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Abstract. Quantifying the link between microstructure and effective elastic properties of snow, firn, and bubbly ice is essential

for many applications in cryospheric sciences. The microstructure of snow and ice can be characterized by different types

of fabrics (crystallographic, geometrical), which give rise to macroscopically anisotropic elastic behavior. While the impact

of the crystallographic fabric has been extensively studied in deep firn, the present work investigates the influence of the

geometrical fabric over the entire range of possible volume fractions. To this end, we have computed the effective elasticity5

tensor of snow, firn, and ice by finite element simulations based on 391 X-ray tomography images comprising samples from the

laboratory, Alps, Greenland, and Antarctica. We employed a variant of the Eshelby tensor that has been previously utilized for

the parametrization of thermal and dielectric properties of snow and utilized Hashin-Shtrikman bounds to capture the nonlinear

interplay between density and geometrical anisotropy. From that we derive a closed-form parametrization for all components of

the (transverse isotropic) elasticity tensor for all volume fractions using 2 fit parameters per tensor component. Finally, we used10

the Thomsen parameter to compare the geometrical anisotropy to the maximal theoretical crystallographic anisotropy in bubbly

ice. While the geometrical anisotropy is clearly dominating up to ice volume fractions of φ≈ 0.7, a thorough understanding of

elasticity in bubbly ice may require a coupled elastic theory that includes geometrical and crystallographic anisotropy.

Copyright statement. TEXT

1 Introduction15

The elastic modulus can be used to represent the mechanical property of snow, firn or ice and the knowledge of the effective

elasticity tensor plays a crucial role in a variety of applications throughout the field of cryospheric sciences. Examples comprise

micromechanical modeling of snow compaction (Wautier et al., 2016), fracture propagation in weak layers for slab avalanche

release (Gaume et al., 2013; Bobillier et al., 2020), or the interpretation of near-surface (Chaput et al., 2022) or deep firn (Diez

and Eisen, 2015; Diez et al., 2015; Schlegel et al., 2019) seismic signatures through the link between wave velocities and elastic20

moduli.
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The work of Schlegel et al. (2019) emphasized the role of elastic anisotropy. Specifically, the retrieval of elasticity profiles of

snow, firn, and ice through seismic waves usually relies on the assumption of isotropy which constitutes an uncertainty in the

inversion method. Snow and firn are however known to be anisotropic due to both the ice matrix geometry (e.g., Löwe et al.,

2013; Calonne et al., 2015; Leinss et al., 2016; Moser et al., 2020; Montagnat et al., 2020), and the crystallographic orientations25

of the ice crystals (e.g., Diez et al., 2015; Petrenko and Whitworth, 2002). The geometrical anisotropy arises from the geomet-

rical orientation of the structure that constitutes the ice matrix in snow (for instance if it is predominantly orientated towards

the vertical direction), while the crystallographic anisotropy is an inherent characteristic of the ice crystals themselves. While

the geometrical fabric in firn is strong (leading to a strong geometrical elastic anisotropy) near the surface due to temperature

gradient metamorphism (Montagnat et al., 2020) and decays with depth (Fujita et al., 2014), the crystallographic fabric is weak30

near the surface (thus yielding a weak crystallographic elastic anisotropy) but increases with depth under densification and flow

(e.g., Montagnat et al., 2014; Saruya et al., 2022). Recent work by Hellmann et al. (2021) on measuring wave propagation in

glacier ice suggests that even at low porosity (< 1%), the effective elastic (crystallographic) anisotropy of polycrystalline ice is

influenced by the geometrical effects of the porosity.

The estimation of geometrical anisotropy usually relies on advanced microstructural characterization, such as the estimation35

correlation lengths (Krol and Loewe, 2016). Despite its complexity, this microstructural characterization of snow, firn and ice

has become a standard worldwide in the last decade thanks to the development of micro-computed tomography (µCT) in the US

(Baker, 2019), Japan (Ishimoto et al., 2018), India (Srivastava et al., 2016), Norway (Salomon et al., 2022), Germany (Freitag

et al., 2004), France (Wautier et al., 2015) and Switzerland (Köchle and Schneebeli, 2014). The increasing role played by the

microstructural characterization of snow and firn, fostered by µCT, led to the development of alternative retrieval methods,40

such as the characterization of anisotropy from radar (Leinss et al., 2016).

For snow, the impact of the geometrical anisotropy has been studied (Srivastava et al., 2016) only in a limited range of

porosities. Thus, a parameterization of the elastic modulus, based on density and geometrical anisotropy for the entire possible

range of porosities would constitute a first step towards understanding this concurrent anisotropy problem. This could have

immediate applications, e.g., for retrieving sub-surface density and anisotropy through seismics using advanced inversion45

methods (Wu et al., 2022). Leinss et al. (2016) show that an electromagnetic inversion model could be exploited to retrieve

the geometrical anisotropy of snow, despite a sub-dominant impact of the geometrical anisotropy on the effective permittivity

tensor. A better understanding of the link between geometrical and elastic anisotropy would thus enable the use of a similar

technique to retrieve the geometrical anisotropy of snow from seismic surveys.

The effective elasticity tensor of snow, firn, or ice can be directly obtained through numerical homogenization on micro-50

tomography images. Using Finite-Element (FE) methods via volume averaging, a solution for static linear elasticity yields the

material effective elastic properties. Here, it is commonly assumed that the ice matrix is isotropic, polycrystalline ice with

known bulk and shear moduli (see Garboczi, 1998; Köchle and Schneebeli, 2014; Wautier et al., 2015). It has been recently

confirmed that the effective elastic properties obtained by microstructure based FE agree well with acoustic measurements (Ger-

ling et al., 2017). Though straightforward, the microstructure-based FE approach is computationally expensive and requires the55

microstructure to be known. Therefore, accurate parametrizations are still highly desirable and presently no parametrizations
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of the effective elastic modulus exist that can be consistently applied without making a restriction to a limited range of volume

fractions.

As an alternative to numerical simulations, it is often helpful to consider effective medium theories and rigorous approxi-

mations. Rigorous bounds such as Hashin-Shtrikman (HS) bounds (Hashin and Shtrikman, 1962) can be used to approximate60

the elastic properties of porous materials (Torquato, 1991). Although bounds are widely known to be inaccurate predictors

of the elastic properties in absolute value (Roberts and Garboczi, 2002), the HS bounds incorporate the non-linear interplay

between structural anisotropy via the Eshelby tensor and density (Torquato, 2002b) and they have the correct limiting behavior

for small and large volume fractions. These properties can be systematically exploited for constructing more sophisticated

parametrizations.65

The present work aims to derive a parameterization of the effective elasticity tensor of snow, firn, and bubbly ice based

on volume fraction and structural anisotropy and that can be consistently applied to the entire range of volume fractions.

We achieve this by taking the anisotropic HS bounds (without free parameter) as the functional starting point and by using an

empirical transformation (containing two fit parameters per tensor component). The proposed fitting function matches observed

characteristic features, namely the power-law increase of the moduli for high porosities (for snow) and the asymptotic behavior70

of dilute sphere dispersions (for bubbly ice) in the limit of low porosities.

The paper is organized as follows. Section 2 gives the background on the elasticity theory, examines the limitation of existing

parameterizations, and motivates the methodological idea that underlies the proposed parameterization for the elasticity tensor.

Section 3 presents an overview of the 391 tomography samples that were used, and the methods that are employed to calculate

correlation functions, fabric tensors, FEM simulations, and fitting procedures for estimating the free parameters in the elasticity75

formulas. In Section. 4 we show performance of the new parameterization, by comparing it with previous work in which these

parameters were not captured. Finally, we discuss in Section. 5 the expected interplay between crystallographic and geometrical

anisotropy for the elastic modulus for snow, firn, and ice and conclude in Section. 6.

2 Theoretical background

2.1 The effective elasticity tensor80

Snow is a heterogeneous and porous material with an ice volume fraction φ (defined as the ratio between the volume occupied

by the ice phase over that of the sample), whose effective, macroscopic properties can be computed by volume averaging over

a sufficiently large volume, known as the representative volume element (RVE) (see Hill, 1963; Hashin, 1963; Nemat-Nasser

and Hori, 1995; Torquato, 1997; Willis, 1981). The effective (fourth order) elasticity tensor C of a statistically homogenous

two-phase composite material is defined by Hooke’s law, using Hill’s lemma, of elasticity as85

〈σ〉=C : 〈ε〉, (1)

that relates the volume averaged second-order stress 〈σ〉 and strain tensors 〈ε〉, given in Voigt notation as [σ11,σ22,σ33,σ13,σ23,σ12]T

and [ε11,ε22,ε33,0.5ε13,0.5ε23,0.5ε12]T , respectively. Angular brackets denote volume averaging over a statistically homo-

3



geneous region of interest and makes the connection between the volume averaged strain energy of a heterogeneous material at

the microscopic scale and that of a macroscopically heterogeneous material under uniform strain. The operator : denotes dou-90

ble contraction (Torquato, 1997). We consider snow to be a transversely isotropic (TI) material, where the axis of transverse

symmetry is chosen as the vertical z- axis perpendicular to the horizontal isotropic xy- plane. The elasticity tensor of a TI

material can be described by 5 independent moduli. Using Voigt notation, it can be written (Torquato, 2002a) as a symmetric

6× 6 matrix as

C =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
1

2
(C11−C12)


. (2)95

For an isotropic material the number of independent entries reduces to two, e.g., the shear modulus G= C44 and the P-wave

modulusC33. Wherever necessary, the common relations are employed (Torquato, 2002a) to connect to alternative formulations

in terms of Young’s modulus E, bulk modulus K, shear modulus G and Poisson’s ratio ν (see Appendix A).

To quantify the deviation from elastic isotropy, it is common to use the so called Thomsen parameter ε, which is a dimen-

sionless quantity defined as (see Thomsen, 1986)100

ε=
C11−C33

2C33
. (3)

For an isotropic material, the Thomsen parameter ε is zero. Throughout this work, we consider the elastic properties of snow/firn

at a given instant in time, where the microstructure gives pointwise information about the position of ice and air. We do not

consider any underlying time-dependent process that would result in the evolution of the microstructure (such as metamor-

phism).105

2.2 Isotropic parametrizations based on ice volume fraction

2.2.1 Snow: Power law models

For applications, the elastic moduli must be related to accessible parameters of snow. The most common way are empirical

parameterizations based on ice volume fraction φ, that is equivalent to density. Such density-based parameterizations use a

power law (Frolov and Fedyukin, 1998; Sigrist, 2006; Gerling et al., 2017) or exponential relationships (Köchle and Schneebeli,110

2014; Scapozza, 2004) to comply with the observed drastic increase of elasticity of snow with increasing density. The different

density based parametrizations for low density snow have been compared in many publications (e.g., Köchle and Schneebeli,

2014). For the purpose of the present paper we choose one example, namely the power-law parameterization from Gerling

et al. (2017) as it was derived from microstructure based FEM simulations (as in this study) and experiments. We write the
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parametrization in the form115

C G
ij (φ) = aij φ

bij , (4)

where C G
ij are the components of the elasticity tensor, aij and bij are the empirical parameters. These parameters need to

be estimated by fitting experimental data and FEM simulations, employing Eq. 4 in an optimization procedure (Gerling et al.,

2017). In Gerling et al. (2017) only theC33 component was computed through an optimization procedure with FEM simulations

and led to a33 = 6 · 10−10 and b33 = 4.6 for snow with volume fractions in the range 0.1< φ < 0.4.120

2.2.2 Firn: Kohnen parametrization

A conceptually similar parametrization, however valid for an entirely different range of ice volume fractions, can be inferred

from the parametrization of acoustic wave velocities in firn. Kohnen (1972) has derived an empirical relationship between the S

and P wave velocities in (isotropic) firn and the density. By relating wave velocities to the respective elastic moduli via density,

the Kohnen relations can be cast into an ice volume fraction based parametrization for the S and P wave modulus (C33 and C44125

components of the elastic modulus) which are valid in low porosity firn. Based on the original work, we rewrite the Kohnen

empirical formula in the form

C KOH
ij (φ) = ρ

[
viceij −αij

(
1

φ
− 1

)1/βij
]2
, (5)

with the empirical parameters proposed by Kohnen (1972): α33 = 2250ms−1, β33 = 1.22, α44 = 950ms−1, and β44 = 1.17,

and the P-wave and S-wave velocities in ice v ice
33 = 3900 and v ice

44 = 2100 given in units ms−1. The P-wave and S-wave veloci-130

ties are provided by Diez (2013) and apply to ice volume fractions ranging from 0.43 to 0.98. Yet, the Kohnen parameterization

is supposed to work best after the firn-ice transition, i.e. for φ ranging from 0.88 to 0.98 (Diez, 2013).

2.2.3 Ice: Exact limit for dilute dispersions of spheres

For bubbly ice at very low porosities (0.9< φ < 1), the air phase can be commonly described as isolated, nearly spherical

bubbles (e.g., Fourteau et al., 2019). This limiting case can be addressed analytically by considering a dilute dispersion of135

spherical cavities with vanishing stiffness (K air =G air = 0) in ice (Torquato, 1991). In this limit, the effective elastic modulus

C DDS can be computed exactly (Torquato, 2002a) and, due to isotropy, determined from the effective bulk modulus K DDS and

shear modulus GDDS given by

C DDS
ij = 3K DDS(Λh)ij + 2GDDS(Λs)ij ,

K DDS =K ice(1− 3K ice + 4G ice

4G ice (1−φ)),

GDDS =G ice(1− G ice +H ice

H ice (1−φ)),

(6)

where140

H ice ≡G ice(
3K ice/2 + 4G ice/3

K ice + 2G ice ). (7)
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Here Λh and Λs are the hydrostatic and shear projection tensors, respectively, defined in (Torquato, 2002a, Eq. 13.96 and

Eq. 13.97) and CDDS
33 component is given by K DDS + 4GDDS/3.

2.3 Anisotropic parametrizations based on ice volume fraction and geometrical fabric

To overcome the restrictive assumption of isotropic parametrizations it is necessary to extend the microstructural description.145

Cowin (1985) showed that the elasticity tensor of porous materials can be estimated, based on symmetry arguments, from the

morphology and the elastic properties of the matrix phase (Moreno et al., 2016). According to Cowin (1985), the elasticity

tensor can be determined as a function of Lamé constants of the porous material, λ and µ, volume fraction φ and the fabric

tensor M which captures the anisotropy of the material (Moreno et al., 2016). For snow, this was utilized by Srivastava et al.

(2016) who used the Zysset–Curnier formulation (Zysset and Curnier, 1995) to incorporate the fabric tensor. This led to a150

(orthotropic elastic) formulation of the elasticity tensor given by

C ZC
ij (φ,M) =

3∑
i=1

(λ+ 2µ)φkm2l
i (M i⊗M i)

−
3∑

i, j=1
i6=j

λ
′
φkml

im
l
j(M i⊗M j)

+

3∑
i, j=1
i 6=j

2µφkml
im

l
j(M i⊗M j).

(8)

Here mi denotes the i-th eigenvalues of the positive definite fabric-tensor M and M i is the projector on the corresponding

eigenspace. The dependence on the eigenvalues and the ice volume-fraction φ are assumed to be of power-law type charac-

terized by the empirical exponents k and l, respectively. This power-law form derives from a polynomial expansion of the155

elasticity tensor expression in terms of the fabric tensor eigenvalues (Zysset, 2003). The definition of double tensorial product

A⊗B is given by (Srivastava et al., 2016).

Srivastava et al. (2016) derived the fit parameters through an optimization procedure, employing Eq. (8) and microstructure

based FEM simulations with snow samples in the range 0.109< φ < 0.59. The parameters obtained by Srivastava et al. (2016)

are λ= 5.33,λ
′
= 5.27,µ= 9.54, k = 4.69, and l = 2.55.160

2.4 Anisotropic Hashin-Shtrikman bounds

An alternative theoretical approach to the geometrically anisotropic elasticity of heterogeneous materials can be realized

through bounds (Hashin and Shtrikman, 1962; Torquato, 1991). When using Hashin–Shtrikman (HS) bounds, the effective

elastic properties of porous materials can be estimated based on volume fraction and microstructural geometrical anisotropy

(incorporated through n-point correlation functions). This results in tighter bounds over Voigt and Reuss bounds, which are165

just based on the volume fraction of the material. As the air phase of the snow microstructure has zero elasticity, only the upper
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bound [0≤C <C U] is meaningful (Roberts and Garboczi, 2002) and it is given by (Torquato, 2002a)

C U =C ice− (1−φ)φC ice : P ice :C ice : [I +φP ice :−C ice ]−1, (9)

where C U represents Hashin-Shtrikman upper bound on effective elastic modulus C, the components of the fourth-order

identity tensor I is given as Ipqrs = (δprδqs + δpsδqr)/2, φ is the volume fractions of ice. The bound involves the elasticity170

tensor C ice of ice as the host material, which needs to be isotropic for the derivation of Eq. (9). Such an assumption is

consistent with our focus on the geometrical, rather than crystallographic, anisotropy and the use of an isotropic material in

our FEM simulations (see Sec. 3). The bound thus involves the bulk modulus K ice and shear modulus G ice of ice. The tensor

P ice is the polarization tensor, which incorporates the structural anisotropy through aspect ratio α of the correlation lengths

(Torquato, 1997). The tensor P ice is related to the Eshelby tensor S ice (Eshelby and Peierls, 1957) of the matrix phase via the175

relation

P ice = S ice : [C ice]−1. (10)

The Eshelby tensor (see Sect. B) in the Hashin-Shtrikman bounds accounts for the anisotropic "shape" of the microstructure

through the geometrical anisotropy ratio α and is the equivalent of the fabric tensor M in the anisotropic ZC model (see

Eq. (8)). A geometrical anisotropy ratioα > 1 corresponds to predominant vertical orientation of ice matrix (prolate inclusions),180

α < 1 corresponds to predominant horizontal orientation of ice matrix (oblate inclusions), and α =1 corresponds to isotropic

distribution of ice matrix. Finally, we note that while both the fabric tensor M in the ZC formulation and the Eshelby tensor

Sice in the HS formulation are used to described structural anisotropy, they cannot be used interchangeably, as M is second

rank tensor whereas Sice is a fourth rank tensor.

2.5 Requirements for a consistent elasticity tensor parameterization185

The parametrizations and model presented above are all designed for a specific range of validity. To demonstrate the require-

ments for a consistent parametrization valid for snow, firn, and ice we provide an overview of all models presented above evalu-

ated by using their free parameters as originally published. Figure 1 shows the C33 component as a function of volume fraction

for all models. For the formulations including geometric anisotropy, three different anisotropy ratios (α= 0.7,1,and1.6) were

evaluated and the corresponding spread in elastic properties is shown as shaded area for these models.190

Due to its simple power law dependence on density, the G parametrization (Gerling et al., 2017) exceeds even the modulus

of ice (black square for φ= 1). A very similar behavior is found for the isotropic ZC (Srivastava et al., 2016) variant, demon-

strating the consistency of G and ZC for low volume fractions but the failure for high volume fraction. In addition, ZC shows

an influence of geometrical anisotropy that increases monotonically with ice volume fraction, which is also nonphysical since

in the limit of φ→ 1 the elastic anisotropy behavior of the microstructure must tend to an isotropic state. In contrast, the upper195

bound CU
33 correctly approaches the ice limiting value of ice (black square) while the influence of geometrical anisotropy tends

to zero. In addition, the U formulation agrees also in the vicinity of φ= 1 with the prediction of dilute dispersion of spherical

(DDS) cavities. In contrast, the agreement of U and DDS for φ > 0.8 with the isotropic Kohnen formulation demonstrates the
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validity of this asymptotic behavior for ice, while in turn KOH naturally fails for low volume fractions (snow) lying outside its

range of applicability.200

Figure 1. Evolution of the elastic modulus C33 as a function of volume fraction φ for all discussed models: density based parameterization

proposed by Gerling et al. (2017) (CG
33 - see Eq. (4); expected range of validity 0.1< φ < 0.4) , band of values predicted by Srivastava et al.

(2016) (CZC
33 - see Eq. (8); expected range of validity 0.109 < φ < 0.59), band of values predicted by the Hashin-Shtrikman upper bound

(CU
33 - see Eq. (9)), elastic modulus for dilute dispersions (CDDS

33 - see Eq. (6); valid for high ice volume fractions) and by Kohnen (1972)

empirical relationship (CKOH
33 - see Eq. (5); expected range of validity 0.43 < φ < 0.98) are shown as a function of the volume fraction (φ)

with continuous lines. The black square represents the maximum value of the elastic modulus in C33 direction for ice volume fraction φ= 1.

The shaded area for the anisotropic models represents the range of values between the two aspect ratios α= 1.7 and α= 0.6.

2.6 The remedy: Matching asymptotics

The best of all existing models can be combined in a single model by constructing an empirical transition model that i)

increases as a power law for low volume fraction ii) includes anisotropy but with vanishing influence when approaching ice

iii) approaches the limiting behavior of dilute air bubbles for low porosity. Due to the properties of the HS bounds (correct

limiting behavior of the bounds for low and high volume fraction, rational function for intermediate volume fractions) this can205

be achieved by using a transformation in the following form, in which HS bound C U
ij is normalized by C ice

ij as

CPW
ij = C ice

ij fij

(
C U
ij

C ice
ij

)
, (11)

with an empirical transition function fij : [0,1]→ [0,1] for each component of the elasticity tensor. Given that the HS bound

approaches the dilute dispersion limiting behavior for x→ 1 (Hashin and Shtrikman (1962)), the transition functions must obey

fij(x)∼ x for x→ 1. Further, since the modulus increases as a power law for lower volume fractions, the scaling function210
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must behave as fij(x)∼ xβ for x→ 0. These two asymptotics can be matched in the following empirical form

fij(x) =
xβ

ξ(1−x) +xβ−1
∼

x
β/ξ, for x→ 0

x, for x→ 1,
(12)

which has the correct asymptotic behavior and contains only 2 free parameters. The first free parameter β ensures that at low

volume fraction the modulus increases as a power law of the ice volume fraction. The second free parameter ξ acts, on the

one hand, as a modification of the prefactor in the power law and, on the other hand, as the transition scale that controls the215

crossover to f(x)∼ x. Eq. (11) and Eq. (12) together with Eq. (9) constitutes our empirical model that depends on density and

anisotropy in a physically consistent way. The corresponding tensor components are henceforth referred to as CPW
ij which will

be analyzed and parametrized in the following from snow, firn, and ice tomography samples and finite element simulations of

the elastic modulus.

3 Material and computational methods220

3.1 Tomography samples

For the parametrization of snow elastic properties we used 391 microstructure images of snow, firn, and bubbly ice obtained

with the help of µCT. Samples are taken from previous work and comprise laboratory, Alpine, Arctic, and Antarctic snow and

ice. A brief description is given in Table 1. We considered the full range of porosities ranging from 0.06 - 0.93, and anisotropy

ratios α ranging from 0.45-1.87. Note that all samples are cubic, with the same length L in the x, y, and z directions.225
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Table 1. µCT samples used for the parameterization of the elasticity tensor.

Name (Count) Description (Location) φ range α range Dimension L

[mm]

obtained from

TS-TGM2 (45) Temperature gradient time series

(Lab)

0.21 - 0.25 0.76 - 1.18 5.4 Löwe et al. (2013)

TS-TGM17 (49) Temperature gradient time series

(Lab)

0.30 - 0.32 0.90 - 1.15 7.5 "

TS-DH1 (6) Metamorphism box time series 0.175 - 0.31 0.74 - 1.45 10.69 "

(Lab)

TS-ISO1 (10) Isothermal time series (Lab) 0.16 - 0.26 0.69 - 1.00 5.11 "

TS-ISO5 (10) Isothermal time series (Lab) 0.16 - 0.24 0.65 - 1.04 5.11 "

Alp-DIV (41) Various Alpine samples (Davos,

Switzerland)

0.06 - 0.39 0.56 - 1.67 6.86 "

Arc-EGRIP (184) Snow core (Greenland) 0.24 - 0.66 0.45 - 1.87 10.8 Montagnat et al. (2020)

Ant-B34 (4) Firn core (Antartica) 0.43 - 0.93 1.07 - 1.11 12.0 Schlegel et al. (2019)

Ant-B54 (32) Firn core (Antartica) 0.60 - 0.80 1.00 - 1.17 18.0

Ant-Lock-In (10) Ice core (Antartica) 0.85 - 0.93 1.05 - 1.12 15.0 Fourteau et al. (2019)

3.2 Correlation functions

We use tomography images of snow to compute the correlation functions of snow microstructures to calculate the anisotropy.

As dry snow is a two-phase composite material consisting of air and ice phase, the indicator function I(x) accounts for the

spatial distribution of ice and air and is denoted by

I(x) =

1 ifx ∈ ice

0 ifx ∈ air.
(13)230

The two-point correlation function χ(r) (Torquato, 2002b) entails information about the phase correlation of the end points of

vector r and is defined by

χ(r) = 〈I(x+ r)I(x)〉−φ2 . (14)

We assume a statistically homogeneous material, where χ is independent of the reference point x ∈ R3. χ(r) is computed from

3D images via Fast Fourier transformation (Krol and Loewe, 2016; Löwe et al., 2013). Correlation lengths `z, `x and `y are ob-235

tained by fitting χq(r) along the Cartesian coordinate axes q = x,y, and z to an exponential function χq(r) = χq,0 exp(−r/`q).

From this the geometrical anisotropy parameter is defined by α= `z/`xy .
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3.3 Geometrical fabric tensor

Srivastava et al. (2016) showed that the choice of the fabric tensor M computed either by mean intercept lengths (MIL), star

length distributions (SLD), and star volume distribution (SVD) methods did not play a significant role in the computation of the240

effective elasticity tensor of snow. Therefore, we use the depolarization tensorM∗ given by Torquato (2002a), which is based

on two-point correlation lengths to estimate the structural anisotropy of the microstructure. Using M∗ allows us to connect to

previous work (Löwe et al., 2013; Montagnat et al., 2020; Calonne et al., 2015; Leinss et al., 2016) where this orientation tensor

was employed to determine the anisotropic effective thermal conductivity and permittivity of snow. Analogous to MIL,M∗ is

the symmetric depolarization tensor of a 3-dimensional ellipsoid with the eigenvalues in principle axes frame given by elliptical245

integrals, and its trace is unity (Torquato, 2002a). In the case of transverse isotropy around the z-axis, the depolarization tensor

computed from two-point correlation function χ(r) reduces to

M∗ =


Q(α) 0 0

0 Q(α) 0

0 0 1− 2Q(α)

 . (15)

The definition of the function Q(α) in terms of anisotropy ratio α is given in Sect. C.

3.4 FEM simulations250

Finite Elements Method (FEM) simulations were performed using the code from Garboczi (1998) on all the CT images to

determine the elasticity tensor of the snow microstructure by employing periodic boundary conditions. For these simulations,

we assumed elastically isotropic ice with a shear modulus G ice = 3.52 GPa and bulk modulus K ice = 8.9 GPa, corresponding

to a temperature of −16◦C (Petrenko and Whitworth, 2002). We performed FEM simulations for five load states derived from

Cartesian basis vectors in the six-dimensional deformation space. The deformation ε of the five load states are taken from255

the set {ε0e11 ; ε0e22 ; ε0e33 ; ε0(e13 + e23) ; ε0e12}, with ε0 = 0.01 and with e11 to e12 being unit vectors in the deformation

space. Note that we combined load states 13 and 23 for the fourth deformation state.

Next, for each sample the five independent components of the elasticity tensorC (see Eq. 2) are estimated by minimizing the

L2-norm of σ−CFEM : ε= 0, where σ and ε are the stress and deformation states from the simulations. The specific choice

of load states naturally implies different weights for the elasticity components during the least square optimization, as, for260

instance, the CFEM
33 is only involved in the e33 load state. This optimization strategy ensures the resulting elasticity tensor is

transverse isotropic and incompressible. It also ensures that the components are consistently estimated through the several load

states in which they play a role in.

To assess whether we fulfill the representative volume element (RVE) criterion, we employed the estimate of Wautier et al.

(2015), which is based on correlation functions. RVE convergence is deemed to be satisfied when the ratio of linear sample size265

L (given in Table 1) and the correlation length l ( 3
√
lx ly lz) exceeds 30. From this, we deduce that 92% of our samples fulfill

this requirement, while 8% of the samples do not fulfill it but were still kept in the dataset, as they do not appear as outliers in

our results. The latter samples have ice volume fractions ranging from 0.11 to 0.66.
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3.5 Reparametrization of existing models

From the simulations we also reparametrize existing models from Sec. 2. The unknown parameters in the Gerling model (aij270

and bij), Zysset-Curnier model (λ,λ
′
,µ,k and l) and the present model (ξ and β) are obtained by performing least squares

regression on the simulated elasticity tensor components against the models from Sect. 2.2. The free parameters of all models

were adjusted using a log-transformation of the elasticity tensor component, as done in Srivastava et al. (2016) or Zysset (2003).

4 Results

4.1 Present study parameterization275

Figure 2 shows an overview of all results by plotting the simulated elasticity components CFEM
ij (different rows) against ice

volume fraction (column 1), the HS upper bound (column 2) and the normalized representation from Eq. (11). In the top

row (Fig. 2(a)-(c)), all elasticity components from all the samples are represented with different colors depending on the

component of the elasticity tensor. In contrast, in the rest of the rows, only one component is represented at a time and the

colors and symbols highlight the different samples, as defined in Table 1. The figure shows that the scatter of the simulated280

elasticity tensor components (CFEM
ij ) is maximal when plotted as a function of the ice volume fraction φ (left column), and that

this scatter is reduced when plotted as a function of the HS upper bound CU
ij instead (middle column).

Next, we use the improved correlation between CFEM
ij and CU

ij to derive the parameterization for each component according

to Eq. (11), shown as the black curves (right column). Note that the non-linear transition behavior from the power law increases

at low densities when approaching the value of ice is well captured for all the components. The performance, however, slightly285

differs for individual tensor components and is the best for C33. We also stress that the data collapse for all tensor components

in the normalized plot indicates that only two parameters are sufficient to obtain a decent picture of elasticity from Eq. (12).
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Figure 2. Simulated elasticity components CFEM
ij (different rows) are shown as a function of volume fraction φ (left column), HS upper

bound CU
ij (middle column) and in the normalized version CU

ij/C
ice
ij (right column). The black curve represents the parameterization derived

for all the components (2 parameters each). In the top row, the color scheme represents the components of the elasticity tensor. In the other

rows, the colors and symbols represent the different samples considered in the present study, presented in Table 1.
13



4.2 Comparison to previous parameterizations

To examine the performance of the parameterization derived by fitting either individual components (see Fig. 3 top row)

or fitting all the components of elastic modulus simultaneously (see Fig. 3 bottom row), we show a scatter plot of the C33290

component of the elastic modulus evaluated from numerical simulations vs. the three parameterizations: density-based from

Gerling (left), Zysset-Curnier (middle) and the present study parameterization (right). As with Fig. 2, the colors and symbols

in the top row of Fig. 3 represent the different samples, while the colors in the bottom row represent the components of

the elasticity tensor. A detailed overview of the parameters obtained for different parameterizations and their coefficient of

regression is given in Table 2. Note that these parameters differ from the values obtained in the original publication as the295

models were re-adjusted to fit our FEM simulations as explained in Sec. 3.5.

Figure 3. Comparison of simulated elastic modulus (CFEM
33 ) to the Gerling et al. (2017) (G) density-based power law model given by Eq. (4),

Zysset-Curnier (ZC) model Srivastava et al. (2016) given by Eq. (8) and present work parameterization (PW) given by Eq. (12) (from left

to right). The given R2 values correspond to the performance of the parameterization by fitting individual (top) or all components (bottom),

respectively. In the top row, the colors and symbols represent the different samples considered in the present study, presented in Table 1. In

the bottom row, the color scheme represents the components of the elasticity tensor.
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Table 2. Parameters and regression coefficient obtained from least-square regression of the simulated elastic modulus employing different

models on the entire data set.

Isotropic parameterization fitted for all components Gerling et al. (2017) - Eq. (4) aij bij R2

CG
ij 6.73 4.08 0.76

Isotropic parameterization fitted for each component (Gerling et al., 2017) - Eq. (4) aij bij R2

CG
11 9.51 3.93 0.992

CG
12 2.13 3.85 0.994

CG
13 5.31 4.46 0.997

CG
33 27.33 4.26 0.980

CG
44 4.70 3.88 0.978

Zysset-Curnier parameterization (Srivastava et al., 2016) - Eq. (8) λ λ
′

µ

C ZC
ij 0.56 0.19 0.16

k l R2

C ZC
ij 4.02 -1.23 0.950

the present study parameterization fitted for all components - Eq. (12) β ξ R2

C PW
ij 2.99 0.466 0.990

the present study parameterization fitted for individual components - Eq. (12) β ξ R2

C PW
11 3.21 0.39 0.991

C PW
12 2.69 0.90 0.976

C PW
13 3.11 0.30 0.996

C PW
33 3.32 0.18 0.998

C PW
44 3.15 0.47 0.991

4.3 Comparison at high ice volume fractions

The improvement of the prediction of the elastic modulus using the present work parameterizationC PW
33 at high-volume fraction

is compared with elastic modulus determined by Kohnen (1972) formula given in Eq. 5, where the P-wave velocity of ice v ice
p

is once calculated by using geometrical elastic modulus of ice (v ice
p = (C ice

33/ρ
ice)0.5) and with the literature P-wave velocity of300

ice v ice
p ≈ 3900 ms−1, that was notably estimated through vertical seismic profiling in Antarctica (Diez, 2013). This comparison

is depicted in Fig. 4. We see that C KOH
33 based on the elastic modulus of ice used in this work exactly approaches the correct
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limit, and is in line with our parameterization C PW
33 and the limit of elastic modulus for bubbly ice C DDS

33 . This validity of the

C PW
33 , C KOH

33 , and C DDS
33 parametrizations at high density is also confirmed by their agreement with the simulated C FEM

33 values.

Figure 4. Comparison of present work parameterization C PW
33 with elastic modulus C KOH

33 determined by Kohnen (1972) empirical formula

based on P-wave velocity and density (P-wave velocity is determined from structural elastic modulus of ice), elastictiy modulus C KOH
33

obtained by taking P-wave velocity as 3900 ms−1, and with upper bound of elastic modulus for dilute dispersion (C DDS
33 ). The black square

represents the elastic modulus of ice (C ice
33). The black dots correspond to simulations in this density regime (C FEM

33 ).

4.4 Relative influence of geometrical anisotropy and density305

While elasticity of snow, firn, and ice is predominantly controlled by density, we can now quantify the additional controls of

geometrical anisotropy. To assess the distribution of geometrical anisotropy of the entire data set, we plot structural anisotropy

parameter α= `z/`xy for all 391 microstructures as a function of ice volume fraction in Fig. 5(a). The highest anisotropy

parameter (α= 1.87,φ= 0.39) is registered by an Arc-EGRIP sample.

The potential error induced by assuming isotropy (α= 1) in determining parameterization of elastic modulus is shown in310

an error plot in Fig. 5 (b). Here, the error (CPW
33 (φ,α)−CPW

33 (φ,1)/CPW
33 (φ,1) is shown as a two-dimensional contour plot as a

function of ice volume fraction and the anisotropy parameter α. The relative error gives the percentage error induced between

the elastic modulus computed as a function of anisotropy and as a function of isotropy, with zero relative error for isotropic

structures. Fig. 5 presents the slice view of the microstructure for three different cases of α (α>1, α=1, and α<1). Note the

vertical(α>1) and horizontal(α<1) geometrical orientation of the ice matrix.315
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Figure 5. (a): Structural anisotropy of the microstructures (α) is plotted as a function of volume fraction φ. Isotropy is represented by dashed

line for α= 1. Three square boxes represent the three different geometrical anisotropic ratios α > 1 (prolate inclusions), α= 1 (isotropic),

and α < 1 (oblate inclusions) present in our data, for which a slice view of the microstructure in the yz plane is presented. (b): Contour

plot showing CPW
33 (φ,α)−CPW

33 (φ,1)/CPW
33 (φ,1) as a function of anisotropy and volume fraction. The two black squares represents the

relative error at the maximum and minimum anisotropy ratio α= 1.87 and α= 0.45 which occur in the present data set in (a). The color-bar

represents the percentage of relative error computed for different geometrical anisotropic microstructures considered. Table 1 provides the

description of the samples.

Figure 5 shows that the structural anisotropy α is an important component of the parametrization proposed in this work.

However, as it is not straight-forward to measure the structural anisotropy and as elasticity is highly sensitive to density, one

may wonder how the errors induced by neglecting anisotropy compare to typical errors due to uncertainties in the density

measurement. To answer this question, we compared the impact of neglecting anisotropy (that is to say assuming α= 1) to that

of a typical 5% uncertainty when measuring density using µCT (Proksch et al., 2015; Hagenmuller et al., 2016). Concretely,320

we applied our parametrization of the C33 component to three cases: case (a) corresponds to the ideal case of taking into ac-

count geometrical anisotropy (α 6= 1) and assuming no uncertainty in density, case (b) corresponds to a case where geometrical

anisotropy is accounted for (α 6= 1) but with a 5% uncertainty in density, and case (c) corresponds to the case where geomet-

rical anisotropy is neglected (α= 1) but without density uncertainty. These three cases are applied to the Arc-EGRIP samples

(0.45< α < 1.87 and 0.24< φ < 0.66), which underwent TGM under natural conditions, and to the TS-TGM17 samples325

(0.9< α < 1.15 and 0.30< φ < 0.32), which in contrast underwent TGM in controlled conditions. They are visible in Fig. 6

alongside estimation of the C33 component directly derived from the FEM simulations, which serves as a reference. Neglecting

anisotropy (case 3) leads to average errors of 39.8% and 21.7% for the Arc-EGRIP and TS-TGM17 samples, respectively. A

5% percent error in density, while taking into account anisotropy (case 2), yields average errors of 23% and 11.96% for the

Arc-EGRIP and TS-TGM17 samples, respectively. This is to be compared with average errors of 14.56% and 11.96% when330

anisotropy is considered and when there is no error in density.
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Figure 6. Comparison of elastic modulus calculated from FEM simulations C FEM
33 to present work parameterization C PW

33 for (a) Arc-EGRIP

samples as a function of depth and (b) for one of the TGM time series (TS-TGM17). C PW
33 is computed for the following three cases. Case

1: Accounting anisotropy without uncertainty in density C PW
33 (φ,α 6= 1), case 2: Accounting anisotropy with 5% uncertainty in φ C PW

33 (φ

with 5% error ,α 6= 1), and case 3: not accounting for anisotropy without uncertainty in density C PW
33 (φ,α= 1). Panels (c) and (d) show the

norm of the relative errors of the three cases compared to the FE results. The shaded area for case 2 represents the spread resulting from a

5% uncertainity in density.

4.5 Comparison of geometrical and crystallographic anisotropy

To assess the geometrical anisotropy in reference to the crystallographic anisotropy when determining the elastic properties

of snow, firn, and ice for given ice volume fraction, we plot the geometrical Thomsen parameter εgeom, obtained from Eq. 3,335

against φ in Fig. 7. For comparison, we also show the maximum crystallographic anisotropy that can be theoretically obtained,

which is the known value of mono-crystalline ice at zero porosity (φ= 1) given by εcryst =−0.0356 (Petrenko and Whitworth,

2002). The expected (but unknown) decay of εcryst for φ < 1 is shown as a schematic (cf. discussion).
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Figure 7. Geometrical and crystallographic Thomsen parameter, εgeom and εcryst, plotted as a function of volume fraction φ to show the

predominant influence of anisotropy (geometrical and crystallographical) on elastic properties. The red dashed line illustrates a schematic

representation of the expected behavior of crystallographic anisotropy εcryst for φ < 1. Sample name descriptions are given in Table 1.

5 Discussion

5.1 Summary of main results340

The proposed empirical parameterization offers a crucial advantage by being applicable across the range of natural ice vol-

ume fractions, enabling accurate predictions of the effective elastic modulus (see Fig. 3). This broad range of applicability is

supported by the fact that some of the temperature-gradient experiment samples used in this study have been independently

compared with natural Arctic snow in terms of geometrical anisotropy (Leinss et al., 2020). Furthermore, these anisotropic

samples fall into the intermediate density range (250 kg/m−3 to 500kg/m−3), where geometrical anisotropy exerts a substan-345

tial influence, in contrast with the lesser dominance of structural anisotropy at low and high densities. Therefore, we expect that

our parameterization is sufficiently generic to capture typical anisotropic structures in snow. Furthermore, the samples used to

derive the parametrization are diverse regarding their conditions of formation. Consequently, we expect this parameterization to

yield reasonably accurate predictions of elastic properties for the whole range of natural porous snow, firn, and ice formations.

Previous parametrizations of the elastic modulus, based either on density alone (Eq. (4), Gerling et al. (2017)) or on density350

and anisotropy (Eq. (8), (Srivastava et al., 2016)), can significantly overestimate the elastic modulus when applied outside

their validity range (see Fig. 1). The advantage of HS bound (Eq. (9)) is that it complies with the limiting behavior of bubbly

ice (see Sec. 2.6) and does not overestimate the elastic properties as it approaches high volume fraction and incorporates

the anisotropy (see Fig. 1). For constructing the empirical parameterization we exploited the fact that the elastic modulus

should asymptotically tend to the behavior of randomly diluted spheres, reflecting the fact that low-porosity ice from ice cores355

mainly consist of convex (sphere like) air cavities (Fourteau et al., 2019). The validity of this assumption is reflected by Fig. 4,
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which shows that numerical simulations coincide very well with the theoretical prediction of elasticity for dilute dispersions of

spherical cavities (see Eq. (6)).

The relatively moderate change in the regression coefficient of our CPW
33 in comparison to previous parameterization CG

33 and

CPW
33 (see Fig.3) reflects that anisotropy only has a sub-dominant influence on elasticity, while density remains the main param-360

eter. However, capturing these sub-dominant influences may be very important for advanced microstructure characterization

by alternative means, such as capturing macroscopic physical properties remotely (Leinss et al., 2016). Moreover, as shown is

Section 4.4, neglecting anisotropy is the main source of error when estimating the elastic properties of a sample whose density

has been measured with state-of-the-art techniques (Proksch et al., 2015; Hagenmuller et al., 2016).

Our parametrization of the elastic modulus is a good alternative to computationally expensive FE methods. Although other365

theoretical approximations, such as the self-consistent (SC) approximation, were previously employed by Wautier et al. (2015)

to predict the effective elastic properties and by Calonne et al. (2019) to predict the effective thermal conductivity for the entire

range of densities. SC approximations are based on implicit equations that need to be solved (Torquato, 2002a). Torquato

(1998) showed that the SC give inadequate approximation of effective moduli of dispersions and overestimates the effective

moduli in comparison to rigorous bounds. In contrast, the limiting behavior of the Hashin-Shtrikman bounds can provide an370

explicit formula for effective moduli.

It is notable that the range of elastic modulus varies for each tensor component (see Fig.2 (b)) plotted as a function of Hashin-

Shtrikman bound. Hence, we parameterize elastic modulus for each component shown in Fig. 2 (column 3), as described in

Sect. 2.6 using Eq. (12) and the two parameters ξ and β for each component are given in Table 2. We also observed that all

five components collapse onto a single curve when normalizing the simulated values by ice moduli (C FEM
ij /C ice

ij ) and plotting375

them as a function of the normalized HS upper (C U
ij/C

ice
ij ). This helped in the prediction of all five components of the elastic

modulus with only two parameters in contrast to five parameters given by Zysset-Curnier parameterization used in Srivastava

et al. (2016) for an orthotropic elasticity tensor.

5.2 Choice of the geometrical fabric tensor

Srivastava et al. (2016) demonstrated that the choice of the fabric tensor does not affect the prediction of anisotropy. Hence,380

the MIL fabric tensor, employed by the Zysset-Curnier parameterization in Srivastava et al. (2016), was replaced here by

symmetric depolarization tensor (orientation tensor) M∗. In this way, the current elasticity parametrization involves exactly

the same microstructure parameter (φ,α) as previous permittivity or thermal conductivity parametrizations (Leinss et al.,

2016; Löwe et al., 2013). Weng (1992) evaluated bounds using a similar depolarization tensor based on two-point correlation

functions assuming ellipsoidal symmetry. Their results were consistent with those of the Hashin-Shtrikman bounds evaluated385

by Eshelby tensor.

We note that the choice of the fabric tensor though has an impact on the sign of the fit parameter (l) in the Zysset-Curnier

parameterization, yielding a negative value here in contrast to Srivastava et al. (2016). This can be explained because our depo-

larization tensor M∗ given by Eq. (15) yields zero eigenvalue in the vertical direction for a vertically oriented microstructure.

In contrast, the MIL fabric tensor is represented by 〈mi⊗mj〉, with a local director mi and divided by it’s trace. If the ori-390
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entation is in the mi direction, then the corresponding eigenvalue in this direction is maximized. Therefore, the sign of the

l parameter is reversed. A limitation of the MIL fabric tensor is, however that it is not able to detect interfacial anisotropy:

Odgaard (1997) evaluated a two-dimensional "Swiss cheese" microstructure where the MIL analysis predicted an isotropic ge-

ometry despite the obvious, anisotropic arrangement of the spheres. The result of the analysis was influenced by the isotropic

interfaces between the phases. Similar results were also observed by Klatt et al. (2017), when MIL analysis was performed on a395

Boolean model with aligned Reuleaux triangles, it resulted in circles. MIL determination based on standard line or intersection

counting techniques to determine MIL are time-consuming and sensitive to noise (Moreno et al., 2012).

5.3 Performance of the parameterization

Overall, the parameterization used in the present work CPW
33 , given by Eq. 11-12, had excellent agreement (R2 = 0.99) when fit

to all components simultaneously with 2 parameters in comparison to previous parameterizations from Srivastava et al. (2016)400

(volume-fraction and fabric-dependent) and Gerling et al. (2017) (volume-fraction-dependent), which yielded the coefficient of

determinationR2 = 0.76 andR2 = 0.952, respectively (see Table 2 and Fig. 3). Figure. 3(d) shows that the Gerling et al. (2017)

density-based parameterization yields the best prediction for the componentC44 when derived by fitting all components. This is

because theC44 component values lie in between the diagonal component valuesC11 andC33 (typically higher values) and off-

diagonal component valuesC12 andC13 (typically lower values). The highest improvement over density based parametrizations405

is achieved for the C33 component for the TS-TGM2, TS-TGM17, and Arc-EGRIP samples, which becomes apparent when

plotted as a function of HS upper bound or volume fraction (see Fig. 2). All of these samples have an ice matrix predominantly

oriented in z-direction (see Fig. 5 (a)) with the anisotropy ratio α > 1. Such vertically oriented structures are generated by

strong temperature gradient metamorphism (Calonne et al., 2012; Löwe et al., 2013; Leinss et al., 2020) occurring in the snow,

firn, and ice. This is evident for temperature gradient time series (TS-TGM2 and TS-TGM17) from Fig. 5 (a), where we see410

the change from a horizontal orientation of ice matrix into a vertical orientation. The improvement of the prediction of the

elastic modulus mainly in z-direction is consistent with previously derived properties such as thermal conductivity for snow

(see, Löwe et al., 2013). EastGRIP (Arc-EGRIP) samples extracted from the firn in Greenland also display a similar kind of

geometrical anisotropy in the vertical direction (Montagnat et al., 2020).

To further test the performance of our parameterization, we considered ice volume fraction and correlation function data415

provided by Wautier et al. (2015). The data display values of α ranging from 0.65 to 1.26, and of φ ranging from 0.10 to 0.59.

We applied our parameterization on these data using Eq. (12) and compared the obtained results to the elastic stiffness tensor

computed from FEM simulations of Wautier et al. (2015), Srivastava et al. (2016) and from the present work. We also added

the other parameterizations derived from FEM simulations (namely Köchle and Schneebeli, 2014; Gerling et al., 2017), with

φ ranging from 0.10 to 0.59. We found that PW parameterization applied to the data of Wautier et al. (2015) differs from the420

Wautier et al. (2015) simulation results. However, despite the scatter, both our FEM simulations and PW parameterization lie

within the range of FE results from Srivastava et al. (2016), Köchle and Schneebeli (2014), and Gerling et al. (2017).

Using the new parametrization, it is possible to assess the maximum error in the prediction of elasticity if anisotropy was

not taken into account (see Fig. 5(b)). As the relative error is not the same for microstructures with vertical and horizontal
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orientation of ice matrix (see Fig. 5(a)), the error plot is non-symmetric in α (see Fig. 5(b)). The relative error of the elastic425

modulus for vertical ice matrix orientation (TS-TGM2, TS-TGM17 and Arc-EGRIP) (α > 1) (see Fig. 5(b), top half) is larger

than 100%. The relative error for horizontal orientation of ice matrix (α < 1) seen for φ between snow to ice is up to -90%.

From Fig. 5(a) and, 5(b), it is clear that for intermediate volume fractions in the range 0.3< φ < 0.5, very different anisotropy

values are possible for a similar density. Using the extreme values from Fig. 5(b) the prediction of elastic modulus solely as a

function of φ could miss variations up to 200%. For φ→ 1, the relative error must approach zero, since for vanishing porosity430

(polycrystalline) ice becomes geometrically isotropic.

5.4 Comparison of geometrical and crystallographical anisotropy

In Fig. 5(a) and Fig. 7 we see the typical evolution of the geometrical anisotropy in snow, firn, and ice, with a sharp increase

in geometrical anisotropy with density in low-density snow and its survival up to high densities. Initially, at low-density

snow exhibits a horizontal orientation of ice matrix (Leinss et al., 2016). As the volume fraction increases from snow to435

firn, we observe the transition of the orientation to the vertical direction. This change is a result of temperature gradient

metamorphism, which can be easily confirmed from the temperature gradient metamorphism experiments (TS-TGM2 and TS-

TGM17), and also from the Arc-EGRIP dataset (Leinss et al., 2020). The existence of geometric anisotropy in polar snow is

well known (Fujita et al., 2014; Moser et al., 2020) and can be quantitatively related to temperature gradient metamorphism

(Montagnat et al., 2020). When the volume fraction of ice increases further from firn to bubbly ice, the microstructures relax to440

a geometrically isotropic state. This is a consequence of gravitational settling and densification of snow (Leinss et al., 2020).

However, we infer from Fig. 5 (a) that the vertical geometrical anisotropy generated near the surface survives beyond the bubble

close-off transition around φ≈ 0.92 that underlies the Ant-Lock-In data, as discussed in Fourteau et al. (2019). This raises the

question at which point exactly the crystallographic anisotropy will become the dominant type of anisotropy.

To this end, we have quantified the geometrically elastic anisotropy by deriving the corresponding Thomsen parameter εgeom445

for the entire range of ice volume fraction (see Fig. 7). This clearly reveals that the geometrical anisotropy dominates snow and

firn for ice volume fraction φ < 0.7 in our data. For bubbly ice the situation is a bit more complicated. The crystallographic

Thomsen parameter of ice εcryst shown in Fig. 7 is only valid for φ= 1, where the geometrical Thomsen parameter εgeom must

vanish. However, it can be expected that in the range 0.7< φ < 1 the geometrical and crystallographic anisotropy are of similar

magnitude since the crystallographic Thomsen parameter εcryst must decay from its ice value when increasing the porosity. To450

understand this phenomenon, one can assume a volume-filling monocrystal, with a Thomsen parameter εcryst that corresponds

the maximum possible crystallographic anisotropy. Now, if this volume is gradually filled with an isotropic inclusion of air, the

anisotropic behavior of the hollowed mono-crystal decays. This behavior is shown as a schematic line in the inset of Fig. 7 and

highlights the importance of consideration of both kinds of anisotropies for very high density. Such an influence of very low

porosity on the crystallographic fabric is also implied by the results of (Hellmann et al., 2021).455

For microstructures in the volume fraction range 0.7< φ < 1, it may be thus important in the future to consider concurrent

effects of crystallographical and geometrical anisotropy, which is presently nonexistent. It is important to know the dominant
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anisotropy (geometrical or crystallographic) for a given volume fraction for the prediction of elastic properties. Previous studies

mostly consider crystallographic anisotropy, which may, however, become dominant only very close to φ= 1

5.5 Applicability of the current parameterization460

To ease the applicability of the present parameterization, we provide the Python scripts with the data and the necessary functions

to compute the parametrized elasticity tensor as a function of a sample’s density and anisotropy and of the shear and bulk

modulus of ice. Also, while the parameterization of the elasticity tensor was derived using the elastic properties of ice at −16◦

C, one can directly transpose the parameterization to a different temperature. This is readily done by taking into account the

temperature dependence of the ice elastic properties that appear in the parameterization. Finally, as the purely elastic behavior465

of a porous material does not depend on grain size explicitly but only on its microstructural shape (as seen in the Eshelby tensor

described in Appendix B), the proposed parameterization is applicable regardless of the grain size of the considered sample.

6 Conclusions

Using a transformation of the anisotropic Hashin-Shtrikman bounds, we derived a new closed-form parametrization for the

effective elasticity tensor as a function of volume fraction and geometrical anisotropy applicable from fresh snow to bubbly ice.470

Thereby, we extend the set of parameterizations of physical parameters with a similar focus on the full range of volume fractions

(Calonne et al., 2019; Picard et al., 2022). We have demonstrated the advantages over previous elasticity parametrizations

in view of performance and the correct asymptotic behavior for bubbly ice. Given the distribution of naturally occurring

geometrical anisotropy, the uncertainty range of elastic moduli predictions is up to 200% for intermediate volume fractions of

0.3< φ < 0.5 if only density was considered in the parametrization.475

The new parametrization is a crucial tool for use in different applications in cryospheric sciences. In particular, we seek to

trigger new microstructure retrievals through advanced anisotropic inversion methods of seismic data (Wu et al., 2022). Along

these lines, our results shed new light on the relative importance of the two different types of elastic anisotropy (crystallo-

graphic, geometrical) in snow and firn that may influence the interpretation of seismic measurements (Schlegel et al., 2019).

The geometrical anisotropy is clearly dominating the crystallographic anisotropy for φ < 0.7, and must be taken into account480

when discussing anisotropy in near surface seismics (Chaput et al., 2022). While the geometrical anisotropy quickly decays

with depth, remainders still persist down to the close-off depth, and how concurrent fabrics (geometrical and crystallographic)

will elastically interact in bubbly ice is yet to be investigated.

Code and data availability. We published the data and the code of this study on the data portal EnviDat under the following site

(https://www.doi.org/10.16904/envidat.462).485
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Appendix A: Isotropic elasticity tensor

Elasticity tensor in terms of bulk modulus K and shear modulus G for an isotropic case is given as

C =



K + 4G/3 K − 2G/3 K − 2G/3 0 0 0

K − 2G/3 K + 4G/3 K − 2G/3 0 0 0

K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G


, (A1)

and Young’s modulus E =
9KG

3K +G
and Poisson’s ratio ν =

3K − 2G

2(3K +G)
.

Appendix B: Eshelby tensor490

The Eshelby tensor S is defined in terms of elliptical integrals. For the case of a spheroidal inclusion with semi-axis given

in terms of correlations lengths `x = `y = a and `z = b, with symmetry axis aligned in z-direction embedded in a transverse

isotropic comparison phase results in transverse isotropic Eshelby tensor and is defined in terms of with the components of

Sijkl given by (Torquato, 2002a; Parnell and Calvo-Jurado, 2015):

S1111 = S2222 =
3
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α2
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+

1
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[
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]
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{
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−
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q

}
,

S1122 = S2211 =
1

4(1− v1)

{
α2

2(α− 1)
−

[
1− 2v1 +

3

4(α2− 1)

]
q

}
,

S1133 = S2233 =
1

2(1− v1)

{
−α2

α2− 1
+

1

2

[
3α2

α2− 1
− (1− 2v1)

]
q

}
,

S3311 = S3322 =
1

2(1− v1)

{
2v1− 1− 1

α2− 1
+

[
1− 2v1 +

3

2(α2− 1)

]
q

}
,

S1212 =
1

4(1− v1)

{
α2

2α2− 1
+

[
1− 2v1−

3

4(α2− 1)

]
q

}
,

S1313 = S2323 =
1

4(1− v1)

{
1− 2v1−

α2 + 1

α2− 1
− 1

2

[
1− 2v1−

3(α2 + 1)

α2− 1

]
q

}
,

(B1)495
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with Poisson ratio of the comparison material given by v1, α is the aspect ratio of spheroid given in terms of correlation lengths

(`z/`xy) and q is defined by

q =


α

(α2− 1)3/2
[α(α2− 1)1/2− cosh−1α], α≥ 1,

α

(1−α2)3/2
[cos−1α−α(1−α2)1/2], α≤ 1,

(B2)

Several limits of the Eshelby tensor for transverse isotropic materials can be derived. For ice matrix orientation with needle-

shaped structures (α→∞, q = 1), the Eshelby tensor reads500

S1111 = S2222 =
5− 4v1

8(1− v1)
, S3333 = 0

S1122 = S2211 =
4v1− 1

8(1− v1)
, S1133 = S2233 =

v1
2(1− v1)

,

S3311 = S3322 = 0, S1212 =
3− 4v1

8(1− v1)
, S1313 = S2323 =

1

4
.

(B3)

For inclusion with disk-shaped structures (α= 0, q = 0), the components of Eshelby are then given by

S3333 = 1, S3311 = S3322 =
v1

1− v1
, S1313 = S2323 =

1

2
. (B4)

Appendix C: Definition of functionQ(α)

For the evaluation of the depolarization tensorM∗ in Eq.15 the definition of function Q(α) is given as (Torquato, 2002a)505

Q=


1

2

{
1 +

1

α2− 1

[
1− 1

2χb(α)
ln
(1 +χb(α)

1−χb(α)

)]}
,α > 1,

1

2

{
1 +

1

α2− 1

[
1− 1

χb(α)
atan(χa(α))

]}
,α < 1,

(C1)

with χa(α)2 =−χb(α)2 = 1/α2− 1. For the case, α= 1, Q= 1/3.
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