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Dear Editor, 
 
Here we address the latest review of our manuscript titled "Can Δ14CO2 observations help 
atmospheric inversions constrain the fossil CO2 emission budget of Europe?" 
 
We sincerely appreciate feedback on our manuscript and are committed to improve it further. 
But in this round of review, we are partly facing again questions that have already been 
answered and supported by relevant bibliography in previous rounds as well as new concerns 
that have not been mentioned before. While we have made modifications based on the latest 
comments to clarify the manuscript for the referee, we consider these new comments rather to 
be minor revisions. However, we are concerned that this process may become an endless loop 
of revisions, as there seems to be a fundamental misunderstanding of the concept of our study 
by the referee. This may be caused by preconceived conceptions of their field of research from 
the assessment of our manuscript (examples for this are the confusion about the grid, the usage 
of the term ‘Observation Simulation System Experiment’, and the comment on basic linear 
algebra as explained in more detail below). We have also noticed that the referee has 
progressively lowered the rating of the manuscript in terms of scientific significance, scientific 
quality, and presentation quality, despite acknowledging improvements made in each round of 
review. Therefore, we suggest that a direct contact with the referee may help to clarify their 
concerns. 
 
We are puzzled about the referee's question on basic linear algebra concepts, such as 
"However, it is unclear how B^-1 and x multiply in (6),". As mentioned above we assume that 
this is caused by a fundamental misunderstanding of our manuscript. This misunderstanding 
appears to arise from an earlier stage of the manuscript, leading to questions about basic 
concepts. We cannot adequately address the referee's concerns without knowing the specific 
source of this confusion. It seems the referee believes our study involves a more complex 
methodology than it actually does. Our manuscript describes a classical sensitivity experiment 
in a variational inverse modeling application, using standard optimization algorithms common in 
the field and a general methodology described in many publications and also more specifically 
already elsewhere (e.g. Monteil and Scholze, 2021). This is not a model development 
manuscript and does not employ any unique optimization techniques. 
 
Below, we provide a detailed response (in regular font) to each of the referee’s comments (in 
italics), indicating how we have addressed them in the revised manuscript. We hope this 



clarifies any misunderstandings and demonstrates our commitment to meeting the high 
standards of the journal. 
 
Referee’s comments 
 
The updated manuscript contains a number of improvements. However, I also see a number of 
points where the authors are reluctant to follow my recommendations.  
I summarise the main points below:  
comments on the original communication to the editor:  
1. “…but it is fundamentally an arbitrary choice, similar to the definition of the domain extent or 
the selection of a specific resolution for the transport model. As such, it is not feasible to provide 
a mathematical description for this more than the actual code referenced in the answer below.”  
As such, it is not feasible to provide a mathematical description for it beyond the actual code 
referenced in the response below".  
The grid design choices made by the authors may well be reasonable, but they are not arbitrary 
per se, as the model is expected to produce valid results consistent with the objective of the 
paper. 
 
Our sentence in the rebuttal directly addressed the referee's request for a "mathematical 
foundation for Appendix B" (as noted in the last line of their previous review). Appendix B 
outlines the procedure for defining the reduced grid on which the control vector is based. It is 
important to note that this is distinct from the transport model grid, which was mentioned in the 
manuscript (lines 241-245). The choice for the control vector grid is indeed arbitrary, based on 
the authors' best judgment rather than a formal derivation. We justified this choice in lines 234-
240 of the manuscript, a justification to which the referee has not previously objected. 
 
I understand that a formal study of model optimisation is beyond the scope of the paper. 
However, scientific scrutiny deserves at least that the model grid design (extension, resolution) 
and assumed emission patterns are based on a discussion of typical advection timescales and 
minimum error estimates for emission source assumptions, summarising the underlying 
assumptions and assuring the reader of the limits of possible modelling errors. I do not 
understand why this moderate request for more concern and awareness of possible design 
problems is apparently seen as an imposition by the authors. One sentence should suffice.  
 
The referee's comment suggests to us that they misunderstand our grid design. All previous 
questions were about the optimization grid shown in Figure 2, which is not at all related to 
advection timescales. Our transport calculations are done at a 0.5° spatial and hourly temporal 
resolution, and emissions are provided at the same resolution. The optimization grid is used 
only to solve the inverse problem (i.e., the control vector), and advection timescales are not 
relevant. 
 
This new request for justification of resolution and domain definition was not raised before. The 
domain choice has been commented since the first version of the manuscript at the beginning of 
Section 2.1. Regional transport model (Section 2.2. Observations, L189-190 of the last version) 
and supported by publications such as Monteil et al., 2020; and Thompson et al., 2020 (cited on 
the manuscript) and other ACP and Copernicus publications such as McGrath et al., 2023; 
Munassar et al., 2023; and Petrescu et al., 2021. We have already explained and justified our 



choices for the optimization grid in the manuscript. We think that our current explanation is 
sufficient and appropriate for the scope of this manuscript (as it was in the previous publications 
mentioned before). 
 
2. The algorithmic description is still a mystery to me. In some exemplary detail: The authors 
have (L222): “H is the observation operator, which includes the transport model…”. Since, 
according to eq. (6), H (including the time propagating transport model) acts on the vector x to 
be optimised, the latter presumably according to the Ide formulation.  
 
Indeed, our formulation was somewhat confusing and now we have changed our equations 1 to 
7 to account for that. In equations 1-4 we have introduced the regional transport model operator 
𝐾𝐾. Equations 5-7 have been reformulated to clarify the linearity of the observation operator 𝐻𝐻. 
 
3. The H M(tangent linear model)(t_i, t_0) acts on x(t=0), which is not a multi-time step state 
vector but rather an observation operator H. The background term, with the inverse space-time 
covariance matrix B (as previously stated in 2.3.2), would be in compliance with this if the 
generalized observation operator H were also applied. However, this is absent, and there is no 
indication of how the time propagation is managed for this 1. rhs term of (6).  
 
We adjusted the cost function (Equation (6)) to write it in the common form used by other 
authors, and removed the sentence in L219-220 of the latest version “that are available over a 
range of times, also known assimilation window” which might be misunderstood as that we do 
sequential assimilation, but otherwise, we do not understand the referee’s concern. We do not 
really understand the comment of the reviewer. There is no tangent linear model in our case, 
since 𝐇𝐇 is linear. 𝐇𝐇 acts on 𝒙𝒙 in its entirety, not on 𝒙𝒙(𝑡𝑡). It’s not clear to us what the referee 
means by “time propagation”: there is a time propagation within 𝐇𝐇 (i.e. the observations at time 
𝑡𝑡 = 𝑡𝑡1 are influenced by control variables 𝒙𝒙(𝑡𝑡 ≤ 𝑡𝑡1), but there is no time propagation of the 
solution (i.e. 𝒙𝒙(𝑡𝑡 = 𝑡𝑡1) doesn’t depend on 𝒙𝒙(𝑡𝑡 < 𝑡𝑡1)). 
 
Furthermore, the presentation of the covariance formulation is not sufficiently clear.  
L 265: cov(x1, x2) = σx1 σx2 exp(−(d(p1,p2)/Lh)2exp(−|t2−t1|/Lt)  
This expression should be indexed properly, that is, with time and location indices running 
independently, and both by different index variables with associated limits. This would ensure 
that the reader can identify the entry-wise construction and associated x. 
 
The equation is strictly correct, and exactly how it's used in the code. The covariance between 
two elements 𝒙𝒙1 and 𝒙𝒙1 of the control vector is the product of their variances (𝜎𝜎𝒙𝒙1 and 𝜎𝜎𝒙𝒙2), and 
of two decorrelation functions, decreasing exponentially with the spatial and temporal distance 
between the two points. There is zero ambiguity in the Equation. Nevertheless, we replaced the 
sub-indexes 1 and 2 in the equation by 𝑖𝑖 and 𝑗𝑗 to put it in a more general way. The indices refer 
neither to time nor to location, they refer to the position of the variables in the control vector. 𝑥𝑥𝑖𝑖 
has coordinates (𝑝𝑝𝑖𝑖 , 𝑡𝑡𝑖𝑖), and 𝑥𝑥𝑗𝑗 has coordinates (𝑝𝑝𝑗𝑗 , 𝑡𝑡𝑗𝑗).  
 
The Equation at L265 gives exactly the entry-wise construction of the covariance matrix. The 
only step missing in this equation is for the case when 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 belong to different emission 
categories, in which case the correlation is 0. But this is very clearly specified just above, at 
L252: "we assume no correlations between different categories and different tracers". 



 
However, it is unclear how B^-1 and x multiply in (6). 
 

1. 𝒙𝒙 has 𝑛𝑛 = 𝑛𝑛𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑛𝑛𝑝𝑝

𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐 
2. 𝐁𝐁 has (𝑛𝑛, 𝑛𝑛) elements 
3. The product 𝒙𝒙𝑇𝑇𝐁𝐁−1 results in a 𝑛𝑛 dimension vector 

 
Section 2.3.2 (Covariance construction-related issues)  
In their response, the authors assert that: "It is our contention that this section provides a lucid, 
step-by-step explication. In particular, the entries of the prior error covariance matrix B are 
defined by the equation presented in Section 2.3.2 (L251 of the revised manuscript, originally 
L204). I must respectfully disagree. I endeavoured to comprehend the material, but upon 
reaching a point where I believed I had succeeded, I encountered inconsistencies in another 
location. It is unclear why a section is not devoted to defining the subspace section of vector x 
(sub)segment wise.  
 
We are puzzled why the referee is misquoting us here. Their paraphrasing suggests a very 
different tone than we actually used in our previous response. The correct quote is: “We believe 
this section provides a clear, step-by-step explanation. Specifically, the entries of the prior error 
covariance matrix 𝐁𝐁 are described by the equation found in Section 2.3.2 (L251 of the revised 
manuscript, originally L204).” 
 
The vector 𝒙𝒙 can be divided in one section for each tracer/category. The approach for each of 
these sections is the same and is described in L253 ("the sections of 𝐁𝐁 specific to each 
tracer/category ...") to L261. The part specific to the subsections is described just after, from 
L264 to L270. There is no ambiguity in our description of the covariance matrix. 
 
Firstly, it is assumed that the term "offset" refers to what is commonly referred to in data 
assimilation as an "increment," which is likely an analysis increment rather than an observation 
increment.  
 
No. The term "offset" refers to the fact that the control vector contains "offsets" to the prior 
emissions, as opposed to e.g. scaling factors, which are another commonly encountered 
approach. It refers to the physical quantities that the control vector represents, whereas 
“increment” refers to the change of the values of the control vector between two iterations of the 
inversion (regardless of what physical values this “increment” corresponds to).  
 
The term “analysis” used by the referee is commonly used in the context of sequential 
inversions, such as those employed for weather forecasting, which estimate the atmospheric 
state through a series of forecast and analysis steps. However, this term is not adapted to 
atmospheric flux inversions, where the terms “prior” and “posterior” are to be used instead. 
Beyond the naming convention, this also highlights that there is no time propagation of the 
solution.  
 
 



L250: : “The matrix Xc x is the portion of the control vector x that contains offsets for the 
category c, reshaped as a (ntopt, npopt) matrix, with ntopt and npopt the number of optimized 
(weekly) intervals and grid-cell clusters, respectively.”  
In what sense may a matrix X, comprising portions of a vector, be defined in terms of vector 
calculus? It is possible that this is the source of the misunderstanding.  
 

• 𝐓𝐓𝑇𝑇 is a (𝑛𝑛𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑝𝑝

𝑜𝑜𝑜𝑜𝑜𝑜) matrix. 
• 𝒙𝒙𝑐𝑐 is a (𝑛𝑛𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜 × 𝑛𝑛𝑝𝑝
𝑜𝑜𝑜𝑜𝑜𝑜) vector, reshaped as a (𝑛𝑛𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑝𝑝
𝑜𝑜𝑜𝑜𝑜𝑜) matrix 𝐗𝐗𝑐𝑐. 

• 𝐓𝐓H is a (𝑛𝑛𝑡𝑡
𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑝𝑝

𝑜𝑜𝑜𝑜𝑜𝑜) matrix. 
The product 𝑑𝑑𝐅𝐅𝑐𝑐 = 𝐓𝐓𝑇𝑇𝐗𝐗𝑐𝑐𝐓𝐓𝐻𝐻 gives a (𝑛𝑛𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑛𝑛𝑝𝑝
𝑜𝑜𝑜𝑜𝑜𝑜)  matrix (i.e. 1 year of hourly emission offsets at a 

0.5° resolution, for one category 𝑐𝑐). The corresponding emissions are just 𝐅𝐅𝑐𝑐 = 𝐅𝐅𝑐𝑐0 + 𝑑𝑑𝐅𝐅𝑐𝑐, with 𝐅𝐅𝑐𝑐0 
the prior emissions for that category (still at a 0.5° and hourly resolution). 
 
The adjoint is simply 𝐗𝐗𝑐𝑐

𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐓𝐓𝐻𝐻𝑇𝑇𝑑𝑑𝐅𝐅𝑐𝑐
𝑎𝑎𝑎𝑎𝑎𝑎𝐓𝐓𝑇𝑇𝑇𝑇, which aggregates a (𝑛𝑛𝑡𝑡

𝑜𝑜𝑜𝑜𝑜𝑜,𝑛𝑛𝑝𝑝
𝑜𝑜𝑜𝑜𝑜𝑜) adjoint emission array 

(for category 𝑐𝑐) onto a (𝑛𝑛𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑛𝑛𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚). The 𝐓𝐓𝑇𝑇 and 𝐓𝐓H matrices are category specific. These are 
basic aggregation/rebinning operations. 
 
The rationale behind these equations is: 

• The transport is computed hourly (with hourly emissions), but the inversions solves for 
weekly offsets (i.e. the emissions within a week will all be increased or decreased by the 
same absolute amount). An operator is needed to project these weekly offsets onto the 
hourly emissions. 

• Likewise, in the spatial dimension, the offsets are defined on a reduced grid (Figure 2), 
whereas the emissions themselves are defined on a 0.5° resolution, the aforementioned 
operator also needs to be extended to project the emissions from the reduced grid to the 
model grid. 

 
We have modified Eq. 7 and the section related to it such that we do not use 𝐗𝐗 in the 
description. We think that our revised version is easier to follow. 
 
While for partial differential equations, discretized physical domains are transferred to vectors 
and back to harness vector calculus, the rationale behind the procedure addressed here is 
unclear. 
 
There are no partial differential equations involved in this procedure, neither are they mentioned 
in the text or the equations. The rationale is just that at the transport model resolution, there are 
42 million spatiotemporal grid cells (24 hours * 365 days * 80 lon * 60 lat), for each emission 
category, which drops to ~130000 per category with our reduced grid, which is computationally 
more favorable. Also, the density of the observation network is in any case way too low to 
robustly resolve the emissions at the model resolution.  
 
Note, once again, that this reduced resolution concerns only the offsets optimized by the 
inversions. The base emissions, onto which these offsets are added, are still provided and 
transported at high resolution. 
  



In addition to the ACP paper writing guidelines, which have been partly replicated in my 
previous review, it is important to ensure that mathematical formulae, symbols, abbreviations 
and units are correctly defined and used. • Are the scientific methods and assumptions valid and 
clearly outlined? It is not possible to discern an enhanced derivation from the generic variational 
formula (6) in comparison to eq. (7), and furthermore, the verbal description of the covariance 
matrix B in 2.3.2 is not sufficiently clear.  
 
We answer this in previous questions above. Regarding the verbal description of 𝐁𝐁, we 
disagree. The description is perfectly clear and unambiguous. As mentioned before, we suspect 
that there is a more fundamental misunderstanding, which lead the referee to misinterpret this 
section. We don't know precisely how to solve this misunderstanding without knowing its origin, 
but it is not in this section.  
 
Please refer to Section 3. The confusion surrounding the use of the term "OSSE" and its relation 
to identical twin (IT) experiments  
Sect 3. The confusion surrounding the use of the acronym "OSSE" in relation to identical twin 
(IT) experiments: Although the authors acknowledge that their approach is correctly classified 
as an IT, their justification by customary use in their atmospheric inversion community is not 
valid. The authors might not make false use of a terminology with precise distinctions between 
(OSSE – IT) from data assimilation without any necessity, neglecting precision.  
The authors may not be employing the correct terminology with regard to the precise 
distinctions between OSSE and IT in the context of data assimilation, without any necessity for 
such precision.  
 
We have already addressed this question in the past and we are surprised by the invalidation of 
our terminology, especially given the established practices in our research community. 
Numerous papers within our community (also published in ACP and already cited in previous 
responses) support the usage of the terminology we have employed. It is important to recognize 
that different research communities may develop distinct terminologies and methodologies, 
even if the underlying principles are similar. This divergence in terminology can cause confusion 
to the referee, but it is consistent with the practices in our field of atmospheric inverse modeling. 
 
Our intention was not to neglect precision but to adhere to the accepted conventions within our 
community. We hope this explanation clarifies our approach and the reasoning behind our 
terminology. 
 
We have also clearly stated in the manuscript that we are performing a ‘perfect transport 
Observing System Simulation Experiment’ (L 282). 
 
Note: Given the questions raised by the referee about the rigorousness of the mathematical 
formulations, in the attached document we provide a detailed derivation of all the equations in 
the methodological section of the manuscript. However, we consider such level of detail is too 
detailed for the paper. 
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matrix formulation of the transport
The model estimate ym for the observations y is given by

ym = H(x,E, ybg)

where:

In our case, the atmospheric transport is linear, meaning that the previous equation can be re-
written as

ym = ybg + K(e + Px)

with:

Note that with this formulation, when x(:) is 0, (i.e. when x = xb), the equation simplified to
ymapri = ybg + Ke: The original, fine-resolution structure (0.5°, hourly) of the emissions is always

E represents the emissions of CO2 and CΔ14C. For CO2 those correspond to the F  terms,
defined in Section 2.1 of the paper, while for some of the CΔ14C emission categories, the
definitions are slightly more complicated, for instance, the CΔ14C fossil fuel emissions are
given by ECΔ

ff
= ΔffFff  (see Equation 4b of the paper for the definition of all the categories).

The emissions are provided at a 0.5°, hourly resolution. Therefore E can be seen as an array
of dimensions (ncatmod, ntmod, nlat, nlon). Note that there is no "tracer" dimension: some
emission categories refer to CO2, while some others refer to CΔ14C.

ybg represents the background concentrations (i.e. the influence of emissions further away in
time and/or space). Note that "background" here should be understood from a modelling
perspective (it is a form of boundary condition), and not in a data assimilation sense.

x is the control vector, which is adjusted by the inversion. It contains a correction to the
emissions E, in the form of offsets. x is provided at a lower resolution than E, and has size
nopt = ncatopt × ntopt × npopt, with nopt the number of optimised emission categories (2 or 3
depending on the simulations), ntopt the number of weekly optimisation time steps, and npopt
the number of optimised "clusters" (or patches, regions, super-cells, ...), as shown in Figure
2b of the paper.

H is the observation operator, which links the control vector x, containing the adjusted by the
inversion (i.e. in the optimisation space), to the corresponding values in the observation
space. It handles essentially three operations:

1. project the coarse resolution emission offsets x onto the model grid

2. compute the regional transport of these emissions, i.e. their influence on observed
values

3. combine it with the background concentrations ybg

P the (nmod, nopt) matrix, projecting x onto the emission space.

e the vectorized form of E (i.e. e is a nmod = ncatmod × ntmod × nlat × nlon vector)

K is the transport matrix, projecting the emissions onto the observations space. K has shape
(nobs, nmod)



present and transported, even when the control vector is at a much lower resolution.

Classically, inversions seek to minimise a cost function J(x) that balances the fit to the prior xb

with the fit to observations y:

J(x) =
1

2
(x − xb)TB−1(x − xb) +

1

2
(ym − y)TR−1(ym − y)

We then define δy = y − ymapri. Since ymapri = ybg + Ke, we can replace ym − y in the equation above
by simply Kx − δy:

J(x) =
1

2
(x − xb)TB−1(x − xb) +

1

2
(KPx − δy)TR−1(KPx − δy)

This means that our observation operator H = KP is fully linear, and has an adjoint HT = PTKT.

The transport operator K is computed using the Lagrangian transport model FLEXPART, and
consists essentially of one FLEXPART footprint for each observation. The operator P is simply
regridding the offsets x onto the model grid. This is done through a series of matrix operations:

eapos = eapri + δe

with:

δec = (TH ⊗ TT)xc

where xc is the portion of the control vector x containing the offsets to the emissions in category c.
TT is a (ntmod,ntopt) matrix such that Tt(i, j) contains the fraction (between 0 and 1) of the
optimisation time step j that falls within the model time step i (so, in our case, it typically contains
either 0 (when the model interval i is outside the optimisation interval j), or 1 / 168 (i.e. 1 / 7 / 24),
when the model interval i is within the optimization interval j (since the model is hourly and the
optimisation is weekly). Likewise TH is a (npmod,npopt) matrix (with npmod = nlat × nlon) such that
TH(i, j) contains the fraction of the area of the optimisation cluster j that falls within the model grid
cell i. The values range between 0 and 1 since the optimisation "grid" is irregular (Figure 2b).

The formula above is not practical (TH ⊗ TT is very large!), but it can be reformulated as

δec = vec(TTXcTT
H)

, where Xc is xc reshaped as a (ntopt,npopt) matrix, and vec is the operator reshaping the result of
that operation from a (ntmod,npmod) matrix to a ntmod × npmod vector.

The operation is conducted in a similar way for each category. Mathematically, this can be
formulated

δe = (Tc ⊗ TH ⊗ TT)xc

with TC a (ncatmod,ncatopt) matrix such that Tc(i, j) is 1 if the category i is optimised, and 0 if it is
not.

In practice, the calculations are performed one observation at a time, and one category at a time:

y
i
apos = y

bg +∑
c

Kiec +∑
copt

KiTtXcoptTh



, where c is the list of categories relevant for the tracer (CO2 or CΔ14C) corresponding to the
observation yi, and copt is the list of optimised categories relevant for that tracer (i.e. ff and bio for
CO2, plus biodis for CΔ14C, in some simulations). Each row of K corresponds to one FLEXPART
footprint, out of which only the non-zero components are stored (but, mathematically, these
footprints are still defined over the entire length of the simulation). Furthermore, K is in fact
identical for all categories (so its real shape is only (nobs, ntmod × nlat × nlon)).
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