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Cover letter

Dear Dr. Kaitlin Keegan,

Enclosed is our revised manuscript, "A microstructure-based parameterization of the 
effective, anisotropic elasticity tensor of snow, firn, and bubbly ice," with the point-by-
point replies to all four reviewers and a complete track-change document for an 
unambiguous overview of all differences between the original and revised version. 
In the response to the reviewers, our proposed modifications and their place in the track 
change version are displayed in green. Note also that we have corrected some extra 
typos. They are not discussed in the reviews but appear in the track-change version.
We highlight that based on the reviewers comments we removed Section 4.4 “Elasticity 
depth profile”, an also added of two Appendices. Following a structure change Figures 
5 and 6 have been swapped in the manuscript.
Finally,  we unfortunately could not perform the simulations on the last four samples as 
the co-author required to assist with simulations is unavailable for health reasons. 
Therefore, we use 391 instead of 395 samples (3 of the missing samples correspond to 
ARC-EGRIP, and one corresponds to a lone specimen from the metamorphism box time
series.). The impact on the results is negligible, as these are only a few samples (and 
share similarities with the other Arc-EGRIP samples and other TS-DH1  samples in the 
data, meaning they only add a little information). Also, as we mentioned in the rebuttal, 
we did not consider some load states in the optimization due to filename 
inconsistencies, which are now corrected. Therefore, the fit parameters slightly changed 
without any implication on the results.

WSL Institute for Snow and Avalanche Research SLF
Flüelastrasse 11, CH-7260 Davos, phone +41-81-417 01 11, fax +41-81-417 01 10, www.slf.ch

The Cryosphere
Editorial Office

Davos, November 27, 2023
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Finally, the numerous reviewer comments were essential, and the associated 
improvements in the figures and amendments to method descriptions and the discussion
helped to clarify the open points. 

Thank you for the editorial support.
Kind regards,
Kavitha Sundu (on behalf of the authors)

WSL Institute for Snow and Avalanche Research SLF
Flüelastrasse 11, CH-7260 Davos, phone +41-81-417 01 11, fax +41-81-417 01 10, www.slf.ch



Dear Pascal,

we thank you for the careful reading of the manuscript and the overall positive opinion on the 
work. Your valuable comments helped to significantly improve the manuscript. Below please 
find your comments pasted in black and with our replies in blue. 

As a result of all reviewer comments, the major changes in the manuscript comprise: A 
revised introduction, an extension of the method section, a revision of Sec 4.4. We also realized
that, due to to filename inconsistencies, some load states were previously ignored in the overall
optimization. This is now corrected. Therefore the fit parameters slightly changed, but 
without any implication on the results.

Kavitha Sundu (on behalf of the authors)

Review of « A microstructure-based parameterization of the effective, anisotropic elasticity 
tensor of snow, firn, and bubbly ice » by Sundu et al. in The Cryosphere

 

Summary : 

The effective stiffness tensor of snow, firn, and bubbly ice is controlled by the density, morphology, 
and elastic properties of the ice matrix. This control was previously studied and parameterized 
independently for different ranges of density: for snow (rho in [30, 500] kg/m3), firn (rho in [500, 
~800] kg/m3), and bubbly ice (rho in [~800, 915] kg/m3). Here, the authors developed a new 
parameterization of this control that is valid on the full density range. They use the formal 
anisotropic Hashin-Shtrikman upper bound as a predictor of the stiffness tensor in empirical fit 
based on 395 finite-element simulations on tomographic images.

 

Main comments :

This article constitutes a valuable contribution to The Cryosphere with a sound methodology and 
interesting results. The paper is fairly well written to follow the work (typos to be corrected through
proof review). Even if the new parameterization does not substantially outperform existing 
parameterizations in their porosity range of validity, it is valid on the full density range from snow 
to bubbly ice and does not exhibit artificial and arbitrary transition zones with density. In particular, 
the existing parameterizations for snow predict an effective stiffness larger than the one of ice if 
applied on high-density samples. Besides, the anisotropy is directly captured by the Eshelby tensor, 
which does not require additional fitting when using the 2-parameters fit (same beta and eta for all 
components) for the whole tensor. This new parameterization comes at the cost of a more complex 
implementation, particularly of the upper bound C_U using the Eshelby tensor derived from the 
correlation length of the structure. However, its computation expense remains far lower than a full 
finite-element simulation on the snow microstructure. 

 

However, I have certain comments that would need to be addressed before publication :

 



1. One goal of the presented work is to provide a new parameterization of the elastic tensor 
valid from snow to ice. To use it, one must compute the density, the correlation lengths of 
the given sample microstructure, the associated 4th-order Eshelby tensor, the corresponding 
Hashin-Shtrikman upper bound, and eventually, the empirical fit, and to juggle between 
Voigt and tensorial notations. The authors should provide the functions (e.g., Python or 
Matlab style) so the community can easily re-use this fit. Otherwise, I fear that simple 
density parameterization will remain the norm. The shown material must be enough to re-
implement the fit, but it is prone to errors and headaches. 

We fully agree and this was actually planned initially.  Upon acceptance, we will provide (on 
envidat.ch) the python scripts together with the data and the necessary functions to compute 
the parametrized  elasticity tensor as a function of density, anisotropy, shear and bulk 
modulus of ice for a straightforward adoption of the results in the community.

We now provide the code and data. Refer to the code and data availability declaration. Not visible in
the track change version. 
P27 L533 in the track change version.

2. The computation of the effective isotropic transverse elastic tensor from finite-element 
simulations is not described in enough detail.  

1. First, what sample size (mm) and boundary conditions are used? Indeed, the 
convergence of the apparent sample properties into effective material properties with 
the simulation volume depends on the applied boundary conditions and sample 
density. In particular, the low-density samples of Alp-DIV likely deviate from the 
proposed parameterization because of the too-small sample size (Fig. 2). With this 
information, the robustness of the simulations can be evaluated. 

The FEM simulations were performed by employing periodic boundary conditions as 
originally implemented in the used FE code, which we mentioned now in extended description
of the FE method.

“Finite Elements Method (FEM) simulations were performed using the code from Garboczi (1998) 
on all the CT images to determine the elasticity tensor of the snow microstructure by employing 
periodic boundary conditions.”
P13 L264 in the track change version.

The sample size vary for each sample and were taken as is from the original data sets. This 
information is now included in the paper. To assess the impact on the RVE we show the 
convergence criterion from Wautier et al 2015  in the figure below:



According to their estimates on correlation functions, convergence to an RVE can be assumed 
when the ratio of linear sample size L and the correlation length l exceeds 30. From 
distribution of our data shown above (figure not included in the paper) we infer that  92% of 
all the samples fulfill the requirement of RVE (>30 L/l), while 8 % are below the limit. 
However, only one sample from Alp-DIV in the low volume fraction range falls into this 
group, and there is no systematic sub-set of particular samples in these 8%. This information 
on RVE is now explicitly included in the methods:

“To assess whether we fulfill the representative volume element (RVE) criterion, we employed the 
estimate of  Wautier et al., (2015), which is based on correlation functions. RVE convergence is 
deemed to be satisfied when the ratio of linear sample size L (given in Table 1) and the correlation 
length l ($\sqrt[3]{l_{x}\,l_{y}\,l_{z}}$) exceeds 30. From this, we deduce that 92% of our samples 
fulfill this requirement, while 8% of the samples do not fulfill it. These latter samples have ice 
volume fractions ranging from 0.11 to 0.66.” 
P13 L279 in the track change version.

2. The isotropic transverse tensor is estimated from 5 load states (Sec. 3.4) by finding 
the five independent components of C that minimize the L2-norm of sigma-
C:epsilon. The five load states are not described. It is unclear whether a bad choice of
these load states may favor better approximations of certain components when 
approximating the full tensor to the isotropic transverse one. What is the difference 
between getting the full tensor (21 components) based on 6 unit load cases and taking
the theoretically non-zero components under the assumptions of transverse isotropy 
(e.g., Wautier et al., 2015)? In addition, the assumption of transverse isotropy makes 
sense for snow (deformation by gravity generally aligned with temperature gradient),
but is it relevant for bubbly ice on ice sheets that may also flow in a certain 
horizontal direction? 



We now included the definition of the five load states that were used for the optimization. In 
principle we are just using the Cartesian basis vectors in 6 dimensional stress space (e_1… 
e_6). We were combining, though, e_4 and e_5 to a single load state (e_4+e_5) leading to the 
same equations. We acknowledge and explicitly mention now that the choice of load states 
naturally implies a different weight for different elasticity components in the least squares 
optimization (As an example: C33 is only involved in the e_3 load state). The description of 
the optimization is also extended. 

“ We performed FE simulations for five load states derived from Cartesian basis vectors in the six-
dimensional deformation space. The deformation ε of the five load states are taken from the set 
{εε0e11; ε0e22; ε0e33; ε0(e13+ e23) ε0e12; }, with ε0=0.01 and with e11 to e12 being unit vectors in the 
deformation space. Note that we combined load states 13 and 23 for the fourth deformation state.”  

Next, for each sample the five independent components of the elasticity tensor C (see Eq. 2) are 
estimated by minimizing the L2-norm of σ-C:ε=0, where σ and ε are the stress and deformation 
states from the simulations. The specific choice of load states naturally implies different weights for
the elasticity components during the least square optimization, as, for instance, the CFEM

33 is only 
involved in the e33 load state.”
P13 L267 in the track change version.

To further support the assumption on TI symmetry underlying the work, the following figure
(a) compares the ratios sigma11/epsilon11 with sigma33/epsilon33, obtained from the (e_1)
and (e_3) load states respectively (without prior assumptions on symmetry). When comparing
potential  symmetry  breaking  between  x  and  y  (e.g.  by  plotting  sigma13/epsilon13  and
sigma23/epsilon23  (see Figure (b)) no significant difference can be observed.

This further indicates that TI symmetry is a reasonable assumption for the present data. We
agree  though  that  for  bubbly  ice,  in  principle  more  complex  symmetry  cases  are
hypothetically possible as you mentioned. This was however not observed here. 

“This optimization strategy ensures the resulting elasticity tensor is transverse isotropic and 
incompressible. It also ensures that the components are consistently estimated through the several 
load states in which they play a role in.”



P13 L276 in the track change version.

3. The different models were fitted on the simulation data using a log-transformation of the 
elastic tensor component with a least squares regression. The density distribution of the 
samples is not uniform in the full density range. In particular, around 80% (?) of the samples
exhibit a density between 250 and 500 kg/m3 (Tab. 1, Fig. 2). Besides, some data are highly 
correlated because they belong to the same time-series. The collected is already huge and the
largest so far to my knowledge; however, could you discuss this point? Can we rely on this 
parameterization for any collected snow data, or is the fit impacted by the sampling?  
Moreover, the improvements of the new parameterization do not show up in the regression 
coefficient (Tab. 2) or the scatter around the predictor (phi or C^U in Fig. 2).   Sampling.

The percentage of  samples with density between 250 and 500 kg/m3 is 68%. In this 
intermediate density range, the most significant influence of structural anisotropy is 
expected, in contrast to the low and high-density range, at which the structural 
anisotropy is be less dominant. It is known, that the evolution of structural anisotropy 
is mainly driven by temperature gradient metamorphism (Leinss et al 2020) and that 
some lab samples included in our data here have served as an independent validation 
for the rather strong temperature gradient metamorphism observed in the Arctic 
tundra (Leinss et al 2020). Therefore, we expect that this parameterization is 
sufficiently generic to capture typical, anisotropic structures in snow. 
The rather moderate change in the regression coefficient indeed reflects that 
anisotropy has a only a sub-dominant influence on elasticity, while density is still the 
main parameter. However, capturing these sub-dominant influences may be very 
important though for advanced microstructure characterization by alternative means. 
This is better explained now in the  introduction. 

“The proposed empirical parameterization offers a crucial advantage by being applicable 
across the range of natural ice volume fractions, enabling accurate predictions of the 
effective elastic modulus (see Fig. 3). This broad range of applicability is supported  by the 
fact that some of the temperature-gradient experiment samples used in this study have been 
independently compared with natural Arctic snow in terms of geometrical anisotropy (Leins 
et al., 2020). Furthermore, these anisotropic samples fall into the Intermediate density 
range (250 kg m-3-500 kg m-3), where geometrical anisotropy exerts a substantial influence, 
in contrast  with the lesser dominance of structural anisotropy at low and high densities. 
Therefore, we expect that our parameterization is sufficiently generic to capture typical 
anisotropic structures in snow. Furthermore, the samples used to derive the parametrization 
are diverse regarding their conditions of formation. Consequently, we expect this 
parameterization to yield reasonably accurate predictions of elastic properties for the whole
range of natural porous snow, firn, and ice formations.”
P22 L375 in the track change version.

“Leins et al. (2016) show that an electromagnetic inversion model could be exploited to 
retrieve the geometrical anisotropy of snow, and this despite a sub-dominant impact of the 



geometrical anisotropy on the effective permittivity tensor. A better understanding of the link
between geometrical and elastic anisotropy would thus enable the use of a similar technique
to retrieve the geometrical anisotropy of snow from seismic surveys.”
P2 L50 in the track change version.

“The relatively moderate change in the regression coefficient of our C33
PW in comparison to 

previous parameterization C33
G and C33

PW (see Fig. 3) reflects that anisotropy only has a 
sub-dominant influence on elasticity, while density remains the main parameter. However, 
capturing these sub-dominant influences may be very important for advanced 
microstructure characterization by alternative means, such as capturing macroscopic 
physical properties remotely (Leins et al., 2016).”
P23 L394 in the track change version.
 

4. The authors state that « the limit of φ → 1 the microstructure must tend to an isotropic 
state » (l.160-161). I disagree with the statement or I have not understood it. Bubbles in ice 
may be very flat and tend to, for instance, horizontal micro-cracks (porosity tends to zero, 
but anisotropy can remain constantly high). This point motivated the choice of the HS bound
as a predictor but there is no prior reason for that. It appears that the collected samples (Fig. 
6) of high density (phi > 0.7) are also characterized, but the sampling may be too limited to 
draw definite conclusions on the structure anisotropy at high density. Moreover, Fig. 6 is 
based on this specific feature of the HS bounds. It shows that the anisotropy of the bubbles 
does not affect the anisotropy of the elastic tensor. I am not convinced this is sound. Please 
clarify. 

This was not well formulated: We meant the effective *elastic* behavior of the 
microstructure must tend to an isotropic state for φ → 1, i.e. the elastic anisotropy 
must obviously vanish for zero-porosity, polycrystalline ice. It is true that the 
geometrical anisotropy may remain non-zero for φ → 1.  This is somewhat visible in 
our bubbly ice samples where a slight geometrical anisotropy remains, even for the 
highest densities. But in this density range our data may not be exhaustive enough to 
see if the slight vertical anisotropy is generalizable to other sites. Due to the processes 
in polar firn, the remaining geometrical anisotropy for φ → 1 must be weak and much 
lower as for intermediate densities. The effective elastic behavior involves both, density
and geometrical anisotropy, and the combined effect must converge to an elastically 
isotropic elastic state for vanishing volume fraction of the inclusions. From our 
understanding this limiting behavior is strict, and automatically accounted for through
the HS bound. We reformulated the sentence to make this clearer.

“In addition, ZC shows an influence of geometrical anisotropy that increases monotonically 
with ice volume fraction, which is also nonphysical since in the limit of φ → 1 the elastic 
anisotropy behavior of the microstructure must tend to an isotropic state.”
P8 L203 in the track change version.

5. The elastic tensor depends on density as a power law with an exponent in [3, 5]. An error of 
5% on density may cause an error of 15% to 25% on the elasticity components. Measuring 



density, even with tomography, is subjected to errors in this order of magnitude  (e.g., 
Proksch et al., 2015; Hagenmuller et al., 2016). The « relative » error due to anisotropy 
should be discussed with respect to the errors on density and not shown as the main source 
of uncertainty.  

 
This is a very good suggestion, we included the comparison in the discussion. To this end we 
considered the extreme anisotropy and density cases in our data and computed the 
propagated uncertainty on the elastic constants ΔC C from our parametrization, for both, 
namely i) having a density error of 5% or ii) neglecting anisotropy. The results are:

Case 1: Highest anisotropy in our data
α = 1.87, φ = 0.39
ΔC C_αα = 88.7%
ΔC C_αφ = 18.18%

Case 2: Lowest anisotropy in our data
α = 0.45, φ = 0.66
ΔC C_αα = 58.45%
ΔC C_αφ = 28.55%

These values confirm that neglecting anisotropy may lead to considerably larger errors than a
typical error in the density measurement. 

We have added a paragraph in Section“4.4 Relative influence of geometrical anisotropy and 
density”. 

“Figure 5 shows that the structural anisotropy α is an important component of the parametrization 
proposed in this work. However, as it is not straight-forward to measure the structural anisotropy 
and as elastic is highly sensitive to density, one may wonder how the errors induced by neglecting 
anisotropy compare to typical errors due to uncertainties on the density measurement. To answer 
this question, we compared the impact of neglecting anisotropy (that is to say assuming α=1) to 
that of a typical 5\% uncertainty when measuring density using µCT (Proksch et al., 2015, 
Hagenmuller et al., 2016). Concretely, we applied our parametrization of the C33 component to 
three cases: case (a) corresponds to the ideal case of taking into account geometrical anisotropy 
(α!=1) and assuming no uncertainty on density, case (b) corresponds to a case where geometrical 
anisotropy is accounted for (α!=1) but with a 5\% uncertainty on density, and case (c) corresponds 
to the case where geometrical anisotropy is neglected (α=1) but without density uncertainty. These 
three cases are applied to the Arc-EGRIP samples (0.45<α<1.87 and 0.24<α<α<1.87 and 0.24<1.87 and 0.24<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.66), which 
underwent TGM under natural conditions, and to the TS-TGM17 samples (0.9<α<1.87 and 0.24<α<α<1.87 and 0.24<1.15 and 
0.30<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.32), which in contrast underwent TGM in controlled conditions. They are visible in 
Fig.6 alongside estimation of the C33 component directly derived from the FE simulations, which 
serves as a reference. Neglecting anisotropy (case 3) leads to average errors of 39.8% and 21.7% 
for the Arc-EGRIP and TS-TGM17 samples, respectively. A 5% percent error on density, while 
taking into account anisotropy (case 2), yields average errors of 23% and 11.96% for the Arc-
EGRIP and TS-TGM17 samples, respectively. This is to be compared with average errors of 
14.56% and 11.96% when anisotropy is considered and when there is no error on density.”



P20 L350 in the track change version.

 

Minor comments :

l11 : « the crystallographic anisotropy » ->  « to the maximal theoretical crystallographic 
anisotropy .» Indeed, your estimation of crystallographic anisotropy is very rough.

Changed accordingly.

“Finally, we used the Thomsen parameter to compare the geometrical anisotropy to the maximal 
theoretical crystallographic anisotropy in bubbly ice.”

P1 L11 in the track change version.

l22 : « the last example … » -> « Schlegel et al. have stressed ».

Changed accordingly.

“The work of Schlegel et al. (2019) emphasized the role of elastic anisotropy.”

P2 L23 in the track change version.

l24-26 : « ice matrix geometry … crystallographic orientation ». There are references for 
geometrical anisotropy but no for crystalline anisotropy.

Agreed. References included.

“Snow and firn are however known to be anisotropic due to both the ice matrix geometry (e.g., 
Loewe et al., 2013, Calonne et al. 2015, Leinss et al. 2016, Moser et al. 2020, Montagnat et al. 
2020), and the crystallographic orientations of the ice crystals (e.g., Diez et al. 2015, Petrenko 
1999).”

P2 L25 in the track change version.

l26-28: « fabric is low/high ». What does it mean? Anisotropy is high /low?

Changed to “strong” (this is how it is commonly referred to) and “anisotropy” added in 
brackets.

 “While the geometrical fabric in firn is strong (leading to a strong geometrical elastic anisotropy) 
near the surface due to temperature gradient metamorphism (Montagnat et al. 2020) and decays 
with depth (Fujita et al 2014), the crystallographic fabric is weak near the surface (thus yielding a 
weak crystallographic elastic anisotropy) but increases with depth under densification and flow \
(e.g., Montagnat et al 2014, Saruya et al 2022).”

P2 L31 in the track change version.

l29: « recent work wave propagations » -> ? « Hellmann et al. (2021) measured wave propagation 
on glacier ice and suggested … »

Reformulated



“Recent work by \cite{εhellmann_2020} on measuring wave propagation in glacier ice suggests that 
even at low porosity (< $1\%$), the effective elastic (crystallographic) anisotropy of polycrystalline 
ice is influenced by the geometrical effects of the porosity. ” 

P2 L35 in the track change version.

Figure 1: The range of density on which the existing parameterizations are supposed to work 
(according to their respective authors) is never shown in Figure 1 or explained in the text (e.g. 
Section 2.2). Add this info.

This information has been added in the Sec 2.2.

P5 L140, P6 L143, P7 L169, Caption of Fig1 P9 in the track change version.

l34: « elasticity ». Delete word.

Deleted

P2 L49 in the track change version.

l34: « for retrieving sub-surface density and anisotropy ». In general, it is unclear to me if the 
parameterization is bijective, i.e., is there one unique anisotropy tensor and density for a given 
elasticity tensor?

We guess no. But in geophysics (like the work cited here) retrievals are rarely based on exact 
inversions, but rather on suitably constrained optimizations of (strictly) ill-defined problems 
by exploiting the properties of the forward model. A potential elastic inversion is somewhat 
similar to the electromagnetic inversion put forward in (Leinss et al 2016) where also a very 
small impact of the structural anisotropy on the effective permittivity tensor (with known 
anisotropic forward model) could be exploited to retrieve the geometrical anisotropy of snow. 
This is elaborated a bit further in the extended version of the introduction. 

“Leins et al. (2016) show that an electromagnetic inversion model could be exploited to retrieve the
geometrical anisotropy of snow, and this despite a sub-dominant impact of the geometrical 
anisotropy on the effective permittivity tensor. A better understanding of the link between 
geometrical and elastic anisotropy would thus enable the use of a similar technique to retrieve the 
geometrical anisotropy of snow from seismic surveys.”

P2 L50 in the track change version.

l57: « Section 2 gives a theoretical overview of the elasticity tensor » -> « Section 2 gives the 
background of the elasticity theory ».

Changed accordingly.

“Section 2 gives the background on the elasticity theory, examines the limitation of existing 
parameterizations, and motivates the methodological idea that underlies the proposed 
parameterization for the elasticity tensor.”

P3 L78 in the track change version.



l.66: « Where the » -> « whose »

Reformulated.

P3 L88 in the track change version.

Eqn. 1: Give the assumption underlying this equation (Hill’s lemma).

Hill’s lemma stated now.

“The effective (fourth order) elasticity tensor C of a statistically homogenous two-phase composite 
material is defined by Hooke's law, using Hill's lemma, of elasticity as” 

P4 L91 in the track change version.

l72-73: Explain what is « transversely isotropic » and that z is vertical (?).

The coordinate system is now properly defined at the beginning of the section.

“We consider snow to be a transversely isotropic (TI) material, where the axis of transverse 
symmetry is chosen as the vertical z- axis perpendicular to the horizontal isotropic xy- plane.”

P4 L98 in the track change version.

Eqn. 2: Report also sigma and epsilon (as in Eqn. 1), so that the Voigt notation is explicit (there may
be some variations with some 1/2, 2 coeff.).

Voigt notation is explicitly defined now.

“that relates the volume averaged second-order stress <α<1.87 and 0.24<σ> and strain tensors <α<1.87 and 0.24<ε>, given in Voigt 
notation as  [σ11,σ22,σ33,σ13,σ23,σ12]T and [ε 11, ε 22, ε 33, 0.5ε 13, 0.5ε 23, 0.5ε 12]T, respectively.”

P4 L94 in the track change version.

l77: « common relations ». It would be convenient to have these relations in the appendix. Indeed, 
the paper change from one notation to another (C_ij, Lamé, bulk modulus, etc.) and it is sometimes 
difficult to follow.

Relations are stated in the appendix now.

P26 L536 in the track change version.

l80-83: Only one Thomsen parameter is used after. Only present this one and explain in a few words
what it represents. 

We followed the suggestion.

P4 L107 in the track change version.

l94 : « 33 component » -> « the component C_33 »

Reformulated.

P5 L128 in the track change version.



l122: « elasiticity » -> « elasticity ». Check the orthograph in the whole paper with dedicated 
software to avoid typos.

Changed and spell check carried out.

P6 L160 in the track change version.

l132: « HS bounds predict the effective elastic properties ». No, they are bounds (with one equal to 
zero).

From our perspective, bounds still *predict* the effective elastic properties. The HS bounds 
are even realized for specific microstructures. This implies, that the prediction can be even 
exact. So in some cases a *prediction* via bounds is very good, in other cases less good. We 
therefore keep our formulation.

l160: « influence of anisotropy increases monotonically ». Clarify if its relative anisotropy.

Formulation changed.

“In addition, ZC shows an influence of geometrical anisotropy that increases monotonically with 
ice volume fraction, which is also nonphysical since in the limit of φ → 1 the elastic anisotropy 
behavior of the microstructure must tend to an isotropic state.”

P8 L203 in the track change version.

Fig. 1: show in log scale to be consistent with the rest of the paper. Show the expected range of 
validity of the models. 

We tested this as shown in the Fig below. However, we believe that at this point of schematic 
introduction, the log scale is more confusing to the readers. Hence, we prefer the non-log scale.

« Illustration » -> « Evolution »

Changed.

P9 in the track change version.



Table 1 : « Isothtermal » -> « Isothermal »

Corrected.

P11 in the track change version.

Section 3.4. Give reference to the choice of the ice properties.

Reference included.

P13 L267 in the track change version.

Fig. 2: Are the first row and last column really necessary? You could gain space to make the 
subfigures larger.

We think they are illustrative (also in view of another reviewer’s comment): The  three 
columns  progressively shows how the data collapse is attained by 1/ including the correct 
symmetry/anisotropy 2/ rescaling by the underlying ice parameters (in particular through the 
first row).  This now better described. But we also increased the space for the subfigures by 
relocating the legend.

“Figure 2 shows an overview of all results by plotting the simulated elasticity components CFEM
ij 

(different rows) against ice volume fraction (column 1), the HS upper bound (column 2) and the 
normalized representation from Eq.11. In the first top row (Fig.2(a)-(c)), all elasticity components 
from all the samples are represented with different colors depending on the component of the 
elasticity tensor. In contrast, in the rest of the rows, only one component is represented at a time 
and the colors and symbols highlight the different samples, as defined in Table 1. The figure shows 
that the scatter of the simulated elasticity tensor components (CFEM

ij) is maximal when plotted as a 
function of the ice volume fraction φ (left column), and that this scatter is reduced when plotted as a
function of the HS upper bound CU

ij instead (middle column). 

Next, we use the improved correlation between CFEM
ij and CU

ij to derive the parameterization for 
each component according to Eq.~\eqref{eq:11}, shown as the black curves (right column). ”

P13 L291 in the track change version.

Fig. 3: comparing C_FEM to C_G_33 (power law) is somehow unfair (scatter due to the fact that, 
e.g. C12 != C11). Indeed refits of the power law on each component show very little scatter (Tab. 
2).

There was a typo in the x-label of the Figure 3d subplot. We now corrected from C_G_33 to 
C_G_ij. Indeed, also for (e) or (f) we have C12!=C11. But here the data collapse is attained 
even without fitting components individually. This illustrates that the underlying symmetry 
supplied by the fabric/Eshelby tensor is the relevant ingredient (see comment above) 

P16 in the track change version.

Fig. 6b: I am not sure this figure makes any sense. Anisotropy at high density affects elasticity 
anisotropy, but it appears that porous ice is not anisotropic (due to ice physics). See main 
comments. Can you make the same figure but with the FEM as the ground truth?



This is also related to your comment further above: At high density, the elastic anisotropy due 
to geometry must vanish (as shown by the figure) and the difference between the anisotropic 
and the isotropic formulation tends to zero. The geometrical anisotropy in porous ice (at least 
for the samples analysed here) remains very weak, but still visible. This is exactly how you 
expected it to be in your comment above. The figure cannot be done using FEM data since the 
data does not fill the plane continuously.

Sect. 4.6: This is not clear to me why epsilon_cryst should decay with increasing porosity. For sure, 
it cannot go above the value for a single mono-crystal. Moreover, you do not need this decay to 
draw your conclusion (geometric anisotropy is dominant for most of the densities). Simplify.

Assume a volume-filling monocrystal with zero porosity, which is represented by epsilon_cryst
as the the maximally, possible anisotropy. Now add a mechanically isotropic inclusion phase 
(air). As a result, the elastic anisotropy must decay. We still believe that this schematic is 
illustrative since it re-emphasizes the necessity of revisiting the dominant anisotropy for very 
high density. This is maybe less of a concern for snow, but this is very important for fabric 
analysis of ice. We changed the text to make this clearer. 

“To understand this phenomenon, one can assume a volume-filling monocrystal, with a Thomsen 
parameter $\epsilon_{\mathrm{cryst}}$ that corresponds the maximum possible crystallographic 
anisotropy. Now, if this volume is gradually filled with an isotropic inclusion of air, the anisotropic 
behavior of the hollowed mono-crystal decays. This behavior is shown as a schematic line in the 
inset of Fig.~\ref{fig:07} and highlights the importance of consideration of both kinds of 
anisotropies for very high density.” 

P26 L495 in the track change version.

l287 : significantly

Changed accordingly.

P22 L386 in the track change version.

l340-342: You discuss here possible improvements. Does it really make sense with the given current
performance and the uncertainty on the measurements? Delete paragraph?

We agree, paragraph deleted.

P24 L453 in the track change version.

l388: « The new parameterization constitutes a significant simplification ». I would not say it is 
simple but rather, « it is a crucial tool »

Reformulated.

P27 L524 in the track change version.

Reference :

• Hagenmuller, P., Matzl, M., Chambon, G., Schneebeli, M., 2016. Sensitivity of snow density
and specific surface area measured by microtomography to different image processing 
algorithms. The Cryosphere 10, 1039–1054. https://doi.org/10.5194/tc-10-1039-2016 



• Proksch, M., Löwe, H., Schneebeli, M., 2015. Density, specific surface area and correlation 
length of snow measured by high-resolution penetrometry. Journal of Geophysical Research:
Earth Surface 120, 346–362. https://doi.org/10.1002/2014JF003266 

References added.

Not visible in the track change version.

Pascal Hagenmuller



Dear Antoine, 

we thank you for the careful reading of the manuscript and the overall positive opinion on the 
work. Your valuable comments helped to significantly improve the manuscript. Below please 
find your comments pasted in black and with our replies in blue. 

As a result of all reviewer comments, the major changes in the manuscript comprise: A 
revised introduction, an extension of the method section, a revision of Sec 4.4. We also realized
that, due to to filename inconsistencies, some load states were previously ignored in the overall
optimization. This is now corrected. Therefore the fit parameters slightly changed, but 
without any implication on the results.

Kavitha Sundu (on behalf of the authors)

In this paper, the authors propose to use finite element simulations conducted on X-ray tomography 
images (395 images in total) to compute the homogenized elastic behavior of snow, firn and bubbly 
ice. The resulting behavior is modeled as transversely isotropic, which corresponds to 5 
independent material parameters. Homogenizing the elastic properties of snow from X-ray 
tomography images is not new and several authors (cited in the paper) have already proposed such a
procedure in the last decade. And some of them have already used a transversely isotropic model for
snow. The contribution from the authors to the state of the art is to propose a fit over the whole 
range of porosity with the combination of a power law and the theoretical Hashin-Shtrikman bound 
(equations (9), (11) and (12)) to respect the fact the ice properties are recovered for a solid fraction 
of 1. The fit explicitly accounts for both density and geometrical anisotropy (estimated as the ratio 
of autocorrelation lengths in the vertical and horizontal directions). They show that their fit enable 
to achieve a higher precision than previous fit proposed in the literature.

Then, the authors discuss the relative contribution of geometrical anisotropy for different porosity 
values. The authors also assess the relative contribution of geometrical and crystallographic 
anisotropy on the elastic properties of snow, firn and bubbly ice. They show that the influence of 
anisotropy decreases with the decrease in porosity. They also show that geometrical anisotropy is 
dominant over crystallographic anisotropy up to a volume fraction of 0.7.

Even if the contribution to the state of the art is a little bit incremental on some aspects, I would 
suggest publication, provided the authors clarifies the following points. On the form, the paper is 
globally well written but the main story line is sometimes a little bit difficult to follow.

1. In Fig. 6. the authors explicitly show the relative contribution of geometrical anisotropy for 
different porosity. The authors could comment a little bit more this central Figure in their 
paper. For instance, there seems to be a tendency for $\alpha$ to increase with $\phi$ for low
porosity values on the data set considered in Fig. 6.(a). Is there any physical explanation for 
that? In Fig. 6.(b) the two squares show that the larger over and under estimation zones are 
indeed not observed in the data set. Could the authors therefore comment on the maximum 
over and under estimations that one could get by not accounted for $\alpha$ for different 
snow densities? How does such uncertainties compare with uncertainties related to density 



estimations? 

The first part is mainly explained in the discussion in Sec. 5.4: Snow typically 
undergoes temperature gradient metamorphism (TGM) at these low to intermediate 
densities. TGM on average leaves the density invariant while it increases the 
anisotropy. This happens in alpine snow but also in polar snow. In polar snow (e.g. 
EGRIP), the density is typically higher, but also the exposure to temperature gradients 
is longer, leading to even higher alpha values. On average for the whole data, this yields
this apparent increase of alpha with density, which reflects an average behavior of 
phi(alpha) when combining natural snow and firn samples from different locations. We
elaborate on this now when discussing Fig 6.

(We also refer to the track change document (page 24, line 472-484) that shows the 
changes in the context of the manuscript)

Comparing the uncertainties due to anisotropy with those due to density were also 
raised by Pascal Hagenmuller and are now included in the discussion.

        
“Figure 5 shows that the structural anisotropy α is an important component of the parametrization 
proposed in this work. However, as it is not straight-forward to measure the structural anisotropy 
and as elastic is highly sensitive to density, one may wonder how the errors induced by neglecting 
anisotropy compare to typical errors due to uncertainties on the density measurement. To answer 
this question, we compared the impact of neglecting anisotropy (that is to say assuming α=1) to ) to 
that of a typical 5\% uncertainty when measuring density using µCT (Proksch et al., 201) to 5, 
Hagenmuller et al., 201) to 6). Concretely, we applied our parametrization of the C33 component to 
three cases: case (a) corresponds to the ideal case of taking into account geometrical anisotropy 
(α!=1) to ) and assuming no uncertainty on density, case (b) corresponds to a case where geometrical 
anisotropy is accounted for (α!=1) to ) but with a 5\% uncertainty on density, and case (c) corresponds 
to the case where geometrical anisotropy is neglected (α=1) to ) but without density uncertainty. These 
three cases are applied to the Arc-EGRIP samples (0.45<α<1.87 and 0.24<α<α<1.87 and 0.24<1) to .87 and 0.24<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.66), which 
underwent TGM under natural conditions, and to the TS-TGM1) to 7 samples (0.9<α<1.87 and 0.24<α<α<1.87 and 0.24<1) to .1) to 5 and 
0.30<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.32), which in contrast underwent TGM in controlled conditions. They are visible in 
Fig.6 alongside estimation of the C33 component directly derived from the FE simulations, which 
serves as a reference. Neglecting anisotropy (case 3) leads to average errors of 39.8% and 21) to .7% 
for the Arc-EGRIP and TS-TGM1) to 7 samples, respectively. A 5% percent error on density, while 
taking into account anisotropy (case 2), yields average errors of 23% and 1) to 1) to .96% for the Arc-
EGRIP and TS-TGM1) to 7 samples, respectively. This is to be compared with average errors of 
1) to 4.56% and 1) to 1) to .96% when anisotropy is considered and when there is no error on density.”

P20 L350 in the track change version.

2. Time series of snow metamorphism are considered in the data base. In these time series 
(especially temperature gradient experiments), anisotropy develops. It could be interesting to



show on some specific time series, how the fit propose by the authors enable to accurately 
capture the anisotropic evolution of the mechanical properties. 

We extended Figure 5 to also show one example of a temperature gradient time series. In both
parts of Figure 5 (profile and time series) we highlight now the impact of accounting for 
anisotropy (or not) in the PW model, following your comment 8 below.

P21 Fig6 in the track change version.

3. Section 4.3 may possibly benefit from some clarifications. I understand that Kohnen 
parametrization is valid at high ice volume fraction only. This could be stated explicitly in 
section 2.2.2. Then, why not having presented the results in the same form as in Fig. 3 with 
correlations between the different models and the FEM predictions? 

The (density) range of validity for all parameterization is now explicitly included. We chose a 
different presentation in this figure because we also wanted to highlight the behavior of the 
parameterizations, not only where FEM results are available, i.e. close to $\phi=1$.

P5 L140, P6 L143, P7 L169, P9 caption of Fig1 in the track change version.

4. I understand that the anisotropy is accounted in the $\boldsymbol{P}^\mathrm{ice}$ tensor 
in equation (9) which is related to the Eshelby tensor $\boldsymbol{S}$ recalled in 
Appendix A that depends the ratio $\alpha$ between the vertical and horizontal corelation 
lengths. Therefore, I do not understand why the tensors $\boldsymbol{M}$ and $\
boldsymbol{M}*$ are introduced in section 3.3... 

For the Hashin-Shtrikman bounds, the fourth-order Eshelby tensor $\boldsymbol{S}$ is 
required which is later converted to a 6x6 tensor in Voigt notation. In contrast, the Zysset-
Curnier formulation is based on the orientation/fabric tensor $\boldsymbol{M}$ (which is 
represented by a 3x3 matrix here). Our goal here was to restate the existing results as-is from 
the original formulation. This is why another tensor was required here.

“Finally, we note that while both the fabric tensor M in the ZC formulation and the Eshelby tensor 
Sice in the HS formulation are used to described structural anisotropy, they cannot be used 
interchangeably, notably as M is second rank tensor whereas Sice is a fourth rank tensor.”
P7 L192 in the track change version.

5. More details on the FEM simulations should be given. For instance, what are the boundary 
conditions? 

This was also requested by other reviewers. More technical details on the method, and the 
boundary condition are now included in the FEM methods section. 



“Finite Elements Method (FEM) simulations were performed using the code from Garboczi (1) to 998) 
on all the CT images to determine the elasticity tensor of the snow microstructure by employing 
periodic boundary conditions.”
P13 L264 in the track change version.

We also extended the description of the optimization with the involved load states and 
comment on the fulfilment of RVE (cf. comment and figure included in the reply from Pascal 
Hagenmuller)

“To assess whether we fulfill the representative volume element (RVE) criterion, we employed the 
estimate of  Wautier et al., (201) to 5), which is based on correlation functions. RVE convergence is 
deemed to be satisfied when the ratio of linear sample size L (given in Table 1) to ) and the correlation 
length l ($\sqrt[3]{l_{x}\,l_{y}\,l_{z}}$) exceeds 30. From this, we deduce that 92% of our samples 
fulfill this requirement, while 8% of the samples do not fulfill it. These last samples have ice volume
fractions ranging from 0.1) to 1) to to 0.66.” 
P13 L279 in the track change version.

(We also refer to the track change document (page 12, line 272-276) that shows the changes in 
the context of the manuscript)

6. In Fig. 2, when confronting the predictions of FEM against the U model, it could be nice to 
display the 1:1 line as done in Fig. 3. For the right graphs, the units (GPa) should be 
corrected as dimensionless quantities are plotted. Can the authors give more explicitly what 
is the expression of the fit curve? Does it refer to one of the specific models presented 
before? Interpreting the data in terms of Young or Bulk moduli could ease the physical 
interpretation of the parametrization. Instead, the authors simply refer to Torquato (2002a) to
find the equivalences with respect to the coefficients $C_{ij}$. 

Regarding the 1:1 line for the upper bound: For none of the sub-figures one expects that the 
1:1 line is actually attained, so therefore we do not include the 1:1 here. 
Regarding the units: Corrected. 
Regarding the fit curve: The fit function is explicitly derived in Eq. 11/12, the description in 
the text for the figure has been adapted to make this clearer.
Regarding the choice of the base moduli: We added now the conversion from C_ij to Young 
and Bulk modulus in the appendix. We prefer though to not formulate the entire elasticity 
tensor and the results in terms of longitudinal and transversal Young moduli and Poisson 
ratios in the first place.

P15 Right column of Fig 2, New Appendix P27 in the track change version. 

7. In table 2, the formal expressions for the different models could be recalled or at least the 
number of the corresponding equations in the paper. 

We agree. The reference to the defining equations has been included.



P17 Table 2 in the track change version.

8. Fig. 5 is not very clear and do not bring much added value compared with Fig. 3... From Fig.
3 the authors have proved that their fit perform better than the other models. Why not using 
this depth profile to highlight the impact of accounting for the anisotropy or not in the PW 
model? 

We agree. We modified Fig 5 for showing the impact of accounting for anisotropy (or not) in 
the PW model, once for the depth profile and once for the time series.

P21 Fig 6 the track change version with accompanying text

“Figure 5 shows that the structural anisotropy α is an important component of the parametrization 
proposed in this work. However, as it is not straight-forward to measure the structural anisotropy 
and as elastic is highly sensitive to density, one may wonder how the errors induced by neglecting 
anisotropy compare to typical errors due to uncertainties on the density measurement. To answer 
this question, we compared the impact of neglecting anisotropy (that is to say assuming α=1) to ) to 
that of a typical 5\% uncertainty when measuring density using µCT (Proksch et al., 201) to 5, 
Hagenmuller et al., 201) to 6). Concretely, we applied our parametrization of the C33 component to 
three cases: case (a) corresponds to the ideal case of taking into account geometrical anisotropy 
(α!=1) to ) and assuming no uncertainty on density, case (b) corresponds to a case where geometrical 
anisotropy is accounted for (α!=1) to ) but with a 5\% uncertainty on density, and case (c) corresponds 
to the case where geometrical anisotropy is neglected (α=1) to ) but without density uncertainty. These 
three cases are applied to the Arc-EGRIP samples (0.45<α<1.87 and 0.24<α<α<1.87 and 0.24<1) to .87 and 0.24<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.66), which 
underwent TGM under natural conditions, and to the TS-TGM1) to 7 samples (0.9<α<1.87 and 0.24<α<α<1.87 and 0.24<1) to .1) to 5 and 
0.30<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.32), which in contrast underwent TGM in controlled conditions. They are visible in 
Fig.6 alongside estimation of the C33 component directly derived from the FE simulations, which 
serves as a reference. Neglecting anisotropy (case 3) leads to average errors of 39.8% and 21) to .7% 
for the Arc-EGRIP and TS-TGM1) to 7 samples, respectively. A 5% percent error on density, while 
taking into account anisotropy (case 2), yields average errors of 23% and 1) to 1) to .96% for the Arc-
EGRIP and TS-TGM1) to 7 samples, respectively. This is to be compared with average errors of 
1) to 4.56% and 1) to 1) to .96% when anisotropy is considered and when there is no error on density.”

P20 L350 in the track change version.

9. The data from Wautier et al. (2015) where snow is modeled with the same transverse 
isotropic behavior is available in the supporting information. Correlation lengths are also 
given. Maybe the authors could consider testing their fit on these data points?  

We were actually not aware of the amount of details given in the supporting information in 
Wautier 2015. So we carried out the comparison as requested including other FEM based 
estimates. In the Figure below we included the FEM results from your paper, the FEM results 
from Srivastava 2016, our FEM results (Sundu) and the FEM based parameterizations from 
Köchle and Gerling. And we added the prediction of our PW parameterization when 
evaluated on the correlation lengths and the density given in the supplement of your paper. 



Despite the scatter, this overview rather leads to the conclusion that your FEM results seem to 
differ from all the others. Therefore the PW evaluation on your correlation lengths and 
density differs too. We therefore acknowledge that differences between different FEM-based 
results exist and include this in the discussion.

 “To further test the performance of our parameterization, we considered data (ice volume fraction 
and correlation functions) provided by Wautier et la. (201) to 5). The data display values of α ranging 
from 0.65 to 1) to .26, and of φ ranging from 0.1) to 0 to 0.59. We applied our parameterization on these 
data using Eq.1) to 2 and compared the obtained results to the elastic stiffness tensor computed from 
FE simulations of Wautier et la. (201) to 5), Srivastava et al. 201) to 6 and from the present work. We also 
added the other parameterizations derived from FE simulations (namely Kochle et al  201) to 4, 
Gerling 201) to 7), with φ ranging from 0.1) to 0 to 0.59. We found that PW parameterization applied to the
data of Wautier et la. (201) to 5) differs from the Wautier et la. (201) to 5) simulation results. However, 
despite the scatter, both our FEM simulations and PW parameterization lie within the range of FE 
results from Srivastava et al. 201) to 6, Kochle et al  201) to 4 and Gerling 201) to 7.”
P24 L457 in the track change version.



Dear Kris, 

we thank you for the careful reading of the manuscript and the overall positive opinion on the 
work. Your valuable comments helped to significantly improve the manuscript. Below please 
find your comments pasted in black and with our replies in blue. 

As a result of all reviewer comments, the major changes in the manuscript comprise: A 
revised introduction, an extension of the method section, a revision of Sec 4.4. We also realized
that, due to to filename inconsistencies, some load states were previously ignored in the overall
optimization. This is now corrected. Therefore the fit parameters slightly changed, but 
without any implication on the results.

Kavitha Sundu (on behalf of the authors)

In the paper under review, the authors characterize the contribution of geometric anisotropy on 
elastic moduli for snow, firn, and bubbly ice. Specifically, the authors propose a normalized upper 
Hashin-Shtrikman bound for elastic moduli that encompasses a range in porosity from 0 to 1. Under
this scheme, the geometric anisotropy ratio and fabric tensor is related to the elastic moduli by using
an Eshelby tensor. The behavior of the elastic moduli is simulated using finite element methods via 
volume averaging on 395 images taken with X-ray tomography. Although the methods presented 
herein are not novel (as indicated in the referenced models), the normalization scheme presented in 
the present work provides an excellent fit to the simulated outputs for elasticity of dilute dispersion 
of spherical cavities and is, relatively, computationally inexpensive. Moreover, all five components 
of a transversely isotropic elastic modulus for snow, firn, and bubbly ice used in the present work 
were predicted using 2 parameters rather than 5 (required for simulations referenced in the present 
paper) in calculating an orthortopic elasticity tensor. The authors note the influence of both 
geometric and crystallographic anisotropy in the range of densities from snow to ice. At lower 
porosities, the contribution of geometric anisotropy is greater than that of crystallographic with a 
volume fraction around 0.7 (and has appreciable contribution to the elasticity moduli even at 
densities past the bubble close off density for firn/ice). At higher porosities, the influence of these 
two effects switches, such that crystallographic anisotropy dominates the behavior of the elastic 
modulus at greater depths in the firn/ice. However, the point at which this transition occurs is not 
resolved in the present study and should be a discussion for future work. Although not entirely 
novel, the present study provides the cryospheric sciences a new method for characterizing the 
elastic moduli across the range of porosities for snow to ice and the relative contributions of 
geometric and crystallographic anisotropy across the full porosity range (0 to 1 for snow to ice, as 
defined in the present study). I would suggest publication, provided the authors resolve the 
following major and minor points.

Major Comments

1. The authors remark in Sec. 2.2.1 that empirical parameters in Eq.4. need to be estimated by 
fitting to experimental data. At least it should be explicitly stated that constraints on a_ij and b_ij 
have not been made, and there has yet to be a widely agreed upon model based on laboratory and/or
field measurements of snow to ice porosities. This is a serious limitation in comparing model 



outputs in the present work for the elastic moduli to that of the FEM simulations (and other model 
comparisons, such as presented on in Fig. 3.). Moreover, it would be nice to get a brief description 
on the conditions under which the a_33 and b_33 components were obtained.

The description has been extended, and the conditions for the estimates of the Gerling 
parameters have been included (likewise for the other models). We are limiting ourselves here 
to the comparison with Gerling, since these experiments are, to the best of our knowledge, the 
only ones where a measured elastic modulus was to agree with the FEM-based estimates, as 
employed here for the parameterization. In general there is a wide agreement from other field
or lab tests that the exponent b_ij is “large” i.e. somewhere between 4 and 6. Sometimes the 
power law is even replaced by a yet stronger exponential increase as explained in the 
beginning of Sec 2.2.1. Note, that the parameter stated here in Sec. 2.2.1 are simply the values 
as obtained in the original work (also by fitting). In addition, our Sec 3.5 contains the 
description of how we re-derived the fit parameters a_ij and b_ij from the present data which 
are stated in Table 2.

P5 L126, P7 L167 in the track change version.

2. In Sec. 3.2, the two-point correlation function is defined and computed via fast Fourier transform 
of the 3D tomography images. It is noted that, if using the model presented in Eq.(9), (11), and (12),
which showed the best agreement to FEM simulations of elastic moduli compared to other models 
presented on in the study, only two parameters are needed to determine all five components of the 
elasticity tensor, ζ and β. A possible limitation of using an anisotropy parameter as defined in Sec 
3.2. and the accompanying appendix, is that it requires knowledge of the correlation lengths using 
3D X-ray tomography images, which may not be widely available or accessible to those in the 
broader snow, firn, and ice communities.

We agree that the proposed parameterization relies on advanced structural characterization 
(e.g. the correlation lengths) which are presently only accessible by a limited number of 
methods. However we believe that advanced microstructure characterization has become a 
standard world-wide in the last decade due to X-ray snow and firn imaging facilities in the 
US, Japan, Norway, Germany, France, Switzerland. As a result, these advanced metrics and 
improved parameterizations derived from X-ray tomography led to the developments of 
alternative retrieval methods, e.g. the anisotropy characterization from radar (Leinss et al 
2016). We therefore believe that our work contributes well to this mutual stimulation of 
developments. We extended the introduction to point out the increasing use of X-ray imaging 
and advanced microstructural metrics for the understanding of snow, firn and porous ice.

“The estimation of the geometrical anisotropy usually relies on advanced microstructural 
characterization, such as the estimation correlation lengths (Krol, 2016). Despite its complexity, 
this microstructural characterization of snow, firn and ice has become a standard worldwide in the 
last decade thanks to the development of micro-computed tomography (µCT) in the US (Baker et al 
2019),  Japan (Ishimoto et al 2018), India (Srivastava et al. 2016), Norway (Salomon et al 2022), 
Germany (Freitag et al 2004), France (Wautier et al 2015) and Switzerland (Kochle et al 2014). 
The increasing role played by the microstructural characterization of snow and firn, fostered by 
µCT, led to the development of alternative retrieval methods, such as the characterization of 
anisotropy from radar (Leinss et al 2016).”



P2 L39 in the track change version.

3. The authors should consider including the temperature time series presented on in Figures 6 an 7 
and discussed in the concluding remarks. To that end, it is not clear, at least from how the model in 
Sec. 2.6 and the accompanying Appendix are presented, how the elastic modulus (or, similarly, 
Eshelby tensor) depend on temperature. It is clear that there is an effect on anisotropy that is due to 
temperature effects, however, without a formulation for the dependence of the anisotropy ratio or 
Hashin-Shtrikman upper bound of the effective elastic modulus on temperature one would expect it 
difficult to implement the model presented on the in the current work.

We agree, and also following Antoine Wautier's second comment, we now provide a 
comparison to one temperature gradient time series in Fig 5. 

P21 Fig 6 in the track change version with accompanying text

“Figure 5 shows that the structural anisotropy α is an important component of the parametrization 
proposed in this work. However, as it is not straight-forward to measure the structural anisotropy 
and as elastic is highly sensitive to density, one may wonder how the errors induced by neglecting 
anisotropy compare to typical errors due to uncertainties on the density measurement. To answer 
this question, we compared the impact of neglecting anisotropy (that is to say assuming α=1) to 
that of a typical 5\% uncertainty when measuring density using µCT (Proksch et al., 2015, 
Hagenmuller et al., 2016). Concretely, we applied our parametrization of the C33 component to 
three cases: case (a) corresponds to the ideal case of taking into account geometrical anisotropy 
(α!=1) and assuming no uncertainty on density, case (b) corresponds to a case where geometrical 
anisotropy is accounted for (α!=1) but with a 5\% uncertainty on density, and case (c) corresponds 
to the case where geometrical anisotropy is neglected (α=1) but without density uncertainty. These 
three cases are applied to the Arc-EGRIP samples (0.45<α<1.87 and 0.24<α<α<1.87 and 0.24<1.87 and 0.24<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.66), which 
underwent TGM under natural conditions, and to the TS-TGM17 samples (0.9<α<1.87 and 0.24<α<α<1.87 and 0.24<1.15 and 
0.30<α<1.87 and 0.24<φ<α<1.87 and 0.24<0.32), which in contrast underwent TGM in controlled conditions. They are visible in 
Fig.6 alongside estimation of the C33 component directly derived from the FE simulations, which 
serves as a reference. Neglecting anisotropy (case 3) leads to average errors of 39.8% and 21.7% 
for the Arc-EGRIP and TS-TGM17 samples, respectively. A 5% percent error on density, while 
taking into account anisotropy (case 2), yields average errors of 23% and 11.96% for the Arc-
EGRIP and TS-TGM17 samples, respectively. This is to be compared with average errors of 
14.56% and 11.96% when anisotropy is considered and when there is no error on density.””

P19 L350 in the track change version.

Regarding the impact of the temperature on the elastic modulus: Our parameterization 
explicitly contains the elastic constants of ice as parameters. For the comparison to FEM we 
therefore used only one set of ice parameters (elastic constants of ice from Petrenko at -16°).  
Now, any known temperature dependence of the elastic moduli (derived elsewhere) could be 
used in the parameterization by inserting the temperature dependent functions for the ice 
moduli into the parameterization. This has been pointed out in the discussion.  

“Also, while the parameterization of the elasticity tensor was derived using the elastic properties of
ice at -16 °C, one can directly transpose the parameterization to a different temperature. This is 



readily done by taking into account the temperature dependence of the ice elastic properties that 
appear in the parameterization.”
P26 L511 in the track change version.

4. It should be noted early on in the present study how you are defining porosity and the reference 
frame you are using.

We agree. We added the definition of porosity at the beginning of Sec. 2.1 and also specified 
the coordinate system. The z-axis is always aligned with the vertical.

“Snow is a heterogeneous and porous material with an ice volume fraction φ (defined as the ratio 
between the volume occupied by the ice phase over that of the sample), […] ”
P3 L88

“We consider snow to be a transversely isotropic (TI) material, where the axis of transverse 
symmetry is chosen as the vertical z- axis perpendicular to the horizontal isotropic xy- plane.”

P4 L98 in the track change version.

5. In equation 8, it is assumed that the dependence on the eigenvalues for the ice volume fraction 
are of power-law type. Why? One can ad hoc assume the relation follows a power law, but a more 
detailed explanation should be provided.

This question could be maybe better answered by the authors who derived that model. From 
our understanding there is no deeper justification for this functional form, besides simplicity 
and consistency with the functional dependence on density. On theoretical grounds (cf. e.g. 
Cowin “The relationship between the elasticity tensor and the fabric tensor”, Mechanics of 
Materials, 1976) symmetry arguments imply more general relations that involve the 
invariants of the fabric tensor, which in turn lead to more complicated functions of the 
eigenvalues. In (Zysset Cunier 1995) a Taylor expansion was then involved which ultimately 
led to the form used by (Srivastava 2016) and Eq 8. A comment in this direction is added in 
the text.

“This power-law form derives from a polynomial expansion of the elasticity tensor expression in 
terms of the fabric tensor eigenvalues (Zysset 2003).”

P6 L164 in the track change version.

6. In figure 3(b), all components of the elastic modulus from the FEM simulations are compared to 
the C33 components of the power law model presented in Eq. 4. It may be beneficial to clarify why 
the density power law agrees more with C44 components (rather than the C33 for which other 
comparisons are made) obtained from the FEM simulations.

This is due to a typo on our side: In subfigure (d) (you may have referred to in the comment) 
the x-axis must read C_ij and not C_33.  The fact that C44 is best matched by a density-based 
parameterization with two adjustable parameters for all components is simply due to the fact 
that the C44 values lie somewhat “in the middle”, i.e. in between the diagonal terms C11/C33 
(typically higher) and the off diagonal terms C12/C13 (typically smaller). We improved the 
explanation of the figure in the text and in the caption.



“Figure.  3(d) shows that the Gerling (2017) density-based parameterization yields the best 
prediction for the component C44 when derived by fitting all components. This is because the C44 
component values lie in between the diagonal component values C11 and C33 (typically higher 
values) and off-diagonal component values C12 and C13 (typically lower values).”

P24 L440 in the track change version.

(We also refer to the track change document (page 15: Figure 3, page 23: line 430-433) that 
shows the changes in the context of the manuscript)
7. It would be nice to see a plot of the upper HS bound with the polarization or fabric tensor (as 
Srivastava et al. (2016) notes, the choice in which one does not effect the representation of 
geometric anisotropy).

We are not sure if we understand the question correctly. The upper HS bounds require the 
fourth-order Eshelby tensor which is later converted to a 6x6 matrix in Voigt notation. In 
contrast, the Zysset-Curnier formulation underlying Srivastava 2016 involves the  orientation/
fabric tensor represented by a 3x3 matrix. Mixing these approaches is therefore not 
immediately possible. Presently, the upper HS bound is plotted “as is” (Eq. 9) in Fig 4 against 
the FEM data or in Fig 1 against ice volume fraction. Both are based on the same 
representation of anisotropy (through the Eshelby tensor from Appendix B). For the 
comparison to Srivastava we wanted to make sure that the same anisotropy parameter alpha 
is used (ratio of the correlation lengths) relying on Srivastava et al. 2016, stating that for their 
formulation of elasticity tensor, the choice of method in the characterization of geometrical 
anisotropy of a microstructure through mean intercept length (MIL), star volume distribution
(SVD) does not affect the results. Which is confirmed by other studies that have shown similar
results for other formulations of the fabric tensor (e.g. 
https://doi.org/10.1016/j.medengphy.2011.09.006). A comparison of different representations 
of the fabric tensor/anisotropy in the Srivastava formulation is out of the scope of the present 
paper, since it would require to implement yet another fully different image analysis 
algorithm to derive an alternative formulation of the fabric. 

“Finally, we note that while both the fabric tensor M in the ZC formulation and the Eshelby tensor 
Sice in the HS formulation are used to described structural anisotropy, they cannot be used 
interchangeably, notably as M is second rank tensor whereas Sice is a fourth rank tensor.”
P7 L192 in the track change version.

8. Please provide a more explicit relation for effective elastic moduli (presented as Eq. (2) in the 
original text) to Young’s modulus, bulk modulus, and Poisson’s ratio. To that end, it would be useful
to to see these relations plotted as a function of mass fraction for all discussed models.

Also by request of other comments, explicit relations have been included now. For isotropic 
materials we agree that stating the elastic tensor in terms of e.g. Young’s and Bulk modulus is 
more intuitive and widely used. In the TI case, though, it requires to introduce longitudinal 
and transversal Young moduli (and Poisson ratios), which are already less intuitive. And a 
comparison to an isotropic Young’s modulus (e.g. derived elsewhere) cannot be simply made 
by averaging the corresponding longitudinal and the transversal moduli. For wave  
propagation applications, on the other hand, the C_ij are generally easier to interpret. For the

https://doi.org/10.1016/j.medengphy.2011.09.006


overall representation of the results and the plots we therefore prefer to stick to the tensor 
elements C_ij instead.

New Appendix P27 in the track change version.

9. On line 148, it would be useful to see a figure of the geometric result of α > 1, α < 1, and α = 1, to
illustrate the result of prolate inclusions, oblate inclusions, and isotropic bubble distributions. Better
yet if a movie of this transition could be provided across a range of porosities.

In general we agree, but we prefer to do this later in the results. We included a slice view of 
the microstructure from our extreme anisotropy cases in the results in Fig. 6. A movie across 
the range of porosities cannot be compiled from the data.

P20 New Fig 5 in the track change version.

Minor Comments

I3: "... geometrical) that give rise to macroscopically anisotropic elastic behavior." to "... 
geometrical), which can give rise to elastic behavior due to macroscopic anisotropy."

Corrected.

“The microstructure of snow and ice can be characterized by different types of fabrics 
(crystallographic, geometrical), which gives rise to macroscopically anisotropic elastic behavior.”

P1 L3 in the track change version.

I16: "...the elastic modulus is the probably..." to "the elastic modulus can be used to represent the 
mechanical properties of snow, firn, or bubbly ice, and so knowledge of the effective elasticity 
tensor plays a crucial role in…"

Corrected.

“The elastic modulus can be used to represent the mechanical property of snow, firn or ice and the 
knowledge of the effective elasticity tensor plays a crucial role in a variety of applications 
throughout the field of cryospheric sciences.”

P1 L17 in the track change version.

I22: "In particular,...anisotropy..." to "In Schlegel et al. (2019), the role of elastic anisotropy was 
emphasized. Specifically, the retrieval of elasticity…"
Corrected.

“The work of Schlegel et al. (2019) emphasized the role of elastic anisotropy. Specifically, the 
retrieval of elasticity profiles of snow, firn, and ice through seismic waves usually relies on the 
assumption of isotropy which constitutes an uncertainty in the inversion method.”

P2 L23 in the track change version.



I24-26: "...anisotropic, on one hand...orientation" to "an anisotropic with respect to ice matrix 
geometry (e.g. ...) and crystallographic orientation [there needs to be a citation here]."

Citations added.

“Snow and firn are however known to be anisotropic due to both the ice matrix geometry (e.g., 
Loewe et al., 2013, Calonne et al. 2015, Leinss et al. 2016, Moser et al. 2020, Montagnat et al. 
2020), and the crystallographic orientations of the ice crystals (e.g., Diez et al. 2015, Petrenko 
1999).”

P2 L25 in the track change version.

I29: "Recent work wave propagation..." to "Recent work by Hellmann et al. (2021) on measuring 
wave propagation in glacier ice suggests that at low porosity [give value] the effective elastic... is 
influenced by geometric effects (such as porosity)." Reduce the intensives (e.g. "already"). They 
weaken your argument.
We added the porosity specification (<1%) and changed the formulation. 

“Recent work by \cite{hellmann_2020} on measuring wave propagation in glacier ice suggests that 
even at low porosity (< $1\%$), the effective elastic (crystallographic) anisotropy of polycrystalline 
ice is influenced by the geometrical effects of the porosity.” 

P2 L35 in the track change version.

I37: "Using the Finite-Element (FE) methods..." to "Using Finite-Element (FE) methods via volume
averaging, a solution for static linear elasticity yields the material effective elastic properties."
Changed accordingly.

“Using Finite-Element (FE) methods via volume averaging, a solution for static linear elasticity 
yields the material effective elastic properties.”

P2 L55 in the track change version.

I48-49: "the HS bounds incorporate the non-linear interplay between structural anisotropy and 
density." HS bounds incorporate the non-linear relation between density and bulk and shear stress, 
but you need to be more careful defining how anisotropy is represented in the limit of these bounds 
in the introductory remarks (or refer to the description in Sec.2.4).

We added “via the Eshelby tensor” for specification here, since a forward reference in the 
introduction to a future section is not appropriate. 

P3 L68 in the track change version.

I51-56: This entire paragraph is one sentence. Although this is fine, consider breaking it up to make 
your points more clear to readers.
Sentence has been split up.

“The present work aims to derive a parameterization of the effective elasticity tensor of snow, firn, 
and bubbly ice based on volume fraction and structural anisotropy and that can be consistently 
applied to the entire range of volume fractions. We achieve this by taking the anisotropic HS 
bounds (without free parameter) as the functional starting point and by using an empirical 



transformation (containing two fit parameters per tensor component). The proposed fitting function
matches observed characteristic features, namely the power-law increase of the moduli for high 
porosities (for snow) and the asymptotic behavior of dilute sphere dispersions (for bubbly ice) in 
the limit of low porosities.”

P3 L71 in the track change version.

I62: "by comparing it with the above mentioned shortcomings of previous work" to "... with 
previous work in which these parameters are not captured," or something similar. Refrain from 
adding subjective words.
Sentence changed as suggested.

“In Sect. 4 we show performance of new parameterization, by comparing it with previous work in 
which these parameters are not captured.”

P3 L82 in the track change version.

I69: "... is defined by Hook's law" to "is defined by Hook's law, using Hill's lemma,..." Add the 
reference frame.

Changed accordingly.

“The effective (fourth order) elasticity tensor C of a statistically homogenous two-phase composite 
material is defined by Hooke's law, using Hill's lemma, of elasticity as”

P4 L91 in the track change version.

Eq.1. Consider adding the region over which the continuum is occupied. Also, consider adding a 
remark on the use of the notation in eq.1. in connecting volume averaged strain energy of a 
heterogeneous material at micro length-scales to that of a macroscopically heterogeneous material 
under uniform strain.

The description has been adapted, this also complies with the introduction of “porosity” and 
ice volume fraction at an early stage of the description.

“Angular brackets denote volume averaging over a statistically homogeneous region of interest and
makes the connection between the volume averaged strain energy of a heterogeneous material at 
the microscopic scale to that of a macroscopically heterogeneous material under uniform strain. 
The operator : denotes double contraction (Torquato 1997).”

P4 L95 in the track change version.

I86: Specify how you are defining ice volume fraction (see Major comments for a related remark).
See comment above.

“Snow is a heterogeneous and porous material with an ice volume fraction φ (defined as the ratio 
between the volume occupied by the ice phase over that of the sample), […] ”
P3 L88

I86: "...parameterization often..." to "parameterizations use a power law…"



Changed.

P5 L118 in the track change version.

Eq.6. Consider showing the limit explicitly.

This limiting behavior is documented in textbooks, so we do not see the necessity for repeating
the derivation here. We added a reference.

P6 L145 in the track change version.

I128-129: It can be left to the reader to refer back to the cited text. However, to avoid ambiguity, 
consider providing a brief description on how these parameters were obtained.

Explanation on how these parameters were obtained has  been added.
P7 L167 in the track change version.

I132: "Hashin-Shtrikman..." to "when using Hashin-Shtrikman (HS) bounds, the effective elastic 
properties of porous materials can be derived based on volume fraction and microstructural 
anisotropy (incorporated through n-point correlation functions)."

Rewritten as suggested.

P7 L173 in the track change version.

I130: Consider re-phrasing the subsection header to specify the case of geometric(?) anisotropy, 
since the distinction is clearly made on I140-141.

The bounds themselves do not include any specification on whether the origin of anisotropy is 
geometric or crystalline. The HS bounds are also used for polycrystalline materials. In the 
subsequent text the specification needs to be made though

P7 L172 in the track change version.

Eq.10. Consider expanding on eq. 10 with 8. Also, make reference to accompanying definitions 
given in the appendix.
These two equations are not immediately related. Eq. 8 was been derived from symmetry 
principles following Cowin (reference given in your comment #5) while 10 follows the 
standard HS variational approach. A sentence has been added to state this.

“Finally, we note that while both the fabric tensor M in the ZC formulation and the Eshelby tensor 
Sice in the HS formulation are used to described structural anisotropy, they cannot be used 
interchangeably, notably as M is second rank tensor whereas Sice is a fourth rank tensor.”
P7 L192 in the track change version.

I155: "...the formulations including anisotropy, three different anisotropy ratios..." to "including 
geometric anisotropy, three different anisotropy ratios (alpha = 0.1, 1, and 1.6) were evaluated…"



Changed accordingly

P8 L199 in the track change version.

I161: "...tend to an isotropic state" to "the geometric fabric must tend to an isotropic state"

This sentence has changed due to a comment from the other reviewers. This was badly 
formulated, it is not correct to say that the geometric fabric/anisotropy must tend to an 
isotropic state, it is the “the elastic anisotropy that must vanish for $\phi\to1$.

“In addition, ZC shows an influence of geometrical anisotropy that increases monotonically with 
ice volume fraction, which is also nonphysical since in the limit of φ → 1 the elastic anisotropy 
behavior of the microstructure must tend to an isotropic state.”
P8 L203 in the track change version.

I161: "the U bound" to "the upper bound (CU)."
Changed.

P8 L206 in the track change version.

In Fig.1. Gpa should be GPa
Corrected.

P9 Fig 1 in the track change version.

Eq.11. Define the normalized HS bound before introducing the transformation.
We now define normalized HS bound before Eq. 11, as suggested.

“….this can be achieved by using a transformation in the following form, in which HS bound CU
ij is

normalized by Cice
ij as.. ”

P9 L215 in the track change version.

Eq.13. This assumes no mass exchange between the two phases, correct? If so, please note this. I.e. 
that you assume no sublimation (a process that occurs in glaciological contexts and is a deviation in 
model applicability to natural environments).
Throughout this work we consider the elastic properties of snow/firn at a given instant in time
where the microstructure (pointwise information of ice and air) is given by Eq 13. We 
therefore do not consider any underlying time dependent process here. This is also important 
to keep in mind for another comment below: The goal of this work is not explaining why 
different microstructures exist at different temperatures or temperature gradients. The latter 
question is certainly highly influenced by sublimation etc as explained elsewhere in snow 
metamorphism related papers. We clarify this now from the very beginning on in Sec. 2. 

“Throughout this work, we consider the elastic properties of snow/firn at a given instant in time, 
where the microstructure gives pointwise information of ice and air. We do not consider any 



underlying time-dependent process that would result in the evolution of the microstructure (such as 
metamorphism).”

P4 L110 in the track change version.

I213: Consider including the definition of Q(\alpha) used here, for completeness.

The definition of Q has been included in the Appendix.

P12 L261 and new Appendix P27 in the track change version.

I216-217: What temperature is this valid for? It would be useful to run FE simulations over a range 
of shear and bulk moduli that correspond to a range of temperatures. (See major comments)

See answer to the main comment above. The corresponding temperature for the ice moduli is 
stated now.

“Also, while the parameterization of the elasticity tensor was derived using the elastic properties of
ice at -16 °C, one can directly transpose the parameterization to a different temperature. This is 
readily done by taking into account the temperature dependence of the ice elastic properties that 
appear in the parameterization.”
P26 L511 in the track change version.

I221-222: Consider adding a table summarizing the model equations, names, unknown parameters, 
and porosity range over which they are valid, and their main assumptions.
Such a table is already included, namely Table 2 which shows up only in the results though, 
when the parameter estimates have actually been done. We added a reference here. The 
(density) range of validity for the models have been specified in Sec. 2.2.

P17 Table 2 in the track change version.

In Fig 3. Refer back to table 1. It is unclear in Figures 2 or 3 what the legend means. These codes 
should also be explained in the body of the text in Sec. 4.1.

We now explain the color code used in Fig. 2 and Fig. 3 explicitly in the body of the text in Sec.
4.1 and 4.2 and refer to Table 1. 

P13 L 292, caption of Fig 2 P15 and caption of Fig 3 P16 in the track change version.

In Fig 3.b. it is clear this is the only value for the elastic modulus for which the empirical 
parameters (a_33 and b_33) are known. However, either consider omitting this plot (3.b), since it 
adds confusion as to which models provide the best agreement to simulations of C, or obtain 
empirical parameters for a_ij and b_ij from other experimental datasets. Also, please explain a 
possible reason that C_33 from the density power law agrees more with C_44 from the simulations. 

As already mentioned in the reply to the major comment #6, there was a typo in the axis label.
With the correct axis label, the subfigure should not add confusion anymore.

“Figure.  3(d) shows that the Gerling (2017) density-based parameterization yields the best 
prediction for the component C44 when derived by fitting all components. This is because the C44 



component values lie in between the diagonal component values C11 and C33 (typically higher 
values) and off-diagonal component values C12 and C13 (typically lower values).”

P24 L440 in the track change version.

I247: Possibly refer to eq.(5) here.

Done.

P17 L315 in the track change version.

I248-249: "...and with the literature P-wave velocity of ice...". Please include the conditions under 
which this was measured. 

Specifications have been added.

P17 L317 in the track change version.

In Fig 4. "Gpa" to "Gpa"

Corrected.

P18 Fig 4 in the track change version.

I258: "...for reasons discussed in Fig. 1" to "..., as mentioned in the caption of figure 1,"

Reformulated. The entire paragraph changed due to the modification of the figure.

P18-19 L323-339 in the track change version.

I259: "...gives the right prediction" to "...parameterization provides an elastic modulus that agrees 
well with simulated values, taken from images of EastGRIP samples that were close to the surface. 
At these depths, anisotropy values are low (\alpha < 1), and are consistent with..."
The entire paragraph changed due to the modification of the figure.

P18-19 L323-339 in the track change version.

I261:"... for deeper snow" to "at greater depths, the geometric anisotropy increases."

Corrected.

P18-19 L323-339 in the track change version.

I262:"...demonstrate a good performance..." I am not sure what you mean by this, or at the least it is
slightly vague. Please explain what you mean by good performance here.
This sentence dropped out.

P18-19 L323-339 in the track change version.



I265: "... reasons discussed in Fig. 1" Omit and consider stating clearly the reason for greater error 
values for the ZC model with greater densities. Also, reasons cannot be discussed in figures (it is up 
to you to discuss what the figures mean). Please re-phrase.

The comparison to the ZC model is now removed from this section/figure.

P18-19 L323-339 in the track change version.

In Figure 5: "...Bottom: Error plot which is given by the difference between the simulated elastic 
modulus..." to "Bottom: Error in FEM and PAR parameterized elastic modulus calculated from the 
difference between simulated elastic modulus…"

The figure changed in the revision.

P18-19 L323-339 in the track change version.

I274: "...with zero relative error by" to "with zero relative error for isotropic…"

Formulation changed.

P19 L347 in the track change version.

I278: "...we show the geometrical Thomsen parameter \epsilon_geom (see Eq.3) in Fig. 7." 
Referencing this figure does not assess the geometrical vs crystallographic anisotropy in your 
calculations, or at least it is not clear what you mean by this. Consider "... we plot the geometrical 
Thomsen parameter, obtained from Eq. 3, against the porosity, the output of which is given in 
Figure 7."

We agree this is not clear. We reformulated the description.

P21 L369 in the track change version.

I295-296: No parentheses are needed around the authors names.

Corrected.

P23 L401 in the track change version.

I299: "In contrast... are explicit formulas." to "In contrast, the limiting behavior of the Hashin-
Shtrikman bounds can provide an explicit formula for effective moduli."

Corrected accordingly.

P23 L405 in the track change version.

In Fig. 7. Make sure the symbols you are using are consistent. For example, varepsilon is used to 
label the vertical axis, but epsilon is used in the text.

Notation corrected.

P22 Fig 7 in the track change version.



I303: "...collapsing onto" to "...collapse onto"

Correted.

P23 L411 in the track change version.

I304: "...as a function of normalized HS upper..." to "... as a function of the normalized HS upper 
bound…"

Corrected.

P23 L412 in the track change version.

I305: "...parameterization Srivastava et al..." to "parameterization used in…"

Corrected.

P23 L414 in the track change version.

I317: "...yields a eigenvalue zero..." to "yields zero eigenvalue…"

Corrected.

P23 L425 in the track change version.

I323: "...where MIL resulted circle with no signatures of anisotropy." It is not clear what you mean 
by this. Please explain the outputs from the cited text more clearly. For example, "...observed by 
Klatt et al. (2017), in which a Boolean model of MIL with arbitrary rank fabric tensors, produced 
figures of circles when evaluated on Reuleaux triangles. Moreover, the MIL analysis used in that 
model was insufficient in detecting interfacial anisotropy."used

This was badly written. Reformulated.

“Similar results were also observed by Klatt et al. (2017), when MIL analysis was performed on a 
Boolean model with aligned Reuleaux triangles, it resulted in circles.”

P24 L431 in the track change version.

I327: "...overall our parameterization shows" to "overall, the parameterization used in the present 

work (Cij
PW, given by Eq. (11)-(12)), had excellent agreement (R2 = 0.99) when fit to all 

components…"
Wording corrected.

P24 L436 in the track change version.

I335: "... evident for temperature gradient time series (TGM2 and MMTO17) from Fig. 6 (a)...". 
Which one is MMTO17? This timeseries is not listed in the referenced figure (or, at least, it is not 
clear which time series you mean). Also, without a description of the temperature timeseries in the 
body of this work, the dependence of the elastic modulus used in the PW model (and even \alpha) 



on temperature is not entirely clear, other than vertically oriented structures being favored at high 
temperature gradients.

This was a typo, we meant TS-TGM17. As detailed above for the other two comments on this, 
we elaborated now on the role of temperature in the parameterization. 

P24 L448 in the track change version.

I371-375: "in principle... However, typos..." These sentences are not needed. Unless you plan to 
also compute crystallographic fabric at low porosity (such as in future work), with remedied typos 
from the referenced text, it detracts from the overall discussion.
We agree. This has been reformulated.

“To understand this phenomenon, one can assume a volume-filling monocrystal, with a Thomsen 
parameter $\epsilon_{\mathrm{cryst}}$ that corresponds the maximum possible crystallographic 
anisotropy. Now, if this volume is gradually filled with an isotropic inclusion of air, the anisotropic 
behavior of the hollowed mono-crystal decays. This behavior is shown as a schematic line in the 
inset of Fig.~\ref{fig:07} and highlights the importance of consideration of both kinds of 
anisotropies for very high density.” 

P25 L495 in the track change version.



Dear Reviewer,  

we thank you for the careful reading of the manuscript and the overall positive opinion on the 
work. Your valuable comments helped to significantly improve the manuscript. Below please 
find your comments pasted in black and with our replies in blue. 

As a result of all reviewer comments, the major changes in the manuscript comprise: A 
revised introduction, an extension of the method section, a revision of Sec 4.4. We also realized
that, due to to filename inconsistencies, some load states were previously ignored in the overall
optimization. This is now corrected. Therefore the fit parameters slightly changed, but 
without any implication on the results.

Kavitha Sundu (on behalf of the authors)

This study derives a new parameterization for the effective elasticity tensor that is valid for the full 
range of volume fractions (i.e. for snow, firn, and bubbly ice). The authors compare this new 
parameterization to existing parameterizations valid for certain ranges of volume fractions, and 
identify the potential importance of geometrical anisotropy (in comparison to density and 
crystallographic anisotropy) in controlling elasticity.

The science and methodology appears sound and the results are interesting. My main comments are 
about the presentation of the material; in some cases I found the takeaways and the specific novel 
contributions of the work difficult to pull out of the descriptions. I would also recommend more 
description of some specific methods (possibly at the cost of some of the background material, 
which is quite extensive). Besides these recommendations, I would support publication.

Organization and Presentation

In general, I found the balance between the background/“literature review” section of the paper and 
the methods/results to be a bit off – there was quite a bit of background information, which in some 
cases was useful (it is helpful to know where the individual models come from and what 
assumptions they include) but the length and amount of information made it difficult to parse what 
novel contribution this study was providing. Further, as discussed further below, the background 
seems to come at the cost of description of methods, which I believe are important to include.

We agree. In the revision, we clarified in the theoretical background what was taken as is 
from previous work and what is already novel here. In addition, the methods section was 
extended, also in view of the other reviewer’s comments.

P5 L126-129, P6 L164-169, P12 L262-282 in the track change version.
 
A section in the paper or an appendix that discusses what it takes to apply or use this tensor would 
be helpful. Similarly, I was left with questions about how generalizable this tensor is – the authors 
do a good job of explaining its generality in terms of volume fraction, but because the 
parameterization is based on empirically-found parameters, I believe it would be helpful to know 
two things:

• What are the conditions that these parameters are found in? What sizes of samples, grain 
sizes, temperatures, etc.? 

• How well will this tensor generalize to different temperatures, grain sizes, etc.? 



This would be useful in knowing how to apply this new parameterization.

Regarding the applicability: The tensor and the associated functions will now be published 
alongside the key data on envidat upon acceptance of the manuscript. This will make the 
application of the work straightforward.

“To ease the applicability of the present parameterization, we provide the Python scripts with the 
data and the necessary functions to compute the parametrized elasticity tensor as a function of a 
sample’s density and anisotropy and of the shear and bulk modulus of ice. ”

P26 L509 in the track change version.

Regarding generalizability: We expect anisotropy as the main secondary microstructural 
impact next to density (which clearly dominates the behavior). Since our microstructure data 
(and anisotropy) is diverse in terms of geographical locations we actually expect this 
parameterization to be reasonably accurate for for arbitrary natural porous snow/firn/ice. 

“The proposed empirical parameterization offers a crucial advantage by being applicable across 
the range of natural ice volume fractions, enabling accurate predictions of the effective elastic 
modulus (see Fig. 3). This broad range of applicability is supported  by the fact that some of the 
temperature-gradient experiment samples used in this study have been independently compared 
with natural Arctic snow in terms of geometrical anisotropy (Leins et al., 2020). Furthermore, these
anisotropic samples fall into the intermediate density range (250 kg m-3-500 kg m-3), where 
geometrical anisotropy exerts a substantial influence, in contrast  with the lesser dominance of 
structural anisotropy at low and high densities. Therefore, we expect that our parameterization is 
sufficiently generic to capture typical anisotropic structures in snow. Furthermore, the samples used
to derive the parametrization are diverse regarding their conditions of formation. Consequently, we
expect this parameterization to yield reasonably accurate predictions of elastic properties for the 
whole range of natural porous snow, firn, and ice formations.”
P22 L375 in the track change version.

Regarding the impact of temperature: This was also raised by another reviewer. In a nutshell:
Our parameterization explicitly contains the elastic constants of ice as parameters. For the 
comparison to FEM carried out here we therefore used only one set of ice parameters (elastic 
constants of ice from Petrenko at -16°).  Now any known temperature dependence of the 
elastic moduli (derived elsewhere) could be used in the parameterization by inserting the 
temperature dependent functions for the ice moduli into the parameterization.  

“Also, while the parameterization of the elasticity tensor was derived using the elastic properties of
ice at -16 °C, one can directly transpose the parameterization to a different temperature. This is 
readily done by taking into account the temperature dependence of the ice elastic properties that 
appear in the parameterization.”
P26 L511 in the track change version.

Regarding the impact of grain size: The purely elastic behavior of a porous material cannot 
depend on grain size explicitly. It only depends on microstructural shape, which included via 
the Eshelby tensor. 



“Finally, as the purely elastic behavior of a porous material does not depend on grain size explicitly 
but only on its microstructural shape (as seen in the Eshelby tensor described in Appendix B), the 
proposed parameterization is applicable regardless of the grain size of the considered sample. “

P26 L513 in the track change version.

In summary, the free parameters involved in the parameterization should neither depend on 
temperature or grain size. We elaborate now in greater extend on these aspects in the 
discussion.

Methods

I believe the paper would benefit from more detailed outlines of the methods used, particularly with
respect to the X-ray tomography (how are the samples found/made? What conditions are they made/
found in?) and the FE simulations (what is the resolution of the simulations? What are the 
assumptions underlying these simulations). Similarly, it would be helpful to have more information 
about the EGRIP samples – what is the specific variable identified in these samples 
(crystallographic anisotropy?).

Overall, the methods section has been significantly extended, in  particular the description of 
the FE simulations. For the tomography data (including EGRIP), additional information has 
been included which is essential for the method (e.g. sample sizes, affecting the RVE). For 
experimental/field details about the acquisition we refer to the respective papers though. 

(We also refer to the track change document (page 11: line 256-273, page 10: Table 1) that 
shows the changes in the context of the manuscript)
Other Comments

• It would be potentially helpful to clearly define “geometrical anisotropy” up front before 
using the term. It is an important concept for the paper and for some audiences (including 
myself, since I do not study porous materials) the term is not obvious 
We agree. This is taken into account in the revised introduction.

“Snow and firn are however known to be anisotropic due to both the ice matrix geometry 
(e.g., Loewe et al., 2013, Calonne et al. 2015, Leinss et al. 2016, Moser et al. 2020, 
Montagnat et al. 2020), and the crystallographic orientations of the ice crystals (e.g., Diez 
et al. 2015, Petrenko 1999). The geometrical anisotropy arises from the geometrical 
orientation of the structure that constitutes the ice matrix in snow (for instance if it is 
predominantly orientated towards the vertical direction), while the crystallographic 
anisotropy is an inherent characteristic of the ice crystals themselves.”
P2 L25 in the track change version.

• Figure 1: it would be helpful to include a more descriptive legend to remind the readers 
which tensor is meant to be valid for which ranges of volume fraction 
We agree. We now mention the range of densities for which the previous 
parameterizations have been derived. 



P5 L140, P6 L143, P7 L169, P9 caption of Fig1 in the track change version.

• Equation 12: what is beta? 

The parameter beta was explained before the equation and reflects the power law 
behavior of the modulus. The parameter beta is a free parameter of the proposed 
parameterization eq 12 that is later found by optimization. Description adapted. 

 “The first free parameter β ensures that at low volume fraction the modulus increases as a 
power law of the ice volume fraction. The second free parameter ξ acts, 
on the one hand, as a modification of the prefactor in the power law and, on the other hand, 
as the transition scale that controls the crossover to f(x)~ x.”
P10 L224 in the track change version.

• Table 1: it would be helpful to have another column that included the region that each 
sample was obtained from (or if it was a laboratory sample) 

We agree the information on location/lab was added to the table.
P11 Table 1 in the track change version.

• Figure 2: Why are there two legends? What is the difference between a-I and j-r? This 
information would be helpful in the caption 

We agree, this is difficult to read. The figure has been adapted.
P13 L292, P15 Fig2 caption in the track change version.

• Line 255: For some reason, I struggled to parse the sentence “Another view…our data”, 
which seemed important to understand what Figure 5 is showing. 

The entire section was modified to comply with the other reviewers’ comments. The 
sentence dropped out.

P18-19 L323-339 in the track change version.


