
Reply to referee comment #1 

We thank Referee #1 for reviewing the manuscript and the valuable comments and suggestions 

which we address below. The responses to the referee comments are given in blue italic letters. 

 

General comments:  

The paper is well written, clear, and of interest. I recommend publication with a few comments.  

 

Specific comments: 

− Eq. (1): When measuring the total intensity 𝐼 with a polarization camera, I think it is 

preferable to use 𝐼 = (𝐼0 + 𝐼45 + 𝐼90 + 𝐼135)/2 rather than 𝐼 = 𝐼0 + 𝐼90. Ideally of course, it should 

be that 𝐼0 + 𝐼90 = 𝐼45 + 𝐼135. Nevertheless, I think it is preferable to take the information of all 

four pixels into account.  

 

Thank you for your comment. We do indeed compute the I-component of the Stokes vector 

from our measurements with 𝐼 = (𝐼0 + 𝐼45 + 𝐼90 + 𝐼135)/2 using all four measured intensities. So, 

it was misleading to give the general definition of the Stokes vector in Eq. (1). We changed 

the equation to 𝐼 = (𝐼0 + 𝐼45 + 𝐼90 + 𝐼135)/2 to be consistent.  

 

− Section 4.5.2 Laboratory polarization calibration: I think this section could be improved. I am 

not sure I fully understand the calibration procedure. Some additional step-by-step 

explanations with equations and/or a figure explaining the three reference systems and how 

they relate would help me. To be a bit more specific:  

o In Step 1 (Line 326-331): Did you compute Transfer matrix Eq. (8) by means of Eq. (9) 

with the camera being in the camera reference frame? Is the result a transfer matrix 

from laboratory frame (linear polarizer) to camera frame that contains a rotation 

matrix that still needs to be determined? Or are camera and linear polarizer in the 

same laboratory reference system? 

We added more details about the different reference systems and also tried to 

describe the first step in more detail to make that clearer. In addition, we added a 

reference with sketches which visualize the different reference systems.  We 

computed the transfer matrices in this first step in the laboratory reference frame by 

solving equation 9 in a least-squares sense similarly to Rodriguez et al. (2022).  With 

the resulting transfer matrix Stokes vectors in the laboratory reference frame can be 

computed from measured intensities. The procedure of the laboratory polarization 

calibration in section 4.5.2 is independent of the theoretical polarization calibration 

model (equation 8) in section 4.5.1. Equation 8 gives Stokes vectors in the camera 

reference system. The transfer matrices obtained in the first step of the laboratory 

polarization calibration give results in the laboratory reference system and are 

rotated to the camera reference system in the second step of the laboratory 

polarization calibration. 

 

o Line 332-345: I assume the problem that is being solved here is finding the rotation 

induced by the window. So if the Stokes vector is rotated beforehand, does Eq. (9) 

become something like this,  



𝐼𝑛 – 𝑑𝑛 = 𝐴 ∙ 𝑅 ∙ 𝑆𝑛, 

with R being the rotation matrix we are looking for? If so, why could you not simply 

fit a misalignment factor dphi similar to Eq. (13) in Lane et al. (2022) (This 

misalignment factor is also merely a rotation of angle dphi). I understand the 

sentence spanned from line 333-335, but couldn’t you still optimize for the rotation 

by rotating the linear polarizer? How are the EURECA measurements polarized with 

respect to the camera reference system (or the scattering plane)? I think it is worth 

giving more details. 

 

In contrast to Lane et al. (2022) the polarizer in our setup was not mounted on a 

manual but on a motorized rotation stage. This means that the relative orientation of 

the polarizer for the different measurements with different rotation angles are very 

accurate and we did not have to account for misalignments due to manual 

arrangement. But, what we needed to determine was the absolute orientation of the 

0 degree direction of the linear polarizer in camera coordinates. In principle, it would 

also have been possible to rotate the incoming Stokes vector first into the camera 

reference system and then determine the transfer matrices as you propose with your 

equation above. However, we did not have a “ground truth” for the 0 degree 

direction which we could have used to directly optimize for such a misalignment 

factor due to window in front of the cameras. Because of that, we used the known 

property, that U=0 in the scattering plane for single scattering with our 

measurements from the EUREC4A campaign as described in the paper. The 

measurements are at first raw data, from which we computed Stokes vectors in the 

laboratory reference frame with the transfer matrices of step 1. Then we applied two 

rotation matrices to the Stokes vectors, one for the transformation from laboratory to 

camera reference system, which had to be optimized, and the second one for 

transforming from the camera reference system to the scattering plane, which was 

known from the geometrical calibration. By minimizing U in the scattering plane we 

could then find the rotation from laboratory to camera reference frame.  

We added also more details to this section to make our methods more 

comprehensible.  

The entire part about the laboratory polarization calibration reads now: 

“The Stokes vector as well as the transfer matrix are always defined relative to a reference plane. 
In connection with the polarization calibration, we distinguish three different reference systems. 
The laboratory reference system is defined by the plane containing the 0◦-axis of the linear 
polarizer between the large integrating sphere and the instrument and the normal of this 
polarizer. Moreover, the reference plane for the camera reference system for each camera is 
given by the x-z-plane of the camera coordinate system with the x-axis parallel to the 0◦-direction 
of the polarizers on the sensor and the z-axis normal to the focal plane array of the camera. 
Finally, the Stokes vectors can be rotated from the camera reference system into the scattering 
plane. The scattering plane is the plane containing the vector of the incoming solar radiation and 
the viewing direction of ach pixel. Sketches visualizing the different reference systems can for 
example be found in Eshelman et al. (2019). The transformation from the camera coordinate 
system to the scattering plane is known from the geometric calibration and varies between 
different observation geometries with different vectors of the incoming solar radiation. Thus, 
with the laboratory polarization calibration, we aim for computing the transfer matrices in the 

camera reference system. 



For that, we defined the polarizer angles φ for the incoming Stokes vectors Sn relative to the 0◦-axis of 

the linear polarizer between the large integrating sphere and the instrument and computed the 

transfer matrices first in the laboratory reference frame with the normalized super-pixel method 

described above. Therefore, we combined the laboratory measurements for different tilt angles into 

one laboratory reference system and solved equation 9 in a least-squares sense similarly to Rodriguez 

et al. (2022) for the transfer matrices using the measured intensities and dark signal as well as the 

incoming Stokes vectors computed from the polarizer angles φ. We only included illuminated pixels 

with viewing directions within ±20◦ perpendicular to the polarizer where the polarizer can be 

considered perfect. In addition, we excluded pixels with dirt or reflections on the window. With the 

resulting transfer matrices, Stokes vectors in the laboratory reference frame can be computed from 

measured intensities. 

In a second step, we transformed the obtained transfer matrices from the laboratory reference 

system into the camera reference system. The direct determination of the rotation from the 

laboratory to the camera reference frame through the identification of the polarizer orientation 

visible in the measurements was not possible due to the angle dependent shift introduced by the 

window, which is relevant at small distances. However, for single scattering, the U component of the 

Stokes vector is zero in the scattering plane due to symmetries. We used this fact to find the rotation 

from the laboratory to the camera reference frame using measurements taken during the EUREC4A 

campaign (Stevens et al., 2021) by minimizing U along the scattering plane. Contributions from 

multiple scattering can in principle cause deviations of U from zero. To minimize the influence of 

multiple scattering, we chose measurements from EUREC4A without clouds and minimum amount of 

aerosol. We applied the computed transfer matrices to measurement data from the EUREC4A 

campaign to compute Stokes vectors in the laboratory reference frame. Then, we rotated the 

obtained Stokes vectors with a single rotation matrix first from the laboratory into the camera 

reference system and next for every pixel from the camera reference system into the scattering plane. 

Since the transformation from the camera reference system to the scattering plane is known we could 

optimize for the rotation from the laboratory to the camera reference system by minimizing the 

absolute value of U along the scattering plane. With that, we obtained transfer matrices in the 

camera reference system for every measured pixel by applying this rotation matrix to the transfer 

matrices in the laboratory reference system obtained during the first step.” 

− The statements in Line 279 “a single matrix …. To all pixels” and Line 294 “the camera lens 

has only little influence” citing Lane et al. are slight oversimplifications. Lane et al. used a 

105m lens set to f/22 (fairly straight rays) to show that the super-pixels on the sensor are 

generally consistent. When they compare the lenses, they merely focus on the central pixels. 

However, and presumably particularly important for wide-angle lenses, lenses can show an 

effect called polarization aberration of lenses. This is nicely explained in the reference [1], 

section 1.7.2, page 22 ff. (also note the effect of high numerical aperture wavefronts 

described in section 1.7.3). The effect is particularly high at the edges (see Fig. 1.38 in [1]), 

which might explain your larger differences in the corners (mentioned in line 482). My 

suggestion would be: it is fair to assume one transfer matrix for all pixels, as the superpixels 

should generally be consistent across the entire sensor. However, this will probably not fully 

correct the entire lens (as you already concluded yourselves in line 486). I do not see a need 

to change any data / results. But it is worth to correct the statements and to mention the 

potential effect of polarization aberration of lenses.  

Thank you very much for pointing that out. We reworded both lines and added more details 

to make the differences between the setup of specMACS and Lane et al. (2022) clearer and 

avoid oversimplifications. Lines 279 and 294 read now: 



“Lane et al. (2022) calibrated the monochromatic version of the polarization resolving 

cameras from the same manufacturer. They focused on the central pixels of the sensor and 

found that the transfer matrices are consistent across this sensor region and a single matrix 

can be applied to all pixels. In addition, the deviation between the measured matrices and the 

ideal matrix was small for the central pixel region with small incident angles which they 

considered.” 

And 

“According to Lane et al. (2022), the choice of the camera lens has only little influence on the 

transfer matrices for the central pixel region of the camera where the incident angles of the 

rays are small. Thus, we assume that our theoretical model of the transfer matrices is a good 

approximation. However, lenses can introduce polarization aberrations especially for larger 

incident angles towards the corner regions (Chipman et al., 2018). This effect is not included 

in the theoretical polarization calibration model. Because of that, we validated the theoretical 

model with a laboratory polarization calibration.” 

Technical corrections: 

− Eq. (1): It should be 𝐼𝑟𝑖𝑔ℎ𝑡 – 𝐼𝑙𝑒𝑓𝑡 and not 𝐼𝑙𝑒𝑓𝑡 – 𝐼𝑟𝑖𝑔ℎt, see [1], page 64, Eq. (3.1)  

 

Thank you very much for noting that. We corrected the equation. 

 

− Line 137, 142: altitude instead of attitude  

 

We do indeed mean the attitude of the aircraft here. The BAHAMAS data provides aircraft 

position (latitude, longitude, height) and attitude (roll, pitch, and yaw angles). We added 

more details to clarify that: 

“Precise information about aircraft position (latitude, longitude, and altitude of the aircraft) 

and attitude (roll, pitch, and yaw angles) is available from the Basic HALO Measurement and 

Data System (BAHAMAS).” 

 [1]: Chipman, Russell, Wai Sze Tiffany Lam, and Garam Young. Polarized light and optical systems. 

CRC press, 2018 



Reply to referee comment #2 

We thank Brent McBride for reviewing the manuscript and the valuable comments and suggestions 

which we address below. The responses to the referee comments are given in blue italic letters. 

 
This paper discusses the calibration pipeline for the polarization resolving cameras of the 
spectrometer of the Munich Aerosol Scanner (specMACS). The authors discuss the instrument itself, 
then delve into geometric calibration of the image frame, dark characterization, non-linearity, 
spectral response, polarization calibration of an enclosing window and optical assembly, flatfielding, 
and absolute radiometric response. The authors close with a discussion of overall uncertainty and a 
measurement-model intercomparison over sunglint measured during a recent field campaign.  
This paper comes after Pörtge et al. (2023), which demonstrated the polarimetric cloud retrieval 
capabilities of the same specMACS cameras over marine and popcorn cumulus cloud fields. 
Polarimetric remote sensing is a hot topic in the climate community right now. Papers that 
demonstrate polarimeter instrument calibration (as well as their science) will continue to be 
relevant, interesting, and useful to AMT readers. I recommend publication with minor/optional 
revisions.  
 
 
In-line comments:  
 
Line 85: I understand that the Equation 1 is the form given in Hansen and Travis (1974), though the 
Sony sensor allows for a more comprehensive calculation using all four angles (shown in Lane et al. 
2022):  

𝐼= 1/2(𝐼0+𝐼90+𝐼45+𝐼135) 
This form is used later in the paper (as a normalization during polarization calibration, line 313), but 
it isn’t clear to me if the actual intensity measurement (Stokes I) is calculated this way throughout 
the entire paper. Either way, please harmonize the definition of I across the paper. Also, the typical 
convention of V in Eq. (1) is flipped from what is shown (right – left).  
 

Thank you for your comment. We do indeed compute the I-component of the Stokes vector from 
our measurements with 𝐼 = (𝐼0 + 𝐼45 + 𝐼90 + 𝐼135)/2 using all four measured intensities. So, it was 
misleading to give the general definition of the Stokes vector in Eq. (1). We changed the 
equation to 𝐼 = (𝐼0 + 𝐼45 + 𝐼90 + 𝐼135)/2 to be consistent throughout the paper. In addition, we 
corrected the equation for the V component. Thank you very much for noting that.  
 
Section 3. I recommend to add a figure to this section. A visual of the chessboard calibration from 
the perspective of the specMACS sensor would help a lot with the interpretation here.  
 
We added a figure showing an example image of a chessboard as recommended. 
 
Line 193: Figure 3 shows that polLL and polLR have systematic differences in the forward and aft 
sides of the dark frame. Even at a ~2.5 counts spread, this structure is important to capture, and 
could be relatively easy to apply in post-processing on image data. At 30000DN, I agree it will not 
make much of a difference to use a single value or adopt a spatial dark map for correction. However, 
I imagine part of the interest in specMACS data goes beyond clouds – possibly to science retrievals 



of aerosol, land, ocean, and free atmosphere properties. Many of these targets will not have 
30000DN signals. For example, open ocean is extremely dark in RGB and can go to <5% in DOLP off-
glint, like in Figure 12b. At these low light levels, a few counts could be important. Also, the later 
sections discuss the many ways that the calibration could be improved – using the spatial field of the 
dark (and scaling the dark counts relative to any measurement temperature) could be a step in this 
direction. I would consider including this in the calibration pipeline instead of a single value for the 
dark.  
 
Thank you very much for this comment. For our applications of the data to the remote sensing of 
cloud macro- and microphysical properties, using a single value for the dark signal is accurate 
enough, which is why we did not use the spatial field of the dark signal. The spread of about 2-3 
counts is very small and the temperature dependency of the dark signal of about 0.16 during a 
typical flight negligible for our applications. But we agree that for other applications this might 
become relevant. We added a sentence noting that the calibration of the instrument could be 
improved by using the spatial field instead of single value and will keep that in mind for potential 
future applications to darker scenes:  
“Moreover, the spatial field of the dark signal could be used instead of a single value for the dark 
signal correction to further reduce the calibration uncertainties for retrievals of e.g. aerosol or land 
properties with very small signal levels.” 
 
Figure 6. It is challenging to differentiate the curves in each figure due to the overlap and large scale. 
This could be stronger as a residual plot (i.e. 𝑆�̃� - So), as a function exposure time for all pixels 
shown. Also, please make the points larger.  
 
Thank you very much for noting that. We changed the marker and increased the size of the points as 
suggested to make it easier to differentiate. We are aware that the overlap of the curves in the plot 
is not ideal. The reason for choosing this visualization is that we wanted to show the linear scaling of 
the measured signal with exposure time which is not visible in a residual plot. To further quantify the 
deviation of the signal from the linear relationship we added the percentages in the legend of the 
plot.  
 
Line 215: Relative to the detector spec, are these non-linearities reasonable?  
 
The camera specifications do not include information about non-linearities. However, the non-
linearities we found are reasonable compared to other cameras (e.g. Forster et al. 2020). 
 
Figure 7. Is there is any new information in (a) and (c) that isn’t already in (b) and (d)? If not, I 
recommend to only show (b) and (d).  
 
According to Poisson statistics the variance scales linearly with the signal. This linear behavior can 
nicely be seen in panels (a) and (c) which is why we added those two panels. We added this to the 
text to make it clearer: 
“The noise characteristics of both cameras are well captured by the Poisson model. Panels (a) and (c) 
show the expected linear relationship between the variance and the signal while the noise scales 
with the square root of the signal in panels (b) and (d).” 
 



Figure 8. Though the smaller peaks in blue @ 650nm and in red @ 550nm are typical of some Bayer 
filter designs, how is this addressed in the radiometric calibration? This could be important for cross-
talk considerations, and may have some influence on the error analysis in Table 3.  
 
The radiometric calibration was performed at the large integrating sphere whose output spectrum 
was measured by the CHB. We integrated this spectrum with the previously determined spectral 
response functions of the three color channels to obtain the output radiance of the LIS for the 
respective color channels for the absolute radiometric calibration. In this sense the smaller peaks 
were accounted for. 
 
Line 278 + Line 294: This may not hold for the entire specMACS FOV, though. The Lane et al. (2022) 
study prioritized pixels near the image center and predicted higher errors in focus and polarization 
measurement at large AOI. Since a single-camera specMACS FOV is decently large (~45 deg nadir-to-
aft), and the Cinegon lens does not seem to be telecentric (from the spec), there will likely be AOI-
related differences in the transfer matrix at wider angles. I am glad this is recognized by the authors 
in the discussion towards the end of the paper, but I would reword these statements to differentiate 
specMACS from the Lane et al. (2022) study a bit more here. 
 
Thank you for this comment. We changed the lines you mentioned and added more details to make 
the differences between the specMACS setup and Lane et al. (2022) clearer and avoid 
oversimplifications. Lines 279 and 294 read now: 
“Lane et al. (2022) calibrated the monochromatic version of the polarization resolving cameras from 
the same manufacturer. They focused on the central pixels of the sensor and found that the transfer 
matrices are consistent across this sensor region and a single matrix can be applied to all pixels. In 
addition, the deviation between the measured matrices and the ideal matrix was small for the 
central pixel region with small incident angles which they considered.” 
and 
“According to Lane et al. (2022), the choice of the camera lens has only little influence on the 
transfer matrices for the central pixel region of the camera where the incident angles of the rays are 
small. Thus, we assume that our theoretical model of the transfer matrices is a good approximation. 
However, lenses can introduce polarization aberrations especially for larger incident angles towards 
the corner regions (Chipman et al., 2018). This effect is not included in the theoretical polarization 
calibration model. Because of that, we validated the theoretical model with a laboratory polarization 
calibration.” 
 
Line 320: I strongly recommend to add a figure that visually explains these three reference frames. It 
is difficult to reconcile them from the text alone and the following paragraphs require the reader to 
fully understand each one.  
 
We added more details about the different reference systems in the text and also tried to give more 
detailed descriptions of the different steps of the laboratory polarization calibration in order to make 
our methods more comprehensible.  In addition, we added a reference which includes sketches 
visualizing the different reference systems. The section explaining the reference systems reads now: 
“The Stokes vector as well as the transfer matrix are always defined relative to a reference plane. In 
connection with the polarization calibration, we distinguish three different reference systems. The 
laboratory reference system is defined by the plane containing the 0◦-axis of the linear polarizer 



between the large integrating sphere and the instrument and the normal of this polarizer. Moreover, 
the reference plane for the camera reference system for each camera is given by the x-z-plane of the 
camera coordinate system with the x-axis parallel to the 0◦-direction of the polarizers on the sensor 
and the z-axis normal to the focal plane array of the camera. Finally, the Stokes vectors can be 
rotated from the camera reference system into the scattering plane. The scattering plane is the 
plane containing the vector of the incoming solar radiation and the viewing direction of ach pixel. 
Sketches visualizing the different reference systems can for example be found in Eshelman et al. 
(2019). The transformation from the camera coordinate system to the scattering plane is known 
from the geometric calibration and varies between different observation geometries with different 
vectors of the incoming solar radiation. Thus, with the laboratory polarization calibration, we aim for 
computing the transfer matrices in the camera reference system.” 
 
Line 359: The reconstruction error on I of 10-13% is incredibly small versus the error on Q. Even with 
normalized intensities, I would still expect to see a reconstruction error in the ballpark of what is 
reported for Q. This suggests to me that the derivation of the transfer matrix is weighting the I 
inputs more strongly than Q or U. Can you give more details on how that value was derived?  
 
The transfer matrices were derived by solving equation 9 in a least-squares sense with A = (In -dn)Sn

-1 
where Sn

-1 is the pseudo-inverse of the incoming Stokes vectors Sn. The measured Stokes vectors were 
then reconstructed from the measured intensities via Sn,r = A-1 (In-dn). Finally, we computed the 
reconstruction error which we define as the relative difference between the reconstructed Stokes 
vectors Sn,r and the incoming Stokes vectors Sn. The given values of the reconstruction error are mean 
values across all measured pixels. We added an additional reference and more detailed description 
of the method throughout the entire section and included the equations above to the paragraph.  
 
Line 365: Why is it useful to know that the specMACS pol cameras would be between 3 and 5% 
biased, if they were used uncalibrated while imaging a target with DOLP = 1? Most scientists will 
never use uncalibrated specMACS data – maybe this is a marker of how close the instrument is to an 
ideal calibration already? Either way, I suggest changing this to how much error we could expect to 
see in a calibrated specMACS DOLP measurement (or defer this to Table 3 – see comment below).  
 
With the laboratory polarization calibration, we analyzed the polarization properties and determined 
transfer matrices for significant parts of the field of view but we could not cover the entire field of 
view of the cameras. Because of that, we developed the theoretical polarization model and validated 
it with the laboratory polarization calibration. In this context, the polarization calibration error 
introduced by Lane et al. (2022) is useful, since it indicates that the instrument is in fact close to an 
ideal calibration concerning polarization. Thus, the use of the ideal transfer matrix in the theoretical 
model covering the entire field of view can be justified and introduces only small errors. We added a 
sentence to clarify that: 
“These small errors indicate that the cameras are close to ideal cameras concerning polarization and 
the error introduced by using the ideal transfer matrix instead of the transfer matrices obtained from 
the laboratory polarization calibration is small.” 
For the DOLP, see the answer to the comment below.   
 
Line 390: Systematic and spatial differences between model and measurement in Figures 10 and 11 
on the order of 2-6% are quite large for a flatfield residual. This may impact science retrievals done 



in specific pixel regions – was there any reason not to trust the spatial distribution of the LIS field 
outright? Integrating spheres should be excellent spatial sources for flatfield.  
The other way to approach this could be to step the specMACS field of view across the LIS aperture 
while taking images. This would place the LIS aperture in different locations of the FOV and fully 
cover the FPA in a “composite” flatfield over all images taken. Was a test like this considered? I am 
not requesting extra work, but for this section, I would add more details about why a model was 
preferred despite significant spatial residuals in Figures 10 and 11.  
 
Due to the large field of view, it was not possible to perform flatfield measurements covering the 
entire field of view. Even the composite method you propose was not possible because we could not 
tilt the instrument to cover e.g. also the corner regions due to its large size and weight. Because of 
that we chose the model to obtain a vignetting correction for the entire field of view despite the non-
negligible residuals. At least part of the residuals can be attributed to inhomogeneities of the large 
integrating sphere. In the center of the sphere the inhomogeneities were characterized to be 0.25%. 
Further towards the sides the inhomogeneities are expected to be larger. On the other hand, the 
model does not account for pixel by pixel variations or photo response non-uniformity besides the 
vignetting effect which can be an explanation for some residuals. 
We added more details about this to the text: 
“The model was chosen for the vignetting correction despite the non-negligible residuals between 
the vignetting model and the flat-field measurements in order to obtain a vignetting correction for 
the entire field of view. Due to the large field of view of the instrument and its large size and weight, 
it was not possible to perform flat-field measurements covering the entire field of view of the 
cameras even with a composite method. The residuals include inhomogeneities of the LIS as well as 
deviations of the photo response non-uniformity of the cameras from the vignetting model.” 
 
Line 435: I recommend including a table that lists the sigma errors for each of the terms in Eq. (22), 
for each wavelength – or if some are functions, give the functional form. Much of this data is already 
given throughout the paper, but a summary table is preferable.  
 

We tried to create a comprehensive table, however, it became very large due to the two cameras, 

three color channels, different Stokes vector components, and finally all components of equation 22. 

Because of that, instead, we added references to the respective sections where we tried to give more 

details and descriptions of the components of the equation where they were missing. In addition, we 

included the relative radiometric uncertainty into the table, to have at least the relative and absolute 

radiometric uncertainty given.  

Table 3. Can you also provide the uncertainty for DOLP? This is a benchmark used to gauge the 

overall polarization accuracy of a multi-angle polarimeter. This may take further propagation of Eq. 

(22), but it is also important to show (especially relative to typical atmospheric signals). 

We computed the uncertainty of the DOLP with Gaussian error propagation as suggested and added 
a description and discussion about it to the section. Since the DOLP is independent of the absolute 
radiometric response a differentiation of relative and absolute radiometric uncertainty is not 
reasonable and we included the DOLP uncertainties directly in the text instead of the table.  
“Another important quantity for polarization applications is the degree of linear polarization which 
can be computed from the Stokes vector with DOLP = sqrt(Q2 + U2)/I. The degree of linear 
polarization is invariant under rotations and independent of the absolute radiometric response. Its 



relative uncertainty was computed via Gaussian error propagation from the uncertainties above. For 
Stokes vectors rotated into the scattering plane, the U component of the Stokes vector is much 
smaller than Q. Thus, neglecting the U component, the relative uncertainty of the DOLP can be 
calculated with σDOLP /DOLP = sqrt((σI /I)2 + (σQ /Q)2). It amounts to 5.4%, 5.4%, and 6.9% for the 
red, green, and blue channel of polLL and 4.8%, 4.9%, and 6.2% for polLR for the same typical signal 
level and DOLP as in Table 3. “ 



Reply to additional comments of referee #2 

We thank Brent McBride for his additional comments which we address below. The responses to the 

referee comments are given in blue italic letters. 

However, I believe the paper still needs revisions to further clarify/justify use of the flatfield model over 
the LIS measurement - I am not convinced by the author response. It seems they are simplifying the 
calibration unnecessarily (and adding error), or the worse case - the LIS is not reliable as a uniform 
source. 
 
Due to the large field of view, it was not possible to perform flatfield measurements covering the 
entire field of view with the calibration setup at the CHB. Even the composite method you propose 
was not possible because the opening of the LIS was not large enough to cover the entire field of 
view at once and on the other hand we could not tilt the instrument enough to cover e.g. also the 
corner regions due to its large size (about 50cmx70cmx120cm) and its weight of 100kg. The 
calibration measurements at the LIS which we have are limited to roughly the area shown in Figures 
11 b) and 12 b). Because of that we chose the model to obtain a vignetting correction for the entire 
field of view despite the non-negligible residuals. Part of the residuals can be attributed to 
inhomogeneities of the large integrating sphere. In the center of the sphere the inhomogeneities 
were characterized to be 0.25%. Further towards the sides the inhomogeneities are expected to be 
larger. In addition, the model does not account for pixel by pixel variations or photo response non-
uniformity besides the vignetting effect which can be an explanation for some residuals. The 
standard deviation of the absolute radiometric response across all pixels in section 4.7 was below 
1.4% for all channels which indicates that this effect has a minor influence. We agree that it would 
be much more accurate to directly use the measurements above the LIS for the calibration, but due 
to technical reasons it was not possible to achieve measurements for the entire field of view with the 
setup we had and unfortunately, we are not able to do additional measurements at the moment. We 
will definitely keep this in mind for future laboratory calibrations. Nevertheless, the use of the 
vignetting model still improves the calibration results significantly. As can be seen from Figures 11 
and 12 the normalized intensities are reduced from 1.0 down to 0.8 or even lower for significant 
parts of the field of view. Thus, even though there are residuals up to a few percent between the 
model and the measurements, the model is about a factor 10 more accurate compared to using the 
measurements without any vignetting correction in the regions where we could not achieve any flat-
field measurements.  
 
We added more details about this to the text and the section reads now: 
“Due to the large field of view of the instrument compared to the size of the LIS and the large size 
and weight of the instrument, it was not possible to perform flat-field measurements covering the 
entire field of view of the cameras with the calibration setup at the CHB. Because of that, the model 
was chosen for the vignetting correction in order to obtain a vignetting correction for the entire field 
of view despite some non-negligible residuals between the vignetting model and the flat-field 
measurements. The residuals include inhomogeneities of the LIS as well as deviations of the photo 
response non-uniformity of the cameras from the vignetting model. For future calibrations, flat-field 
measurements covering the entire field of view could be taken and directly be used for a more 
accurate flat-field correction which for example also includes pixel to pixel variations. In addition, 
possible inhomogeneities of the LIS could be accounted for by taking several measurements while 
rotating the tilted instrument above the LIS.” 



 
Also, the calculated DOLP lab uncertainty at ~4-6% is high. This is confusing to me since the calibration 
matrix is close to ideal and DOLP is independent of absolute calibration. I suspect there may be an error 
in their derivation. Multiangle polarimeters with similar capabilities and calibration schemes can achieve 
< 0.5% lab DOLP error (RSP, AirMSPI, HARP etc.). The authors should revisit this calculation and clarify 
the discussion. 
 
We computed the uncertainty of the DOLP via Gaussian error propagation from the uncertainties of I 
and Q. For Stokes vectors rotated into the scattering plane, the U component of the Stokes vector is 
much smaller than Q. So, neglecting the U component, we computed the relative uncertainty of the 
DOLP with σDOLP /DOLP = sqrt((σI /I)2 + (σQ /Q)2) with the uncertainties of I and Q given in equation 
(22). But, since the DOLP is invariant under rotations and independent of the absolute radiometric 
response we did not include these uncertainties in the computation of the uncertainty of the DOLP. It 
amounts to 5.4%, 5.4%, and 6.9% for the red, green, and blue channel of polLL and 4.8%, 4.9%, and 
6.2% for polLR for the same typical signal level and DOLP as in Table 3. These uncertainties are 
relatively large compared to instruments like RSP, AirHARP, or AirMSPI. However, the uncertainties 
given are only the upper limit and a very conservative estimate since we estimated the uncertainty of 
the transfer matrices with the deviation of the laboratory transfer matrices from the ideal transfer 
matrix using the error defined by Lane et al. (2022) as discussed in the paper. But, we included the 
impact of the window in the transfer matrices (see the section about the polarization calibration) 
which is why our transfer matrices are more accurate than the ideal transfer matrix used in the 
definition of the calibration error by Lane et al. (2022). In addition, Lane et al. (2022) who calibrated 
the monochrome version of the same sensor found maximum measurement errors for the DOLP 
between 3% and 8% even though they focused on the central pixel regions where the error is 
expected to be smaller. Thus, our results for the uncertainty of the DOLP seem to be reasonable. 
In general, the uncertainty of the DOLP could be reduced by a more accurate laboratory 
(polarization) calibration. A more accurate calibration was not possible with the laboratory 
calibration setup at CHB given the large size and weight of specMACS as explained above. For the 
polarization calibration the diameter of the polarizer was small such that it only covered a small 
fraction of the field of view and the camera must be oriented such that the viewing directions are 
perpendicular to the polarizer which made it impossible for us to get polarization calibration 
measurements for the entire field of view. Unfortunately, we do not have access to more evolved 
calibration facilities for example for satellites which would potentially allow for such measurements. 
 
The section about the DOLP reads now: 
“Another important quantity for polarization applications is the degree of linear polarization which 
can be computed from the Stokes vector with DOLP = sqrt(Q2 + U2)/I. Its relative uncertainty was 
computed via Gaussian error propagation from the uncertainties above. For Stokes vectors rotated 
into the scattering plane, the U component of the Stokes vector is much smaller than Q. Thus, 
neglecting the U component, the relative uncertainty of the DOLP can be calculated with σDOLP 
/DOLP = sqrt((σI /I)2 + (σQ /Q)2). Since, the degree of linear polarization is invariant under rotations 
and independent of the absolute radiometric response, its uncertainty was computed from the 
relative radiometric uncertainties of I and Q in equation 22 neglecting the uncertainty of the 
absolute radiometric calibration and the rotation error. It amounts to 5.4%, 5.4%, and 6.9% for the 
red, green, and blue channel of polLL and 4.8%, 4.9%, and 6.2% for polLR for the same typical signal 
level and DOLP as in Table 3. The uncertainties of the DOLP are large compared to other polarimetric 
instruments like RSP, AirHARP, or AirMSPI (Knobelspiesse et al., 2019; Diner et al., 2013). However, 



the uncertainties of the transfer matrices are a very conservative estimate as discussed above. A 
substantial part of this error might actually be due to the difficult calibration procedure and 
therefore the instrument error might be over-estimated, but we have no means to decide if this is the 
case. In addition, Lane et al. (2022) who calibrated the monochromatic version of the same sensor 
found maximum measurement errors of 3% to 8% for the DOLP even though they focused on the 
central pixel region where the errors are expected to be smaller. In general, the uncertainties could 
be reduced by a more accurate laboratory calibration with a setup that allows for taking polarization 
and flat-field calibration measurements for the entire field of view of the cameras.“ 


