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Abstract. Correlation does not necessarily imply causation, and this is why causal methods have been developed to try to

disentangle true causal links from spurious relationships. In our study, we use two causal methods, namely the Liang-Kleeman

information flow (LKIF) and the Peter and Clark momentary conditional independence (PCMCI) algorithm, and apply them

to four different artificial models of increasing complexity and one real-case
::::::::
real-world

::::
case

:
study based on climate indices

in the North Atlantic and North Pacific
:::::::
Atlantic

:::
and

::::::
Pacific

:::::::
regions. We show that both methods are superior to the classical5

correlation analysis, especially in removing spurious links. LKIF and PCMCI display some strengths and weaknesses for the

three simplest models, with LKIF performing better with a smaller number of variables, and PCMCI being best with a larger

number of variables. Detecting causal links from the fourth model is more challenging as the system is nonlinear and chaotic.

For the real-case
::::::::
real-world

::::
case study with climate indices, both methods present some similarities and differences at monthly

time scale. One of the key differences is that LKIF identifies the Arctic Oscillation (AO) as the largest driver, while El Niño-10

Southern Oscillation (ENSO) is the main influencing variable for PCMCI. More research is needed to confirm these links, in

particular including nonlinear causal methods.

1 Introduction

One of the most commonly used methodologies to identify potential relationships between variables in climate research is

the correlation, with or without a lag (or time delay). For example, Bishop et al. (2017) used an approach based on lead-lag15

correlations between sea-surface temperature (SST) and turbulent heat flux to discriminate between atmospheric-driven and

ocean-led variability using both a stochastic energy balance model and satellite observations at monthly time scale. In another

study, Docquier et al. (2019) found a systematic large anti-correlation between Arctic sea-ice area and northward ocean heat

transport in climate models at different resolutions, which confirmed previous observational findings showing that the latter

is a driver of the former (Årthun et al., 2012). Another example is the modeling analysis from Small et al. (2020), who used20
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a regression analysis to quantify the dynamical and thermodynamical contributions to the ocean heat content tendency at the

global scale.

However, such correlation (or
:::::
linear

:
regression) approaches, despite being useful for identifying potential relationships be-

tween variables, do not imply causation. A significant correlation simply means that there is a relationship, or synchronous

behavior, between two variables without explicitly confirming a causal link between the two. Correlation suffers from five25

key limitations. First, a significant correlation between variables could appear by chance (that is called ‘random coincidence’).

Second, the correlation does not allow to identify the direction of the potential causal link, so this approach supposes an a

priori knowledge of processes at play.
:::
The

:::::::
problem

::
of

:::::::::
directional

::::::::::
dependence

::
is
:::::
often

:::::
coped

::::
with

:::
by

:::::
using

::::::
lagged

:::::::::
correlation

::
or

:::::::::
regression,

::::
but

:::
this

:::::::
method

::
is
::::::::::

susceptible
::
to
::::::::

overstate
::::::

causal
:::::::::::

relationships
::::::

when
:::
one

::::::::
variable

:::
has

:::::::::
significant

::::::::
memory

:::::::::::::::::::::::
(McGraw and Barnes, 2018).

:
Third, there could be an external (hidden) variable (sometimes referred to as a ‘confounding30

variable’) that influences two correlated variables, as demonstrated in Sugihara et al. (2012), and a simple correlation anal-

ysis would not allow for disentangling these causal links. Fourth, the
:::::
linear correlation cannot identify possible nonlinear

relationships. Lastly, the correlation is computed for pairs of variables and does not consider multivariate frameworks.

Hence, causal methods prove to be very useful. Runge et al. (2019a) provide a detailed review of
::::::
selected

:
causal inference

frameworks applied to Earth system sciences, despite excluding one of the causal methods used here. Some of these methods35

are briefly described hereafter. Granger causality is
::
has

:::::
been the first formalization of causality to time series and is based on

autoregressive modeling (Granger, 1969). It has been used in a series of climate studies, including several analyses focusing on

air-sea interactions (Mosedale et al., 2006; Tirabassi et al., 2015; Bach et al., 2019). Convergent-cross mapping (CCM) attempts

to uncover causal relationships based on Taken’ s
::::::
Takens’

:
theorem and nonlinear state-space reconstruction (Sugihara et al.,

2012). For example, CCM has been used for analyzing the temperature-CO2 relationship over glacial-interglacial timescales40

(van Nes et al., 2015), the causal dependencies between different ocean basins (Vannitsem and Ekelmans, 2018), and the

stratosphere-troposphere coupling (Huang et al., 2020). Transfer entropy (Schreiber, 2000) and conditional mutual information

(CMI; Paluš et al. 2001; Paluš and Vejmelka 2007) are also two widely used causal methods, which have been proved to be

equivalent (Paluš and Vejmelka, 2007). Silini et al. (2022) have used a
:::::::::::::
computationally fast alternative of transfer entropy,

called pseudo-transfer entropy, to quantify causal dependencies between 13 climate indices representing large-scale climate45

patterns.

The PCMCI method is a causal discovery method based on the Peter and Clark (PC) algorithm (Spirtes et al., 2001),

combined with the momentary conditional independence (MCI) approach (Runge et al., 2019b).
:
It
::
is

:::::
based

:::
on

:::
the

:::::::::
systematic

::::::::::
exploitation

::
of

:::::
partial

:::::::::::
correlations,

:::::::::
conditional

::::::
mutual

:::::::::::
information,

::
or

:::
any

:::::
other

:::::::::
conditional

::::::::::
dependency

::::::::
measure. PCMCI has

been used, for example, to analyze Arctic drivers of mid-latitude winter circulation (Kretschmer et al., 2016), relationships50

between Niño3.4 and extratropical air temperature over British Columbia (Runge et al., 2019b), tropical and mid-latitude

drivers of the Indian summer monsoon (Di Capua et al., 2020a), predictors for seasonal Atlantic hurricane activity (Pfleiderer

et al., 2020), and interactions between tropical convection and mid-latitude circulation (Di Capua et al., 2020b).

The Liang-Kleeman information flow (LKIF; Liang and Kleeman 2005) is based on the rate of information transfer in

dynamical systems and has been rigorously derived from the propagation of information entropy between variables (Liang,55
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2016). This method has been applied to several climate studies, including the El Niño - Indian Ocean Dipole (IOD) link

(Liang, 2014), the relationship between carbon dioxide and air temperature (Jiang et al., 2019; Hagan et al., 2022), dynamical

dependencies between a set of observables and the Antarctic surface mass balance (Vannitsem et al., 2019), identification of

potential drivers of Arctic sea-ice changes (Docquier et al., 2022), causal links between climate indices in the North Pacific

and Atlantic regions and local Belgian time series (Vannitsem and Liang, 2022), and ocean-atmosphere interactions (Docquier60

et al., 2023).

Generally
:::::::::
Commonly, each study focuses on only one causal method. However, contradictory results might appear when

using different causal methods, and it is thus important to compare them. Several studies have investigated differences between

causal methods. One of the most comprehensive studies in this respect in the recent past is the intercomparison of Krakovská

et al. (2018), in which the authors compared six causal methods, namely Granger causality, two extended versions of Granger65

causality, CMI, CCM, and predictability improvement (Krakovská and Hanzely, 2016). They used seven artificial datasets

based on coupled systems. A key outcome of their analysis is that there is no single best causal method as results depend on

the intrinsic characteristics of the used dataset. Krakovská et al. (2018) found that for simple autoregressive models, Granger

causality and its extensions were the best tools to identify the right causal links, while CCM and predictability improvement

failed. On the contrary, for more complex systems, Granger causality and its extensions failed, while the remaining methods70

were more successful, although they differed considerably in their ability to detect the presence and direction of coupling.

Paluš et al. (2018) showed that the Granger causality principle that the cause precedes the effect was violated in coupled

chaotic dynamical systems using CMI, CCM and predictability improvement. Coufal et al. (2017) used CMI and CCM, and

showed that the detection of coupling delays in coupled nonlinear dynamical systems was challenging. Manshour et al. (2021)

compared CMI with LKIF and interventional causality (Baldovin et al., 2020), and confirmed a robust influence of solar wind75

on geomagnetic indices using all causal methods. An advantage of interventional causality compared to other causal methods is

the detection of indirect causal links (i.e., if x influences y and y drives z, the indirect influence from x to z will be recovered).

The main goal of this study is to provide a detailed comparison between two independent causal methods, namely LKIF

and PCMCI, which have been widely used in the context of the JPI-Climate/JPI-Oceans ROADMAP project (Role of ocean

dynamics and Ocean-Atmosphere interactions in Driving cliMAte variations and future Projections of impact-relevant extreme80

events; https://jpi-climate.eu/project/roadmap/) and have never been methodically compared together before. In this analysis,

we use these two methods in the same framework to allow a fair comparison. We also compute the correlation coefficient to

show the superiority of causal methods compared to a classical correlation analysis. In particular, we use four different artificial

models with an increasing level of complexity and one real-case
::::::::
real-world

::::
case

:
study based on climate indices. These different

datasets are described in Sect. 2, and our two causal methods are presented in Sect. 3. Results of our comparison are presented85

in Sect. 4 and a discussion is provided in Sect. 5, before concluding in Sect. 6.
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2 Data

In order to apply the two causal methods described below (Sect. 3), we use three different stochastic models (including two

linear models and one nonlinear model), one deterministic nonlinear model (Lorenz, 1963), and one real-case
:::::::::
real-world

::::
case

study using climate indices in the North Atlantic and North Pacific
:::::::
Atlantic

:::
and

::::::
Pacific

::::::
regions. This allows us to test LKIF and90

PCMCI with an increasing level of complexity (from a simple two-dimensional model to a real-case
::::::::
real-world

::::
case study).

2.1 Two-dimensional (2D) model

We first consider a two-dimensional (2D) stochastic linear model (Eq. (12) in Liang 2014):

dx1 = (−x1 + 0.5x2)dt+ 0.1dw1,

dx2 = −x2 dt+ 0.1dw2, (1)95

where x1 and x2 are the two variables, t is time, and w1 and w2 represent standard Wiener processes in x1 and x2, respectively

(dwk ∼
√

dtN
:::::::::::::::::::::
wk,t+∆t−wk,t ∼

√
∆tN (0,1), with N (0,1) being a normal distribution with zero mean and unit variance). In

this simple system, x2 drives x1, but not vice versa (Fig. 1(f)).

We solve this system with the Euler-Maruyama method using a time step dt
::
∆t

:
= 0.001 and 1000 unit times, which brings

106 time steps. We initialize the system with x1(0) = 1 and x2(0) = 2. For our analysis, we discard the first 10 unit times (first100

104 time steps), which is considered to be our spin-up period.

2.2 Six-dimensional (6D) model

Then, we investigate a six-dimensional (6D) stochastic linear vector autoregressive (VAR) model with only one lag (Eq. (21)

in Liang 2021):

x1,t+1 = 0.1− 0.6x3,t +u1,t+1,105

x2,t+1 = 0.7− 0.5x1,t + 0.8x6,t +u2,t+1,

x3,t+1 = 0.5 + 0.7x2,t +u3,t+1,

x4,t+1 = 0.2 + 0.7x4,t + 0.4x5,t +u4,t+1,

x5,t+1 = 0.8 + 0.2x4,t + 0.7x6,t +u5,t+1,

x6,t+1 = 0.3− 0.5x6,t +u6,t+1, (2)110

where xk (k = 1, ...,6) are the six variables, and uk are normal random noises in these six variables (uk ∼N (0,1)). By con-

struction, we have two directed cycles, i.e. x1→ x2→ x3→ x1 and x4→ x5→ x4, and these cycles are driven by a common

cause, i.e. x6, which drives both x2 and x5 (Fig. 2(d)).

We solve this system using 106 time steps (dt
::
∆t

:
= 1). For our analysis, we discard the first 104 time steps.
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2.3 Nine-dimensional (9D) model115

The next model is a nine-dimensional (9D) stochastic nonlinear VAR system with a maximum of four lags (Eq. (17) in Subra-

maniyam et al. 2021):

x1,t = 3.4x1,t−1 (1−x2
1,t−1)e−x

2
1,t−1 + 2.5x2,t−4 + 1.8x3,t−2 + 1.5x4,t−2 + 0.4u1,t,

x2,t = 3.4x2,t−1 (1−x2
2,t−1)e−x

2
2,t−1 + 0.4u2,t,

x3,t = 3.4x3,t−1 (1−x2
3,t−1)e−x

2
3,t−1 + 0.25x1,t−1 + 0.4u3,t,120

x4,t = 3.4x4,t−1 (1−x2
4,t−1)e−x

2
4,t−1 + 1.5x5,t−3 + 1.2x6,t−1 + 0.4u4,t,

x5,t = 3.4x5,t−1 (1−x2
5,t−1)e−x

2
5,t−1 + 0.4u5,t,

x6,t = 3.4x6,t−1 (1−x2
6,t−1)e−x

2
6,t−1 + 1.5x7,t−3 + 0.4u6,t,

x7,t = 3.4x7,t−1 (1−x2
7,t−1)e−x

2
7,t−1 + 0.4u7,t,

x8,t = 3.4x8,t−1 (1−x2
8,t−1)e−x

2
8,t−1 + 0.8x7,t−1 + 0.4u8,t,125

x9,t = 3.4x9,t−1 (1−x2
9,t−1)e−x

2
9,t−1 + 1.8x7,t−1 + 0.4u9,t, (3)

where xk (k = 1, ...,9) are the nine variables, e is the exponential function and uk are normal random noises in these nine

variables (uk ∼N (0,1)). This system contains a directed chain x7→ x6→ x4→ x1→ x3 and a fork, i.e. x7 driving x6, x8

and x9. There are also two colliders, with x5 and x6 both affecting x4 on the one hand, and x2, x3 and x4 driving x1 on the

other hand (Fig. 4(d)). A particularity of this system compared to the 6D model (Eq. (2)) is the presence of lags larger than130

one.

We solve this system using 106 time steps (dt
::
∆t

:
= 1). For our analysis, we discard the first 104 time steps.

2.4 Lorenz (1963) model

We also use the three-dimensional (3D) Lorenz (1963) model, which is deterministic, nonlinear and non-periodic, and is a

simplified model representing atmospheric convection:135

dx

dt
= 10(y−x),

dy

dt
= 28x− y−xz,

dz

dt
= xy− 8

3
z, (4)

where x, y and z are the three variables and are proportional to the convection intensity, the horizontal temperature variation

and the vertical temperature variation, respectively. We use the standard parameters of the model.140

We solve the Lorenz (1963) model using the fourth-order Runge-Kutta scheme, a time step dt
:::
∆t = 0.01 and 1000 unit

times, which brings 105 time steps. We initialize the system with x(0) = 0, y(0) = 1 and z(0) = 0. For our analysis, we discard

the first 100 unit times (first 104 time steps; spin-up period).
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2.5 Climate indices

Finally, we use eight different global climate indices spanning the North Atlantic and North Pacific regions
::::::
regional

:::::::
climate145

::::::
indices

:::::::
affecting

::::
the

:::::::
Atlantic

::::
and

::::::
Pacific

::::::
regions

:::
of

:::::::::
especially

:::
the

::::::::
Northern

::::::::::
Hemisphere, following a similar approach as

Vannitsem and Liang (2022) and Silini et al. (2022). Four of these indices are atmospheric
:::::
based

::
on

:::::::::::
atmospheric

::::::::
variables

and four of them are oceanic
:::::
based

::
on

:::::::
oceanic

::::
ones. Time series of these indices were retrieved from the Physical Sciences

Laboratory (PSL) of the National Oceanic and Atmospheric Administration (NOAA; https://psl.noaa.gov/data/climateindices/

list/). We use monthly values from January 1950 to December 2021 (864 months), and we remove the linear trend in order to150

get relatively
:::::::::::
approximately

:
stationary time series, which is a requirement for applying our causal methods.

The four atmospheric indices are computed from the National Centers for Environmental Prediction / National Center for

Atmospheric Research (NCEP/NCAR) reanalysis:

– The Pacific North American (PNA) index is obtained by projecting the daily 500 hPa geopotential height anomalies over

the Northern Hemisphere (0-90◦N) onto the PNA loading pattern (second leading mode of rotated Empirical Orthogonal155

Function [EOF] analysis of monthly mean 500 hPa height anomalies during the 1950-2000 period). A positive PNA

features above-average heights in the vicinity of Hawaii and over the intermountain region of North America, and below-

average heights south of the Aleutian Islands and over the southeastern United States. A negative PNA reflects an

opposite pattern of height anomalies over these regions.

– The North Atlantic Oscillation (NAO)
::::
index

:
is based on the difference in sea-level pressure between the Subtropical160

High (Azores) and the Subpolar Low (Iceland). A positive NAO reflects above-normal pressure over the central North

Atlantic, the eastern United States and western Europe, and below-normal pressure across high latitudes of the North

Atlantic. A negative NAO features an opposite pattern of pressure anomalies over these regions.

– The Arctic Oscillation (AO), or Northern Annular Mode (NAM),
::::
index

:
is constructed by projecting the 1000 hPa geopo-

tential height anomalies poleward of 20◦N onto the leading EOF (using monthly mean 1000 hPa height anomalies from165

1979 to 2000). When the AO is in its positive phase, strong westerlies act to confine colder air across polar regions.

When the AO is negative, the westerly jet weakens and can become more meandering.

– The Quasi-Biennal Oscillation (QBO)
::::
index

:
is calculated from the zonal average of the 30 hPa zonal wind at the equator.

It is the most predictable mode of atmospheric variability that is not linked to changing seasons, with easterly and

westerly winds alternating each 13 months.170

Below are the four oceanic indices
::::::
indices

:::::
based

::
on

::::::
ocean

::::::::
conditions:

– The Atlantic Multidecadal Oscillation (AMO)
:::::
index is computed based on version 2 of the Kaplan et al. (1998) extended

SST gridded dataset (which uses UK Met Office SST data) averaged over the North Atlantic (0-70◦N; unsmoothed time

series) and following the procedure described in Enfield et al. (2001). Cool and warm phases of the AMO may alternate

every 20-40 years.175
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– The Pacific Decadal Oscillation (PDO)
::::
index

:
is obtained by projecting the Pacific SST anomalies from version 5 of the

NOAA Extended Reconstructed SST (ERSST) dataset onto the dominant EOF from 20◦N to 60◦N. The PDO is positive

when SST is anomalously cold in the interior North Pacific and warm along the Pacific Coast. The PDO is negative when

the climate anomaly patterns are reversed.

– The Tropical North Atlantic (TNA) index is computed based on SST anomalies from the Hadley Centre Global Sea Ice180

and Sea Surface Temperature (HadISST) and NOAA Optimal Interpolation (OI) datasets averaged in the Tropical North

Atlantic (5.5-23.5◦N; 57.5-15◦W), based on Enfield et al. (1999).

– The Niño3.4 index is based on standardized SST anomalies (using ERSST v5) averaged over the eastern tropical Pacific

(5◦S-5◦N; 170-120◦W). The Niño3.4 index is in its warm phase when SST anomaly exceeds 0.5◦C, and it is in its cold

phase when SST anomaly is below -0.5◦C. For the remainder of the paper, we will refer to this index as ‘ENSO’ (El185

Niño-Southern Oscillation), as it is closely associated with this oscillation.

3 Methods

In this section, we describe the two causal methods used in this study, namely the Liang-Kleeman information flow (LKIF
:
;

::::
Sect.

:::
3.1) and the Peter and Clark momentary conditional independence (PCMCI;

:::::
Sect.

:::
3.2) methods. We compare our results

to the more traditional Pearson correlation coefficient, which is the covariance between two variables divided by the product of190

their standard deviations.
::
We

::::
also

::::::
explain

::::::
below

:::
the

::::
main

:::::::::
differences

::::::::
between

:::
the

:::
two

:::::::
methods

:::::
(Sect.

::::
3.3)

:::
and

:::::::
provide

::::::
details

::::
about

:::
the

::::::::::
comparison

::::::::::
diagnostics

::::
used

::
in

:::
our

:::::
study

:::::
(Sect.

::::
3.4).

:

3.1 Liang-Kleeman information flow (LKIF)

The LKIF method has been developed by Liang and Kleeman (2005). It has been first applied in bivariate cases (Liang and

Kleeman, 2005; Liang, 2014) and has subsequently been extended to multivariate cases (Liang, 2016, 2021). In our study, we195

use the multivariate formulation of LKIF. In this framework, causal inference is based on information flow, which has been

recognized as a real physical notion, i.e. formulated from first principles of information theory (Liang, 2016).

Under the assumption of a linear model with additive noise, the maximum likelihood estimate of the information flow reads

(Liang, 2021):

Tj→i =
1

detC
·
d∑
k=1

∆jkCk,di ·
Cij
Cii

, (5)200

where Tj→i is the absolute rate of information transfer from variable xj to variable xi, C is the covariance matrix, d is

the number of variables, ∆jk are the cofactors of C (∆jk = (−1)j+kMjk, where Mjk are the minors), Ck,di is the sample

covariance between all xk and the Euler forward difference approximation of dxi/dt, Cij is the sample covariance between xi

and xj , and Cii is the sample variance of xi. Note that a nonlinear version of LKIF has recently been developed but will not

be used in this study (?)
:::::::::::::::
(Pires et al., 2024).205
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To assess the importance of the different cause-effect relationships, we compute the relative rate of information transfer τj→i

from variable xj to variable xi following the normalization procedure of Liang (2015, 2021):

τj→i =
Tj→i
Zi

, (6)

where Zi is the normalizer, computed as follows:

Zi =

d∑
k=1

|Tk→i|+
∣∣∣∣dHnoise

i

dt

∣∣∣∣ , (7)210

where the first term on the right-hand side represents the information flowing from all the xk to xi (including the influence

of xi on itself), and the last term is the effect of noise (taking stochastic effects into account), computed following Liang

(2015, 2021).

In the following, we will only use the relative rate of information transfer τ (expressed in %). When τj→i is significantly

different from 0, xj has an influence on xi, while if τj→i = 0 there is no influence. The absolute value of τ indicates the215

strength of the causal influence. A positive (negative) value is indicative of an increase (decrease) in variability of the target

variable xi due to the causal influence of the source xj . However, we will mainly use the absolute value of τ in this study, and

will only briefly discuss the sign in the case of the Lorenz (1963) model (Fig. 7). Statistical significance of τj→i is computed

via bootstrap resampling with replacement of all terms included in Eq
:::
Eqs. (5)-(7) and using a significance level α = 5 %.

The number of bootstrap realizations varies depending on the case study: 100 for the 2D and Lorenz (1963) models, 300 for220

the 6D and 9D models, and 1000 for the real-case
:::::::::
real-world

::::
case study. This number is chosen sufficiently large to achieve

convergence of results.
:::
The

:::::::
relative

:::
rate

::
of

::::::::::
information

:::::::
transfer

::
τ

::
is

::::::::
computed

:::
for

::::
each

::::::::
bootstrap

::::::::::
realization,

:::
and

:::
the

:::::
error

::
in

::
τ ,

:::::
which

:::
we

::::
refer

:::
to

::
as

:::
ετ ,

::
is

::::::::
calculated

:::
as

:::
the

:::::::
standard

::::::::
deviation

::::::
across

::
all

::
τ

:::::::::::
bootstrapped

::::::
values.

::
If

:::
the

:::::::::
confidence

:::::::
interval

:::::::::
τ ± 1.96ετ ::::

does
:::
not

:::::::
contain

::
the

::::
zero

::::::
value,

::::
then

:
τ
::
is

:::::::::
significant

::
at

:::
the

:
5
::
%

:::::
level;

:::::::::
otherwise,

::
it

::
is

:::
not

:::::::::
significant.

3.2 Peter and Clark momentary conditional independence (PCMCI)225

The PCMCI method is a causal discovery method based on the Peter and Clark (PC) algorithm (Spirtes et al., 2001), com-

bined with the momentary conditional independence (MCI) approach (Runge et al., 2019b). Given a set of univariate time

series (called ‘actors’), PCMCI estimates their causal graph representing the conditional dependencies among the time-lagged

actors. In its linear application, PCMCI uses partial correlations to iteratively test conditional dependencies in a set of ac-

tors, distinguishing between true causal links and spurious links arising from autocorrelation effects, indirect links or common230

drivers.

Note that the term ‘causal’ rests upon a set of assumptions, such has (1) causal sufficiency, (2) causal Markov condition,

(3) faithfulness, (4) instantaneous effects, (5) stationarity, (6) dependency type assumptions and (7) measurement error (see

Runge (2018)for further details)
::::
which

:::
are

::::::::
described

::
in
::::::::::::
Runge (2018). In general, the causal graph should represent a stationary

(stable in time) set of causal links, in which causality is determined with a lag l of at least one time step and it is only true235

among the specific set of analysed actors. The PCMCI algorithm is composed of two steps, the PC-step and the MCI-step.

Each step is briefly described in this section.
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In the first step, or PC-step, for each actor in the (example) set of actors P , the algorithm identifies the initial set of parents P 0

based only on the simple correlation between each actor and all other actors up to a maximum lag lmax. Let us assume that with

lmax = 3, P = {A,B,C,D,E} and P 0
A = {Al=−1,Bl=−1,Dl=−2,Cl=−2,El=−1}, where actors A to E in the set of parents240

of A, P 0
A, are ordered based on the absolute value of their correlation coefficient with Al=0. Then, in the first iteration of the

algorithm, the partial correlation ρ betweenAl=0 and each actor in P 0
A is calculated by conditioning on an additional actor taken

from P 0
A. For example, ρ ( Al=0, Al=−1 | Bl=−1 ) = ρ ( Res(Al=0), Res(Al=−1) ), where Res(Al=0) and Res(Al=−1) are the

residuals of Al=0 and Al=−1 after removing the linear influence of Bl=−1. The partial correlation is computed for each actor

in P 0
A by conditioning (only once) on the strongest available actor.

::::
This

::::::
process

::
is
:::::
called

::::::::
‘iterative

::::::::::::
conditioning’. At the end of245

this first iteration, the set of parents ofA is updated. Let us assume that in our example, P 1
A = {Al=−1,Bl=−1,Cl=−2,El=−1},

then in the second iteration, the set of parents P 2
A will be identified by conditioning on the first two strongest actors, e.g. ρ (

Al=0, Al=−1 | Bl=−1, Cl=−2 ). The PC-step ends when the number of actors on which to condition equals the numbers of

actors contained in PnA . Then, the same computation is repeated for each actor contained in P , until each actor has its own set

of parents Pn.250

In the second step, or MCI-step, the partial correlation between each possible pair of actors is calculated a second time by re-

gressing once on the combined set of parents. If we assume thatP 4
A = {Al=−1,Cl=−2,El=−1} andP 3

B = {Bl=−1,Al=−2,Dl=−1},
then a causal link between Al=0 and Bl=−1 is detected if their partial correlation conditioned on their joint set of parents is

significant for a certain threshold α. In this example, ρ ( Al=0, Bl=−1 | Al=−1, Cl=−2, El=−1, Bl=−2, Al=−3, Dl=−2 ) (note

that the lag of P 3
B is increased accordingly). At the end of the MCI-step, each actor will have its own set of causal parents, and255

the causal effect of each link can be computed.

The strength of a causal link from variable xj at time (t - l) to variable xi at time t, noted xj,t−l→ xi,t, is expressed in terms

of the path coefficient β, which measures the change in the expectation of xi,t following an increase of xj,t−l by one standard

deviation, keeping all other parents of xi,t constant. The linear coefficients β are calculated as follows:

xi,t =

N∑
k=1

βkxj,k + ηxi
, (8)260

where xj,k ∈ P{xi} (k =1,...,N ) is the set of parents of xi,t (N is the number of parents), and ηxi
is the residual of xi,t.

Like LKIF, PCMCI assumes that the system is linear , but a nonlinear version of the algorithm also exists (which has not

been used for the present study)
::::
Note

:::
that

::
in
:::::
order

::
to

:::::
allow

:::
for

::
a

:::::::::
meaningful

::::::::::
comparison

::::
with

::::::::::
correlation

:::
and

:::::
LKIF

:::::
based

:::
on

:
a
:::::
linear

::::::
model,

:::
we

::::
use

::::
here

:::
the

:::::::
PCMCI

::::::::
algorithm

:::::
along

:::::
with

:
a
:::::
linear

:::::::::
similarity

:::::::
measure

:::::::
(partial

::::::::::
correlation).

::
In

:::::::::
principle,

::::::
PCMCI

:::::
could

::::
also

::
be

:::::::::
combined

::::
with

:::::
other

::::::::
statistical

:::::::::
association

::::::::
measures

::::
that

:::::
allow

::::::::::
conditioning

:::
on

:::
the

::::::
effects

::
of

:::
any

:::::
third265

::::::
variable

::::
(like

::::::
CMI),

:::
the

:::::
study

::
of

:::::
which

::
is

:::::::
however

::::::
beyond

:::
the

:::::
scope

::
of

:::
the

::::::
present

:::::
work.

::::
The

::
β

:::::::::
coefficients

:::
are

::::
only

:::::::::
calculated

::
for

::::::
causal

:::::
links

:::
that

:::
are

:::::::::
significant

:::
at

:::
the

:::
5%

:::::
level,

::::::
where

::::
each

:::::::
p-value

:::::::
obtained

:::::
from

:::
the

::::::::
MCI-step

::
is
:::::::::

corrected
:::::
using

:::
the

:::::::::::::::::
Benjamini-Hochberg

:::::
False

::::::::
Discovery

::::
Rate

:::::::::
correction

::::::
method

:::::::::::::::::::::::::::
(Benjamini and Hochberg, 1995).
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3.3 Differences between the two methods

Before investigating results from the two causal methods, it is important to highlight the main differences between the two270

methods, which are summarized in Table 1. LKIF is directly derived from the propagation of information entropy (Liang,

2016) and quantifies the rate of information transfer from one variable to the other (Liang, 2014, 2021). PCMCI, on the other

hand, is a causal network algorithm starting with a fully connected graph from which non-causal links are iteratively removed

based on conditioning sets of growing cardinality (Spirtes et al., 2001; Runge et al., 2019b).
:::
The

::::::
actual

:::::::::
underlying

:::::::
PCMCI

:::::::
measure

:::
for

:::::::::
directional

::::::::
statistical

:::::::::::
dependence

::
is

::::::
partial

::::::::::
correlations,

:::::::::
including

:::
the

:::::
effect

::
of

::::::::
possible

:::::
causal

::::::::
parents.

:::::
LKIF275

::::
does

:::
not

::::::::::::
systematically

:::
test

:::
the

::::::
latter,

:::
but

::::
uses

:
a
::::::::
different

::::::::
approach,

::
in
::::::

which
:::
the

::::::::
statistical

::::::::::
dependence

::
is
:::::::::
measured

:::
via

:::
the

:::::::::
information

:::::::
flowing

::::
from

::::
one

:::::::
variable

::
to

:::
the

:::::
other.

The metric used by LKIF is the rate of information transfer from variable xj to variable xi and can be expressed either in

nats per unit time (for T ; Eq. (5)) or in percent (for τ ; Eq. (6)). For PCMCI, the path coefficient β (Eq. (8)) measures the

expected change in xi at time t (in units of standard deviation) if xj is perturbed at time t− l by one standard deviation. While280

time lags must be incorporated with PCMCI, LKIF has not been designed to work with such lags by default, although they can

be used in principle (Liang et al., 2021).
::
To

::::
this

::::
end,

::
we

::::
can

::::
shift

::
in

::::
time

:::
the

::::
time

:::::
series

::
of

:::
the

::::::
leading

:::::::
variable

:::
and

::::::::::
re-compute

::::
LKIF

:::::
based

:::
on

:::
the

::::::
lagged

::::
time

:::::
series.

:

While for both methods, the strength of the metric, in absolute value, indicates how strongly two variables are causally

linked, i.e. the larger |τ | and |β|, the larger the causal link, the sign has a different meaning. For LKIF, a positive (negative)285

value of τj→i means that the variability of the source xj increases (decreases) the variability of the target xi. For PCMCI, the

sign of βj→i is closely linked to the correlation between xj and xi, i.e. a positive (negative) value means that an increase in xj

leads to an increase (a decrease) in xi in the subsequent time step.

Table 1. Main differences between the two causal methods used in this study.

LKIF PCMCI

Full name Liang-Kleeman information flow Peter and Clark momentary conditional independence

Type of method Information flow Causal discovery algorithm

Use of time lags Not by default Always

Use of iterative conditioning No Yes

Metric Rate of information transfer Path coefficient β

T (absolute) or τ (relative)

Unit T : nats time−1; τ : % No unit

Sign meaning > 0: xj variability → xi variability ↑ > 0 : xj ↑→ xi ↑

< 0: xj variability → xi variability ↓ < 0 : xj ↑→ xi ↓

Key references Liang (2014, 2021) Spirtes et al. (2001); Runge et al. (2019b)
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3.4
::::::::::

Comparison
::::::::::
diagnostics

::::
Since

::::::
correct

::::::
causal

::::
links

:::
are

::::::
known

:::
for

:::
the

::::
three

:::
first

::::::::
artificial

::::::
models

::::
(2D,

:::
6D

:::
and

:::
9D

:::::::
models),

:::
we

:::
can

:::::
check

:::
the

:::::::::::
performance290

::
of

:::
the

:::
two

:::::
causal

::::::::
methods,

::
as

::::
well

::
as

:::
the

:::::::::
correlation

::::::::::
coefficient,

::
in

:::::::::
identifying

:::
the

::::::
ground

:::::
truth.

:::
The

::::::::::
diagnostics

::::::::
presented

::::
here

::
are

::::
not

::::::::
computed

:::
for

:::
the

:::::::::::::
Lorenz (1963)

:::::
model

:::
and

:::
the

:::::::::
real-world

::::
case

:::::
study,

:::
as

::
no

:::::
exact

:::::::
solution

:::::
exists

:::
for

:::::
these

:::
two

::::::
cases.

:::
We

:::::::
compute

::::::::::::
true-positive,

:::::::::::
true-negative,

::::::::::::
false-positive

:::
and

::::::::::::
false-negative

:::::
rates.

::::
The

:::::::::::
true-positive

::::
rate

::
is

:::
the

:::::::::
percentage

:::
of

:::::
causal

:::::
links

:::::::
correctly

::::::::
detected

::
by

:::
the

:::::::
method

::::::
among

:::
the

::::
total

:::::::
number

::
of

::::::
ground

:::::
truth

:::::
causal

:::::
links.

::::
The

:::::::::::
true-negative

::::
rate

::
is

::
the

::::::::::
percentage

::
of

:::::::::
non-causal

::::
links

::::::::
correctly

:::::::
detected

:::
by

:::
the

::::::
method

::::::
among

:::
the

::::
total

:::::::
number

::
of

::::::
ground

:::::
truth

:::::::::
non-causal

:::::
links.295

:::
The

:::::::::::
false-positive

::::
rate

:::::::::
represents

:::
the

:::::::::
percentage

::
of

:::::
cases

::::::
where

:::
the

::::::
method

::::::::::
incorrectly

::::::
detects

:
a
::::::
causal

:::
link

:::::::
among

:::
the

::::
total

::::::
number

::
of

:::::::
ground

::::
truth

:::::::::
non-causal

:::::
links.

::::
The

:::::::::::
false-negative

::::
rate

::::::::
represents

:::
the

::::::::::
percentage

::
of

:::::
cases

:::::
where

:::
the

:::::::
method

::::
fails

::
to

:::
find

:::
an

::::::
existing

::::::
causal

:::
link

::::::
among

:::
the

::::
total

:::::::
number

::
of

::::::
ground

:::::
truth

:::::
causal

:::::
links.

::
To

:::::::::
summarize

:::
the

::::::
results

:::::
from

:::
the

::::::::
confusion

:::::::
matrix,

::
we

::::
also

::::::::
compute

:::
the

::
φ

:::::::::
coefficient

:::::
based

::
on

::::
true

::::::::
positives

:::::
(TP ),

::::
true

:::::::
negatives

::::::
(TN ),

::::
false

::::::::
positives

:::::
(FP )

:::
and

::::
false

::::::::
negatives

::::::
(FN ):

:
300

φ=
TP ×TN −FP ×FN√

(TP +FP )(TP +FN)(TN +FP )(TN +FN)
.

:::::::::::::::::::::::::::::::::::::::::::::::

(9)

:::
The

:::::::::::
denominator

:
is
:::
set

::
to

::
1

:
if
:::
any

:::
of

::
the

::::
four

:::::
sums

::
in

:::
the

::::::::::
denominator

::
is

:::::
equal

::
to

::
0,

::
in

:::::
which

::::
case

::
φ

:
=
::
0.

::
A

:::::
value

::
of

:
1
:::::::::
represents

:
a
::::::
perfect

:::::::::
prediction

::
of

::::::
ground

::::
truth

::::::
causal

:::
and

::::::::::
non-causal

::::
links

:::
by

:::
the

:::::::
method,

:::::
while

:
a
:::::
value

::
of

::
0

:::::
means

::::
that

:::
the

:::::
result

::
is

:::
not

:::::
better

:::
than

::
a
::::::
random

::::::::::
prediction.

:::::
These

:::::::::
diagnostics

:::
are

::::::::
presented

:::
in

::::
Table

::
2
:::
and

::::::::
discussed

:::
in

::::
Sect.

:::
5.1.

:

4 Results305

We provide results from the four artificial models and the real-case
:::::::::
real-world

::::
case study hereafter. Table 2 summarizes the

occurrence of true-positive, false-positive and false-negative rates
:::::::
provides

:
a
::::::::
summary

::
of

::::::
results

:
for the three first models and

will be discussed in Sect. 5.1.

4.1 2D model

For the 2D model, the numerical value of the correlation between x1 and x2 is significantly positive (R = 0.23; Fig. 1(a)) and310

is similar to the analytical value (Fig. 1(d)), but it does not provide any indication on the direction of influence.

LKIF can accurately retrieve the correct causal link, i.e. from x2 to x1, as well as the absence of influence in the reverse

direction (Fig. 1(b)), as was already demonstrated in Liang (2014). In addition, the numerical estimate of the rate of information

transfer (|τ2→1| = 5.72 %; Fig. 1(b)) is very close to the analytical solution (|τ2→1| = 5.56 %; Fig. 1(e)), which provides

confidence in the LKIF results found for this simple system.315

PCMCI only captures the self-influences of x1 and x2, but is not able to capture any significant causal influence between x1

and x2 with the original time step, i.e. dt
::
∆t

:
= 0.001 (Fig. 1(c)). This missed detection is partly due to the fact that PCMCI

responds better for discrete maps with finite time steps. Indeed, the time step for discretization is too small, and if we re-
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compute causal links with PCMCI taking every 100 time steps (dt
:::
∆t = 0.1), we can recover the influence from x2 to x1,

although the value of β is relatively small (Fig. 1(c)).320

This example shows that LKIF performs well for such a very simple 2D system, while PCMCI does not
::::::::
struggles

::::
with

:::
the

::::::
original

::::
time

:::::
step.

::
In

:::::::::
particular,

:::
the

:::::
serial

::::::::::
dependency

::
in
::::

this
::::::::
particular

::::::
model

:::::
might

::::::::
overcast

:::
the

::::::
mutual

::::::::::
dependency

:::
for

::
a

:::::::
‘typical’

::::::::
maximum

:::
lag

:::::::::
considered

:::
by

:::::::
PCMCI,

::::::
which

:::
has

:::
not

::::
been

::::::::
designed

:::
for

::::
such

:::::::::
conditions.

Figure 1. Numerical results from the 2D model: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value), and (c)

maximum path coefficient (PCMCI) when using 3 lags (0 to 2 time steps). Analytical values of (d) correlation coefficient, and (e) rate of

information transfer (LKIF). (f) Correct causal links from Eq. (1). For numerical results, only significant values at the α = 5% level are

shown, and correct causal links are highlighted by black or blue contours. The dashed contour in panel (c) indicates a significant value with

a larger time step (dt
:::
∆t = 0.1), while it is not significant with the original time step (dt

::
∆t = 0.001).
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4.2 6D model

For the 6D model, the correlations are significant for all 30 pairs of variables (excluding auto-correlations), despite relatively325

small values for many of them (Fig. 2(a)). This shows that a simple correlation analysis fails to only identify the seven causal

links that should be identified in this system (Fig. 2(d)). The largest correlation of all pairs is between x2 and x5 (R = 0.37),

but no causal link should exist between the two variables (i.e. this is a false positive). This large correlation probably appears

because x6 influences both x2 and x5 by construction (Fig. 2(d)) and is thus a confounding variable. Correlations larger than

0.3 in absolute value appear for the two pairs x6-x2 and x6-x5 (Fig. 2(a)), which confirms the role of x6 as a confounding330

variable, but these correlations do not indicate the direction of influences.

Both LKIF (Fig. 2(b); no lag is used) and PCMCI (Fig. 2(c); use of four time lags) can capture the seven correct causal

links (Fig. 2(d)), i.e. the directed cycle x1→ x2→ x3→ x1, the two-way causal link between x4 and x5, and the influence of

x6 on both x2 and x5. Results from PCMCI in terms of self-influences are more accurate based on Eq. (2), as it provides two

significant self-influences, i.e. x4 and x6, while LKIF identifies all six self-influences as significant.
::::
The

::::
latter

:::::
result

::::::::
indicates335

:::
that

:::
the

:::::
LKIF

::::::
method

::::
may

:::
fail

:::
in

::::::::::
representing

:::
the

::::::
correct

:::::::::::::
self-influences,

:::::
while

::::::
PCMCI

::::
does

::::
not.

This example shows the strength of causal methods, which can capture the correct causal influences, while the correlation is

not able to provide such information and cannot identify confounding variables and the direction of causality.

4.3 9D model

For the 9D model, the correlation does a poor job at identifying correct causal influences (Fig. 3(a)). In particular, the largest340

correlation is between x8 and x9, which is not a correct causal link by construction (Eq. (3)). As for the 6D model, this is due

to the fact that x7 should influence both variables (Fig. 4(d)). x7 is indeed significantly correlated to both x8 and x9, but the

causal direction is not identified by the correlation analysis.

Using LKIF without any lag shows that the method can detect all correct links, except x5→ x4, although only four causal

influences have a rate of information transfer |τ | larger than 1 % (Fig. 3(b)). These four influences are the ones that should345

appear at lag -1 (Fig. 4(d), i.e. x1→ x3, x6→ x4, x7→ x8 and x7→ x9. The method also wrongly identifies 13 causal

influences, even if values of information transfer remain small.

The use of time lags up to l = 3 time steps with LKIF (we use 9 variables × 4 lags = 36 variables in total) allows to improve

results (Fig. 4(b), where the maximum value of all lags is plotted). In particular, all nine correct causal links can now be

identified with |τ |> 3 %, except the influence of x3 on x1, which is significant but has a much smaller value (|τ | = 0.68 %).350

Five additional causal influences are wrongly identified by the method with lags up to 3 time steps, but with relatively small

values (|τ |< 0.4 %).

Using PCMCI with lags up to l = 4 time steps also allows to correctly reproduce all causal links, except that it wrongly

identifies four additional causal influences but with very small values (Fig. 4(c)). All self-influences are also correctly identified

by the two methods.355
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Figure 2. Results from the 6D model: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value), and (c) maximum

path coefficient (PCMCI) when using 4 lags (0 to 3 time steps). (d) Correct causal links from Eq. (2). Only significant values at the α = 5%

level are shown, and correct causal links are highlighted by black or blue contours.
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This example also demonstrates the power of causal methods compared to a correlation analysis when using an appropriate

number of lags: all expected links are correctly identified. Although some wrong causal links are identified by both methods,

the strength of the relationship remains small for these wrong influences.

Figure 3. Results from the 9D model without lags: (a) correlation coefficient, and (b) rate of information transfer (LKIF, absolute value).

Only significant values at the α = 5% level are shown, and correct causal links are highlighted by black or blue contours.

4.4 Lorenz (1963) model

The only large correlation (excluding auto-correlation) in this system is between x and y, with R = 0.88 (Fig. 5(a)). The other360

correlations are very small (R = -0.01) but significant, probably due to the length of the time series.

According to LKIF, a two-way causal link appears between x and y (Fig. 5(b)). This causal link is also identified by PCMCI

with lags up to l = 3 time steps (Fig. 5(c)). PCMCI also identifies a significant two-way causal link between y and z but the

value is very close to 0.

Then, we investigate whether there is a lag dependence on the results. For the correlation and LKIF, we repeat the compu-365

tation by shifting the three variables one by one with a lag from 0 to 1 unit time (100 time steps) with 0.1 unit time increment

(i.e. every 10 time steps). For example, we take xt−l at lag l = 0.1 unit time, and keep yt and zt at lag 0, and re-compute the

correlation and relative rate of information transfer. Then, we take xt−l at lag l = 0.2 unit time, keeping yt and zt at lag 0, and
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Figure 4. Results from the 9D model with lags: (a) maximum correlation coefficient when using 4 lags (0 to 3 time steps), (b) maximum rate

of information transfer (LKIF, absolute value) when using 4 lags (0 to 3 time steps), (c) maximum path coefficient (PCMCI) using 5 lags (0

to 4 time steps). (d) Correct causal links from Eq. (3). Only significant values at the α = 5% level are shown, and correct causal links are

highlighted by black or blue contours.

so on until lag l = 1 unit time. We do the same when y leads x and z, and when z drives x and y. For PCMCI, all lags from 0 to
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1 unit time with 0.01 unit time increment (i.e. every time step) are included in the same computation as the method is designed370

to work with multiple lags by default. Results are presented in Fig. 6.

The correlation coefficient between x and y decreases exponentially with increasing lag when x leads y (Fig. 6(a)), and it

first increases from l = 0 to l = 0.1 unit time before decreasing exponentially when y leads x (Fig. 6(b)). No correlation appears

between z and any of the two other variables at any lag (Fig. 6(a)-(c)).

The LKIF rates of information transfer from x to y and from y to x also decrease with increasing lag between 0 and 1 unit375

time, but starting with a plateau of |τ | ∼ 50 % (Fig. 6(d)-(e)). This plateau lasts from l = 0 to l = 0.2 unit time for τxt−l→yt

(Fig. 6(d)), and from l = 0 to l = 0.4 unit time for τyt−l→xt
(Fig. 6(e)). No information transfer exists between z and the two

other variables at any lag (Fig. 6(d)-(f)), in agreement with the absence of correlation (Fig. 6(a)-(c)).

The PCMCI path coefficients between x and y also generally decrease (in the two directions) with increasing lag, although

the decrease presents more variability than the correlation and LKIF, with β = 0 at lag 0, the largest β value when l = 0.1 unit380

time, and then an oscillatory behavior until l = 1 unit time (Fig. 6(g)-(h)). As for the correlation and LKIF, no causal influence

is found between z and the two other variables at any lag (Fig. 6(g)-(i)).

If we replace x by x2 to take nonlinearities into account and look at the triplet (x2, y, z), a strong positive correlation now

appears between x2 and z (R = 0.65; Fig. 5(d)). In addition, a strong two-way causal link now appears between x2 and z with

both LKIF (|τ | ∼ 50 % in the two directions; Fig. 5(e)) and PCMCI (|β| = 1.7 in the two directions; Fig. 5(f)). This shows that385

the linear versions of LKIF and PCMCI can detect causal links between nonlinear variable changes
::::::::::
transformed

::::::::
variables in

nonlinear models. In this case, the correlation between x and y, combined with the nonlinear forcing product xy in the third

equation of the Lorenz (1963) model (z equation; Eq. (4)), results into
::
in a linear correlation between z and the nonlinear

non-invertible variable change x2.

The correlation between x2
t+l and zt oscillates between R∼ -0.7 (l = 0.2 unit time) and R∼ 0.9 (l = -0.1 unit time) with390

a period of ∼ 0.7 unit time (Fig. 7(a)). The rates of information transfer from x2
t+l to zt and from zt to x2

t+l also show an

oscillatory behavior with a period of∼ 0.35 unit time (Fig. 7(b)), that is the half of the correlation oscillation. PCMCI does not

exhibit such an oscillatory behavior but rather a quickly decreasing β value for small lags (Fig. 7(c)).

4.5 Climate indices

The real-case
::::::::
real-world

::::
case

:
study with climate indices shows that 54 % of the pairs of variables (excluding auto-correlations)395

are related by significant correlations when considering no lag (Fig. 8(a)). However, it is obvious that a large number of these

pairs are correlated but not causally linked. The use of causal methods allows to remove such spurious links, as demonstrated

by the application of LKIF without any lag (Fig. 8(b)) and PCMCI with lags up to l = 2 months (Fig. 8(c)).

Results from the two causal methods present several similarities, including the AO influence on both PDO and TNA

(Fig. 8(b)-(c)). Another similarity is the two-way causal link between AMO and TNA, in agreement with Vannitsem and400

Liang (2022) and Silini et al. (2022). The AMO-TNA influence is not surprising as both indices are computed from SST

anomalies in the North Atlantic, with AMO spanning the majority of the North Atlantic and TNA focusing on the tropical

region. Values of the AMO-TNA influence in the two directions are relatively strong for LKIF (|τAMO→TNA| = 22 % and
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Figure 5. Results from the Lorenz (1963) model when using (x,y,z): (a) correlation coefficient, (b) rate of information transfer (LKIF,

absolute value), and (c) maximum path coefficient (PCMCI) when using 4 lags (0 to 3 time steps). Results from the Lorenz (1963) model

when using (x2,y,z): (d) correlation coefficient, (e) rate of information transfer (LKIF, absolute value), and (c) maximum path coefficient

(PCMCI) when using 4 lags (0 to 3 time steps). Only significant values at the α = 5% level are shown.

|τTNA→AMO| = 38 %) compared to other pairs of influence (Fig. 8(b)). In addition, ENSO influences PDO according to both

methods (Fig. 8(b)-(c)), and the positive sign of the correlation means that a warm Niño3.4 phase results in a positive PDO405

(Fig. 8(a)). The ENSO influence on PDO was recently reported by Vannitsem and Liang (2022), also using LKIF, and Silini

et al. (2022), based on the pseudo-transfer entropy. Spatial patterns of ENSO and PDO are very similar and PDO is often being

viewed as ENSO-like interdecadal climate variability, with PDO occuring at decadal time scale, while ENSO is predominantly

an interannual phenomenon (Mantua et al., 1997; Zhang et al., 1997).

In terms of differences between the two causal methods, LKIF identifies additional causal influences of AO on PNA, NAO410

and AMO, while PCMCI does not identify these causal links (Fig. 8(b)-(c)). It is well known that there is a clear relationship
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Figure 6. Results from the Lorenz (1963) model when using (x,y,z): (a)-(c) correlation coefficient, (d-f) rate of information transfer (LKIF,

absolute value), and (g-i) path coefficient (PCMCI) as a function of the lag l when (a),(d),(g) x leads, (b),(e),(h) y leads, and (c),(f),(i) z

leads.

between AO and NAO (Deser, 2000), and NAO is often referred to as the local manifestation of the AO (Hamouda et al.,

2021). Also, according to LKIF, there are two-way causal influences between ENSO and PNA and between ENSO and TNA,

which do not appear with PCMCI with lags up to l = 2 months (Fig. 8(b)-(c)). It is well know that ENSO has a major influence

on the extratropical Northern Hemisphere climate variability, in particular on PNA (Horel and Wallace, 1981). However, the415

influence of ENSO on PNA is complicated by the fact that other mechanisms can affect this relationship, such as the position

of the Pacific jet stream (Soulard et al., 2019). Our results with LKIF suggest that PNA has a stronger influence on ENSO than

the reverse, which would go in favor of more complex mechanisms in action. Finally, the influence of ENSO on TNA has also

been reported in the literature and different mechanisms have been proposed (García-Serrano et al., 2017). It is interesting to

find that the influence of TNA on ENSO is stronger than the reverse influence with LKIF (Fig. 8(b)).420
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Figure 7. Results from the Lorenz (1963) model when using (x2,y,z): (a) correlation coefficient, (b) rate of information transfer (LKIF), and

(c) path coefficient (PCMCI) as a function of the lag l in x.

The use of 12 time lags (0 to 11 months) with both methods (bringing 8 variables× 12 lags = 96 variables in total for LKIF)

provides additional insights (Figs. 9-10). PNA influences ENSO with a 1-month lag with LKIF (Fig. 9(a)), and with a 4-month

lag with PCMCI (Fig. 10(a)). Additionally, PNA influences PDO with a 4-month lag and AMO with a 11-month lag using

LKIF (Fig. 9(a)). However, all PNA influences appear relatively weak in intensity (|τ |< 1 % with LKIF and |β|< 0.1).

NAO influences PDO with both methods but with very different lags depending on the method, i.e. 11 months with LKIF425

(Fig. 9(b)) and 1 month with PCMCI (Fig. 10(b)). It also influences TNA with LKIF with a 1-month lag. As for PNA, all

significant NAO influences remain limited in intensity (|τ |< 1 % with LKIF and |β|< 0.1).

AO is by far the climate index that influences most variables with LKIF (Fig. 9(c)), in agreement with Vannitsem and Liang

(2022). When considering no lag, AO influences all other indices, except QBO and ENSO (Fig. 9(c)). The largest value of

rate of information transfer is from AO to NAO with |τ | = 4 %, in agreement with the value considering no lag (Fig. 8(b)).430

AO also influences TNA and AMO at larger lags with LKIF (l = 1, 2 and 4 months for TNA, and l = 2, 5 and 11 months for
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AMO). With PCMCI, AO only influences TNA at lags l = 1 to 4 months, PDO at lag l = 1 month, and QBO at lag l = 4 months

(Fig. 10(c)). It is intriguing to notice that no AO influence on NAO appears with PCMCI.

QBO does not have any influence on any other climate indices with any of the methods (Figs. 9(d) and 10(d)).

The AMO-TNA two-way causal influence already identified in Fig. 8 also appears in the lagged plots, however with contrast-435

ing behaviors depending on the causal method. With LKIF, AMO only influences TNA at lag 0 (Fig. 9(e)) and TNA influences

AMO at lags l = 0 and 11 months (Fig. 9(g)). With PCMCI, the AMO influence on TNA increases with increasing lag from

l = 0 to 6 months, then decreases and stays relatively constant until l = 11 months (Fig. 10(e)), and TNA influences AMO at

lags l = 2, 4-6, 8 and 10-11 months (Fig. 10(g)). TNA has additional influences with PCMCI at lags l ≥ 2 months (on NAO,

QBO, PDO and ENSO; Fig. 10(g)) and with LKIF at lags l ≥ 9 months (on PDO and ENSO). The TNA influences on PDO440

and ENSO, appearing for both causal methods, remain limited to large lags (Figs. 9(g)- 10(g)).

PDO has an influence on PNA with LKIF at lag l = 6 months (Fig. 9(f)), which is consistent with Simon et al. (2022) using

sensitivity experiments with a coupled model. According to PCMCI, PDO influences ENSO at lags l ≥ 3 months (Fig. 10(f)).

Finally, ENSO influences PDO at lags l = 0, 2 and 6 months, and influences TNA at lags l = 2 and 6 months with LKIF

(Fig. 9(h)). With PCMCI, ENSO is the climate index that influences most variables (all but NAO), especially PDO from l = 2445

to 10 months, TNA from l = 3 to 11 months, and AMO from l = 4 to 11 months (Fig. 10(h)). The large role of ENSO was also

reported using the pseudo-transfer entropy using lags l = 1 to 9 months (Silini et al., 2022).

5 Discussion

Correlation is often used by the climate community to identify potential relationships between variables, but a statistically

significant correlation does not necessarily imply causation. In our study, we used two causal methods, LKIF and PCMCI, to450

disentangle true causal links from spurious correlations, and applied them to four artificial models and one real-case
:::::::::
real-world

:::
case

:
study based on climate indices. Below we discuss our results compared to previous literature (Sect. 5.1 for the artificial

models and Sect. 5.2 for the real-case
:::::::::
real-world

::::
case study).

5.1 Artificial models

For the simplest (2D) model used here, we show that LKIF can accurately reproduce the correct causal link, with relatively455

high accuracy compared to the analytical solution, while PCMCI fails to reproduce this link when using the original time step

(Sect. 4.1 and Fig. 1). PCMCI provides the correct influence for the 2D model when taking every 100 time steps (although the

β value is small), which shows that PCMCI responds better for discrete maps with finite time steps. For the 6D model, both

LKIF and PCMCI can detect the correct causal links (Sect. 4.2 and Fig. 2). For the 9D nonlinear model, PCMCI allows to

retrieve the correct causal relationships, while some care with the number of lags is needed with LKIF to achieve appropriate460

results (Sect. 4.3 and Figs. 3-4). This shows that LKIF performs better for simpler systems and presents a bit more difficulties

with more complex models with several lags, while PCMCI is better with models having more variables and several lags
:
.
:::
On

::
the

:::::
other

:::::
hand,

:::::::
PCMCI

::::
does

:::
not

::::
work

::::
well

::
in

:::
the

::::::::
presence

::
of

::::
very

:::::
strong

:::::::::::::::
auto-correlations,

:::
but

::::
may

::
be

::::::::::
preferential

::::
over

:::::
LKIF
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Figure 8. Results from the real-case
::::::::
real-world

:::
case

:
study: (a) correlation coefficient, (b) rate of information transfer (LKIF, absolute value),

and (c) maximum path coefficient (PCMCI) when using 3 lags (0 to 2 months). Only significant values at the α = 5% level are shown.

::
as

:::
the

::::::
number

:::
of

:::::::
variables

::::::::
increases. Results from the Lorenz (1963) model are more complicated to interpret as the system

is highly nonlinear and chaotic. Both methods detect the same causal links (Sect. 4.4 and Fig. 5), although some differences465
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appear in the dependence of the causal influence on the time lag (Figs. 6-7). Moreover, the combination of model nonlinearities

and nonlinear variable changes can result into linear causal links detectable by LKIF and PCMCI (Fig. 5).

The above results are not entirely comparable to findings from Krakovská et al. (2018) from a methodological perspective,

as the latter used other causal methods and different coupled systems. However, a similarity is the fact that some methods

(Granger causality and its extensions) better perform with the simplest models, while other methods (CCM and predictability470

improvement) are better suited for more complex systems (Krakovská et al., 2018). This goes in hand with LKIF being better

with the
::::::
specific

::::::::::::::
time-continuous

:
2D model and PCMCI

::::::
studied

::::
here,

:::::
while

:::::::
PCMCI

::
is

:
well suited for the

:::::::::::
time-discrete 9D

model in
::
of

:
our analysis. Thus, the key finding from Krakovská et al. (2018) that ‘it is important to choose the right method for

a particular type of data’ is also valid for our study.

The main novelties compared to Krakovská et al. (2018) are that: (1) we use two causal methods that had not been compared475

yet; (2) we compare our causal methods to the classical correlation coefficient; (3) we assess causality between nonlinear

variable changes and (4) we apply the two methods to a real-case
::::::::
real-world

::::
case

:
study. Regarding (1), no definite conclusion

can be provided as to which method is the best: it depends on the data type
:::::
system

:
used. For a very simple model, like the 2D

model, LKIF should
:::::
certain

:::::
very

:::::
simple

:::::::
models,

:::::
LKIF

:::::::
appears

::
to

:
be privileged over PCMCI

:
,
:::::::
although

:::::::
PCMCI

:::
has

:::
not

:::::
been

:::::::
designed

:::
for

:::
the

::::::::
particular

:::
2D

::::::
model

::::
used

::::
here

::::::
(Sect.

:::
4.1). For a more complex model involving more variables and several480

lags, like the 9D model, PCMCI is
:::
may

:::
be better suited. In any case, we recommend to use as many methods as possible for

a specific problem to increase the robustness of results. Regarding (2), we show that both LKIF and PCMCI are superior to

correlation, as they allow to remove spurious links. Regarding (3), we show that the combination of model nonlinearities with

nonlinear variable changes can result into linear causal links, detectable by both LKIF or PCMCI. Point (4) is discussed in

Sect. 5.2.485

Table 2 provides true-positive,
:::::::::::
true-negative, false-positive and false-negative rates

:
,
::
as

::::
well

:::
as

:::
the

::
φ

:::::::::
coefficient,

:
for the

correlation and the two causal methods used in this study and for the three first artificial models (2D, 6D and 9D models). For

the 9D model, a distinction is made between the case where lags are not considered (PCMCI is not used in this case) and the

case where lags are considered. These diagnostics are not computed for the Lorenz (1963) model and the real-case study, as no

exact solution exists for these two cases. Results show that the correlation has a large chance of detecting false positives (i.e.490

incorrect detection of causal influences) for all models, that LKIF performs better
:
;
::::
thus,

:::
the

:::::::::
correlation

::::::
largely

::::::::::::
overestimates

:::::
causal

:::::
links.

:::::
LKIF

::::
and

::::::
PCMCI

:::::
allow

:::
to

::::::::::
substantially

::::::
reduce

:::::
false

::::::::
positives,

::::
with

:::
0%

:
for the 2D and 6D models (as well as

::::
with

::::
both

:::::::
methods,

::::
21%

:::
for

:::
the

:::
9D

:::::
model

:::::::
without

:::
lag

::::
with

:::::
LKIF,

:::
and

::::::
<10%

::
for

:
the 9D model with inclusion of lags ), and that

PCMCI is better suited for
:::
lags

:::::
with

::::
both

::::::::
methods.

:::
For

:::
the

:::
2D

::::::
model,

:::::
LKIF

::::::::
perfectly

:::::::::
reproduces

:::
the

:::::
right

:::::
causal

:::::
links

::
(φ

::
=

::
1),

:::::
while

:::
the

:::::::::
correlation

:::::::::
coefficient

:::
and

:::::::
PCMCI

:::::
(with

:::
the

::::::
original

:::::
time

::::
step)

::
do

:::
not

:::::
make

:::::
better

::::
than

::
a

::::::
random

:::::::::
prediction

::
(φ

::
=495

::
0).

:::::
Only

::::
when

:::::
using

::
a

:::::
larger

::::::::
sampling

::::
time

::::
step,

:::::::
PCMCI

:::
can

::::::::
reproduce

:::
the

::::::
correct

::::::
causal

:::::
links.

:::
For the 6D

::::::
model,

::::
both

:::::
LKIF

:::
and

:::::::
PCMCI

::::::::
accurately

:::::::::
reproduce

:::
the

::::::
ground

::::
truth

:::
(φ

:
=
:::

1),
:::::
while

:::
the

:::::::::
correlation

:::::::::
coefficient

:::::
again

::::
does

:::
not

:::::
make

:::::
better

::::
than

::
a

::::::
random

:::::::::
prediction

:::
and

::::::::
identifies

::
all

:::::::::::
relationships

::
as

::::::
causal

::
(φ

::
=

:
0
:
and

:::::::::::
false-positive

:::
rate

::
=
::::::
100%).

::::
For

:::
the 9D models (as well

as
:::::
model

:::::::
without

:::
lag

:::::::
(PCMCI

:::
not

:::::::::
included),

:::
the

:::::::::
correlation

::::
does

::
a

:::::
better

:::
job

::
at

:::::::::
identifying

:
a
::::::
certain

:::::::
amount

::
of

::::
true

::::::::
negatives

:::::
(60%)

:::::::::
compared

::
to the 2D model with an appropriate time step

:::
and

:::
6D

:::::::
models,

:::
but

:::::
LKIF

::::::::
provides

::::::
overall

:::::
better

::::::
results

:::
(φ500
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:
=
:::
0.5

:::
for

:::::
LKIF

:::
vs.

::
φ

::
=

:::
0.4

:::
for

::::::::::
correlation),

::::::
despite

:::
the

:::::::::::
identification

:::
of

:::
one

::::
false

::::::::
negative

::::
with

:::::
LKIF

::::
(Fig.

:::::
3(b)).

::::
For

:::
the

:::
9D

:::::
model

::::
with

::::
lags,

:::
the

:::::::::::
performance

::
of

:::
the

:::
two

::::::
causal

:::::::
methods

::
is

::::::
clearly

:::::
better

::::
than

:::
the

:::::::::
correlation

::
(φ

::
=

:::::
0.21),

::::
with

:::::::
PCMCI

::
(φ

::
=

::::
0.81)

::::::::::
performing

::::::
slightly

:::::
better

::::
than

:::::
LKIF

::
(φ

::
=
::::
0.77).

Table 2. True-positive,
:::::::::
true-negative,

:
false-positive and false-negative rates (in %)

:
,
::
as

::::
well

::
as

::
φ

::::::::
coefficient,

:
for the correlation and the

two causal methods (LKIF and PCMCI) and for the first three artificial models (2D, 6D and 9D models, the latter without and with lags),

excluding self-influences. The true-positive rate is the percentage of causal links correctly detected by the method among the total number

of ground truth correct
::::::::
(incorrect) links (

:::::
without

:::::::::
considering

::
if the latter

::::
exact

::::
time

:::
lags

:::
are

:::::::::
reproduced

::
or

:::
not)

:
is indicated in parentheses

in the table
:::
after

:::::
‘True

:::::::
positives’

:::::
(‘True

::::::::
negatives’) . The false-positive rate represents the percentage of cases where the method incorrectly

detects a causal link among the total number of ground truth incorrect links. The false-negative rate represents the percentage of cases where

the method fails to find an existing causal link among the total number of ground truth correct links
::
for

::::
each

:::::
model. For the 2D model and

PCMCI, numbers are also provided in parentheses for the case with larger sampling time step (dt
:::
∆t = 0.1).

Correlation LKIF PCMCI

2D model True positives (1) [
:
%] 100 100 0 (100)

False positives
::::
True

:::::::
negatives

::
(1)

:
[
::
%]

:
0

:::
100

:::
100

::::
(100)

:

::::
False

:::::::
positives [

:
%] 100 0 0 (0)

False negatives [
::
%] 0 0 100 (0)

:
φ
::::::::
coefficient

: :
0

:
1

:
0
::
(1)

:

6D model True positives (7) [
:
%] 100 100 100

False positives
::::
True

:::::::
negatives

:::
(23)

:
[
::
%]

:
0

:::
100

:::
100

:

::::
False

:::::::
positives [

:
%] 100 0 0

False negatives [
::
%]

:
0 0 0

:
φ
::::::::
coefficient

:
0

:
1

:
1
:

9D model without lag True positives (9) [
:
%] 100 89 -

False positives
::::
True

:::::::
negatives

:::
(63)

:
[
::
%]

:
60

: ::
79

: :
-

::::
False

:::::::
positives [

:
%] 40 21 -

False negatives [
::
%] 0 11 -

:
φ
::::::::
coefficient

: :::
0.40

:::
0.50

:
-

9D model with lags True positives (9) [
:
%] 100 100 100

False positives
::::
True

:::::::
negatives

:::
(63)

:
[
::
%]

:
27

: ::
92

: ::
94

::::
False

:::::::
positives [

:
%] 73 8 6

False negatives [
::
%] 0 0 0

:
φ
::::::::
coefficient

: :::
0.21

:::
0.77

:::
0.81

:
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5.2 Climate indices

In our study, we extend previous analyses from Vannitsem and Liang (2022) and Silini et al. (2022) by using monthly time series505

of climate indices in the North Atlantic and North Pacific
::::::
Atlantic

:::
and

::::::
Pacific

:::::::
regions. We use the same seven climate indices

as Vannitsem and Liang (2022), add QBO to the list to have four atmospheric and four oceanic indices
::::::
indices

::::::::::::
characterizing

::::
both

::
the

::::::::::
atmosphere

::::
and

:::::
ocean, and do not use local air temperature, precipitation and insolation. Vannitsem and Liang (2022)

also computed LKIF based on these indices but focused on the dependence of the rate of information transfer on the time scale

(using a time-moving window) and did not compare LKIF to another method. Silini et al. (2022) also used NAO, QBO, AMO,510

PDO and ENSO (Niño3.4), they used a slightly different index for TNA, and they incorporated 7 additional indices. The causal

method used by Silini et al. (2022) is the pseudo-transfer entropy (Silini and Masoller, 2021).

Due to the small methodological differences in our analysis compared to Vannitsem and Liang (2022) (see above), some

small differences appear but key results with LKIF remain similar. In particular, we find that AO is the largest driver of all

variables as it influences all other indices, except QBO and ENSO (Sect. 4.5 and Fig. 8(b)). We show that the AO influence515

mainly occurs at lag l = 0 (Fig. 9(c)). This is in agreement with Vannitsem and Liang (2022), who find that AO plays a key

role at short time scale. PCMCI only identifies two AO influences with lags shorter than 2 months, i.e. to PDO and TNA

(Fig. 10(c)). It is particularly intriguing to see that PCMCI does not detect the AO influence on NAO (Fig. 8(c)), while LKIF

does (Fig. 8(b)), as NAO is often referred to as the local manifestation of AO (Hamouda et al., 2021). This discrepancy might

hide seasonal differences, as for example winter and summer NAO have different spatial patterns (Folland et al., 2009).520

ENSO is another climate index that has a relatively large influence on other climate indices, especially on PDO for both

LKIF and PCMCI (Fig. 8(b)-(c)). The pivotal role of ENSO was already identified by Silini et al. (2022) and is not surprising

due to its importance on the global climate (Timmermann et al., 2018). ENSO has a clear influence on PDO at lags 2 to 10

months for PCMCI (Fig. 10(h)), while it only appears at lags 0, 2 and 6 months for LKIF (Fig. 9(h)). This ENSO-PDO influence

was detected from lags 1 to 7 with pseudo-transfer entropy (Silini et al., 2022), thus somewhere in between PCMCI and LKIF.525

The other clear ENSO influence according to PCMCI, LKIF and pseudo-transfer entropy is on TNA, at lags 2 and 6 months

with LKIF (Fig. 9(h)), at lags 3-11 months with PCMCI (Fig. 10(h)), and at lags 1-9 months with pseudo-transfer entropy

(Silini et al., 2022). According to PCMCI and pseudo-transfer entropy, ENSO also largely influences other climate indices than

PDO and TNA at different lags, which is not the case of
::
for

:
LKIF. More research would be needed to further investigate this

difference between causal methods.530

6 Conclusions

In this study, we compare two independent causal methodstogether, namely the Liang-Kleeman information flow (LKIF) and

the Peter and Clark momentary conditional independence (PCMCI), and against the Pearson correlation coefficient. We use

five different datasets with an increasing level of complexity, including three stochastic models, one nonlinear deterministic

model and one real-case
::::::::
real-world

::::
case

:
study.535
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We show that both causal methods are superior to the correlation, which suffers from five key limitations: random coinci-

dence, no identification of the direction of causality, external drivers not distinguished from direct drivers, no identification of

potential nonlinear influences, and application to bivariate cases only. For most models and the real-case
:::::::::
real-world

::::
case study,

the number of significant correlations is much larger than the number of significant causal links, which is incorrect from a

causal perspective for the three first models. By extension, we assume that the correlation also suffers from this overestimation540

in the real-case
::::::::
real-world

::::
case study, and causal methods allow to improve results.

When comparing both causal methods together, LKIF can accurately reproduce the correct causal link in the 2D model, while

PCMCI cannot with the original time step and needs to to be computed with a larger sampling time step to provide correct

causal links, although the influence remains small. For the 6D model, both methods can capture the seven correct causal links.

For the 9D model, PCMCI correctly reproduces all causal links and LKIF without any time lag is not totally accurate. When545

used with time lags, LKIF can identify the correct causal links.

For the Lorenz (1963) model, results are more complicated to interpret as the system is highly
:::::::::::::
time-continuous nonlinear

and chaotic. Both causal methods show a strong two-way causal link between x and y, while no causal link appears between

z and the two other variables. However, when we replace x by x2 to take nonlinearities into account, x2 and z are causally

linked (in the two directions) with both methods. We also show that both LKIF and PCMI display a decrease in the two-way550

causal influence between x and y with increasing time lag, although the shape of this decrease is different between methods.

Additionally, the oscillatory behavior in correlation coefficient and LKIF for the x2-z pair as a function of lag is not displayed

by PCMCI.

Finally, the real-case
::::::::
real-world

::::
case

:
study with climate indices provides some similarities but also important differences

between the two methods. In terms of similarities, AO influences both PDO and TNA, there is a two-way causal link between555

AMO and TNA, and ENSO influences PDO. In terms of differences, LKIF identifies additional influences of AO on PNA,

NAO and AMO, as well as two-way causal links between ENSO and PNA, and between ENSO and TNA. When using 12 time

lags, the number of influences detected by PCMCI becomes larger compared to LKIF, e.g. ENSO has a large influence on all

other variables except NAO, while AO remains the largest influencer (at smaller lags) with LKIF. More detailed analysis of the

physical processes would be needed to identify correct causal links between these climate indices.560

In summary, this analysis shows that both causal methods should be preferred to correlation when it comes to identify causal

links. Additionally, as both LKIF and PCMCI display strengths and weaknesses when used with relatively simple models in

which correct causal links can be detected by construction, we do not recommend one or the other method, but rather encourage

the climate community to use several methods whenever possible. We finally highlight that both methods, as used here, assume

linearity, so results need to be taken with caution for nonlinear problems, such as the Lorenz (1963) system and the real-case565

::::::::
real-world

::::
case

:
study. The use of extensions of the methods for which fully nonlinear terms are taken into account are necessary

to complement the current results (e.g. ?
:::::::::::::
Pires et al. 2024). Also, both LKIF and PCMCI deal with direct causal links, while

other methods, such as interventional causality (Baldovin et al., 2020), can detect indirect influences. Further analysis would be

needed to explore this aspect.
:::::
Lastly,

:::
we

:::::
could

:::
test

:::
the

:::::::::
robustness

::
of

:::
the

::::::::
methods

::
to

::::
noise

::::
and

::::
their

::::::::::
performance

::
in
:::
the

:::::::
context

::
of

::::::::::::::
high-dimensional

:::::::
systems.

:
570
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Figure 9. Results from the real-case
:::::::
real-world

::::
case study with LKIF (rate of information transfer; absolute value) as a function of the lag:

(a) PNA influence on the other variables; (b) NAO influence; (c) AO influence; (d) QBO influence; (e) AMO influence; (f) PDO influence;

(g) TNA influence; (h) ENSO influence. Only significant influences at the α = 5% level are shown as filled dots.
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Figure 10. Results from the real-case
:::::::

real-world
::::
case study with PCMCI (path coefficient; absolute value) as a function of the lag: (a) PNA

influence on the other variables; (b) NAO influence; (c) AO influence; (d) QBO influence; (e) AMO influence; (f) PDO influence; (g) TNA

influence; (h) ENSO influence. Only significant influences at the α = 5% level are shown as filled dots.
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