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Abstract. Independent estimation and verification of fossil CO2 emissions on a regional and national scale are crucial for

evaluating the fossil CO2 emissions and reductions reported by countries as part of their Nationally Determined Contributions

(NDCs). Top-down methods, such as the assimilation of in situ and satellite observations of different tracers (e.g., CO2, CO,

∆14CO2, XCO2), have been increasingly used for this purpose. In this paper, we use the Lund University Modular Inversion

Algorithm (LUMIA) to estimate fossil CO2 emissions and natural fluxes by simultaneously inverting in situ observations5

of CO2 and ∆14CO2 over Europe. We evaluate the inversion system by conducting a series of Observing System Simulation

Experiments (OSSEs). We find that in regions with a dense sampling network, such as Western/Central Europe, adding ∆14CO2

observations in an experiment where the prior fossil CO2 and biosphere fluxes are set to zero allows LUMIA to recover

the time series of both categories. This reduces the prior-to-truth root mean square error (RMSE) from 1.26 TgC day−1 to

0.12 TgC day−1 in fossil CO2 and from 0.97 TgC day−1 to 0.17 TgC day−1 in biosphere fluxes, reflecting the true total10

CO2 budget by 91%. In a second set of experiments using realistic prior fluxes, we find that in addition to retrieving the

time series of the optimized fluxes, we are able to recover the true regional fossil CO2 budget in Western/Central Europe by

95% and in Germany by 97%. In regions with low sampling coverage, such as Southern Europe and the British Isles, the

posterior fossil CO2 emissions are not well-resolved in any scenario. Moreover, the biosphere fluxes can follow the seasonality

with a significant bias, making it impossible to close the total CO2 budget. We find that the prior uncertainty of fossil CO215

emissions does not significantly impact the posterior estimates, showing similar results in regions with good sampling coverage

like Western/Central and Northern Europe. Finally, having a good prior estimate of the terrestrial isotopic disequilibrium is

important to avoid introducing additional noise into the posterior fossil CO2 fluxes.

1 Introduction

Carbon dioxide (CO2) from fossil fuels and cement production has become the dominant source of anthropogenic emissions20

to the atmosphere from around 1950, leading to a concentration of CO2 in the atmosphere of 419.70 ppm on September

16th, 2023, 49% above pre-industrial levels (https://gml.noaa.gov/ccgg/trends/gl_trend.html, accessed September 18th, 2023).

Although land and ocean sinks of CO2 have increased over the past six decades, the fraction of emissions removed from the

atmosphere is expected to decline as the CO2 concentration increases; therefore, a higher proportion of emitted CO2 will
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remain in the atmosphere (Eyring et al., 2021). Monitoring CO2 emissions and removals is important to follow compliance25

with international treaties such as the Paris Agreement (UNFCCC, 2016). In the Agreement, the Parties have committed to

report their emissions and removals of CO2 and other greenhouse gases (GHGs) to the United Nations Framework Convention

on Climate Change (UNFCCC) through the annual GHG inventory. In the case of fossil CO2 emissions, these inventories

have been reported to have uncertainties between 5% and 10% in developed countries. These annual inventories and other

national-level data are used to spatially and temporally distribute CO2 emissions at sub-national and sub-annual scales. These30

spatially distributed products help us to better understand the sources of CO2 emissions and to implement more effective

policies toward emission reduction (Han et al., 2020). Commonly available emission products, such as the Carbon Dioxide

Information and Analysis Center (CDIAC) FFCO2 emission maps (Andres et al., 2011), the Open-source Data Inventory

for Anthropogenic CO2 (ODIAC) emission data product (Oda and Maksyutov, 2011; Oda et al., 2018), and the Emissions

Database for Global Atmospheric Research (EDGAR) (Janssens-Maenhout et al., 2019), use national energy statistics, power35

plant emission data, and spatial proxies such as nighttime light observations, population data, and road transport networks to

spatially and temporally distribute the emissions. This additional information introduces new uncertainties that, in EDGAR,

for instance, can reach a global uncertainty of approximately 11% (Solazzo et al., 2021), or can be as high as 120% in the case

of CDIAC (Andres et al., 2016). These uncertainties can be more significant and challenging to characterize at sub-annual and

sub-national scales, even in developed countries (Basu et al., 2016; Miller et al., 2012).40

These emission products can be used alongside atmospheric observations of CO2 and other tracers in inverse modeling

systems to reduce their uncertainty, enhance our understanding of fossil CO2 emissions and natural fluxes, and improve the

accuracy of national carbon budgets. So far, atmospheric CO2 inversion frameworks have predominantly been used to constrain

terrestrial sources and sinks of CO2 (Basu et al., 2013; Chevallier et al., 2007; Monteil et al., 2020; Monteil and Scholze, 2021).

To constrain the terrestrial carbon cycle, inverse modelers typically prescribe fossil CO2 fluxes from emission data products,45

like those mentioned previously, assuming them to be perfectly well-known. This is to avoid any bias the fossil CO2 flux

might introduce to the estimates of terrestrial fluxes (Turnbull et al., 2009). The atmospheric concentrations of CO2 represent a

mixture of all sources, with the natural signal being predominant during most of the year (the growing season covers spring to

fall), masking the contribution of fossil CO2 emissions (Shiga et al., 2014). Consequently, additional information is necessary

to segregate the fossil contribution from the natural signal in atmospheric CO2 observations to constrain the fossil CO2 fluxes.50

Some strategies have included sampling approaches where observations are taken close to major fossil CO2 sources (e.g., cities

and power plants) (Bréon et al., 2015), or satellite observations of large point sources such as column-integrated atmospheric

CO2 concentration (XCO2) (Kaminski et al., 2022; Wang et al., 2020). A more commonly employed method is to combine

these CO2-only observations (either CO2 or XCO2) with additional tracers such as NO2 and the NOx:CO2 ratio (Kuhlmann

et al., 2021), or ground observations of CO (Newman et al., 2013; Brioude et al., 2013), APO (Atmospheric Potential Oxygen)55

(Pickers et al., 2022), and, more widely, the radiocarbon (∆14CO2) content of carbon dioxide (Turnbull et al., 2009; Basu et al.,

2016; Wang et al., 2018), which we use in this study.

Radiocarbon is the radioactive isotope of carbon with a half-life of approximately 5730 years and is produced naturally

in the upper atmosphere by cosmic-ray-induced reactions with nitrogen (Turnbull et al., 2009). Fossil CO2 does not contain
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radiocarbon (it has already decayed), and adding its 14C-free emissions to the atmosphere causes a depletion of ∆14CO2 (Suess,60

1955). Meanwhile, radiocarbon is being absorbed and released by the ocean and the biosphere, making it an effective tracer

of the natural carbon cycle and, therefore, a tool to distinguish fossil emissions from the natural cycle signal in atmospheric

CO2 observations (Turnbull et al., 2009, 2022; Zazzeri et al., 2023). Radiocarbon is also produced as a by-product of nuclear

facilities (e.g., nuclear power plants) and atmospheric nuclear weapon tests, the latter occurring mostly between 1945 and

1980, with the highest intensity in 1961-1962 (Naegler and Levin, 2006). These bomb tests caused a significant disturbance65

in the radiocarbon cycle, resulting in an isotopic disequilibrium in the biosphere and ocean (Hesshaimer et al., 1994). Isotopic

disequilibrium is the difference between the isotopic signatures or radiocarbon content of carbon entering and leaving a pool.

Despite its similar meaning, this occurs differently in the ocean and the biosphere. In the ocean, the disequilibrium results

from ∆14C-depleted CO2 from water that has returned to the surface and was out of contact with the atmosphere, allowing

the radiocarbon to decay significantly. In the biosphere, the disequilibrium is a result of the heterotrophic respiration of ∆14C-70

enriched CO2 assimilated a couple of decades ago when the atmospheric ∆14C was higher due to the bomb spike (Lehman

et al., 2013). Therefore, the ocean disequilibrium flux tends to dilute the atmospheric ∆14C content, whereas the biosphere

disequilibrium flux tends to enrich it.

The usefulness of atmospheric ∆14CO2 observations in estimating the fossil CO2 content in the atmosphere as a fraction of

the total atmospheric CO2 concentration has been demonstrated in various modeling studies. For instance, Levin and Karstens75

(2007) present an observational approach to estimate hourly regional fossil fuel CO2 offsets at a continental site (Heidelberg,

Germany), using weekly mean 14CO2-based fossil fuel CO2 mixing ratios and CO observations. On a larger scale, Levin

et al. (2008) examine monthly mean 14CO2 observations from two German stations (Schauinsland and Heidelberg), compared

against background measurements from Jungfraujoch, to assess the regional fossil fuel CO2 surplus and emphasize the impor-

tance of high-precision radiocarbon measurements for quantifying fossil fuel CO2 contributions at a regional scale in Europe.80

The study by Miller et al. (2012) explores the relationship between fossil fuel CO2 emissions and enhancements in atmo-

spheric concentrations of 14CO2 and other anthropogenic trace gases. Utilizing a six-year dataset from vertical profiles in the

northeast U.S., they separate the fossil and natural components of atmospheric CO2 using apparent emission ratios of various

gases to fossil fuel CO2, offering observation-based estimates of national emissions and comparing these with inventory-based

estimates. Turnbull et al. (2015) use measurements of CO2, 14CO2, and CO from multiple sampling towers around Indianapo-85

lis, U.S., to differentiate fossil fuel CO2 from background levels in an urban environment and evaluate the consistency of a

bottom-up emission product. More recently, by using radiocarbon observations in CH4 (∆14CH4) and CO2 (∆14CO2) over

London, Zazzeri et al. (2023) reveal that fossil fractions of CH4 and atmospheric concentrations of fossil CO2 are consistently

higher than those predicted by simulations using emission products such as EDGAR. This discrepancy highlights the poten-

tial of 14CO2 measurements to refine our understanding of fossil and biospheric CO2 and CH4 partitioning in urban settings,90

especially when the influence of nuclear power plants is minimal.

Nevertheless, large-scale four-dimensional inversion systems have only recently begun to include ∆14CO2 as an additional

tracer to constrain fossil CO2 emissions. Basu et al. (2016) introduced a novel dual-tracer atmospheric inversion technique

that differentiates between biospheric and fossil fuel CO2 fluxes using atmospheric CO2 and ∆14CO2 measurements over
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the U.S. This method not only allows for the estimation of monthly regional fossil fuel CO2 fluxes but also addresses bi-95

ases in biospheric flux estimates that occur when using traditional CO2-only inversion methods with fixed fossil fuel flux

assumptions. Their approach represents a significant advancement in quantifying regional and national fossil fuel emissions

from atmospheric observations. Building upon this study, Basu et al. (2020) presented a more focused analysis in provid-

ing national and sub-national-scale estimates of fossil fuel CO2 emissions, using an extensive observation database of both

CO2 and ∆14CO2. Graven et al. (2018) conducted an in-depth analysis of fossil fuel CO2 emissions in California, utilizing100

atmospheric observations from nine sites and employing the Weather Research and Forecasting model along with the Stochas-

tic Time-Inverted Lagrangian Transport model (WRF-STILT). The research integrates measurements of CO2 concentration

and ∆14CO2, uniquely combining these observations with high-resolution emission data from Vulcan v2.2 and EDGARv4.2,

aiming to refine estimates of regional fossil fuel CO2 emissions and explore the impact of various factors such as nuclear

industry emissions and air-sea exchanges on atmospheric CO2 levels. In Europe, Wang et al. (2018) evaluated the potential105

of a ∆14CO2 observation network for estimating regional fossil fuel CO2 emissions through atmospheric inversions. They

examined the effectiveness of different network configurations, from minimal to very dense setups, in reducing uncertainties in

fossil CO2 emissions estimation. The study used synthetic observations and the LMDZv4 global transport model, paying spe-

cial attention to representation and aggregation errors. Establishing a network of both CO2 and ∆14CO2 measurement stations

requires significant investments to ensure long monitoring periods that allow the identification of sub-annual and sub-national110

scale variations in fossil CO2 emissions. The Integrated Carbon Observation System (ICOS) atmospheric network includes 39

stations in 14 European countries and overseas territories. Hourly CO2 atmospheric observations are available for 26 stations,

with the earliest data from 2015 when the network was established. However, some of these stations already existed by then,

and there is information from previous years. Fourteen stations measure ∆14CO2 in 2-week integrated samples analyzed by the

ICOS Central Radiocarbon Laboratory. The ICOS network is expanding to include more stations, and new sampling strategies115

are being developed to increase the number of ∆14CO2 measurements.

In this work, we present the new capabilities of the Lund University Modular Inversion Algorithm (LUMIA) system (Monteil

and Scholze, 2021) to perform simultaneous inversions of atmospheric CO2 and ∆14CO2 observations as a first attempt to

develop a model capable of supporting the monitoring and verification of fossil CO2 emissions across Europe. Such emissions

monitoring and verification support capacities are essential for assessing compliance with international agreements, such as120

the Paris Agreement (UNFCCC, 2016), and for guiding policy decisions aimed at reducing carbon emissions as outlined by

Janssens-Maenhout et al. (2020). We perform Observing System Simulation Experiments (OSSEs), recreating the current state

of the ICOS network and its sampling strategy, and using different flux products (as priors and true values) to demonstrate

the performance of the inversion scheme and show its capabilities. We begin by assessing the impact of oceanic fluxes on the

total CO2 and ∆14CO2 concentrations. Then, we evaluate the impact of adding ∆14CO2 observations on the estimation of125

fossil CO2 emissions by comparing the model’s ability to recover true fluxes starting from a prior flux set to zero. Finally, with

a more realistic setup, i.e., prior, we evaluate the impact of the prescribed fossil CO2 flux uncertainty and the impact of the

terrestrial isotopic disequilibrium product.
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2 Theoretical background

The depletion of radiocarbon in the atmosphere due to fossil CO2 emissions has been demonstrated in various studies since130

the 1950s, primarily through the ∆14C content in tree rings (Suess, 1955; Tans et al., 1979). Anthropogenic disturbances in

atmospheric radiocarbon content, such as those from nuclear bomb tests and nuclear power facilities (Hesshaimer and Levin,

2000), have led to a deeper understanding of the radiocarbon exchange processes between the atmosphere, the biosphere (Hahn

et al., 2006), and the ocean (Hesshaimer et al., 1994).

With subsequent advancements in measurement and modeling techniques, ∆14CO2 observations have been used to estimate135

the fossil CO2 offset within atmospheric CO2 concentrations (Levin and Hesshaimer, 2000; Kuc et al., 2003; Naegler and

Levin, 2006; Levin and Karstens, 2007; Levin et al., 2008). This is achieved by comparing observations from free troposphere

background stations against those from regionally polluted stations, establishing an essential foundation for estimating fossil

CO2 emissions using inverse modeling, as will be discussed in the following sections.

2.1 Regional transport model140

We are using the LUMIA (Lund University Modular Inversion Algorithm) system as described by Monteil and Scholze (2021),

modifying the way background concentrations (yb in Equation 1) are calculated by computing a smoothed and detrended av-

erage of real observations from the ICOS network for each sampling site. Originally, the LUMIA system was developed to

optimize regional Net Ecosystem Exchange (NEE) fluxes over Europe using in situ CO2 observations from the ICOS (Inte-

grated Carbon Observation System) Atmosphere network. In this study, we have extended LUMIA to additionally assimilate145

∆14CO2 observations from the same network and optimize multiple flux categories. This extension introduces a new step in

the mass balance of the atmospheric transport, as follows:

yCO2 = yb
CO2

+
∑

c

H(Fc) (1a)

yC∆14C = yb
C∆14C +

∑
c

H(∆cFc) (1b)

where y is the modeled concentration, yb is the modeled background concentration (i.e., boundary condition) (see Section150

3.3). The operator H represents the regional transport model (see Section 3.2), which is used to calculate the contribution

of surface fluxes F (in each category c) to the change of CO2 and ∆14CO2 in the atmosphere. Fc in this study corresponds

to gridded fluxes in a resolution of 0.5° × 0.5° and 1-hourly. In Eq. 1b, the term ∆c refers to the ∆14CO2 signature of the

accompanying flux category (Tans et al., 1979; Turnbull et al., 2016). Since ∆14CO2 h values are not additive, and following

Basu et al. (2016), we convert all values to CO2∆
14CO2 values (or C∆14C for simplification), meaning we do not model155

∆14CO2 in h (permil) units, as reported in observations (∆14CO2), but in units of amount of CO2 ×h (e.g., CO2 ppm for

concentrations, PgCh yr−1 for fluxes). The capital delta notation (∆14CO2 or just ∆), usually expressed in units of permil
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(h), represents the enrichment or depletion of the atmosphere relative to a standard (Stuiver and Polach, 1977), in this case,

the amount of radiocarbon relative to an absolute standard of 14C from 1950 (Trumbore et al., 2016), meaning that positive

values indicate the 14C content in the sample is higher than the pre-industrial atmosphere.160

Expanding the foreground (regional) part of Equation 1 to include the flux categories explicitly yields:

∑
c

H(Fc) =H(Fff)+H(Fbio)+H(Foce) (2a)

where Fff is the fossil CO2 emissions, Fbio is the net CO2 flux between the atmosphere and terrestrial ecosystems (Net Ecosys-

tem Exchange, NEE, hereafter also called biosphere flux), and Foce is the atmosphere-ocean CO2 exchanges. Calculating each

H(Fc) separately tracks the influence of each category, not just the total. For radiocarbon, the equation looks similar but165

includes an additional term for the radiocarbon from nuclear facilities:∑
c

H(∆cFc) =H(∆ffFff)+H(∆atm(Fbio +Foce))+H((∆bio −∆atm)Fbio2atm) (2b)

+H((∆oce −∆atm)Foce2atm)+H(∆nucFnuc)

=H(∆ffFff)+H(∆atm(Fbio +Foce))+H(Fbiodis)+H(Focedis)+H(∆nucFnuc) (2c)

where ∆ff is set equal to -1000h, indicating that fossil CO2 does not contain any ∆14CO2 and, therefore, dilutes the atmo-170

spheric ∆14CO2 content. ∆atmFbio and ∆atmFoce refer to the exchange of "modern" C∆14C between terrestrial ecosystems and

the ocean, respectively, with the atmosphere, since ∆14C in new biomass and the top ocean layer would nearly match atmo-

spheric ∆14C (∆atm) (Graven et al., 2020). Fbiodis and Focedis represent the isotopic disequilibrium, or the isotopic difference

between the source (ocean or biosphere) and the atmosphere. Fbiodis is "old-captured" and ∆14C-enriched C∆14C released

through heterotrophic respiration (Fbio2atm). Focedis is "old-captured" and ∆14C-depleted C∆14C released through vertical175

transport of water masses (Foce2atm) (Lehman et al., 2013; Basu et al., 2016). Fnuc is the radiocarbon production due to nuclear

activities, mainly from nuclear facilities, since radiocarbon production from nuclear bomb tests has largely ceased (Hesshaimer

and Levin, 2000). Converting ∆nucFnuc to C∆14C notation, for modeling purposes as mentioned above, is achieved through:

∆nucFnuc =
N

rstd
Fnuc (3)

where rstd is the standard 14C : C ratio (1.176×10−12), and N = (975/(δ13C+1000))2 is the isotope fractionation correction180

(Stuiver and Polach, 1977). As the δ13C value, we use the global atmospheric yearly average of −8h (Basu et al., 2016).

Combining Equations 1 through 3 for the modeled CO2 and ∆14CO2 concentrations yields:

yCO2
= yb

CO2
+H(Fff)+H(Fbio)+H(Foce) (4a)

yC∆14C = yb
C∆14C +H(∆ffFff)+H(Fbiodis)+H(Focedis)+H(∆atm(Fbio +Foce))+H(

N

rstd
Fnuc) (4b)185
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An additional source of radiocarbon, the cosmogenic production, occurs naturally in the upper atmosphere due to cosmic-

ray-induced reactions with nitrogen. This term is implicitly included in the background yb
C∆14C.

2.2 Observations

We perform the inversions for a regional domain ranging from 15°W, 33°N to 35°E, 73°N, as shown in Figure 1. This domain

is consistent with those used in previous studies, such as Monteil et al. (2020) and Thompson et al. (2020). The sampling190

stations depicted in Figure 1 represent the ICOS Atmosphere network for the years 2018-2020, noting that new sampling

stations have been added since that period. The ICOS Atmosphere network is a component of ICOS, a European research

infrastructure designed to provide long-term, high-quality, and harmonized observations of carbon dynamics. The network

includes 33 stations across Europe, all measuring CO2, with 15 of these stations also measuring ∆14CO2.

There are two sampling strategies employed at the ICOS stations: continuous and periodical sampling. Continuous sampling195

is performed at nearly every available sampling height at the station, utilizing commercially available automatic samplers

for hourly measurements of, for example, CO2. Periodical sampling, on the other hand, is conducted only at the highest

sampling height using flask samplers. These flasks are later analyzed in various ICOS laboratories. Hourly integrated flask

samples, collected every three days, serve both as quality control for the continuous sampling and for measuring other gases not

continuously monitored (e.g., SF6, H2, stable isotopes of CO2), in addition to ∆14CO2 for the determination of the atmospheric200

fossil CO2 component through inverse modeling (Levin et al., 2020). Furthermore, a 2-week integrated flask sample is designed

to pass air over a NaOH solution, specifically for ∆14CO2 sampling.

In this paper, we use the 1-hour CO2 continuous and the 2-week integrated ∆14CO2 periodical sampling strategies for the

evaluation of LUMIA. A summary of the stations, including their location, sampling height, number and average of measure-

ments, and integration days, is presented in Table 1.205

2.3 Inverse modeling problem

Atmospheric inverse modeling can be used for a variety of purposes, including the establishment of the initial conditions of a

model, the identification of sources and sinks, and the evaluation and improvement of prior emissions (Bocquet et al., 2015).

The goal is to estimate the best set of variables (fluxes) consistent with atmospheric measurements of a tracer (e.g. CO2 and

∆14CO2) in the study domain (observations), given the atmospheric transport that relates the two. In its most basic form, this210

can be formulated as

y =H(x,b)+ ϵ (5)

where the control vector x contains the variables (carbon fluxes, Fc) to be estimated, and the observation vector y contains

the observations (atmospheric concentrations). H is the observation operator, which includes the transport model and any

additional observations processing, such as accounting for the boundary conditions and variables, b, that we will not optimize.215

ϵ is the error vector that includes the errors in the observations, the transport model, and the control vector.
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Table 1. Observation stations used in this study. Included is a summary of the number of observations (Nobs), average observations ± one

standard deviation, and the integration time of ∆14CO2 samples for the year 2018, based on data accessible through the ICOS Python API

(https://pypi.org/project/icoscp/, accessed February 2023). Stations with zero Nobs did not measure or report observations of the corresponding

tracer in 2018 to ICOS, but they are incorporated into this study for comprehensive analysis.

Code Name Country
Lat

(°E)

Lon

(°N)

Altitude

(m.a.s.l)

Max. samp.

height

(m.a.g.l)

Nobs

CO2

Nobs

∆14C

Avg. CO2

(ppm)

Avg. ∆14C

(h)

Integration

time

(days)

BIR Birkenes NO 58.39 8.25 219 75 2616 – 421.9 ± 8.0 – –

CMN Monte Cimone IT 44.19 10.70 2165 8 5832 – 406.3 ± 6.0 – –

GAT Gartow DE 53.07 11.44 70 341 8784 0 419.5 ± 10.0 – –

HEL Helgoland DE 54.18 7.88 43 110 1080 – 430.4 ± 10.1 – –

HPB Hohenpeissenberg DE 47.8 11.02 934 131 8784 17 415.6 ± 6.8 -4.1 ± 2.8 13.4 ± 0.5

HTM Hyltemossa SE 56.1 13.42 115 150 8784 21 417.1 ± 8.4 -3.2 ± 3.2 14.0 ± 1.6

IPR Ispra IT 45.81 8.64 210 100 8784 – 430.0 ± 15.9 – –

JFJ Jungfraujoch CH 46.55 7.99 3580 5 8784 15 413.1 ± 3.6 -1.0 ± 3.5 14.0 ± 0.0

JUE Jülich DE 50.91 6.41 98 120 8784 – 423.0 ± 11.2 – –

KIT Karlsruhe DE 49.09 8.42 110 200 8784 21 428.7 ± 17.5 -14.1 ± 10.4 6.2 ± 0.7

KRE Křešín u Pacova CZ 49.57 15.08 534 250 8784 13 422.0 ± 11.5 -4.1 ± 3.0 13.2 ± 0.6

LIN Lindenberg DE 52.17 14.12 73 98 8784 5 426.0 ± 13.1 -8.6 ± 6.3 14.0 ± 0.0

LMP Lampedusa IT 35.52 12.63 45 8 8088 – 414.7 ± 4.2 – –

LUT Lutjewad NL 53.4 6.35 1 60 8784 – 422.3 ± 12.2 – –

NOR Norunda SE 60.09 17.48 46 100 8784 19 417.8 ± 8.2 -0.7 ± 4.2 13.3 ± 0.5

OPE
Observatoire pérenne

de l’environnement
FR 48.56 5.5 390 120 8784 17 420.2 ± 9.5 -3.3 ± 3.5 13.5 ± 0.5

OXK Ochsenkopf DE 50.03 11.81 1022 163 8784 0 416.8 ± 6.4 – –

PAL Pallas FI 67.97 24.12 565 12 8784 17 416.2 ± 7.7 -1.5 ± 3.5 12.9 ± 1.9

PRS Plateau Rosa IT 45.93 7.70 3480 10 0 – – – –

PUI Puijo FI 62.91 27.65 232 84 1248 – 426.6 ± 4.5 – –

PUY Puy de Dôme FR 45.77 2.97 1465 10 8784 – 414.0 ± 5.4 – –

RGL Ridge Hill GB 52.0 -2.54 199 90 8784 – 413.4 ± 6.1 – –

SAC Saclay FR 48.72 2.14 160 100 8784 12 420.5 ± 10.5 -2.7 ± 6.4 16.5 ± 4.3

SMR Hyytiälä FI 61.85 24.29 181 125 8784 – 416.8 ± 8.5 – –

SSL Schauinsland DE 47.92 7.92 1205 35 0 – – – –

STE Steinkimmen DE 53.04 8.46 29 252 8784 13 421.9 ± 11.5 -6.7 ± 4.2 13.5 ± 1.6

SVB Svartberget SE 64.26 19.77 269 150 8784 13 416.1 ± 8.0 -0.9 ± 3.1 15.6 ± 1.9

TOH Torfhaus DE 51.81 10.54 801 147 8784 – 417.6 ± 7.8 – –

TRN Trainou FR 47.96 2.11 131 180 8784 11 419.4 ± 8.6 -4.7 ± 4.8 14.7 ± 3.3

UTO Utö - Baltic sea FI 59.78 21.37 8 57 8784 – 416.2 ± 8.0 – –

WAO Weybourne GB 52.95 1.12 31 10 8784 – 413.4 ± 6.1 – –

WES Westerland DE 54.92 8.31 12 14 8784 – 416.2 ± 2.7 – –

ZSF Zugspitze DE 47.42 10.98 2666 3 0 – – – –
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Figure 1. Study domain and location of the ICOS Atmosphere network sampling stations used in this paper. The regions will be used for the

analysis and discussion of the results.

There are multiple approaches to solving the inverse modeling problem. In this paper, and in general in LUMIA, we use the

variational approach, in which the control vector x that minimizes the cost function in Eq. 6 is sought iteratively by minimizing

the misfit between the model outputs and the observations that are available over a range of times, also known assimilation

window (Chatterjee and Michalak, 2013; Rayner et al., 2019; Scholze et al., 2017):220

J (x) =
1

2

(
x−xb)T B−1

(
x−xb)+ 1

2
(Hx−yo)

T R−1 (Hx−yo) (6)
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where B is the prior uncertainty covariance matrix, and R is the observational uncertainty covariance matrix, controlling

the weight of each observation (yo) and target variable (xb, containing the prior fluxes) in the optimization. The iterative

procedure searches for the value of x that minimize J (x), i.e. the value of x for which the gradient (∇xJ) is equal to zero.

The observation operator H (x) can be expressed as the Jacobian matrix Hx that stores the sensitivity of each observation to225

each control vector element (Monteil and Scholze, 2021).

2.3.1 Construction of the control vector (x)

The control vector x contains the set of parameters adjustable by the inversion, which are offsets to the different sources and

sinks of CO2 and ∆14CO2 that we want to estimate. From Equation 4, our main interest is to optimize the fossil CO2 flux Fff.

But, since through the radiocarbon cycle, we can separate the fossil and the natural CO2, we also need to optimize the fluxes230

from the biosphere (Fbio), as well as the isotopic disequilibrium Fbiodis, to reduce the uncertainty from these two terms that can

have an important impact on the inversion result. The remaining fluxes (Fnuc, Foce, and Focedis) are prescribed and not included

in the control vector.

To limit the computational requirements, we do not solve directly for the high-resolution fluxes (e.g. 0.5° × 0.5° and 1-

hourly) used in the transport model, but for weekly offsets for 2500 clusters of grid points. Appendix B describes the clustering235

algorithm in further detail and the script can be found at lumia/Tools/optimization_tools.py of the LUMIA source code provided

as an asset. In short, it groups contiguous grid cells, depending on how sensitive the observation network is to their emissions:

grid cells directly upwind of the sampling stations are optimized at the native resolution of 0.5°, but in parts of the domain not

well sampled by the observations (e.g. North Africa, Turkey), the resolution drops down to 5° × 3.5° (see Figure 2).

The relation between the control vector and the gridded emissions is given by:240

Fc = F0
c +TTX

c
xTH (7)

where Fc is the matrix containing gridded emissions for the category c, with prior value F0
c . The matrix Xc

x is the portion of

the control vector x that contains offsets for the category c, reshaped as a (nt
opt, n

p
opt) matrix, with nt

opt and np
opt the number of

optimized (weekly) intervals and grid-cell clusters, respectively. The matrices Tt (nt
mod, nt

opt) and TH (np
opt, n

p
mod) contain

the relative contribution of each model time step tmod (1 hour) and of each grid-cell pmod (0.5° × 0.5°) to each optimized time-245

step topt and cluster pmod. To reduce the number of iterations and large matrix multiplications, the optimization is performed

on a preconditioned control vector ω =B−1/2(x−xb). More information about the preconditioning can be found in Monteil

and Scholze (2021).

2.3.2 Construction of the prior error covariance matrix (B)

Our matrix B is constructed such that we first determine the spatio-temporal structure of the uncertainties, which is then scaled250

to match the reported uncertainties. Since we are optimizing for offsets, the prior control vector xb contains only zeros (so

Fc = F0
c). The uncertainties on xb are given by the error covariance matrix B. We assume no correlation between different
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Figure 2. Visual representation of a) the sensitivity of the observation network to each grid-cell (in logarithmic scale) and b) the optimized

clusters and their variable spatial resolution.

categories and different tracers. Therefore, the sections of B specific to each tracer/category can be constructed independently.

We do this in three steps:

1. Construct a vector of variances (diagonals of B), which contain the spatio-temporal pattern of the uncertainties.255

2. Construct the covariances based on spatial and temporal correlation functions. Specifically, the covariances are set fol-

lowing cov(x1,x2) = σx1σx2e
−(d(p1,p2)/Lh)

2

e−|t2−t1|/Lt , with d(p1,p2) the great circle distance between the center

of the clusters (area-weighted average of the center-coordinates of the grid-cells in the cluster), and |t2−t1| the temporal

distance between x1 and x2.

3. Scale the entire (section of the) B matrix by a uniform scaling factor to match a prescribed category-specific annual260

uncertainty value δFc.

The values of correlation lengths Lh and Lt, as well as the scaling factors δFc are provided in Section 3.3.1. For constructing

the vector of variances (σ2
x), two approaches were used:

– For fossil CO2 emissions Fff, the variance is set to σ2
p,t,c = |

∑
i,j,tmod

F c
i,j,tmod

|2, where σ2
p,t,c is the variance corre-

sponding to the control vector elements for the interval t and spatial cluster p of category c. The spatial coordinates i265
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and j are the ensemble of grid cells that are within the cluster p, and the temporal coordinate tmod is the ensemble of

1-hourly model time steps that are within the (weekly) optimization interval t. For instance, if the cluster p groups four

model grid cells, the variance σ2
p,t,c will be calculated over 672 flux components (4 grid cells, seven days with 24 hourly

time steps).

– For the other fluxes, the procedure is similar, but the formula is σ2
p,t,c =

√
|
∑

i,j,tmod
F c
i,j,tmod

|.270

The rationale behind these formulas is to scale the uncertainties to the prior estimate of the fluxes (assuming that very low

prior fluxes should imply low prior uncertainties) but avoid artificially low errors in instances where negative and positive

fluxes compensate each other (i.e., NEE, in the spring and autumn times). Furthermore, the location of fossil CO2 emissions

is relatively better known. Therefore, the formula used for fossil CO2 emissions concentrates the uncertainties more at the

location of prior emissions than that used for the other categories. Regardless of the formula used for determining the variance,275

it is scaled afterward to match the target uncertainty reported in Table 2.

3 Observing System Simulation Experiments (OSSEs)

To assess the performance of the inversion system, we designed and performed a series of perfect transport Observing Sys-

tem Simulation Experiments (OSSEs). In so-called OSSEs, the impact of new observing systems, configurations of existing

systems, observing strategies, and the optimization of new data are evaluated (Hoffman and Atlas, 2016). This is done by280

generating a set of simulated observations, called synthetic observations, from a set of reasonable but arbitrary fluxes, F t
c, con-

sidered ’true’ fluxes in the OSSE. Then, by using fluxes from different models or products as prior fluxes (Fc), we investigate

the ability of an inverse modeling system to reconstruct the true fluxes consistent with the model setup (e.g. prescribed uncer-

tainties, error structure), making assumptions such as a perfect transport and a perfect boundary condition. In the following

sections, we describe the different data sets, model setups, assumptions, and experiments used in this study.285

3.1 True and prior fluxes

We use a set of fluxes commonly used in this kind of inverse problem with a high horizontal and temporal resolution (0.5°

× 0.5° and 1 hour, respectively) to generate our synthetic observations. For the CO2 fluxes, we use EDGARv4.3 emission

database (Janssens-Maenhout et al., 2019) distributed spatially and temporally based on fuel type, category, and country-

specific emissions, using the COFFEE approach (Steinbach et al., 2011) (EDGAR in Table 3, see (Gerbig and Koch, 2021b))290

as F t
ff for the base year 2018. For F t

bio, we use a simulation of the LPJ-GUESS vegetation model (Smith et al., 2014) (LPJ-

GUESS in Table 3, see (Wu, 2023)), and for F t
oce, we use the Jena Carbo-Scope v1.5 product (Rödenbeck et al., 2013). We use

the terrestrial and ocean disequilibrium and nuclear fluxes from Basu et al. (2020) as our F t
biodis (BASU in Table 3), F t

ocedis and

F t
nuc, respectively.

As prior fluxes, we use products that followed different methodologies and schemes, with different spatial and temporal295

structures than the true fluxes, to make the implementation more realistic. For Fff, we use a version of ODIAC (Open-source
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Data Inventory for Anthropogenic CO2) (ODIAC in Table 3, see (Oda and Maksyutov, 2020)) with a 1km× 1km spatial and

monthly temporal resolution. Thus, our prior fossil CO2 fluxes include monthly variability but do not resolve the daily cycle

(Oda et al., 2018). We also prepare a flat-year average version of this product (FlatODIAC in Table 3). For Fbio, we use a

product from simulations of the VPRM vegetation model (Mahadevan et al., 2008; Thompson et al., 2020) (VPRM in Table300

3, see (Gerbig and Koch, 2021a)). Due to the lack of an alternative product for the Fbiodis, we generate our own prior by

calculating a series of randomly perturbed versions of the true flux following their prescribed uncertainties and their horizontal

and temporal correlations (RndBASU in Table 3). This perturbation is done by adding a random perturbation to the control

vector and transforming such vector to the flux space. All fluxes are gridded to 0.5° × 0.5° and 1-hour resolution by the nearest

neighbor interpolation.305

3.2 Observation footprints (FLEXPART)

Similar to Monteil and Scholze (2021), we compute the regional transport (e.g. operator H in Equation 4) using the FLEX-

PART 10.4 Lagrangian transport model (Pisso et al., 2019). For each observation, FLEXPART computes a "footprint", i.e. a

vector containing the sensitivity of the observation to changes in the surface fluxes. The footprints are pre-computed and then

used throughout the subsequent steps of the inversion (see Monteil and Scholze (2021) for further details). The FLEXPART310

simulations were driven by ERA5 reanalysis data at a horizontal resolution of 0.5° × 0.5° and 1-hourly temporal resolution.

The footprints were computed differently for the CO2 and ∆14CO2 observations. For CO2, we computed a set of footprints for

each observation up to 14 days backward in time, following the approach from Monteil and Scholze (2021). Integrated ∆14CO2

observations (Section 2.2) quantify the ∆14C value of atmospheric CO2 throughout 1 to 3 weeks (see Table 1). We account for

this in FLEXPART by distributing the FLEXPART particles released over the whole integration period of the observations. The315

simulations are then carried on for (up to) 14 days backward in time from the start of the integration period. A Python code was

developed to run FLEXPART and post-process the footprints for being used in LUMIA (https://github.com/lumia-dev/runflex).

In Figure 3, we show an example of an observation footprint for CO2 and ∆14CO2 at the Hyltemossa ICOS station in southern

Sweden. The CO2 footprint (left panel of Fig. 3) shows how the observation of June 26th, 2018 at 13:00 LT is sensitive to fluxes

from the North Atlantic, passing through Norway, Sweden, and finally from Sweden’s East and South coasts close to the Baltic320

Sea. The ∆14CO2 aggregated footprint, on the other hand, shows a more spread sensitivity due to the long integration time,

collecting fluxes from Southern Norway, Northwestern Europe, and the Baltic.

3.3 Synthetic observations and background concentrations

We generate concentration time series for one year for each of the stations according to the current setup of the ICOS Atmo-

sphere network as described in Section 2.2. For replicating the most realistic conditions of the sampling frequency, we use real325

sampling and integration times (in the case of radiocarbon) from the stations, taking for each one the sampling times for 2018.

In this way, we account for the sampling gaps and the differences in integration times commonly produced due to maintenance,

and general operational eventualities. For stations with the number of observations, Nobs, equal to zero in Table 1, we set fixed

sampling and integration times (14 days). Most of these stations were already in operation in 2018, but some were not yet
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Figure 3. Examples of so-called (pre-calculated) footprints for CO2 (left) and ∆14CO2 (right) at the Hyltemossa ICOS station. The maps

show the sensitivity of the respective atmospheric tracer at the sampling site to the surface fluxes over the regional domain up to two weeks

before the observation. The left panel displays the sensitivity of CO2 at the indicated sampling time and shows influences by surface fluxes

from the North Atlantic through Scandinavia, while the right panel demonstrates the dispersed sensitivity of a 14-day integrated ∆14CO2

sample across Northwestern Europe and the Baltic region. The two maps illustrate the distinct spatial integration of the two tracers over time.

labeled as ICOS stations (e.g. Schauinsland) or had not implemented and or started the tracer measurement (e.g. ∆14CO2 at330

Ochsenkopf).

Following Monteil and Scholze (2021), we select the CO2 observation times according to the sampling station’s elevation

to guarantee the model’s best representation. For sampling stations located under 1000 m.a.s.l, we select the times when the

boundary layer is most likely well developed, from 11:00 to 15:00 LT. For the contrary case, we take the times around midnight,

from 22:00 to 2:00 LT, where the boundary layer is most likely below the sampling intake, or in other words, is sampling the free335

troposphere. For our OSSEs, we use the same transport model (i.e. the pre-computed observation footprints from FLEXPART)

to generate the synthetic observations and perform the inversions. Therefore, this data selection is not strictly necessary for this

study, but we want to replicate the conditions of a real inversion. Since we are using the same background concentration for the

synthetic observations and the simulated prior and posterior observations (i.e. we are assuming a perfect boundary condition),

we simplify the calculation of it by computing a smoothed and detrended weekly (for CO2) and monthly (for ∆14CO2) average340

of the real observations (ICOS et al., 2023) for each sampling site. For sampling sites, for which there are for some reason no

real observations for the year 2018 in the ICOS database (e.g. ∆14CO2 measurements were not yet implemented or were not

yet part of ICOS), we took the observations from the nearest year available to calculate the background.
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We then perform a forward run of the model using the true fluxes mentioned in Section 3.1 to calculate the corresponding

"true" CO2 and ∆14CO2 concentration time series and add the background value corresponding to each site, observation time345

and tracer. To weaken the assumption of a perfect transport and boundary condition, we add a random perturbation to the

synthetic observations. This random perturbation is equal to yso* = yso + ε× ξ, where y is the synthetic observation, ε is the

observation error (both the instrumental and representativity errors, see Section 3.3.1 below), and ξ is a standard normal random

vector. In this way, the added perturbation is based on the observation error. Figure 4 shows the synthetic CO2 and ∆14CO2

observation time-series and the components of each flux at Hyltemossa station. As mentioned in Section 2.1, we convert all350

radiocarbon values to C∆14C values. On the side of the observation, we do this by applying the following equation:

[C∆14C] =
[∆14CO2]× [CO2]

1000
(8)

In a real setup, this would imply having paired CO2 and ∆14CO2 observations, and in the case of the integrated samples, this

would mean having an average of CO2 observations along the integration period of the ∆14CO2 sample. However, since we

are using synthetic observations, we transported the CO2 fluxes using the ∆14CO2 footprints and stored the values to convert355

back and forth between ∆14CO2 and C∆14C units, h and ppm, respectively.

As can be seen from Figure 4, both F t
oce and F t

ocedis have virtually no impact on the concentrations at the Hyltemossa station

(and all other stations used in our setup, not shown), hence we decided not to include these components in the control vector,

i.e. we transport them but do not optimize them further.

3.3.1 Experiments and inversion setup360

To make the inversions comparable, we keep the same inversion setup for all the experiments. Table 2 summarizes the main

model parameter values. We choose a Gaussian horizontal correlation and an exponential temporal correlation for the prior

flux uncertainties (See Section 2.3.1). Since our main purpose in this study is to demonstrate that our multi-tracer inversion

system is capable of estimating both the fossil CO2 emissions and natural CO2 fluxes, we choose prior uncertainty values that

are reasonable and consistent with other studies. The prior uncertainties are assigned as follows: for Fff, we use the difference365

between the annual budgets for the whole study domain from ODIAC (1.26 PgC yr−1) (Oda and Maksyutov, 2020) and from

an emissions product based on EDGARv4.3 (1.47 PgC yr−1) (Gerbig and Koch, 2021b) as a reference to define its uncertainty

(Basu et al., 2016). We use 150% (0.3 PgC yr−1) of the difference as the base uncertainty for all the experiments, and we select

two extra values to evaluate the impact of the prescribed uncertainty on the inversion: 50% of the difference (0.1 PgC yr−1) and

the exact difference of 0.21 PgC yr−1 (100%). For Fbio we choose the 25% (0.37 PgC yr−1) of the monthly prior (Monteil and370

Scholze, 2021), and 30% (0.22 PgC yr−1) of the annual budget for Fbiodis (Basu et al., 2020). We optimize all the categories at

the same temporal resolution but at a higher horizontal resolution for Fff and Fbio (2500 points) than for Fbiodis (500 points).

To set up the observation error, which includes the instrumental and the representativity errors, we use different methods for

the CO2 and the ∆14CO2. For CO2, where the error of representativity is usually larger than the instrumental error, we apply a

weekly moving standard deviation to each observation i.e. the prior error of each observation is equal to the standard deviation375
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Figure 4. Synthetic observations of CO2 and ∆14CO2 at the HTM station over a one-year period. Panels a) to d) display CO2 concentration

variations due to different sources: a) fossil fuel, b) biosphere, c) ocean, and d) combined synthetic observations with random perturbation

(blue dotted line) against the background concentrations (red dashed line). Panels e) to h) illustrate ∆14CO2 variations: e) nuclear and fossil

fuel, f) biospheric disequilibrium and biosphere, g) ocean disequilibrium and ocean, and h) total synthetic observations with random pertur-

bation (blue dotted line) compared to the background (red dashed line). The blue solid and dashed lines represent the synthetic observations

without and with random noise added, respectively.

of the observations in a time window of ±3.5 days around that observation. In this way, we account for the changes in the

CO2 concentrations according to the local site conditions. For instance, at a background station such as Jungfraujoch (JFJ) on

the top of the Swiss Alpes, the observation error ranges from 0.9 to 29.2ppm (mean value of 9.3± 4.0ppm), while at polluted

sites such as Saclay (SAC) just outside Paris the CO2 concentrations change rapidly and the error ranges from 5.9 to 215.5ppm

(mean value of 55.8±40.7ppm). For ∆14CO2 on the other hand, the instrumental error is larger than the representativity error,380

we use a constant value of 0.8ppm in C∆14C units or 1.91± 0.05h in ∆14CO2 units, calculated using Equation 8.

We perform one forward run and six inversions, summarized in Table 3. We generate the synthetic observations and evaluate

the impact of F t
oce and F t

ocedis on the total synthetic observations as described in Section 3.3 with the forward run (SYNTH).

Starting with the inversions, we perform two experiments to test the impact of having ∆14C observations (ZBASE and

ZCO2Only). We use the prior Fff and Fbio set to zero (both in the spatial and temporal domain) with a prior uncertainty385

setup based on ODIAC and VPRM, respectively. The reason to use prior fluxes set to zero is that products of both categories
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Table 2. Parameter setup used in all the inversions performed in this study.

Fluxes

Flux

category

Horizontal

correlation

Temporal

correlation

Prior

uncertainty

(PgC yr−1)

Error

structure

Optimization

interval (days)

Grid

points

Fff 200-g 1-e-monthly 0.30 log 7 2500

Fbio 500-g 1-e-monthly 0.37 sqrt 7 2500

Fbiodis 1000-g 2-e-monthly 0.22 sqrt 7 500

Observations

Tracer
Type of

sampling

Prior

uncertainty

CO2

Continuous

1-hour

Weekly moving

standard deviation

∆14CO2

Integrated

2-weekly

Constant

0.8 ppm h

can have similar spatial and temporal distributions and values, making it easy for the model to retrieve the true values. Instead,

we set the values to zero but give the model some information through the prior uncertainty setup. The remaining fluxes are

prescribed and set to their true values. We assimilate both CO2 and ∆14C observations for ZBASE and only CO2 observations

for ZCO2Only. In the second set of inversions, we use a more realistic setup. In the first, BASE, we simulate a complete and390

realistic inversion setup, assimilating CO2 and ∆14C observations and optimizing Fff, Fbio, and Fbiodis. In the BASE experi-

ments, we change the prescribed prior uncertainty of Fff (0.1, 0.21 and 0.3 PgC yr−1) to evaluate its impact on the optimization.

With the last inversion, BASENoBD, we evaluate the impact of the prior Fbiodis product in the posterior Fff. The terrestrial dis-

equilibrium term (Fbiodis) is difficult to estimate since there is a large uncertainty on the heterotrophic respiration flux and the

age of respired carbon (Basu et al., 2016), and it may be widely different if estimated using a different vegetation model or395

methodology. We account for this by optimizing only the CO2 fluxes, Fff and Fbio, using both CO2 and ∆14C observations and

keeping F t
biodis prescribed.

4 Results

4.1 Impact of Foce and Focedis

We start by testing the impact of ocean-related fluxes (F t
oce and F t

ocedis) in the total synthetic observations by performing a400

forward simulation (SYNTH in Table 3). Figure 4, shows the results from this forward simulation and the contribution of each

flux category to the concentrations of both tracers for the Hyltemossa (HTM) station. The results show that the contribution of

the ocean and ocean disequilibrium fluxes to the total concentration is below the error assigned to the synthetic observations.

17



Table 3. Inversions performed in this work.

Simulation Fff Fbio Fbiodis Optimized fluxes Tracers Run

SYNTH EDGAR LPJ-GUESS BASU None CO2, ∆14CO2 Forward

ZBASE ZEROFossil ZEROBio BASU Fff, Fbio CO2, ∆14CO2 Inversion

ZCO2Only ZEROFossil ZEROBio BASU Fff, Fbio CO2 Inversion

BASE0.1 ODIAC VPRM RndBASU Fff, Fbio, Fbiodis CO2, ∆14CO2 Inversion

BASE0.21 ODIAC VPRM RndBASU Fff, Fbio, Fbiodis CO2, ∆14CO2 Inversion

BASE(0.3) ODIAC VPRM RndBASU Fff, Fbio, Fbiodis CO2, ∆14CO2 Inversion

BASENoBD ODIAC VPRM BASU Fff, Fbio CO2, ∆14CO2 Inversion

For CO2, the average contribution is -0.07 ± 0.12 ppm (for an average observation error of 10.0 ± 5.7 ppm) at HTM, -0.07 ±
0.15 ppm (average obs. error 9.8 ± 9.0 CO2 ppm) at all stations. For ∆14CO2, the average contribution due to Foce is -0.009405

± 0.009h (average obs. error 1.9 ± 0.04h) at HTM and -0.007 ± 0.007h (average obs. error 1.9 ± 0.05h) at all stations.

Similarly, the contribution due to Focedis is 0.016 ± 0.009h at HTM and 0.02 ± 0.017h at all stations. Due to the low impact

of ocean-related fluxes, we prescribe them in the inversions along with Fnuc and optimize only Fff, Fbio, and Fbiodis. A summary

for each station can be found in Appendix A.

4.2 Impact of adding ∆14CO2 observations410

In this section, we present the results from the ZBASE and ZCO2Only experiments. We start by analyzing the retrieval of truth

fossil CO2 (F t
ff) and biosphere (F t

bio) time series. We divide the results into the regions shown in Figure 1, where Northern

Europe represents Scandinavia, Finland, and the Baltic States, Western/Central Europe represents Benelux, France, Germany,

Switzerland, Liechtenstein, and Austria, Southern Europe represents the Iberian Peninsula, Italy, and the Balkans (except for

Romania and Bulgaria), Eastern Europe represents Poland, Slovakia, Hungary Romania, and Bulgaria, and the British Isles415

represents Ireland and the United Kingdom. The study domain includes all the land shown in Figure 1, even the countries not

mentioned in the definition of the regions (countries in gray in Figure 1).

4.2.1 Retrieval of the monthly and regional time series

In general, there is a closer agreement between the truth and the posterior time series for the ZBASE and ZCO2Only experi-

ments across all regions for the biosphere fluxes (Fbio) (Figure 6) in contrast to the fossil CO2 emissions (Fff) (Figure 5). In the420

study domain, the inclusion of ∆14CO2 observations in the ZBASE experiment yields better performance than ZCO2Only for

both flux categories. Specifically, ZBASE exhibits closer alignment to the posterior with a lower RMSE (see Table 4), indicat-

ing a better fit of the seasonality for Fff. Similarly, the posterior biosphere fluxes more closely follow the true time series than

the fossil CO2 emissions in both experiments, with ZBASE outperforming ZCO2Only in terms of RMSE and BIAS values.

The regional analysis reflects the influence of the coverage by sampling stations on the inversion outcomes. Western/Central425

Europe, benefiting from the highest number of stations (18 out of 33 stations considered in this study, 10 of them measuring

18



Table 4. RMSE and BIAS values for Fff and Fbio from the ZBASE and ZCO2Only experiments in all the regions.

Region

Fossil fuel (Fff) Biosphere (Fbio)

RMSE (TgC day^-1) BIAS RMSE (TgC day^-1) BIAS

Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only

Study Domain 4.07 1.51 2.75 -4.03 -1.51 -2.74 4.66 1.12 2.12 1.18 0.74 1.90

Western/Central Europe 1.26 0.12 0.53 -1.25 -0.06 -0.52 0.97 0.17 0.46 0.15 -0.04 0.43

Southern Europe 0.60 0.42 0.51 -0.59 -0.41 -0.50 0.89 0.35 0.41 0.35 0.29 0.35

Eastern Europe 0.55 0.07 0.33 -0.54 -0.02 -0.33 0.61 0.22 0.34 0.15 -0.04 0.26

Northern Europe 0.20 0.19 0.20 -0.20 -0.19 -0.20 0.76 0.21 0.25 0.00 0.16 0.22

British Isles 0.28 0.14 0.15 -0.28 0.07 -0.21 0.30 0.16 0.09 0.02 -0.13 -0.02

both tracers), shows the best alignment between the posterior and true time series for Fff, especially in the ZBASE experiment

(Figure 5b), while ZCO2Only shows pronounced RMSE and BIAS values (Table 4). Conversely, regions like Eastern Europe

(one station measuring both tracers) and the British Isles (two stations measuring only CO2), despite their lower station cov-

erage, exhibit posterior ZBASE Fff time series that closely approximate the truth, with Eastern Europe showing consistent430

performance throughout the year (panels d and f in Figure 5). However, the posterior ZBASE biosphere fluxes in these regions

do not align as closely with the true values as observed in e.g. Western/Central Europe (panels d and f in Figure 6). In Eastern

Europe, the posterior ZBASE shows big differences with the truth during May, June (maximum difference of 0.42 TgC day−1),

and later in September, while ZCO2Only shows a better fit during these months but a positive bias the rest of the year (Figure

6d). In contrast, the posterior biosphere flux from the ZCO2Only experiment shows a better fit to the truth than the ZBASE435

one in the British Isles (Table 4).

Lastly, Southern and Northern Europe show similar results despite their differences: Northern Europe has better coverage of

sampling stations, and its annual truth fossil CO2 emissions are lower (an average of 0.20 TgC day−1 against 0.59 TgC day−1).

In both regions, the posterior Fff of the two experiments is far from the truth (Figures 5c and 5e), while the posterior Fbio of

both regions and experiments is close to each other, with Northern Europe showing a better fit to the truth than Southern440

Europe, in which the posterior shows a more pronounced positive bias along the year (Figures 6c and 6e).

4.2.2 Analysis of the spatial error reduction

We set up the ZBASE and ZCO2Only experiments with prior uncertainties and error structures as in Table 2 based on the

values of ODIAC for Fff and VPRM for Fbio. Therefore, the model had some information about the spatial and temporal error

structure of the prior fluxes. To evaluate the spatial performance of LUMIA, we first aggregate the hourly values (both truth445

and posterior) to the optimization interval of one week. After this, we calculate the posterior RMSE of each experiment and

flux category at the grid cell level, and finally, we calculate the RMSE reduction by subtracting the posterior RMSE of ZBASE

from the posterior RMSE of ZCO2Only as follows:
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Figure 5. Monthly fossil CO2 truth (dashed lines), prior (solid lines), and posterior fluxes from the ZBASE (dashed-dotted lines) and

ZCO2Only (dotted lines) experiments for a) the study domain and the 5 sub-regions defined: b) Western/Central Europe, c) Southern Europe,

d) Eastern Europe, e) Northern Europe, and f) British Isles.

RMSEreduction =RMSEapos
ZCO2Only −RMSEapos

ZBASE (9)

Here, positive values of RMSEreduction indicate posterior RMSEapos
ZBASE values that are lower than RMSEapos

ZCO2Only, i.e. grid450

cells where when adding ∆14C observations (ZBASE) shows values closer to the truth (better performance, lower RMSE)

than when only having CO2 observations (ZCO2Only). For fossil fuel, we find larger prior RMSE values in Western/Central

Europe, but as well some grid cells show the location of larger cities like in southern England, Poland, and Spain (Figure 7a).

For the biosphere fluxes, we find the larger prior RMSE values in Western/Central Europe and the British Isles (Figures 7e).

The largest positive RMSE reductions (where ZBASE performs better than ZCO2Only) (Figures 7d and 7h) occur around455

the sampling stations in Western/Central Europe and the British Isles for both flux categories. For fossil CO2, most of the study

domain has positive values (92%), although a large part of these values (around 75%) is close to zero, representing the values

in Southern and Northern Europe where there is a low adjustment of the fluxes when adding ∆14C observations (Figure 7d).

For the biosphere fluxes, the posterior RMSE maps (Figures 7f and 7g) show the regions that are poorly constrained due to

the absence of observations such as the southern part of the domain and the Baltic States. Despite a lower portion of the study460

domain (40%) (Figure 7h) is showing an improvement in the posterior estimation when adding ∆14C observations compared
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Figure 6. Monthly biosphere (NEE) truth (dashed lines), prior (solid lines), and posterior fluxes from the ZBASE (dashed-dotted lines) and

ZCO2Only (dotted lines) experiments for a) the study domain and the 5 sub-regions defined: b) Western/Central Europe, c) Southern Europe,

d) Eastern Europe, e) Northern Europe, and f) British Isles.

with fossil fuel, this presents a clearer pattern in areas such as southeast England, the northern part of Western/Central Europe,

Denmark, and southern Sweden, as well as some areas in Eastern Europe.

4.2.3 Recovery of the annual budget

Next, we assess how accurately the model can estimate the annual budget for fossil fuel, biosphere (NEE), and the total CO2.465

Figure 8 shows the annual budget of the study domain, the sub-regions (right), and some of the largest European countries by

area (left). We include the ODIAC emission data product and the VPRM product for the biosphere in Figure 8 as references

since we base the prior uncertainty and error structure on the spatial and temporal distribution of these two products. As we

find in the temporal distribution (Figure 5), in the study domain, the posterior fossil CO2 from both experiments does not fit

the truth, but ZBASE shows a lower bias from the truth than ZCO2Only. This result is reflected in the annual budget, where470

ZBASE recovers 63% from F t
ff while ZCO2Only recovers only 32% (Figure 8a). Likewise, the posterior Fbio of ZBASE that

closely fits F t
bio, recovers 38% of the biosphere budget (Figure 8b), while ZCO2Only, which shows a larger positive bias in

the temporal distribution, returns a positive annual budget, contrary to the negative annual budget of the true biosphere fluxes.

This behavior is repeated in most of the regions and countries shown in Figure 8, where ZCO2Only strongly underestimates

21



Figure 7. Spatial error of fossil CO2 (a to d) and biosphere (e to h) for the ZBASE and ZCO2Only experiments. a) and e) show the prior

RMSE for Fff and Fbio, respectively, b) and f) show the posterior RMSE for ZBASE, c) and g) show the posterior RMSE for ZCO2Only,

and d) and h) show the RMSE reduction (see Equation 9) for fossil and biosphere. In Figures d) and h), positive values (in blue) show the

pixels where ZBASE performs better than ZCO2Only (i.e. adding ∆14CO2 observations improves the posterior estimates), and negative

values (in red) where ZCO2Only performs better than ZBASE. Crosses and diamonds represent stations that only measure CO2 and those

that additionally measure ∆14CO2, respectively.

the annual fossil CO2 emissions, with the lowest estimates in Southern (15%) and Northern Europe (2%), the latter with a475

strong underestimation from ZBASE as well (9%), France (33%), and Spain (∼ 0%), which has a similar situation as Northern

Europe (5% recovery for ZBASE), and returns an annual biosphere budget that compensates for the total CO2 budget which is

close to ZBASE in most of the cases.

Western and Eastern Europe show the best posterior Fff ZBASE values, 95%, and 105% of the truth, respectively. However,

while some countries in these regions with good sampling coverage, such as the Benelux Union, show good recovery of F t
ff480

(96%), some others with fewer neighboring sampling stations, such as France and Poland, show results far from the annual

fossil CO2 emissions: 71% and 166%, respectively. Germany, which has the best coverage in the study domain, shows some

overestimation (111%). On the other hand, the biosphere annual budget compensates in most cases for the total CO2 budget,

returning values that over and underestimate the truth, where the only regions with closer values are Western/Central Europe

(126%) and Eastern Europe (128%) for the ZBASE experiment (Figure 8c). Finally, we find better estimates of the total CO2485

budget in most cases for the ZBASE experiment, with the largest recovery in Western/Central Europe (91%), Eastern Europe

(96%), and Northern Europe (89%) (Figure 8e), and in the country level in Germany (99%) and France (94%) (Figure 8f).
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Figure 8. True, prior and posterior annual budgets of fossil (a-b), biosphere (c-d) and total CO2 (e-f) for the study domain, the sub-regions

(right), and some of the largest European countries by area (left). The white bars show the true annual budgets based on EDGAR and

LPJ-GUESS flux products. The black bars represent the prior value, 0 PgC. The blue and green bars show the posterior budgets of ZBASE

and ZCO2Only, respectively. The error bars represent the prior and posterior uncertainty calculated with a Monte Carlo ensemble of 100

members.

4.3 A realistic setup

The most realistic approach we can take to perform OSSEs is to use a realistic set of prior fluxes that differ substantially from

the true fluxes used to generate the synthetic observations. In this section, we perform a series of experiments using the prior490

Fff, Fbio, and Fbiodis fluxes described in Section 3.1 to evaluate the impact of prescribing different prior fossil CO2 uncertainty

values as well as the impact of the prior Fbiodis flux product (RndBASU) in the optimization of Fff.
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Figure 9. Monthly fossil CO2 truth (black dashed lines), prior (red solid lines), and posterior fluxes from the BASE0.1 (blue dashed-dotted

lines), BASE0.21 (blue dotted lines), and BASE0.3 (blue dashed lines) experiments for a) the study domain and the 3 sub-regions: b)

Western/Central Europe, c) Northern Europe, and d) Eastern Europe (note the different scales on the y-axis).

4.3.1 Impact of the prior fossil CO2 uncertainty

Figure 9 shows the weekly Fff time series for the three experiments using different prior uncertainties (BASE0.1, BASE0.21,

and BASE0.3). The EDGAR (F t
ff) and ODIAC (prior) products have different temporal distributions along the year, with495

ODIAC being flatter than EDGAR, but both with a minimum during summer, for EDGAR in July (3.13 TgC day−1), and

for ODIAC in August (3.05 TgC day−1). In the study domain (Figure 9a), the posterior Fff for the three experiments is very

close to each other and approaches the truth from January to February and later from August to December. From May to

August, there is an increment in the posterior fluxes that depart from F t
ff with the maximum difference in July that we find in

Western/Central Europe (ranging from 0.10 for BASE0.1 to 0.17 TgC day−1 for BASE0.3) and in Eastern Europe (0.08 to 0.26500

TgC day−1) (Figure 9). The posterior time series from the three experiments have the same RMSE with respect to the truth,

0.48 TgC day−1, which is lower than the prior RMSE of 0.65 TgC day−1. The posterior Fff time series in Western/Central

Europe shows the best results, with the estimates being close to truth, except for June and July. The three experiments show

the same performance, reducing the RMSE by 50% (RMSEprior = 0.26 TgC day−1, RMSEBASE0.1 = 0.13 TgC day−1), but

BASE0.21 and BASE0.3 show the values farther from the truth in June and July. Northern Europe (Figure 9c), on the other505

hand, shows priors that are already very close to the truth, with a posterior RMSE equal to the truth of 0.07 TgC day−1. Finally,

in Eastern Europe, with the lowest sampling coverage, the three posterior time series degrade the prior estimate.

The difference in the annual budget of EDGAR and ODIAC for the study domain is 0.21 PgC for the year 2018, which is as

large as the emission of the country with the largest emission in the study domain for the same year, Germany, with 0.23 PgC

according to EDGAR, and 0.19 PgC according to ODIAC (Figure 10). This difference in the study domain is nearly recovered510

by all three experiments, with a recovery ranging from 30% for BASE0.1 to 45% for BASE0.3. In Western/Central Europe, the
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Figure 10. Total annual fossil CO2 emissions for the study domain, Western/Central Europe, Eastern Europe, Northern Europe, Germany,

and Poland. The white bars show the true emissions based on the EDGAR emission database. The red bars show the prior fluxes based on

the ODIAC emission data product. The blue, green and tan bars show the posterior fossil CO2 emissions for the BASE0.1, BASE0.21, and

BASE0.3 experiments, respectively. The error bars represent the prior and posterior uncertainty calculated with a Monte Carlo ensemble of

100 members.

three experiments recover 96% of the truth (around 71% of the difference between true and prior), similar to Germany, where

the recovery ranges from 94% for BASE0.1 to 97% for BASE0.3 (68% to 82% of the difference). As we find in the time series

(Figure 9d), the prior annual budget is very close to the truth both in Eastern Europe, where the difference is 0.02 PgC, and in

Poland, 0.01 PgC. In both cases, the posterior recovers the annual budget, with overestimation from BASE0.3 for the whole515

sub-region and from BASE0.21 and BASE0.3 in Poland, which are as big as 120%. Finally, and as expected from Figure 9c

and the prior uncertainty for the sub-region, there is no recovery of the annual budget in Northern Europe further than the prior

estimate.

4.3.2 Impact of the terrestrial isotopic disequilibrium product

The prior Fbio and Fbiodis are very different in magnitude from the true values, with differences as large as 13.4 TgC day−1520

and 7.6 TgC day−1, respectively, during summer for the whole study domain (Figures 11d and 11g). This gap is well resolved

for Fbio in the study domain and Western/Central Europe (Figures 11d and 11f), and with some underestimation in Eastern

Europe between June and September (Figure 11e). However, for the posterior Fbiodis we find some larger differences from the

truth during June and September in the study domain and the two sub-regions. When we prescribe Fbiodis (BASENoBD), the

posterior Fff values from June to August in the study domain and Western/Central Europe (Figures 11a and 11b) get closer525

to F t
ff, and after the summer in the study domain. This can also be seen in an improvement in the RMSE values with 0.32

TgC day−1 for the study domain and 0.10 TgC day−1 for Western/Central Europe. In Eastern Europe, the posterior Fff for

25



Figure 11. Monthly time series of Fff (a) to c)), Fbio (d) to f)), and Fbiodis (g) to i)), for the study domain (top panel), Western/Central Europe

(center panel), and Eastern Europe (bottom panel). The truth is represented in black dashed lines, prior in red solid lines, posterior fluxes

from the BASE0.1 in blue dashed-dotted lines, and BASENoBD in blue dotted lines.

BASENoBD experiments does not show a significant improvement and, on the contrary, further degrades the prior estimate

during the summer and the autumn.

4.3.3 The observational space530

Finally, we analyze the model’s performance in the observational space at all sampling stations aggregated together, one

polluted station (Saclay, SAC) (Figure 12) and one background station (Jungfraujoch, JFJ) (Figures 12 and 13) for the BASE

experiment. We calculate two performance metrics: the correlation coefficient (R) between the synthetic observations and the

prior and posterior simulated concentrations for all the sites and individually for the two sites selected, and the reduced chi-

square χ2
ν for the overall simulation as measure to of the improvement upon the initial state and to guarantee that we are not535

under or over-fitting the model (Table 5). We calculate the reduced chi-square as:

χ2
ν =

1

ν

N∑
i=1

(
yso
i −yb,a

i

ϵi

)2

(10)
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Table 5. Performance metrics (correlation coefficient R, standard deviation and the reduced chi-square χ2
ν ) for all sites, Saclay (SAC), and

Jungfraujoch (JFJ).

Prior Posterior

R σ R σ

All sites CO2 0.64 14.2 0.68 13.4

∆14CO2 0.72 6.4 0.99 1.2

SAC
CO2 0.56 31.9 0.59 31.1

∆14CO2 0.63 6.8 0.99 0.5

JFJ
CO2 0.65 5.5 0.74 4.5

∆14CO2 0.75 4.2 0.84 1.5

χ2
ν 1.77 1.06

Figure 12. Mismatches between the synthetic observations and the prior (red) and posterior (blue) concentrations for all the sampling stations,

Saclay (SAC) and Jungfraujoch (JFJ) for CO2 (a, c and e) and for ∆14CO2 (b, d and f). All prior and posterior concentrations correspond to

the BASE experiment.

Where yso
i is the synthetic observation i, yb,a

i is either the prior (b) or the posterior (a) concentration i, ϵi is the error of the

synthetic observation i, N is the number of observations, and ν are the degrees of freedom calculated as ν =N − p, being p
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the number of fitted parameters in the model. Since p is difficult to calculate due to the different time and space clusters, we540

keep the number of observations as the degrees of freedom (ν =N ).

The histograms in Figure 12 show the mismatches between the synthetic observations and the prior and posterior concen-

trations. For the CO2 concentrations at all sites (Figure 12a), the histogram shows a distribution centered around zero for both

prior and posterior mismatches with a standard deviation of 14.2 and 13.4, respectively (see Table 5), indicating systematic

deviations from the observed values. The posterior mismatch has a slightly tighter distribution, suggesting a small improve-545

ment in the model after adjustments as reflected in the correlation coefficient (Table 5). At Saclay (Figure 12c), the mismatch

distribution is wider than the aggregate of all sites, which could suggest greater variability or larger errors at this particular site.

The posterior adjustment has not significantly tightened the distribution, indicating that the model adjustments did not perform

as well at this site as they did on average across all sites. On the other hand, the distribution in Jungfraujoch (Figure 12e) is

much tighter than in all sites and SAC, with the posterior mismatch displaying a slight improvement in precision as evidenced550

by the narrower spread. However, when comparing the posterior time series with the synthetic observations before adding the

random perturbation (Figures 13a and 13c), there is a better agreement between them than with the prior values, especially

during periods of higher variability (April to July at SAC, and April to September at JFJ).

The ∆14CO2 synthetic observations are in general better fitted by the posterior than CO2 at all sites, SAC and JFJ (Table 5).

In all cases, the prior distribution is displaced to the negative values, indicating that the prior simulated values are in general555

higher than the synthetic observations as shown for the whole period at SAC (Figure 12d) and from July to November at

JFJ (Figure 12f). These larger prior concentrations are mainly caused by the prior terrestrial disequilibrium flux from July

to November, and by the nuclear production fluxes throughout the year, which is significantly larger at Saclay (Figure 14).

However, the posterior mismatches showed a much narrower spread around zero at all sites (Figure 12b), Saclay (Figure 12d),

and Jungfraujoch (Figure 12f) that is evident in the time series at both sites where the posterior closely follows the synthetic560

observations, and supported by the correlation coefficients (Table 5).

The reported χ2
ν values of 1.77 for the prior and 1.06 for the posterior across all sites and samples suggest a substantial

improvement in the model’s performance in adjusting the prior concentrations to the synthetic observations. A χ2
ν of 1.77 for

the prior indicates that there were significant discrepancies between the prior and the synthetic observations. This is consistent

with the broader spread of mismatches in the histograms for both SAC and JFJ sites, as well as the apparent overestimation of565

∆14CO2 content in the time series. The improvement to a χ2
ν of 1.06 for the posterior indicates a better fit to the synthetic ob-

servations that are likely to be reflective of the underlying data patterns while still maintaining some degree of generalizability

without overfitting the data.

5 Discussion

Under the current sampling strategy and observation network, we demonstrate through OSSEs that adding ∆14CO2 obser-570

vations can help us constrain fossil CO2 emissions over Europe using the LUMIA system. We start with two simulation

experiments in which we set the prior fossil CO2 and biosphere (Net Ecosystem Exchange, NEE) fluxes to zero: ZBASE
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Figure 13. Concentration time series of CO2 (a and c) and ∆14CO2 (b and d) at Saclay (SAC) and Jungfraujoch (JFJ), respectively. All prior

and posterior concentrations correspond to the BASE experiment.

and ZCO2Only. Under an OSSE setup, even when using completely different truth and prior flux products (e.g. different

spatio-temporal distributions and annual budgets), due to assumptions such as a perfect transport model and background con-

centrations, it is easy for the model to retrieve the true values even without adding ∆14CO2 observations. For this reason, we575

set up these two more challenging experiments to assess the capabilities of the inversion system to constrain the fossil CO2

emissions and biosphere fluxes using CO2 and ∆14CO2. The ZBASE and ZCO2Only experiments show us that in regions

with a dense sampling network, such as Western/Central Europe, when adding ∆14CO2 observations, LUMIA is capable of

recovering the seasonality of Fff and Fbio, as well as the total annual CO2 budget of the whole region and some of the larger

countries (also in terms of fossil CO2 emissions) such as Germany and France. On the other hand, the results in Northern580

Europe, which has a relatively good network coverage, are not as good as in Western/Central Europe regarding fossil CO2.

Comparing the ranges of the true fossil CO2 and biosphere fluxes in Northern and Western/Central Europe, we find that, while

F t
bio has a similar range in both regions, F t

ff differs by one order of magnitude. Using the concept of signal-to-noise ratio, if

we consider the fossil CO2 as the signal (the variable in which we are more interested) and the biosphere as the noise, this

difference of one order of magnitude between them in Northern Europe makes it easier for the model to recover the biosphere585

fluxes than the fossil CO2 emissions, even with additional information about ∆14CO2. In addition, the prior uncertainty which

is proportional to the fluxes, is close to zero for the fossil fluxes, while it is two orders of magnitude larger for the biosphere,

making it for the inversion more costly to constrain the fossil CO2 emissions.
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Figure 14. Contribution of each category to the prior ∆14CO2 simulated concentrations at Saclay (a) and Jungfraujoch (b).

The inversions are able to resolve the NEE both at the continental level and in the sub-regions but struggle more with fossil

emissions in some regions with few observations (e.g. Southern Europe and the British Isles). This is similar to what was590

found by Wang et al. (2018) despite the differences between their inversion implementation and our LUMIA system. The

main differences lie in the transport model and the inversion approach. They use a global transport model at a resolution of

3.75°×2.5° (Laboratoire de Météorologie Dynamique’s LMDZv4) and a pre-calculated fossil CO2 tracer (product of the mass

balance), while we use a Lagrangian regional transport model at a higher horizontal resolution (0.5°× 0.5°) and optimize

both the fossil and the natural fluxes using as tracers CO2 and ∆14CO2. Wang et al. (2018) found the largest error reductions595

around Germany, Benelux, and eastern France, where most sampling stations are located. Northern Europe was also poorly

constrained in its inversions, similar to what we find. Wang et al. (2018) attributed the results in Northern Europe to the coarse

spatial resolution of the transport model. But even with a higher resolution transport model as employed in LUMIA, we still

can not resolve the true fossil CO2 emissions in an OSSE setup given the current CO2 and ∆14CO2 observation networks. We

think that a more likely explanation is the difference in the magnitude of the fossil CO2 emissions in this region against the600

natural fluxes. This can be seen by the differences in the seasonal amplitude of the fluxes. In Western/Central Europe Fbio and

Fff are of a similar order of magnitude (2.81 TgC day−1 for Fbio and 0.6 TgC day−1 for Fff) (see Figures 5 and 6). In contrast,
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in Northern Europe, there is a tenfold difference in the seasonal amplitude of the two fluxes: 2.44 TgC day−1 for Fbio and 0.06

TgC day−1 for Fff. In addition, the prior uncertainty for Fff (0.002 PgC year−1) in this region is much lower compared to Fbio

(0.12 PgC year−1) in Northern Europe.605

The BASE experiments, in which we use realistic prior fluxes, show that the posterior fossil CO2 emissions are not very sen-

sitive to the prescribed prior uncertainty in regions with a dense sampling network, even when using a low prior Fff uncertainty

in which case it is more difficult for the inversion algorithm to recover the true fluxes. As we have observed in previous studies

using LUMIA (Monteil et al., 2020; Monteil and Scholze, 2021), the cost of fitting the observations dominates the total cost

function value. In this sense, the relative value of the prior uncertainty of Fbio against Fff is going to significantly impact the610

spatio-temporal distribution of flux adjustments, but the total uncertainty of the fluxes is of lesser importance since the model

has enough freedom to adjust the data. In other words, the error structure and how is it set up for the different flux categories,

is going to have more impact than the total prior uncertainty. Both Basu et al. (2016) and Wang et al. (2018) highlight the

importance of a regional horizontal correlation and error structure for fossil CO2 emissions. In our study, we use the same

horizontal correlation and error structures developed by Monteil et al. (2020) originally for NEE. We are aware of the necessity615

of defining specific structures for fossil CO2 within LUMIA due to the low improvement in spatial terms that we find in Figure

7 when adding ∆14CO2 observations. However, it is important to mention that given the sparse observation network, we can

expect spatial misattributions (flux corrections that should happen in one place but are instead made elsewhere), and therefore,

we should interpret the results aggregated at the scale that is relevant given the model setup, as we demonstrate through the

time series and annual budget results. Such spatial misattribution is illustrated in the spatial RMSE reduction results for the bio-620

sphere fluxes. We can clearly identify the formation of dipoles (clusters of larger RMSE values) in regions with no observations

such as the southern part of the study domain and the Baltic States indicating that these areas are underconstrained.

We also find the prior terrestrial disequilibrium product to have an important impact on the posterior fossil CO2 emissions

(Figure 11). The prior terrestrial isotopic disequilibrium flux in our experiments is on purpose incorrect with the aim of showing

the impact that it can have in the estimation of fossil CO2 emissions. As shown in Figure 11, the maximum difference between625

the prior and the true Fbiodis is of the same order of magnitude for Western/Central Europe (2.1 TgC day−1) and Eastern Europe

(1.3 TgC day−1) in July. For Fff, however, the difference between the prior and truth is about one order of magnitude larger

for Western/Central Europe compared to Eastern Europe (0.03 vs 0.005 TgC day−1). This larger difference causes a stronger

dilution of the fossil emissions in Eastern Europe, and therefore essentially lowers the signal-to-noise ratio of the ∆14CO2

measurements, and added to the lower network coverage compared to Western/Central Europe, a poorer constrain of the fossil630

CO2 emissions. According to Turnbull et al. (2009), one of the main contributors to atmospheric ∆14CO2 is heterotrophic

respiration in natural environments. Therefore, having a good prior Fbiodis estimate is crucial in estimating posterior Fff. The

impact of Fbiodis and the other ∆14CO2 flux terms is not negligible, particularly, the emissions from nuclear facilities that

can have a larger impact than the terrestrial disequilibrium (Graven and Gruber, 2011) as was evident when analyzing the

individual impacts of the flux categories, showing that at sampling sites heavily influenced by emissions from nuclear facilities635

such as Saclay, these emissions can be as large as the terrestrial isotopic disequilibrium fluxes. In this study, we fixed the Fnuc

term (i.e. we use the same fluxes for calculating the synthetic observations and in the inversions), and hence, its impact is not
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considered here. In previous studies (Wang et al., 2018; Basu et al., 2016, 2020) the Fnuc is usually prescribed and assumed as

an annual value at each nuclear facility location (Graven and Gruber, 2011; Zazzeri et al., 2018) due to a lack of knowledge

on the temporal distribution of these emissions. This variability in nuclear emissions has been only studied by measuring the640

atmospheric content of ∆14CO2 in the surrounding areas of single nuclear facilities (Turnbull et al., 2014; Vogel et al., 2013;

Lehmuskoski et al., 2021), but not yet in a large regional setup, and therefore it needs further investigation.

The Observing System Simulation Experiment (OSSE) framework used in this study assumes a perfect realization of atmo-

spheric transport and mixing processes by employing the same transport model across the simulations. This assumption sim-

plifies the complex nature of atmospheric dynamics and is a common approach to limit the scope of variability in such studies.645

However, it is crucial to acknowledge that this simplification overlooks one of the largest sources of uncertainty in atmospheric

inverse modeling: the accurate representation of atmospheric transport and mixing processes. The variability and uncertainty in

atmospheric transport can significantly impact the estimation of greenhouse gas sources and sinks. As demonstrated by Schuh

et al. (2019), inconsistencies in transport simulations can introduce systematic biases in surface flux estimations, which can

be as substantial as 1.7 PgC year−1 for large zonal bands. In a study by Munassar et al. (2023), in which multiple combina-650

tions of global and regional models were tested using two different inversion frameworks (LUMIA and CarboScope-Regional

(CSR)), they found that using a different regional transport (FLEXPART and STILT (Stochastic Time-Inverted Lagrangian

Transport)) model can cause differences in the posterior NEE annual budget of 0.51 PgC year−1. This highlights the sensitiv-

ity of inversion-derived emission estimates to the accuracy of the transport model used and emphasizes the critical role that

transport uncertainty plays across global flux inversion systems.655

Furthermore, the assumption of perfect boundary conditions in the model presents another significant simplification. Bound-

ary conditions in atmospheric modeling can greatly influence the concentration gradients and flux estimates, and their mischar-

acterization can propagate errors throughout the model domain. Coming back to the study by Munassar et al. (2023), the use

of a different global transport model (TM3 and TM5) for the estimation of the boundary condition can cause discrepancies in

the posterior annual budget as large as 0.23 PgC year−1. Errors in these aspects of the transport model could lead to skewed660

emission estimates. Given these considerations, the presented results should be interpreted with caution, understanding that

the true uncertainty in atmospheric inverse modeling is likely understated in these OSSEs. It underscores the need for more

comprehensive approaches that account for transport model uncertainties, such as employing ensemble modeling techniques

that incorporate multiple transport models and boundary conditions to better capture the inherent uncertainties in atmospheric

dynamics (Locatelli et al., 2015; Aleksankina et al., 2018).665

6 Conclusions and future perspectives

We have expanded the LUMIA system to be capable of simultaneously inverting atmospheric observations of CO2 and ∆14CO2

to estimate fossil CO2 emissions and net terrestrial biosphere CO2 fluxes over Europe. We performed the first observing system

simulation experiments to test the performance of the ∆14C-enhanced LUMIA version. In the first set of experiments, we show

the impact of adding ∆14C observations in a scenario with prior estimates of Fff and Fbio set to zero. In regions with good670
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sampling network coverage, assimilating both CO2 and ∆14C observations allows recovering the seasonality of Fff and Fbio

and the annual Fff budget, while when assimilating only CO2 observations, the posterior Fff is degraded. In the second set

of experiments, we performed OSSEs using more realistic priors to test the impact of the prescribed Fff uncertainty and the

impact of the prior Fbiodis product. The prescribed prior uncertainty has no significant impact on the posterior Fff. On the other

hand, the prior Fbiodis product can significantly impact the posterior Fff.675

The purpose of this study is to describe the multi-tracer, more specifically CO2 and ∆14CO2, version of LUMIA and

illustrate its application to estimate both fossil CO2 emissions natural CO2 fluxes simultaneously. Future work should analyze

in more detail the impact of various aspects of our inversion set-up here, such as the assumption of a perfect transport model,

the specification of the boundary conditions as well as different spatiotemporal error structures, on the posterior fossil CO2

emissions and natural CO2 fluxes. Particular emphasis should be placed on the analysis of the impact of the prior Fbiodis product680

using simulated terrestrial biosphere disequilibrium estimates by, e.g. the LPJ model following the methodology by Scholze

et al. (2003) because our study here illustrated the importance of this flux term in the CO2 and ∆14CO2 inversion. In addition,

the impact of the prior Fnuc, the sampling strategy, and the network density of the ∆14C observations on the capability to

estimate fossil CO2 emissions needs to be evaluated. The current 2-weekly integrated sampling strategy allows us to get a

reasonable estimate of the annual budget over the whole domain. But the inversion can neither recover the correct temporal685

behavior nor the spatial distribution of the fossil CO2 emissions when using C∆14C observations provided by the current 2-

weekly integrated sampling strategy. Additionally, converting ∆14CO2 values to C∆14C implies calculating the average of the

CO2 observations during the 2-week integration period that can introduce additional errors that we did not account for in this

study. We will evaluate the use of hourly flask samples under different strategies as described by Levin et al. (2020), such as a

"smart" sampling based on pollution episodes of CO2 and CO. This will be in preparation for the intensive ∆14CO2 sampling690

campaign (hourly samples taken every third day) planned within the EC’s Horizon Europe CORSO (CO2MVS Research on

Supplementary Observations) project (https://corso-project.eu/) during 2024 at 10 ICOS stations located in Western Europe.

Code availability. The LUMIA source code used in this paper has been published on Zenodo and can be accessed at https://doi.org/10.5281/

zenodo.8426217.

Data availability. The revised EDGARv4.3 https://doi.org/10.18160/GFNT-5Y47, LPJ-GUESS https://doi.org/10.18160/p52c-1qjm, and695

VPRM https://doi.org/10.18160/VX78-HVA1 datasets are availabale from the ICOS-Carbon Portal. ODIAC data is available at https://doi.

org/10.17595/20170411.001. The input data has been uploaded on Figshare and is available at https://doi.org/10.6084/m9.figshare.24307162.
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Appendix A: Summary of ocean and ocean disequilibrium-derived synthetic observations

Table A1.

Station
Ocean

CO2 ppm

Ocean

∆14C h

Ocedis

∆14C h

Synth. Obs.

CO2 ppm

Synth. Obs. (rnd)

CO2 ppm

Obs. Error

CO2 ppm

Synth. Obs.

∆14C h

Synth. Obs. (rnd)

∆14C h

Obs. Error

∆14C h

All sites -0.07 ± 0.15 -0.007 ± 0.007 0.02 ± 0.017 414.6 ± 12.7 414.6 ± 18.3 9.8 ± 9.0 0.3 ± 8.0 0.2 ± 8.4 1.9 ± 0.05

GAT -0.07 ± 0.1 -0.008 ± 0.007 0.021 ± 0.014 415.7 ± 12.7 416.2 ± 19.2 11.1 ± 7.2 2.1 ± 4.2 2.6 ± 4.8 1.9 ± 0.05

HPB -0.04 ± 0.05 -0.005 ± 0.003 0.016 ± 0.008 414.0 ± 11.2 414.5 ± 16.7 10.4 ± 6.3 1.0 ± 6.3 1.5 ± 6.8 1.9 ± 0.04

HTM -0.07 ± 0.12 -0.009 ± 0.009 0.016 ± 0.009 415.4 ± 12.3 415.5 ± 16.8 10.0 ± 5.7 1.0 ± 4.5 0.5 ± 4.8 1.9 ± 0.04

JFJ -0.03 ± 0.04 -0.002 ± 0.002 0.01 ± 0.005 409.1 ± 5.0 409.0 ± 6.9 4.2 ± 2.1 5.5 ± 2.3 5.5 ± 2.9 2.0 ± 0.02

KIT -0.06 ± 0.06 -0.005 ± 0.004 0.024 ± 0.012 427.1 ± 16.9 427.4 ± 26.9 17.7 ± 10.0 -5.2 ± 10.5 -4.7 ± 11.0 1.9 ± 0.05

KRE -0.05 ± 0.06 -0.005 ± 0.004 0.014 ± 0.009 415.3 ± 12.6 415.0 ± 16.9 10.3 ± 6.0 -4.0 ± 4.6 -4.2 ± 4.9 1.9 ± 0.05

LIN -0.06 ± 0.09 -0.007 ± 0.006 0.017 ± 0.011 420.9 ± 16.9 420.2 ± 25.2 15.2 ± 11.6 -7.7 ± 9.4 -8.2 ± 9.5 1.9 ± 0.05

NOR -0.07 ± 0.14 -0.009 ± 0.009 0.011 ± 0.01 415.8 ± 10.7 415.5 ± 14.4 8.5 ± 4.8 4.9 ± 4.3 4.5 ± 5.1 1.9 ± 0.03

OPE -0.07 ± 0.08 -0.006 ± 0.004 0.034 ± 0.021 416.7 ± 14.3 416.5 ± 21.5 13.3 ± 9.3 -1.6 ± 6.8 -1.2 ± 6.3 1.9 ± 0.04

OXK -0.06 ± 0.08 -0.006 ± 0.004 0.02 ± 0.013 411.0 ± 7.3 410.8 ± 10.5 7.1 ± 3.0 1.8 ± 4.8 1.5 ± 5.8 1.9 ± 0.03

PAL -0.1 ± 0.13 -0.011 ± 0.007 0.005 ± 0.004 412.3 ± 8.6 412.3 ± 10.8 6.0 ± 3.7 8.7 ± 4.2 8.9 ± 5.0 1.9 ± 0.03

SAC -0.08 ± 0.1 -0.009 ± 0.007 0.04 ± 0.02 425.2 ± 23.0 425.6 ± 37.9 23.1 ± 20.0 -13.1 ± 8.3 -13.7 ± 8.8 1.9 ± 0.03

STE -0.08 ± 0.12 -0.01 ± 0.007 0.021 ± 0.01 413.4 ± 10.0 413.7 ± 15.6 9.4 ± 7.2 0.4 ± 4.9 -0.4 ± 6.2 1.9 ± 0.03

SVB -0.1 ± 0.16 -0.011 ± 0.009 0.007 ± 0.006 412.5 ± 9.5 412.0 ± 12.4 7.1 ± 4.5 5.8 ± 3.0 5.5 ± 3.7 1.9 ± 0.03

TRN -0.08 ± 0.09 -0.009 ± 0.007 0.041 ± 0.026 415.9 ± 13.7 415.7 ± 21.0 12.2 ± 10.7 2.8 ± 5.4 3.1 ± 6.1 1.9 ± 0.04

BIR -0.09 ± 0.1 - - 410.7 ± 7.6 410.6 ± 10.3 6.1 ± 4.1 - - -

CMN -0.03 ± 0.05 - - 408.4 ± 6.7 408.2 ± 8.8 5.1 ± 2.6 - - -

HEL -0.15 ± 0.25 - - 414.1 ± 9.3 414.2 ± 16.7 11.1 ± 6.9 - - -

IPR -0.04 ± 0.05 - - 428.8 ± 17.6 428.8 ± 26.0 16.8 ± 10.3 - - -

JUE -0.07 ± 0.08 - - 417.6 ± 15.3 416.9 ± 24.8 15.2 ± 15.5 - - -

LMP -0.01 ± 0.27 - - 410.5 ± 4.6 410.3 ± 6.5 4.5 ± 1.8 - - -

LUT -0.1 ± 0.14 - - 416.8 ± 15.7 416.8 ± 24.9 14.4 ± 12.7 - - -

PRS -0.02 ± 0.04 - - 408.9 ± 5.0 409.0 ± 6.7 4.0 ± 2.0 - - -

PUI -0.07 ± 0.12 - - 410.9 ± 6.1 411.0 ± 8.1 5.1 ± 2.2 - - -

PUY -0.06 ± 0.08 - - 409.4 ± 8.3 409.3 ± 11.5 6.5 ± 4.2 - - -

RGL -0.11 ± 0.13 - - 409.6 ± 8.3 409.6 ± 11.1 6.9 ± 3.9 - - -

SMR -0.07 ± 0.13 - - 414.2 ± 10.6 414.2 ± 13.9 7.9 ± 4.6 - - -

SSL -0.06 ± 0.06 - - 410.2 ± 6.6 410.4 ± 9.7 6.4 ± 3.1 - - -

TOH -0.06 ± 0.09 - - 414.7 ± 11.7 414.9 ± 16.4 9.8 ± 5.6 - - -

UTO -0.24 ± 0.45 - - 414.2 ± 9.2 414.3 ± 14.5 9.4 ± 5.0 - - -

WAO -0.06 ± 0.07 - - 419.5 ± 9.6 420.2 ± 19.5 14.0 ± 7.5 - - -

WES -0.08 ± 0.12 - - 414.1 ± 10.3 414.2 ± 18.6 13.0 ± 6.9 - - -

ZSF -0.03 ± 0.04 - - 409.1 ± 5.3 409.2 ± 7.4 4.7 ± 2.3 - - -
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Appendix B: Spatial clustering algorithm

The inversion solves for offsets to the prior fluxes at a variable spatial resolution: high (up to 0.25°) in the direct vicinity of700

observation sites, but lower in parts of the domain that are not well sampled by the observation network. To achieve this, the

spatial domain of the inversion is divided into a set of clusters of grid cells, each defined by the following properties:

– cells: the list of grid cells included in the cluster.

– weight: the sum of a property carried by each grid cell. In our case, this property is the average sensitivity of the

observation network to that grid cell.705

– size: the number of grid cells in the cluster.

– mean_lat, mean_lon: the average (area-weighted) lat and lon of the grid cells in the cluster

– area: the total of all the grid cells included in the cluster.

– type: ocean, land, or mixed.

– continuity: whether it is possible to "walk" from any grid cell of the cluster to any other one or whether there are710

discontinuities (e.g. a "land" cluster separated in two parts by ocean grid cells).

The objective of the clustering algorithm is to divide the domain into a user-defined number of continuous clusters with

roughly equal "weight". The "weight" of a single grid cell is, in our case, defined as the average value of the adjoint field in that

grid cell for an adjoint simulation driven by model-data mismatches set proportional to the uncertainty of each observation.

The clustering is performed iteratively as follows:715

1. Initially, one single cluster is formed, comprising all grid cells of the domain. It is added to a pool of "dividable" clusters.

2. The "weight" of all clusters in that pool is calculated (i.e. the weight of the single initial cluster at the first iteration);

3. The cluster with the largest weight is then split into two even parts across its longest axis (i.e., in an eastern and western

part, at the first iteration);

4. The resulting two new clusters are checked for continuity. If needed, they are further split into several continuous clusters;720

5. If a cluster reaches the minimum size (1 grid cell), it is moved to a pool of "defined" clusters.

6. If the total number of clusters ("dividable" plus "defined") is lower than the target number of clusters, then repeat steps

2 to 6. Otherwise, exit.

Because of how the cluster weights are defined, clusters away from observation points end up being considerably larger, but

they are in regions where the inversions would have applied very smooth flux adjustments, so there is no real drawback to this725

clustering.
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