and network science methods are critical tools for understanding social tipping processes (Granovetter, 1978; 70 

Watts and Dodds, 2007; Watts and Strogatz, 1998). While many other approaches are viable, networks effectively represent 

social interactions—a fundamental part of social processes (Berner et al., 2023; Guilbeault et al., 2018; Sayama et al., 2013; 

Smaldino, 2023). Some of the tipping literature acknowledges this (Constantino et al., 2022; Smith et al., in preparation; 

Winkelmann et al., 2020), but, to our knowledge, no literature solely presents a network-based perspective. The conducted 

literature review enabled us to determine how previous findings and the social tipping concept can be complemented by 75 

network theory. Ideally, this will improve our understanding of this perspective and advance methodological approaches. 

While we limited our scope to social networks, we also limited the scope of what we recognised as social tipping in this article. 

Social tipping processes can lead to high-level changes in the socio-techno sphere, for example, by reducing EV battery costs 

or the legislative sphere by changing how climate change is integrated in school curricula. We did not consider this level of 

abstraction in this work and focused solely on social tipping in terms of the change in and transfer of norms, values, or 80 

behaviours between people. Although this work is slightly removed from the sustainability and climate change context where 

social tipping is usually discussed, we and several others (Constantino et al., 2022; Holme and Rocha, 2023; Smith et al., in 

preparation; Winkelmann et al., 2022) believe that the insights provided by studying a network and by taking a complex 

contagion-centred approach are necessary to better understand higher-level tipping in sectors that are crucial for social 

transformations. 85 

 

Firstly, we quantified general trends in the social tipping literature in several disciplines. This task presents significant 

challenges due to cross-disciplinary dataset complexity, inconsistent terminology, and numerous confounding factors in social 

tipping (Milkoreit, 2023). This task is made especially difficult when intending to include a quantitative analysis, where 

variables such as critical mass and tipping thresholds (macroscopic and individual) have different dimensions. To ensure robust 90 

results, we focused on identifying the marginal effects of individual factors where many explanatory variables were involved. 

We also provide a range of social tipping thresholds, instead of a single macroscopic threshold. Hence, in this work, we focused 

on establishing the upper limit of the societal critical mass required to trigger a social tipping event, even in difficult-to-tip 

systems. Secondly, we investigated the Pareto effect in susceptible social systems. The Pareto effect is consistent with the 

principle that 80% of an effect arises from 20% of the causes (Pareto, 1971). Although this term broadly describes non-linear 95 

phenomena across diverse fields, in our research it specifically denotes how a small minority (roughly 20%) can trigger system-

wide social change, influencing approximately 80% of the population. As a well-known term across many spheres (Dunford 

et al., 2014), from land ownership to economic distributions, it can help communicate relatively technical knowledge to a non-
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scientific audience. Lastly, we wanted to bridge the conceptual and terminological gap between the network science and social 

tipping literature. By analysing the literature identified in our initial database search, we could systemically identify several 100 

critical factors influencing tipping processes in a subset of social systems. With these as our guide, we qualitatively reviewed 

each factor and synthesised the existing information from the relevant literature, reporting the results in section 2. In the next 

steps, we limited our analysis to literature which explicitly incorporated networks and included only those that reported 

empirical results. Finally, we relate our findings to social tipping in a concrete and applicable fashion in section 4.3. Our goal 

was to verify the Pareto effect in social tipping processes, conduct a broad-scope quantitative review of influencing processes, 105 

and define a realm of possibility where tipping is most likely to occur. 

2 Literature review of tipping in social networks 

2.1 What is social tipping? 

The terms and definitions used in the interdisciplinary field of social tipping research are quite inconsistent. Mixed meanings 

occur: Terms are appropriated for different contexts, and in the process, slight changes occur in their meanings (Milkoreit, 110 

2023).  It is easier to begin by describing the characteristics of social tipping where the literature on the topic is more consistent 

(Hodbod et al., 2024; Milkoreit, 2023; Milkoreit et al., 2018; Winkelmann et al., 2022). Even here, the terms social tipping 

points and social tipping processes are easily conflated, although the former is strictly a feature of the latter. Four primary 

characteristics of social tipping processes in the context of social-ecological systems are nonlinearity (abruptness), positive 

feedback as a change mechanism, multiple stable states, and limited reversibility. The definitions provided below were 115 

included because they reference or have some or all these characteristics. 

 

In this paper, we use published definitions as much as possible, but we define or re-define specific terms where necessary for 

the purposes of our analysis and for improved clarity. Tipping refers to a phenomenon where a relatively small change or 

intervention in a system leads to a large change (or to large changes) on a macroscopic level (Milkoreit, 2023). The term 120 

tipping point originated from social science research on racial segregation patterns (Grodzins, 1957) and was used to refer to 

thresholds for the racial composition of neighbourhoods in the U.S. in the 1950s. When these thresholds were crossed, people 

with the minority skin colour felt uncomfortable and tended to move out. More recently, the term was popularised by Gladwell's 

(2000) book on trends in human behaviour and consumption, as well as technology change. The definition of tipping elements 

originated, however, in work on the Earth’s climate system (Lenton et al., 2008). Since these terms were established, they have 125 

been broadly used in various scientific disciplines in the natural (Holland et al., 2006; Scheffer et al., 2012; Dakos and 

Bascompte, 2014) and social sciences (Grodzins, 1957; Milkoreit et al., 2018; Schelling, 1971; Winkelmann et al., 2022). Our 

unit of analysis in this article i.e. networks of social agents capable of undergoing  non-linear changes are consistent with 

existing definitions of social tipping elements in this body of work. A formal definition of the term social tipping was proposed 

by Otto, Donges et al. (2020). These authors stated that social tipping involves a discontinuous state transition in the underlying 130 
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system, i.e. it is more than a rapid continuous change (triggering phase). The emergence of the new state, however, can be 

gradual (manifestation phase). A more mathematical definition of social tipping using a criticality framework was recently 

introduced by Winkelmann et al. (2022).  This definition and approach have been expanded by others (Smith et al., in 

preparation). This criticality-centered definition of social tipping differs significantly from the definition of social tipping 

introduced in this paper. Rather than focusing on criticality, we introduce simple criteria (Box 1) for the shift from a minority 135 

to a majority, which we explain further later in the paper. Lastly, the term spillovers, as used for example by Berger et al., 

(2021), and Efferson et al., (2020) is a useful framework for social tipping, particularly in the context of exogenous changes 

to a social system, i.e. interventions. A spillover is an indirect systemic effect produced by an endogenous response to an 

intervention on a single or few individuals. This is larger than the effect of the intervention itself.  

 140 

 In this article, we present a quantitative analysis of minority-induced social tipping, focusing on cases where early adopters 

of a new norm comprise less than 50% of the population. For our quantitative results (Fig. 4, Fig. 5), we operationalise social 

tipping as instances that meet the criteria for a social tipping event as defined in Box 1, specifically where the fraction of 

adopters of a norm transition from a minority (𝑓0 < 0.5) to a majority (𝑓∞  >  0.5).  However, we relax this constraint in 

section 2 to discuss a wider evidence base and refer to the broader definition by Milkoreit (2023), as described above. Figure 145 

1a shows the stricter definition as a shaded blue social tipping zone, a scenario in which a minority group of actors have 

convinced a majority group to adopt another social norm. This is also what is referred to as a contagion event or a cascade in 

network theoretic terms (Box 1). Figure 1a also depicts a characteristic feature of social tipping, i.e. its non-linearity, a non-

linear increase in a system state variable for a given increase in a system control parameter, or a state variable itself  (Strogatz, 

2019). This non-linearity in social systems implies that a marginal effect of norm adoption, e.g. one individual adopting a new 150 

norm, can have a large effect on the final fraction of people adopting this new norm after a social tipping event. Figure 1a 

demonstrates this under the assumption that the exemplary social system can undergo a social tipping process. In this example, 

alternative norm adoption by ~20% of the population leads to a steady state alternative norm adoption of around ~80%, 

demonstrating the theoretical Pareto or minority tipping effect.  
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Figure 1: (a) The line denoted “Non-linear response” characterises the predicted steady state behaviour of a social system in response 

to an increasing fraction of individuals adopting an alternative norm, 𝑭(𝒕). Social tipping as defined for the purposes of our 

quantitative analysis is depicted as the blue-shaded region. (b) In blue, the evolution of the alternative norm adopter fraction over 

time is predicted in a social system undergoing a social tipping event. The tipping threshold is defined as the adopter fraction at the 

maximum of its second derivative, the tipping point 𝒕𝒄, shown here as a purple horizontal line. We use these two definitions as a 160 
conceptual base for our review, and its methodology.  

The tipping point can be identified as the point in time where the fraction of norm adopters 𝐹(𝑡) has the most potential to 

induce a social tipping event. How do we define this point? We conceptualise this simply for the purposes of our analysis by 

using the second derivative of the state variable, 𝐹(𝑡). The maximum value of this second derivative is the point where the 

acceleration in the rate of norm adoption is the greatest. We assume this is the point most likely to lead to a social tipping 165 

event, if it is possible within the given social system. Jin and Yu (2021) also adopted this measure to classify the tipping 

threshold of a networked social system under complex contagion conditions, classified as the chance of tipping based on a 

perturbation or marginal (individual) norm change. In Figure 1b, we plot this fraction 𝐹(𝑡). We apply the language from Otto, 

Donges et al. (2020) here to illustrate these stages. 

 170 
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Box 1: Key Terms 

 

Social tipping event 

Assuming a social system where an agent can adopt norm states a or b at a given time, this pertains to the steady state 

fraction of individuals who have adopted norm a. The condition which is satisfied by a tipping event is defined as: 

𝑀(0) < 0.5 (indicating that norm a starts in the minority) and lim
t→∞

M (t) ≥ 0.5 (norm a becomes the majority). Where 

𝑀(𝑡) is the fraction of norm a adopters at a given time. 

 

Network cascade 

Analogous to a tipping event but on a network: A change in the behaviour of individuals (nodes) in a population (network) 

due to a herd-like behaviour through imitation of others. Subject to the cascade condition: An innovator or seed node has 

to be attached to a vulnerable cluster of nodes who become adopters, which after a percolation process must occupy a 

fixed fraction (here > 0.50) of a finite network (Watts, 2002). 

 

Tipping point  

Given a social system, refers to the point 𝑡𝑐 in the trajectory of 𝐹(𝑡), where 𝐹(𝑡) represents the fraction of individuals in a 

social system who have adopted a certain norm at time t, whereafter a rapid increase occurs in 𝐹(𝑡). We conceptualise this 

as the maximum of the second derivative. See Figure 1b for a graphical example. 

 

Tipping threshold – Macroscopic 

The fraction of individuals 𝐹(𝑡) in a social system who have adopted a certain norm at the time where the tipping point is 

reached, represented as 𝐹(𝑡𝑐) =  𝜆.  

 

Individual Threshold 

Given a node i in a social network: The fraction 𝜙 of network neighbours k of node i sharing a common state, after which 

exceeded, node i also changes their state (Granovetter, 1978).  
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Box 1: Key terms which are helpful for understanding the concepts presented in this article. Definitions may be similar 

to those in other works but have been slightly changed to apply to our analysis. 

2.2 Networks and tipping 

Social processes are governed by relationships among people. The spatial and temporal sum of these connections constitute 175 

social networks. In this sense, the network structure is fundamental to flows that occur via a social network and critically 

affects tipping processes (Dodds and Watts, 2004). A formal description of networks is usually the mathematical concept of a 

graph. In their simplest form, networks consist of nodes and links (Berner et al., 2023). Thus, a network 𝑁 can be fully 

described by the tuple 𝑁 =  (𝑉, 𝐸), where 𝑉 is the set of all nodes, and 𝐸 is the set of all links. Here, nodes can be people, 

animals, or molecules, and the links can be Facebook interactions, mating relationships, or bonds. Before giving specific 180 

examples of networks, it is important to distinguish adaptive, temporal, and static networks. Intuitively, the first two change 

their structures over time, while the latter does not (Holme, 2015).  

 

Adaptive networks and temporal networks both shape and are shaped by dynamic processes that occur in them, but the topology 

of the former takes precedence over the temporality or timing of events (Berner et al., 2023; Holme, 2015). Considering that 185 

all social networks are predicated on social interaction and constantly change, for all intents and purposes, static networks are 

either representations of aggregated social interactions or network processes, such as rewiring, over a period (time-aggregated 

networks). They can also represent a static slice of a network i.e. at a fixed time point. A concrete example of a social network 

would be attendees of a conference and their interactions. In this case, each user is a node, and conversations between attendees 

are represented as links (contacts) between them, forming a human proximity network (Donges et al., 2021; Holme, 2015). 190 

The sum of all conversations taking place in the conference period or a snapshot of those currently conversing (e.g. at 15:00 

on a Friday afternoon) would then be a static representation. A temporal or adaptive representation is more difficult to visualise 

but could be created by plotting the average degree (number of node links) of the graph against time (Holme, 2015) . In this 

work, we consider all three types of networks (i.e. adaptive, temporal, and static), but the majority are either static or adaptive 

networks. Most of the literature, and especially those examples involving modelling, use archetypal network-topologies 195 

representing commonly occurring real-world networks and their properties. One example is small world networks: These 

display properties such as high local clustering of nodes and short path lengths, which are often featured by real-world 

biological, ecological, and social systems (Telesford et al., 2011; Watts and Strogatz, 1998). A figure and reference for the 

most common network topologies appearing in our review appears in Fig. 2. 
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Figure 2: A visual representation of the most common network topologies identified in our literature review. 

Table 1:  A description of network characteristics for the network topologies shown in Fig 2. 

Network type Clustering Average path length Degree distribution 

Small-World High Short Varies 

Barabási-Albert Low Short Scale-free (Power law) 

Erdős-Rényi Low Low Binomial/Poisson 

Regular Random Low Long Uniform 

Clustered Lattice High Long Uniform 

 

For the purposes of this work, which was carried out to view social tipping through the lens of network theory, we can 

generalise social tipping as a contagious spreading process or cascade via a complex network (Guilbeault et al., 2018; Watts, 205 

2002). A definition is given in Box 1.This spreading process can involve behaviours, opinions, knowledge, or social norms 

(Christakis and Fowler, 2007; Nyborg et al., 2016; Schleussner et al., 2016). The mechanism leading to contagious spreading 

processes via networks is classified in two main ways: simple contagion and complex contagion (Guilbeault et al., 2018). In 

the former, an agent can be “infected” by one exposure to another contagious agent, whereby an agent usually requires multiple 

exposures from different sources in the latter (Centola and Macy, 2007). A notable requirement for the propagation of complex 210 

contagion is the presence of wide bridges (Guilbeault and Centola, 2021; Reisinger et al., 2024). A bridge forms a link between 

two otherwise disconnected subcomponents of a network. This can be a single link between two nodes, a and b. One dimension 

of this bridge is its length, which is the shortest path between these two nodes. Another is its width, which is the number of 

ties it contains. The latter is critical, because it facilitates the requisite multiple exposures of nodes as the contagion travels 

from node a to node b, and thus of node b itself.  A wide bridge thus forms a network structure that facilitates the spread of 215 

complex contagions through multiple, reinforced connections between two neighbourhoods in the network. 

In the rest of this article, we will use the term social tipping to refer to a network cascade, implying that these terms have the 

same meaning when discussing social opinion and norm dynamics in networks. Exceptions to this usage occur when we cite 
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specific literature, where we prefer to distinguish between these terms as originally defined. An important distinction regarding 

thresholds should be made between the system level macroscopic tipping threshold and individual agent thresholds. Whereas 220 

the former is defined as shown in Fig 1b and as described in Box 1 as the tipping threshold along a trajectory, the latter refers 

to the conditions in an agent’s immediate social network required for one agent to change their opinion (Watts, 2002). In the 

most realistic cases, the mean individual threshold will neither equal nor reliably predict a given macroscopic threshold 

(Wiedermann et al., 2020) .  

2.3 The role of network structure and attributes  225 

In this section, we examine the effects of network traits or properties on social tipping processes in some well-known network 

topologies. Not all networks are the same, and the topology can vary based on the social domain (Efferson et al., 2020), social 

group (Christakis and Fowler, 2008), or social process (Bellotti et al., 2023) represented by the network. For example, financial 

networks display more inequality in degree distribution than a reference small world network (Leo et al., 2016), homophilous 

networks spread health innovation behaviour more effectively than unstructured networks (Centola, 2011), and bursty network 230 

interactions can allow contagion events in networks which are otherwise difficult to tip (Karimi and Holme, 2013). Network 

topology can vary over time or can be shaped by social processes, such as those occurring in temporal and adaptive dynamical 

networks (Berner et al., 2023). This topological change can then affect the social processes, which leads to feedback loops. As 

such, topology and dynamics in networks are often confounded when trying to explain why they change and evolve (Shalizi 

and Thomas, 2011). It can be difficult to address the role of network structure when most of the networks discussed in this 235 

work are essentially adaptive dynamical networks, i.e. they have constantly evolving structures. Due to this consideration, we 

address how a given static topology affects cascade dynamics near a certain time point.  

 

By focusing on well-known network topologies, problems related to terms used in different fields can be avoided, for example, 

where certain network types are ubiquitous, for example, Erdős-Rényi, Barabási Albert (Albert and Barabási, 2002), or Watts-240 

Strogatz (Watts and Strogatz, 1998) networks (Telesford et al., 2011). A broad base of evidence exists for the existence of 

common relationships between topology, cascade size, and frequency. For example, evidence from game theory-based 

(Ohtsuki et al., 2006), ecology-based (Martin et al., 2020), as well as social contagion-based models (Centola, 2011, 2013), all 

show that a structured network positively affects the magnitude and rate of contagion spread compared to unstructured 

networks. This finding contrasts with the “strength of weak ties” concept described by Granovetter (1973) and others (Watts 245 

and Strogatz, 1998). One way to interpret these contradicting results is to consider that they depend on network size. Centola 

(2013) demonstrated how weak ties are mildly helpful in contagion spread in small systems, but strong ties and clustered 

networks are required to produce successful critical mass phenomena in larger systems. Where social tipping to promote 

sustainability plays out on a global scale, a prerequisite for any mobilisation effort, therefore, is the existence of homophilic, 

interconnected, and trusting networks. Although this is generally the case (Guilbeault et al., 2018), and Efferson et al. (2020) 250 

showed how homophily can be detrimental to spillovers in the context of policy interventions when they are too large. This 
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implies that attempts to facilitate norm change exogenously may interact with homophily in detrimental ways once the 

intervention becomes too strong. Clustering, more specifically, increases the likelihood of repeated exposures to a contagion 

source and locks the information within a community (Fink et al., 2016). This second aspect is fundamental for reaching a 

critical mass (Centola, 2010) and halting the dispersion of a social contagion for long enough that a percolating cluster can 255 

form (Box 1). Overall, complex contagion requires a network to have communities which are sufficiently built up but are also 

connected through wide bridges. This allows ideas to reinforce themselves from within, but also offers enough connectivity 

so these similar clusters can connect at some point (Chiang, 2007). Connectivity is a fundamental part of our world as we know 

it, characterised by increasingly highly connected global networks; the information supply is higher than ever, and so is the 

noise (Bak-Coleman et al., 2021). Contagion or information about it tends to die out after more than three network steps 260 

(Airoldi and Christakis, 2024; Christakis and Fowler, 2007, 2008; Fowler and Christakis, 2008), indicating that some 

fundamental laws govern network structures which are conducive to complex contagion. 

2.4 The role of an actor’s preference and heterogeneity  

Successful social tipping processes fundamentally require consecutive individuals or agents to be susceptible to change. Many 

terms are used to conceptualise this susceptibility. In models of norm change or opinion spread across disciplines, such 265 

susceptibility is often operationalised implicitly or explicitly as a threshold (Centola, 2013; Efferson et al., 2020; Granovetter, 

1978; Guilbeault et al., 2018; Watts, 2002). A threshold quantifies the point at which an agent will change their behaviour; 

thus, it governs the magnitude and rate of social tipping in a population. In the real world, this susceptibility varies individually 

(Efferson et al., 2020) and depends heavily on the type of normative change (Berger et al., 2021; Guilbeault et al., 2018). In 

other words, both individual thresholds and their governing distributions are heterogeneous. Macroscopic or social-group-level 270 

threshold distributions are also emergent, meaning that their shape is not visible or predetermined, but arises due to the unique 

set of interactions occurring among microscopic actors (Wiedermann et al., 2020). This property makes prediction exceedingly 

difficult, especially with regard to highly polarised or controversial issues. Wiedermann et al. (2020) successfully demonstrated 

how agents seeded with very narrowly distributed individual thresholds can produce a different system level distribution. Some 

models and experiments show the significant effects different threshold distributions have on both cascade speed and 275 

magnitude (Andreoni et al., 2021; Berger et al., 2021; Dodds and Watts, 2004; Karsai et al., 2016). Efferson et al. (2020) 

demonstrated how this effect is also robust to changes in network topology, intervention types, and several other factors. 

Individuals with high thresholds or even untippable or “immune nodes” regarding a given spreading event can severely hinder 

or prevent a cascade process (Karsai et al., 2016; Wiedermann et al., 2020). This potential effect is magnified when these nodes 

occupy key positions in a network, for example, as the first contacts for an innovator or a seed node for a potential network 280 

contagion (Reisinger et al., 2024). Optimally, this first contact network should consist of individuals who have typically lower 

thresholds than normal to enable cascades (Nishioka and Hasegawa, 2022). Efferson et al. (2020) also specifically showed 

that, under some conditions (where a positive response to an intervention is guaranteed), targeting resilient nodes with policy 

interventions is more effective than relying on endogenous processes such as tipping or spillovers to evoke norm change.  
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Thresholds are influenced by several often co-dependent, and some examples are: payoffs or switching incentives (Centola et 

al., 2018), tension (Berger et al., 2021), and jointness of supply (Centola, 2013). These terms all refer to a switching payoff or 

the cost of norm adoption (abandonment) but are expressed differently. This payoff depends on the network density, social 

context, and type of norm change (Berger et al., 2021; Constantino et al., 2022; Efferson et al., 2020). Perhaps confusingly, 

these terms are also used in some models to refer to implicit thresholds, for example, in Andreoni et al. (2021), where tipping 290 

thresholds are set by changing miscoordination penalties or by increasing the personal benefit of change. Conversely, explicit 

thresholds are used to operationalise these same concepts. Examples are seen in Berger et al. (2021), and Efferson et al. (2020), 

where different threshold distributions are used to represent different social preferences and tension related to a specific 

dilemma. Based on this example, Fig. 3 displays several theoretical distributions which may represent preferences via tipping 

thresholds for certain socio-ecological dilemmas, and an empirical distribution reconstructed from survey data.  295 

 

 

Figure 3: Illustrative individual threshold (𝜙) distributions for a population. These indicate the susceptibility towards changing a 

specific behaviour or norm in reference to some current social dilemmas surrounding pro-environmental behaviour. Here, (a) could 

represent a decision to become vegan, (b) to ride a bike to work, and (c) to recycle rubbish and waste. The shaded area represents 300 
different strategies for choosing members of a network, i.e. the seeds, to try and promote social tipping. (d) An illustration of the 

approximate threshold distribution for support of affirmative action in the US, adapted from Janas et al. (2024). The original PMF 

was derived from an incentivized elicitation method where participants (n = 4,086) indicated the minimum share of others required 

to support affirmative action before they would do so themselves. The sample was stratified across racial, ethnic and gender groups. 

Reducing all meat and animal product consumption would correlate with a left-skewed distribution (a), meaning that the mean 305 

threshold is high, and tipping is difficult (Peattie, 2010a). In this situation, which depicts a change with high personal cost, 

most people would only change their dietary habits when a vast majority, i.e. around 70%, consume food differently. Intuitively 

such a dynamic makes the existence of any minority tipping dynamic unlikely, as a majority (> 0.50) have likely already 

adopted the alternate norm. Some divisive or controversial issues which involve strong ties to personal values or high social 

pressure may be best characterised by a bimodal distribution.  In these cases, the mass of the distribution is concentrated at 310 

distinct thresholds, particularly at the extremes of the distribution, representing unconditional positions regardless of others’ 

choices. We see this in panel (d), which depicts an empirical example of thresholds for support (and opposition) for affirmative 
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action, a clearly polarising issue. In this case, intervention strategies targeting individuals with moderate thresholds to build 

critical mass may be more effective than targeting those most eager to change (Efferson et al., 2020). Regardless of the 

nomenclature used, several sources show that the successful adoption of a cascading norm or behaviour is highly contingent 315 

on the perceived individual benefits, regardless of the magnitude of the cascade (Berger et al., 2021; Centola et al., 2018; 

Centola, 2013). 

2.5 The role of agency and inequalities  

In this section, we ask how individuals and groups can intentionally influence the adoption of new patterns of behaviour 

(Kaaronen and Strelkovskii, 2020) and induce abrupt changes in social conventions and public opinion (Centola et al., 2018; 320 

Galam and Cheon, 2020). Specifically, how does the agency of individuals and groups transform the social structure, 

understood as the collective prescriptions and constraints on human behaviour (Granovetter, 1985; Robb, 2014). The social 

structure is composed of a rule system that constitutes the “grammar” for social action (Otto et al., 2020a).  Burns and Flam 

(1987, p.26) pointed out that the complex normative network is not given but is a product of human action, stating, ‘human 

agents continually form and reform social rule systems. Human agency is understood as the ability to shape one’s life across 325 

multiple dimensions: Individual agency is reflected in individual choices and life conditions. This individual agency varies 

strongly within a society based on the individual’s age, gender, income and network position. Collective agency emerges when 

individuals pool resources to shape their future, while strategic agency refers to the capacity to affect wider system change 

(Otto et al., 2020a). 

 330 

In a network-theoretic sense, agency is the ability of a node to control or initiate processes in a network. Where structural 

properties of a network or a node such as centrality or degree strongly influence this ability (Korkmaz et al., 2018), we can use 

these structural measures as a proxy for a node's agency. Structural properties, while important, are only one aspect. A node’s 

agency also depends on the specific dynamics in each network and the context. Guilbeault and Centola (2021), clearly 

demonstrate that standard centrality measures, while suitable for predicting the social influence of seed nodes under conditions 335 

of simple contagion dynamics, fail under complex contagion conditions. Social influencers, who in colloquial terms have high 

degrees of agency as per our definition above, have been the subject of much contentious debate in several areas dealing with 

research on social change (Constantino et al., 2022; Han et al., 2020; Hodas and Lerman, 2014; Nielsen et al., 2021; Nishioka 

and Hasegawa, 2022; Nyborg et al., 2016; Paluck et al., 2016; Paluck and Shepherd, 2012; Watts and Dodds, 2007). Taking 

an intuitive view of social influencers and their presence in the era of social media platforms such as TikTok and Instagram 340 

could lead one believe that they might dramatically shape social opinion and information. However, in the world of complex 

contagion, which depends on nodes’ proximity to wide bridges rather than node degree, they may be surprisingly ineffective 

(Guilbeault and Centola, 2021; Watts and Dodds, 2007). In fact, “normal” people may be the most cost-effective instigators 

of change, especially as the volume of information reaching us increases more and more (Bakshy et al., 2011; Fink et al., 2016; 

Hodas and Lerman, 2014). How does change take place in situations where individuals and groups have different and 345 
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conflicting interests? Centola (2021) pointed out the role of so-called change agents, who bring innovative solutions into their 

communities, advocate change, build networks of early adopters, and play pivotal roles in coordinating the new equilibrium 

and restructuring institutions. 

2.6 The role of processes, time, theme, and scale 

Temporal processes have a large effect on social tipping dynamics. Due to the interdependence of processes, network structure, 350 

and agent state variables, these can be difficult to analyse as mentioned in section 2.3. Some sources claim that temporal 

processes can be more important than network topology or can simplify some aspects of complex spreading (Hodas and 

Lerman, 2014; Karimi and Holme, 2013; Kivelä et al., 2012). In the first study, the duration over which interactions occur 

strongly affects cascade magnitude and success. To highlight the difficulty of making general statements about these systems, 

the duration length shows the opposite effect, depending on whether a fractional or absolute threshold is used in the cascade 355 

model. The information transmission rate or burstiness can be conducive to complex contagion (Karimi and Holme, 2013), 

but it has been shown to slow down simple contagion (Karsai et al., 2011). Information about the social norm landscape, both 

globally (norm average) and locally (close contacts), strongly influences the decision to abandon an old norm or to adopt a 

new norm (Bergquist and Dinerstein, 2020; Leviston and Uren, 2020; Pieters et al., 1998). This information may pertain to the 

prevalence of a social norm in society and is very important when the perceived risk or change is high (low payoff). This may 360 

happen, for example, when a person decides to abandon a behavioural norm but faces the penalty of alienation from their close 

social group. When this agent knows that there is global support for an alternative norm despite the group norm, they may be 

more encouraged to switch regardless. Andreoni et al. (2021) provided evidence for this in a behavioural experiment, where 

the participants were provided with information about other players’ preferences, which were not directly linked to increased 

contagion size. Jin and Yu (2021) also showed a similar effect by taking a modelling approach. This is a key factor when 365 

considering something like pro-environmental behavioural norm changes, like eating less meat (Leviston and Uren, 2020), 

where the risk of alienation is high. Information frequency or regularity and clarity are then crucial for ensuring social tipping 

events are noticed by people in a social network, essentially increasing the fraction of people available to engage in norm 

change. Irregular or delayed belief update times, as well as unclear information, dampen social tipping effects and prevent the 

formation of a critical mass, as people become risk-averse when provided with poor information (Berger et al., 2021; Peattie, 370 

2010b). As a caveat, when the information density (i.e. the frequency of providing information over time) becomes too low, 

social contagions may fail to infect a person, as the person does not attach enough importance to the information or does not 

notice the signal (Hodas and Lerman, 2014). This can also be thought of as a poor signal-to-noise ratio. Fink et al. (2016) 

identified this as one factor making nodes with a high in-degree, common with social influencers, more difficult social 

contagion targets than others. They are overwhelmed with noise. To a lesser extent, the noise created by our highly 375 

interconnected digital global network may make complex contagion generally difficult through these mediums (Bak-Coleman 

et al., 2021; Hodas and Lerman, 2014). 
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We established earlier that norms and opinions spread differently from, e.g. viruses and memes, and that these can be roughly 

separated into complex and simple contagions, respectively. This simple dichotomy hints at a fundamental principle: that every 380 

type of contagion may spread differently. Indeed, as an example, in their long-term study of a network of 12,067 people over 

32 years, Christakis and Fowler (Christakis and Fowler 2007, 2008 Fowler and Christakis, 2008) showed that the spread of 

happiness depends more on a person's geographical proximity to a potential contagion source than the spread of healthy eating 

behaviour. Smoking behaviour transfers very easily to one’s spouse, but not obesity or happiness. Finally, educated people in 

the USA will have more influence over the smoking behaviour of others, but, in another study on rural communities in India, 385 

local elders and knowledge holders only had a marginal effect on the spread of malaria-prevention behaviour (Bellotti et al., 

2023). Norms related to controversial topics such as politics or social movements in response to socio-political issues show 

large marginal effects after continued exposure to a norm holder, showing that repeated exposure is critical for opinion change 

(Fink et al., 2016; Romero et al., 2011). This unique variation in spreading behaviour based on content can make it even more 

difficult to make predictions. All of these studies still report repeated exposure and social proximity as leading predictors of 390 

norm spread between people, supporting arguments for the use of complex social contagion models, even in unfamiliar contexts 

or under conditions of uncertainty.  

3. Data and Methods 

3.1 Data collection 

To identify literature on social tipping in networks from various disciplines, several broad search terms and strings were 395 

initially used, as the disciplines employ different nomenclature. Where we explicitly focussed on networks, we included this 

in every search string. A literature search was conducted in the Web of Science, as well as in Google Scholar, for the period 

of 01/01/2001 - 20/09/2023. Search terms used were ("complex contagion" AND "social networks), ("norm diffusion" OR 

"complex contagion") AND "social networks". We identified 33 studies using modelling, observational, or experimental 

methods to study complex contagion in human networks, and that mentioned or referred to empirical results in their abstracts. 400 

Another 27 were discovered by examining the reference lists of the initially identified literature and by using comprehensive 

review articles recently conducted on complex contagions (Guilbeault et al., 2018; Holme and Rocha, 2023). Of the 60 studies 

identified, 21 were discarded because these still only investigated simple contagion rather than complex contagion models or 

complex contagion-like phenomena. We then analysed the final list of the literature in stages. In stage 1, key empirical results 

were elucidated and coded into a database. In stage 2, we evaluated these key results and relevant theory (synthesised in section 405 

2). We also looked for finding overlaps and examples of agreement between fields. In this section, we also draw on literature 

cited in the references of the primary literature to bridge knowledge gaps and to supplement our synthesis. This material was 

not included in the dataset but can be found in the references. The number of pieces of literature considered in these stages 

was 𝑁 =  42. In stage 3, we filtered the literature so that only those with quantitative results allowing analyses of tipping 
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thresholds were kept. At the end of stage 3, we were left with 𝑛 =  12 articles. A summary of the literature used in stage 1 is 410 

displayed in Table 4, and the results are shown in Fig. 4. Stage 3 results are displayed in Fig. 5.  

 

Stage 1 involves classifying key results in terms of how they influence social tipping in networks. Concretely, we applied two 

criteria: the effect on the rate and magnitude of the social tipping event. Here, the rate refers to the change in the fraction of 

adopters of an alternative norm per unit time after a tipping point, and the magnitude, the final fraction of norm adopters. We 415 

compared these to a baseline scenario, which was defined as the trajectory with the lowest rate and magnitude in a modelling 

ensemble or from experimental results. A simple grading system was used to simplify the data collection process, shown in 

Table 2. Where many of these effects displayed non-monotonic behaviour, we coded them accordingly; these are represented 

on the x-axis in Fig. 5 as “+/-”. Results which could not be quantitatively graded were marked as having a positive or negative 

impact on social tipping. A positive (or negative) impact was interpreted as an increase (or decrease) in the probability, speed, 420 

or magnitude of a social tipping event. Where similar terms showed conceptual or mechanistic agreement, and were used in 

the same context, i.e. the study evaluated a particular aspect of their effect, we grouped these under an umbrella term. Examples 

are terms used to describe rewiring (process), an awareness of other people’s preferences (process), and weak network ties 

(structure). All of these can increase the distribution of information through the network to agents and are classified under the 

umbrella term global information. This is shown in Fig. 4a. A glossary of the terms and their meanings can be found in 425 

Appendix A, Table A1.  Fig. 4b shows the magnitude due to incomplete data for the rate, but this was included for the 

classification in Figure 4a. A link to the full dataset can be found in the Data/Availability section. 

 

Table 2: Categories of grouping terms based on a percent change in the magnitude of a social tipping event compared to a baseline 

scenario.  430 

Percent change Positive/Negative Impact (+/-) 

0-30 1 

30-60 2 

> 60 3 

 

3.2 Intercomparison of tipping data from models and experiments  

To quantitatively compare tipping data across compatible literature sources, we obtained nine modelling data sets and five 

experimental datasets either by contacting the respective authors, retrieving published data, or re-running simulations based 

on software cited in the articles. For literature where none of these things were possible, trajectories or data were extracted 435 

directly from articles using optical character recognition (OCR) or other graphical techniques. The models evaluated included 

complex contagion-like dynamics, regardless of the technical implementation. This meant that, even if the models did not 

explicitly use a contagion model, the social spreading dynamics included a threshold-like mechanism of contagion, where 
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agents needed multiple different exposures to be infected. As mentioned in section 2.1, we conducted this review primarily to 

identify the macroscopic tipping threshold, as this allowed us to bound our analysis and compare units more easily across 440 

studies, as most of the literature reporting qualitative results includes time series. This was helpful, because the parameter 

dimensionality can be very high and its overlap low. Assuming a time evolution for the fraction of adopters of an alternative 

norm 𝐹(𝑡) in each dataset is present, we calculated the tipping threshold   λ from each. We found 𝜆 as defined in section 2.1, 

i.e. the fraction of adopters 𝐹(𝑡) at the point where the second derivative reaches its maximum: 𝐹(𝑡𝑐). This can be expressed:  

 𝜆 = 𝐹(𝑡𝑐) = 𝑚𝑎𝑥𝑡(𝐹′′(𝑡)).           (1) 445 

Where trajectories are non-continuous, as in experimental results, finite difference methods were employed to 

estimate 𝜆.Where we were also interested in identifying microscopic or individual level thresholds, we have collected ranges 

of mean individual thresholds where a cascade event is possible (Appendix B1).  

4 Results  

Below, we summarise the main mechanisms which affect social tipping success as identified by parsing the qualitative 450 

results from the literature. A table of terms is provided with network abbreviations. 

 

Table 3: A summary of network topology abbreviations for Table 4.  

Term Abbreviation 

Clustered lattice CL 

Erdős–Rényi  ER 

Regular random RRN 

Small world  SW 

Holme-Kim  HK 

Scale-free  SF 

Watts-Strogatz  WS 

Power-law  PL 

Barabási–Albert  BA 
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Table 4: A summary of network topology, the key and supplementary mechanisms which were identified as having an impact on social tipping events.  455 

Citation Method† Network topology N* Key mechanisms Supplementary mechanisms 

Andreoni et al. 

(2021) 

Mixed – modelling, 

experimental 

(online) 

Complete 

network  

10 – 20 Switching payoffs; switching 

threshold; 

Personal preferences; public 

awareness of preferences; 

Timescale 

Amato et al. 

(2018) 

Observational (large-

scale data) 

Empirical 

(conversation 

network) 

~Million

s 

Policy (institutional 

intervention); committed 

activists 

Informal institutions 

Centola et al. 

(2018) 

Mixed – modelling, 

experimental 

(online)  

Complete 

network 

25 Coordination payoffs; 

committed minority size 

Individual memory length; 

population size 

Centola 

(2013) 

Modelling CL, RRN 1000 Jointness of supply (coordination 

payoff); homophily 

network structure 

Baronchelli et 

al. (2006) 

Modelling Complete 

network 

10,000 System size Scaling relations 

Xie et al. 

(2011) 

Modelling ER, BA, complete 

network 

500 Network topology Immune nodes; critical minority 

size 

Castilla-Rho 

et al. (2017) 

Mixed – modelling, 

observational (real-

world) 

Grid 630 (673) "zealots" - rule followers; group 

norm enforcement (pressure to 

conform) 

Network connectedness, average 

degree; group size 

Paluck et al. 

(2015) 

Experimental (real-

world)  

Empirical 

(school) 

~431 Characteristics of seeds; out-

degree of seeds 

Zealots  

Wiedermann 

et al. (2020) 

Modelling ER 100,000 Switching threshold distribution; 

fraction of acting individuals 

Average degree 

Karsai et al. 

(2016) 

Mixed – modelling, 

observational (large-

scale data) 

Empirical (skype) 100,000 

(510 

million) 

Immune nodes; switching 

thresholds 

Constant flow of innovators 
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Citation Method† Network topology N* Key mechanisms Supplementary mechanisms 

Watts, Duncan 

J. (2002) 

Modelling SF 10,000 Influence of seed nodes Degree/threshold heterogeneity 

Switching threshold 

Faribi & 

Holme (2013) 

Modelling Empirical 

(internet 

community), ER 

113 – 

35,564 

Network temporality 

Nishioka & 

Hasegawa 

(2022) 

Modelling ER, empirical 

(Facebook) 

100,000 Switching thresholds; influence 

of seed nodes 

Clustering; network typology 

Lacopini et al. 

(2022) 

Modelling Empirical 

(various), 

327 Social influence of seed nodes; 

stubbornness 

Higher order network structures 

Krönke et al. 

(2020) 

Modelling ER, BA, WS, 

Empirical 

(various) 

16 – 1024 Clustering; reciprocity Network topology 

Karsai et al. 

(2014) 

Mixed – modelling, 

observational (large-

scale data) 

Empirical 

(Skype), SF 

100,00 

( ≤ 663 

million) 

 

Neighbour service adoption rate, 

GDP; press liberty 

Network topology 

Barash et al. 

(2012) 

Modelling  Lattice, PL, SW 40,000 Long-range-ties; influence of 

seed nodes 

Network topology 

Bakshy et al. 

(2011) 

Observational Empirical 

(Twitter) 

54,890 – 

4 million 

Social influence (spreader); url 

type (e.g. blog/forum, news) 

Content categories; interest; 

feeling 

Han et al. 

(2020) 

Modelling PL, Empirical 10,000 Preferential contact of nodes 

(small vs large degree); 

information transmission 

Population size; mean degree 

Jin & Yu 

(2021) 

Modelling ER, BA, HK, 

lattice, SW, RRN 

10,000 Global information; information 

sources 

Network topology 
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Citation Method† Network topology N* Key mechanisms Supplementary mechanisms 

Zhu et al. 

(2019) 

Modelling ER, ER-SF, SF-

SF 

10,000 Network heterogeneity Threshold distribution 

Efferson et al. 

(2020) 

Modelling Homophilus, 

complete, RRN 

100, 500 Switching threshold 

heterogeneity; 

coordination/switching payoff 

Cultural identity; group norm 

Hisashi et al. 

(2006) 

Modelling Lattice, SF, RRN, 

C 

100, 500 Ratio of payoff to degree; 

network topology 

Population size 

Min & San 

Miguel (2023) 

 ER 100,000 Rewiring probability; network 

"plasticity"   

Average degree 

Watts and 

Dods (2007) 

Modelling RRN, 

Homophilic  

10,000 Social influentials, network 

structure (groups) 

Network density; network degree 

distribution 

Damon 

Centola 

(2010) 

Mixed – modelling, 

experimental 

(online) 

CL, SW 98 – 144   Homophily; network topology; 

exposure count 

Clustering 

Damon 

Centola 

(2011) 

Mixed – modelling, 

experimental 

(online) 

Clustered lattice, 

ER, SF, SW 

72 Homophily; network topology Node centrality 

Gizem et al. 

(2018) 

Modelling Lattice, SW, ER 769 – one 

million 

Network structure; social 

influence (key nodes) 

Clustering; degree distribution 

Okada et al. 

(2022) 

Modelling  Lattice, SW, RRN 100 – 

1,600 

Network structure; trust; density Polarization 

Ehret et al. 

(2022) 

Experimental 

(online) 

Complete 

network 

35 Group identity, pay-offs  Preference distribution; 

population heterogeneity 

Hodas et al. 

(2014) 

Observational (large-

scale data) 

Empirical 

(Twitter, Digg) 

140,000, 

170,000 

Social influentials; information 

density 

Clustering; intensity of exposure 
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Citation Method† Network topology N* Key mechanisms Supplementary mechanisms 

Belloti et al. 

(2023) 

Observational (real-

world) 

Empirical 

(villages; 

northern India)  

1530 Frequency of exposure to 

contagion; household exposure; 

trust 

Weak ties; social influentials 

Christakis & 

Fowler (2008) 

Observational (real-

world) – smoking  

Empirical 

(friendship) 

12,067 Trust; social proximity; social tie 

strength/type 

Social influentials (education); 

clustering, physical proximity 

Fowler & 

Christakis 

(2008) 

Observational (real-

world) – happiness  

Empirical 

(friendship) 

12,067 Trust; social proximity; social tie 

strength/type 

Physical proximity 

Christakis & 

Fowler (2007) 

Observational (real-

world) – obesity  

Empirical 

(friendship) 

12,067 Trust; social proximity; social tie 

strength 

Household contacts, gender 

Centola & 

Baronchelli 

(2015) 

Mixed – Modelling, 

Experimental 

(online) 

Lattice, RRN, 

Complete 

network 

24, 48, 96 Network topology, network 

connectivity, competing norms 

Network size 

Bond et al. 

(2012) 

Observational (large-

scale data) 

Empirical 

(Facebook) 

61 

million 

Social tie strength; geographic 

proximity 

Weak ties 

Fink et al. 

(2015) 

Observational (large-

scale data) 

Empirical 

(Facebook) 

55,070 Hashtag type, thresholds, 

clustering 

Adoption payoffs, external topic 

coverage (e.g. news media) 

Airoldi & 

Christakis 

(2024)  

Experimental (real-

world) 

Empirical 

(villages; 

Honduras) 

24,702 Seed node selection/influence; 

type of norm 

Education; social proximity 

Tschofenig et 

al. (2024) 

Modelling ER 5000 Threshold distribution, seed size Clustering, network topology 

Reisinger et 

al. (2024) 

Modelling SF, CL, SWN, 

RRN, empirical 

(Facebook) 

1000 – 

7057  

Wide bridges, contagious 

components 

Network topology 

 

*Figure in Brackets refers to population size of observational data (where available) as opposed to the population size of agents or nodes in a model. 

†Modelling here refers strictly to agent-based or simulation modelling as opposed to statistical models or analyses of observational data.
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Contradictions regarding several factors were commonly observed in the literature, which was expected given the nature of 460 

complex contagion on complex adaptive systems. To estimate the degree of heterogeneity, we counted 𝑁 =  36 different 

network topologies, and 𝑁 =  22 different population sizes across the scope of the reviewed articles. Several variables showed 

non-monotonicity within models and experiments, which are designated by the “+/-” symbol in Fig 4a. Some of the most 

divergent findings are related to homophily, temporal dynamics of network processes, and network size. These are reflected 

in Fig 4, where several studies show either positive or negative impacts on social tipping. Despite differences of opinion 465 

expressed in the sources, overall, slightly more positive support for homophily appeared in the literature, as well as a strong 

positive effect on tipping cascade size under certain circumstances. Social influence, which was mentioned along with social 

influencers quite frequently in the articles, is shown to have a positive and effect on contagion success and magnitude, as 

shown in Fig. 4a and 4b. It is important to note, however, that the term social influence is not the same as social influencer. 

Factors pertaining to social influencers are multiple and include a high in-degree, which is associated with a reduction in 470 

infection probability from a cascade for the reasons mentioned in section 2.6. Broad agreement across the literature was seen 

that trust and clustering have strong positive effects on cascade magnitude, as well as on overall success. Taken together, 

clustering, social proximity, and trust were identified as consensus factors in the literature review, based on the signs of their 

effects. These factors all increase the frequency or number of exposures to close contagion contacts and thus help satisfy the 

fundamental requirements of complex contagion spread. Conflicting results should not be seen as arguments or weights for 475 

the absolute effect of a factor, but rather as a tendency or the probability of an effect to influence contagion. This pluralistic 

approach is necessary, as most of the differences shown in Figure 4 are due to strong contextual factors influencing the 

dynamics of the system in question. 
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 480 

Figure. 4: (a) Frequently cited factors influencing complex contagion events in social networks. Summary based on n = 95 

observations in N = 39 studies. Some concepts have been harmonised interdisciplinarily where compatible. Factors with a sample 

size of 1 are not shown here to aid visibility but can be found in the SI.  Population size, global information, and temporal structure 

show high disagreement across the literature and depend on the context of spreading processes. Trust is a key factor. (b) Factors 

influencing the magnitude of contagion events in social networks. Values for the literature with more discernible data on effects, n 485 
= 50. Magnitudes are defined as per Table 2 and range from 0-100% impact on cascade magnitude. The relationship is displayed as 

an increasing value of the listed factor, set against a baseline scenario (see 3.1).  

Our analysis of critical mass sizes and the steady state adopter fraction as per Fig. 5 shows that a critical mass of individuals 

who have adopted a norm exists in susceptible social systems; above this critical mass, the fraction of adopters rapidly 

increases. This is observed at approximately 25% of the total population size (modelling: 24%, empirical: 28%) when 490 

considering only social tipping events, and 21% when considering all results. This conforms to theoretical predictions for 

social tipping processes, and it may seem unsurprising that modelling results also replicate this. However, empirical results 

(i.e. categorising observational and experimental results) are in general agreement with the modelling results, as well as with 

each other. Empirical results tend to demonstrate sharper thresholds and non-linearity, verging on discontinuity. We also see 

this effect continuing across timescales. For 495 
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Figure 5: (a) The tipping threshold λ and the steady state adopter fraction 𝑭∞. Here, we show n = 86 modelling and empirical results 

from N = 13 papers on complex contagion in social networks. The bimodal distribution of steady states as shown by the y axis 

marginal distribution supports theoretical predictions for the non-linearity of social tipping processes. After a critical mass of ∼ 
25% in susceptible populations has been reached, the fraction of norm adopters converges quickly to a fully tipped state (𝑭∞ ≈ 𝟏). 500 
(b) The distribution of tipping thresholds. Here, we classify only social tipping events, i.e. 𝑭∞ > 50% of the population, numbering 

n = 59. The empirical cumulative distribution function (ECDF) demonstrates that 95% of critical masses conducive to tipping are < 

0.4 of the fraction of the population. 

example, the results shown in Fig. 5 from Amato et al. (2018) have a timescale ranging over centuries, while the behavioural 

experiments from Centola (2018) and Andreoni (2021) have timescales of days to weeks. This implies a scale invariance in 505 

the tipping dynamics with respect to time. Several trajectories do not display social tipping, and some, e.g the cluster of red 

points at the bottom left of Fig. 5a, do not even demonstrate a positive non-linear response (𝐹∞ > λ), even though the tipping 

point occurs at a fraction of ~ 0.25 or lower. This indicates some systems are not able to see global tipping even if a rapid 

change in norm adoption occurs in a small fraction of the population. The slightly bimodal distribution in the critical mass size 

of modelling results (teal) seen along the top margin of Fig. 5 is likely a result of using different modelling approaches to 510 

model complex contagion. Some models inherently feature non-linear but continuous transitions to the tipped state, such as 

the analytical approximation methods of Granovetter's tipping threshold model (Xie et al., 2011), whereas numerical methods 

tend to show discontinuities. Certain functional forms representing tipping are also responsible, for example, system dynamics 

models using normal forms to model social tipping (Kroenke et al. 2022). These normal forms may inherently feature certain 

dynamics, such as discontinuous bifurcations. Several models seem to show a bias toward very low critical mass sizes, which 515 

is not replicated in the empirical studies. This may suggest that the dynamics or assumptions of these models are not realistic. 

They provide overly optimistic predictions of the potential for a critical mass to tip a system. It should be noted that, in a large 

majority of models, the initial seed node or first adopter of an alternative norm was normally taken to be one person or a very 

small fraction, i.e. < 5% of the total population. Fig. 5b demonstrates the range in which social tipping is most likely to occur: 
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0-44% of the population 𝐸𝐶𝐷𝐹−1 (0.95) , where the value for empirical data is 40% and for modelling data is 46%, 520 

respectively. This implies that values above this threshold involve dynamics that are too linear to be considered social tipping 

or that there is no critical mass at which the system tips for a given system state (i.e. even at critical masses above this range, 

no social tipping dynamic is possible).  More importantly, 36% of empirical and 56% of modelling tipping events occur before 

or at the critical mass of 25% of individuals. Although not included in Fig. 5 due to not being in time series, results from 

(Airoldi and Christakis, 2024) who intervene in a population to induce social contagion, showed large increases in the 525 

behavioural adoption for certain treatments when the targeted fraction reached 20-30% of the population. As previously 

mentioned, several concepts identified in the literature repeatedly appeared across multiple papers, with consistent supporting 

evidence across different disciplines. In Table 5, we synthesise some higher-level takeaways in more general and less technical 

language.  

 530 

Table 5:  Key characteristics affecting social tipping processes on networks as identified by their frequency in the literature.  

Key 

characteristic 

Findings Implications References 

High-profile 

individuals 

(social 

influencers) 

Influencers may increase the 

possibility of a cascade under 

certain circumstances, but this 

effect is marginal, and can be 

polarising. Attempts to 

leverage these actors are often 

not cost- or resource-effective. 

Outcomes are also 

unpredictable. Moreover, 

these nodes can often hinder 

cascades, as they may face 

lower payoffs or even 

penalties for changing 

(politicians, public figures, 

etc.) 

To maximise efficiency, 

interventions or campaigns 

attempting to influence or effect 

behavioural change should not 

rely solely on highly visible or 

renowned social actors. Using a 

random selection of actors or 

following heuristics based on 

phenomena such as the friendship 

paradox may be more successful 

when contentious social changes 

are ongoing. 

(Airoldi and Christakis, 

2024; Bakshy et al., 2011; 

Bellotti et al., 2023; 

Centola et al., 2018; 

Efferson et al., 2020; 

Guilbeault and Centola, 

2021; Hodas and Lerman, 

2014; Watts, 2002; Watts 

and Dodds, 2007) 

 

Frequency of 

exposure 

People require repeated 

exposures to an alternative 

norm to change. Despite the 

complexities which may 

New or uncertain contexts, for 

example, norms related to climate 

change or when the causal 

mechanism of norm change is 

All 
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Key 

characteristic 

Findings Implications References 

surround the relationship 

between exposure and 

response, the number of 

exposures over a certain 

period is by far the most robust 

predictor.  

unknown, require a careful 

strategy. Any intervention should 

focus on repeated exposure and 

ensure that information about the 

desired norm reaches people. It 

should also focus on ensuring 

information is not lost in noise, i.e. 

by avoiding overwhelmed 

channels such as social media.   

Trust The strength of social 

connection heavily mediates 

the spread of contagion 

between individuals. This is 

not always the same as social 

proximity but is often 

correlated with it.  

Trusted information sources are 

more effective at changing norms 

in their social networks than 

untrusted sources. This 

relationship is more severe for 

controversial or important norm 

changes. When considering these 

issues or intervention potentials, 

trusted individuals related to the 

target group should be identified 

and leveraged for change.  

(Bellotti et al., 2023; 

Christakis and Fowler, 

2007, 2008; Fowler and 

Christakis, 2008; Iacopini 

et al., 2022; Nishioka and 

Hasegawa, 2022; Okada et 

al., 2022; Watts and 

Dodds, 2007)O 

Network 

structure 

Structured networks are more 

conducive to social tipping 

under complex contagion 

conditions. Although this 

varies with size, structural 

traits such as homophily and 

clustering allow a seed to 

amplify itself or gain a critical 

mass size to initiate a 

successful cascade.  

Tight-knit, trusting, and close 

communities are necessary to 

allow a sufficient build-up of 

momentum for social change. This 

becomes more important with 

more controversial norm changes 

or those which provide a lower 

personal reward or even a penalty.  

 (Bellotti et al., 2023; 

Centola, 2013; Okada et 

al., 2022; Reisinger et al., 

2024; Watts and Dodds, 

2007)  
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Key 

characteristic 

Findings Implications References 

Type and 

context of 

norm change 

Contagion dynamics differ 

substantially with the type of 

norm change, as well as the 

context. For example, 

educated people have a 

stronger influence on maternal 

health behaviour, as well as on 

smoking habits, but in some 

circumstances, village elders 

or knowledge holders only 

have a marginal influence over 

health behaviour, where the 

household is most important. 

Behaviour and knowledge 

norms spread differently in a 

population, even considering 

the same concept. Group 

identity and individual 

psychology may reduce the 

effects of exogenous attempts 

to promote norm change, e.g. 

policies. Different people’s 

response to change differs 

depending on these 

circumstances.  

Different societal norm changes 

require different solutions. These 

relationships should be explicitly 

studied on a per norm basis, e.g. 

consumption, flying, or driving 

behaviour. Policy interventions 

should rely on this knowledge. 

With regard to a given 

intervention target, fast 

behavioural adoption can still 

occur even if attitudes and 

knowledge are slower to change. 

(Airoldi and Christakis, 

2024; Bastos et al., 2013; 

Bellotti et al., 2023; 

Christakis and Fowler, 

2007, 2008; Efferson et 

al., 2020; Fink et al., 2015; 

Fowler and Christakis, 

2008; Hodas and Lerman, 

2014; Romero et al., 2011) 

Personal 

Preferences 

and 

Heterogeneity 

Personal preferences for a 

specific norm can affect 

cascade success in a 

population. Not limited to how 

strongly different fractions of 

a population feel towards a 

Understanding the distributions of 

preferences in terms of changing 

norms needs to be considered 

when mass-scale changes in social 

norms are attempted. This is most 

relevant for governance personnel 

(Efferson et al., 2020; 

Fahimipour et al., 2022; 

Karsai et al., 2016; 

Wiedermann et al., 2020) 
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Key 

characteristic 

Findings Implications References 

certain norm, it also relates to 

the distribution of these 

feelings. For example, 

increasing the variance of this 

preference distribution tends 

to reduce norm spread.  

and policymakers. Intervention 

strategies can target groups with 

preferences that are more likely to 

facilitate the endogenous spread of 

norms.  

 

5.0 Discussion and Conclusion 

Although complex contagion dynamics in networks are generally not amenable to reductionist methods of analysis (Shaliz & 

Thomas, 2011), our results show a broad level of agreement with the literature we reviewed regarding variables that affect the 535 

success of contagion. Clustering and structure in network topology dominate among these, as well as a high degree of trust 

between social connections (Fig. 4). These factors are also critical in instances where norm change is difficult, payoffs for 

switching norms are low, social pressure from the in-group exists, or the norm is connected to social identity (Efferson, 2020). 

This is particularly relevant as existing societal norms increasingly conflict  with planetary boundaries (Otto et al., 2020b). A 

particularly relevant issue is the strong tie of group identity to problematic behavioural norms, which stymie the endogenous 540 

spread of social norms even after a targeted intervention (Efferson et al., 2020; Ehret et al., 2022). In the light of climate 

change, these behavioural norms could correspond to things such as driving a large car, flying, or eating meat (Peattie, 2010a). 

Social tipping points research in SES calls for leveraging social tipping points to promote rapid societal change (Milkoreit, 

2023; Winkelmann et al., 2020). However, it could better address whether tipping is even possible for certain behavioural 

norms, or what dynamics are required for particularly recalcitrant or sensitive norms. Our review shows clearly that each norm 545 

change is highly dependent on the social context, distribution of individual preferences, and heterogeneity. It also shows that 

a high variance in the distribution of personal preferences (social polarisation) is detrimental to changing social norms, which 

is an increasingly pressing issue (Frei et al., 2023).  

 

Despite these considerations, we observed a clear non-linear trend when we investigated the critical mass required to induce 550 

tipping in a social network (Fig. 5). More concretely, we display evidence that a critical mass of around 25% of the population 

can precipitate a population-wide social tipping event. This finding is in line with existing speculations about critical mass 

estimates (Centola et al., 2018).  The reason for this is not addressed in detail here, but recent analytical work (Karimi and 

Oliveira, in preparation) suggests that, under a 25% threshold, homophily limits the interaction potential of minorities, resulting 

in a “homophily trap”. Not all social systems we analysed demonstrated social tipping (Fig. 5a), even when they displayed a 555 



29 

 

rapid change in the fraction of norm adopters around 25%. This again highlights that the 25% threshold identified in this paper 

is highly dependent on the state and context of the social system This reflects existing claims about the conditionality of social 

tipping (Constantino et al., 2022; Winkelmann et al., 2022), as demonstrated by varying adoption patterns across different 

health behaviour interventions (Airoldi and Christakis, 2024). A common critical mass across contexts is thus not guaranteed. 

However, for the purposes of this study, our results answer our research question: They support the potential existence of a 560 

Pareto effect in social tipping dynamics. Although this finding should not be generalised to all social norms, behaviours, and 

social systems, it is a helpful indicator and target if policymakers would like to engenderor monitor wide-scale social change. 

A potential case is the increasing popularity of vegetarianism in Germany. Figures currently show the vegetarian population 

to be at around 10% (Statista, 2023).A more generalizable result of our analysis is shown in Fig. 5b, which gives an estimate 

of the lower and upper ranges where tipping may occur.  565 

 

 The good agreement between empirical evidence and modelling results identified in this work supports the predictive power 

of models to investigate complex social contagion processes. This is particularly positive as each of the modelling results 

shown in Fig. 5 used different types and forms of models. These modelling approaches must be empirically validated before 

they can be included in high-level or integrated modelling frameworks such as in IAMs (Trutnevyte et al., 2019). To introduce 570 

social complexity into larger models (Donges et al., 2020), validation across modelling approaches may guide less 

computationally intensive models without losing accuracy. An example is the sigmoid norm adoption curve, as shown in Fig. 

1b. This type of function is commonly used in system dynamics models to govern the rates of norm adoption, where the 

location of the inflection point is an important driver of large-scale social change in some contexts (Eker et al., 2019). There 

are several avenues to compare this norm adoption curve across methodological approaches, particularly from the network 575 

models or norm adoption time series analysed in this work. As a first approximation, this function could be parametrized using 

the data provided in this analysis (Fig. 5). More broadly, these norm adoption curves can be analytically derived from agent-

based network models using approximation methods (Wiedermann et al., 2020), or reconstructed using time series from social 

media data, e.g. online service adoption (Karsai et al., 2016). A key issue affecting this analysis was the small sample size, 

particularly with respect to the tipping point results discussed in section 4. The dimensionality, heterogeneity, and scale of 580 

variables relating to complex contagion in social networks across disciplines is such that it becomes prohibitively more difficult 

to process, categorise, and harmonise the findings across disciplines. In this sense, our work should be considered as an agenda-

setting narrative review and by no means as an exhaustive survey of the literature.  

 

While expanded statistical validation remains necessary, our analysis points to several other critical areas for future 585 

investigation in social tipping dynamics: For example, research could be conducted in areas where agreement within the 

discipline is lacking, e.g. for factors like network connectivity, population size, and/or global information (see Fig. 4). The 

application of the second derivative to characterize tipping points serves as a useful initial approximation. However, its efficacy 

is contingent upon integration with additional criteria, such as those delineated in the definition of a social tipping event (Box 
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1). Future research should prioritize two avenues: (1) providing a robust theoretical justification for the use of the second 590 

derivative in this context, and (2) replicating the analysis using alternative frameworks, such as the criticality approach 

discussed in section 2.1, or dynamical systems theory (Ritchie et al., 2023). These efforts would serve to validate or refine the 

current methodology and potentially offer new insights into the dynamics of social tipping points 

 

Beyond methodological refinements, several theoretical challenges remain to be addressed: We only considered a one-595 

dimensional aspect of social tipping, namely its reliance on critical mass as a time-dependent variable. Additionally, we 

neglected multistability, and assumed that there was no intermittent or regressive behaviour of the system once it had been 

tipped, which is a substantial issue to consider (Ferraz de Arruda et al, 2023). Future work could examine the interaction 

between multiple stable states, network topology, and node heterogeneity. Although we attempted to address most common 

network topologies, we decided that multi-layer networks were mostly beyond the scope of this review due to the added 600 

complexity normally associated with these approaches. Higher level network structures have a non-trivial effect on contagion 

dynamics (De Domenico, 2023; Zhang et al., 2023), and the field of social tipping and social contagion would generally benefit 

from a comparison between these structures and typical or single-layer network structures.  

 

Many of the reviewed models are not always integrated into broader SES systems; either energy use, emissions, or 605 

environmental behaviour are absent. Work should be directed towards reconciling or refining this gap between conceptual 

frameworks and integrated modelling, where more generic tipping dynamics are included in an SES model. Recent global SES 

models or World-Earth Models (WEMs) which explicitly simulate social dynamics on a micro scale (Donges et al., 2020), as 

well as contributions from ecological economics (Lamperti et al., 2018), are good starting points.  

 610 

The temporality of network processes, such as burstiness (see section 2.6), is important for social tipping but was not fully 

addressed in our analysis. Two aspects warrant closer investigation: timescale invariance, and rate dependent processes. First, 

we observed similar tipping dynamics across time scales in our results. Given that time-scale invariance is seen in diverse 

human behaviours (Proekt et al., 2012), future research should systematically investigate whether and under what conditions 

this property emerges in social tipping processes. Second, rate induced-tipping (R-tipping) analysis could identify critical rates 615 

of processes like network reorganisation (rewiring frequency) or adoption frequency that could trigger social tipping even 

when threshold conditions suggest stability (Ritchie et al., 2023). Particularly crucial for future work is the systematic 

investigation of conditions under which social tipping occurs at different critical mass thresholds. While our analysis suggests 

a common range around 20-25%, more understanding is needed of contextual factors that might shift this threshold 

substantially or preclude tipping dynamics entirely. Such insights are valuable for both theoretical development and practical 620 

applications in promoting sustainable behavioural change. 
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Our macroscopic approach towards measuring tipping thresholds provides concrete critical mass ranges required to facilitate 625 

social tipping events via social networks. Where causality was deemed important, we supplemented this more approximate 

range with an investigation of the factors contributing to social tipping. Our focus on complex contagion and recalcitrant norm 

change means that our recommendations aid the navigation of inherently difficult societal transitions, such as the one to net-

zero. On the flipside, in situations where the norm change is minor and possible, our range of tipping thresholds provides a 

concrete, empirically supported target for policymakers, encouraging the spread of easier-to-swallow sustainable norm change 630 

in social groups.  
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Appendix A 

Table A1: A glossary of terms relevant to our literature review and analysis which may provide the reader with additional context 

for understanding Fig. 5 and Fig. 6 in the main text.  

Term Explanation 

Avg degree The average number of connections per node in the network. 

Clustering The degree to which nodes in a network tend to cluster together. 

Degree heterogeneity The variability in the number of connections that nodes in the network have. 

Density The proportion of actual connections to the number of possible connections within the 

network. 

Geographical proximity The closeness in geographical location between nodes in a network. 

Global info/random 

rewiring 

The availability of global information in the network and the formation of random 

connections. 

Global information/weak 

ties 

The role of weak ties in providing access to global information. 

Homogenously mixing 

network 

A network where nodes are equally likely to connect with each other. 

Homophily The tendency of individuals to associate and bond with similar others. 

In-group conformity The tendency of individuals to conform to the norms and behaviours of their respective 

groups. 

Information transmission 

probability 

The likelihood of information being successfully transmitted in a pairwise interaction 

between nodes in the network. 

Information transmission 

rate 

The rate at which information is transmitted through the network. 

Jointness of supply 
 

The extent to which the supply of a good, service, or benefit is shared among individuals. 

Lattice A structured network topology where each node is connected to its nearest neighbors. 

Linkage probability The probability of a connection forming between two nodes in the network. 

Memory length The amount of past information that nodes in the network retain. 

Network size The number of nodes in the network. 

Node degree (out) The number of outgoing connections from a node. 

Node degree (in) The number of incoming connections to a node. 

Population size The total number of individuals within a given population or network. 

Public awareness The level of knowledge and awareness among the public or nodes in the network. 

Random rewiring The process of randomly rearranging connections within the network. 
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Term Explanation 

Seed degree (out) The number of outgoing connections from the initial or seed nodes. 

Seed social influence The level of influence exerted by the seed nodes. 

Social proximity The closeness of nodes in the network based on geodesic distance (path distance). 

Social referents Influential individuals or nodes within the network that serve as reference points for 

others. 

Spreader influence The ability of specific nodes, termed spreaders, to propagate information or norms 

efficiently within the network. 

Structure The arrangement of nodes and connections within the network. 

Stubbornness The resistance of nodes to change their state or adopt new norms and behaviours. 

Threshold heterogeneity The diversity in the thresholds that nodes have for adopting new norms or behaviours. 

Tie strength The intensity or closeness of the relationships between connected nodes. 

Time window The specific period considered for observing and analysing the dynamics of the network. 

Trust The level of confidence shared by nodes regarding the choice of their norms 

Trust (in group) The level of trust that individuals have within their respective groups or clusters in the 

network. 

Weak ties The connections between nodes that are not very strong or close. 

Zealots Highly committed or fervent nodes in the network that actively propagate or resist the 

propagation of specific norms or beliefs. 

  

 650 
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Appendix B 

 

Figure B1: A range of individual tipping thresholds which allow for a social tipping event in a given population. 
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