
Dear Pascal,

we thank you for the careful reading of the manuscript and the overall positive opinion on the 
work. Your valuable comments helped to significantly improve the manuscript. Below please 
find your comments pasted in black and with our replies in blue. 

As a result of all reviewer comments, the major changes in the manuscript comprise: A 
revised introduction, an extension of the method section, a revision of Sec 4.4. We also realized
that, due to to filename inconsistencies, some load states were previously ignored in the overall
optimization. This is now corrected. Therefore the fit parameters slightly changed, but 
without any implication on the results.

Kavitha Sundu (on behalf of the authors)

Review of « A microstructure-based parameterization of the effective, anisotropic elasticity 
tensor of snow, firn, and bubbly ice » by Sundu et al. in The Cryosphere

 

Summary : 

The effective stiffness tensor of snow, firn, and bubbly ice is controlled by the density, morphology, 
and elastic properties of the ice matrix. This control was previously studied and parameterized 
independently for different ranges of density: for snow (rho in [30, 500] kg/m3), firn (rho in [500, 
~800] kg/m3), and bubbly ice (rho in [~800, 915] kg/m3). Here, the authors developed a new 
parameterization of this control that is valid on the full density range. They use the formal 
anisotropic Hashin-Shtrikman upper bound as a predictor of the stiffness tensor in empirical fit 
based on 395 finite-element simulations on tomographic images.

 

Main comments :

This article constitutes a valuable contribution to The Cryosphere with a sound methodology and 
interesting results. The paper is fairly well written to follow the work (typos to be corrected through
proof review). Even if the new parameterization does not substantially outperform existing 
parameterizations in their porosity range of validity, it is valid on the full density range from snow 
to bubbly ice and does not exhibit artificial and arbitrary transition zones with density. In particular, 
the existing parameterizations for snow predict an effective stiffness larger than the one of ice if 
applied on high-density samples. Besides, the anisotropy is directly captured by the Eshelby tensor, 
which does not require additional fitting when using the 2-parameters fit (same beta and eta for all 
components) for the whole tensor. This new parameterization comes at the cost of a more complex 
implementation, particularly of the upper bound C_U using the Eshelby tensor derived from the 
correlation length of the structure. However, its computation expense remains far lower than a full 
finite-element simulation on the snow microstructure. 

 

However, I have certain comments that would need to be addressed before publication :

 



1. One goal of the presented work is to provide a new parameterization of the elastic tensor 
valid from snow to ice. To use it, one must compute the density, the correlation lengths of 
the given sample microstructure, the associated 4th-order Eshelby tensor, the corresponding 
Hashin-Shtrikman upper bound, and eventually, the empirical fit, and to juggle between 
Voigt and tensorial notations. The authors should provide the functions (e.g., Python or 
Matlab style) so the community can easily re-use this fit. Otherwise, I fear that simple 
density parameterization will remain the norm. The shown material must be enough to re-
implement the fit, but it is prone to errors and headaches. 

We fully agree and this was actually planned initially.  Upon acceptance, we will provide (on 
envidat.ch) the python scripts together with the data and the necessary functions to compute 
the parametrized  elasticity tensor as a function of density, anisotropy, shear and bulk 
modulus of ice for a straightforward adoption of the results in the community.

2. The computation of the effective isotropic transverse elastic tensor from finite-element 
simulations is not described in enough detail.  

1. First, what sample size (mm) and boundary conditions are used? Indeed, the 
convergence of the apparent sample properties into effective material properties with 
the simulation volume depends on the applied boundary conditions and sample 
density. In particular, the low-density samples of Alp-DIV likely deviate from the 
proposed parameterization because of the too-small sample size (Fig. 2). With this 
information, the robustness of the simulations can be evaluated. 

The FEM simulations were performed by employing periodic boundary conditions as 
originally implemented in the used FE code, which we mentioned now in extended description
of the FE method.

The sample size vary for each sample and were taken as is from the original data sets. This 
information is now included in the paper. To assess the impact on the RVE we show the 
convergence criterion from Wautier et al 2015  in the figure below:



According to their estimates on correlation functions, convergence to an RVE can be assumed 
when the ratio of linear sample size L and the correlation length l exceeds 30. From 
distribution of our data shown above (figure not included in the paper) we infer that  92% of 
all the samples fulfill the requirement of RVE (>30 L/l), while 8 % are below the limit. 
However, only one sample from Alp-DIV in the low volume fraction range falls into this 
group, and there is no systematic sub-set of particular samples in these 8%. This information 
on RVE is now explicitly included in the methods.

2. The isotropic transverse tensor is estimated from 5 load states (Sec. 3.4) by finding 
the five independent components of C that minimize the L2-norm of sigma-
C:epsilon. The five load states are not described. It is unclear whether a bad choice of
these load states may favor better approximations of certain components when 
approximating the full tensor to the isotropic transverse one. What is the difference 
between getting the full tensor (21 components) based on 6 unit load cases and taking
the theoretically non-zero components under the assumptions of transverse isotropy 
(e.g., Wautier et al., 2015)? In addition, the assumption of transverse isotropy makes 
sense for snow (deformation by gravity generally aligned with temperature gradient),
but is it relevant for bubbly ice on ice sheets that may also flow in a certain 
horizontal direction? 

We now included the definition of the five load states that were used for the optimization. In 
principle we are just using the Cartesian basis vectors in 6 dimensional stress space (e_1… 
e_6). We were combining, though, e_4 and e_5 to a single load state (e_4+e_5) leading to the 
same equations. We acknowledge and explicitly mention now that the choice of load states 
naturally implies a different weight for different elasticity components in the least squares 
optimization (As an example: C33 is only involved in the e_3 load state). The description of 
the optimization is also extended. 

To further support the assumption on TI symmetry underlying the work, the following figure
(a) compares the ratios sigma11/epsilon11 with sigma33/epsilon33, obtained from the (e_1)
and (e_3) load states respectively (without prior assumptions on symmetry). When comparing
potential  symmetry  breaking  between  x  and  y  (e.g.  by  plotting  sigma13/epsilon13  and
sigma23/epsilon23  (see Figure (b)) no significant difference can be observed.



This further indicates that TI symmetry is a reasonable assumption for the present data. We
agree  though  that  for  bubbly  ice,  in  principle  more  complex  symmetry  cases  are
hypothetically possible as you mentioned. This was however not observed here. 

3. The different models were fitted on the simulation data using a log-transformation of the 
elastic tensor component with a least squares regression. The density distribution of the 
samples is not uniform in the full density range. In particular, around 80% (?) of the samples
exhibit a density between 250 and 500 kg/m3 (Tab. 1, Fig. 2). Besides, some data are highly 
correlated because they belong to the same time-series. The collected is already huge and the
largest so far to my knowledge; however, could you discuss this point? Can we rely on this 
parameterization for any collected snow data, or is the fit impacted by the sampling?  
Moreover, the improvements of the new parameterization do not show up in the regression 
coefficient (Tab. 2) or the scatter around the predictor (phi or C^U in Fig. 2).   Sampling.

The percentage of  samples with density between 250 and 500 kg/m3 is 68%. In this 
intermediate density range, the most significant influence of structural anisotropy is 
expected, in contrast to the low and high-density range, at which the structural 
anisotropy is be less dominant. It is known, that the evolution of structural anisotropy 
is mainly driven by temperature gradient metamorphism (Leinss et al 2020) and that 
some lab samples included in our data here have served as an independent validation 
for the rather strong temperature gradient metamorphism observed in the Arctic 
tundra (Leinss et al 2020). Therefore, we expect that this parameterization is 
sufficiently generic to capture typical, anisotropic structures in snow. 
The rather moderate change in the regression coefficient indeed reflects that 
anisotropy has a only a sub-dominant influence on elasticity, while density is still the 
main parameter. However, capturing these sub-dominant influences may be very 
important though for advanced microstructure characterization by alternative means. 
This is better explained now in the introduction. 

 
4. The authors state that « the limit of φ → 1 the microstructure must tend to an isotropic 

state » (l.160-161). I disagree with the statement or I have not understood it. Bubbles in ice 
may be very flat and tend to, for instance, horizontal micro-cracks (porosity tends to zero, 
but anisotropy can remain constantly high). This point motivated the choice of the HS bound
as a predictor but there is no prior reason for that. It appears that the collected samples (Fig. 
6) of high density (phi > 0.7) are also characterized, but the sampling may be too limited to 
draw definite conclusions on the structure anisotropy at high density. Moreover, Fig. 6 is 
based on this specific feature of the HS bounds. It shows that the anisotropy of the bubbles 
does not affect the anisotropy of the elastic tensor. I am not convinced this is sound. Please 
clarify. 

This was not well formulated: We meant the effective *elastic* behavior of the 
microstructure must tend to an isotropic state for φ → 1, i.e. the elastic anisotropy 



must obviously vanish for zero-porosity, polycrystalline ice. It is true that the 
geometrical anisotropy may remain non-zero for φ → 1.  This is somewhat visible in 
our bubbly ice samples where a slight geometrical anisotropy remains, even for the 
highest densities. But in this density range our data may not be exhaustive enough to 
see if the slight vertical anisotropy is generalizable to other sites. Due to the processes 
in polar firn, the remaining geometrical anisotropy for φ → 1 must be weak and much 
lower as for intermediate densities. The effective elastic behavior involves both, density
and geometrical anisotropy, and the combined effect must converge to an elastically 
isotropic elastic state for vanishing volume fraction of the inclusions. From our 
understanding this limiting behavior is strict, and automatically accounted for through
the HS bound. We reformulated the sentence to make this clearer.

5. The elastic tensor depends on density as a power law with an exponent in [3, 5]. An error of 
5% on density may cause an error of 15% to 25% on the elasticity components. Measuring 
density, even with tomography, is subjected to errors in this order of magnitude  (e.g., 
Proksch et al., 2015; Hagenmuller et al., 2016). The « relative » error due to anisotropy 
should be discussed with respect to the errors on density and not shown as the main source 
of uncertainty.  

 
This is a very good suggestion, we included the comparison in the discussion. To this end we 
considered the extreme anisotropy and density cases in our data and computed the 
propagated uncertainty on the elastic constants ΔC C from our parametrization, for both, 
namely i) having a density error of 5% or ii) neglecting anisotropy. The results are:

Case 1: Highest anisotropy in our data
α = 1.87, φ = 0.39
ΔC C_αα = 88.7%
ΔC C_αφ = 18.18%

Case 2: Lowest anisotropy in our data
α = 0.45, φ = 0.66
ΔC C_αα = 58.45%
ΔC C_αφ = 28.55%

These values confirm that neglecting anisotropy may lead to considerably larger errors than a
typical error in the density measurement. 



 

Minor comments :

l11 : « the crystallographic anisotropy » ->  « to the maximal theoretical crystallographic 
anisotropy .» Indeed, your estimation of crystallographic anisotropy is very rough.

Changed accordingly.

l22 : « the last example … » -> « Schlegel et al. have stressed ».

Changed accordingly.

l24-26 : « ice matrix geometry … crystallographic orientation ». There are references for 
geometrical anisotropy but no for crystalline anisotropy.

Agreed. References included.

l26-28: « fabric is low/high ». What does it mean? Anisotropy is high /low?

Changed to “strong” (this is how it is commonly referred to) and “anisotropy” added in 
brackets.

l29: « recent work wave propagations » -> ? « Hellmann et al. (2021) measured wave propagation 
on glacier ice and suggested … »

Reformulated

Figure 1: The range of density on which the existing parameterizations are supposed to work 
(according to their respective authors) is never shown in Figure 1 or explained in the text (e.g. 
Section 2.2). Add this info.

This information has been added in the Sec 2.2.

l34: « elasticity ». Delete word.

Deleted

l34: « for retrieving sub-surface density and anisotropy ». In general, it is unclear to me if the 
parameterization is bijective, i.e., is there one unique anisotropy tensor and density for a given 
elasticity tensor?

We guess no. But in geophysics (like the work cited here) retrievals are rarely based on exact 
inversions, but rather on suitably constrained optimizations of (strictly) ill-defined problems 
by exploiting the properties of the forward model. A potential elastic inversion is somewhat 
similar to the electromagnetic inversion put forward in (Leinss et al 2016) where also a very 
small impact of the structural anisotropy on the effective permittivity tensor (with known 
anisotropic forward model) could be exploited to retrieve the geometrical anisotropy of snow. 
This is elaborated a bit further in the extended version of the introduction. 

l57: « Section 2 gives a theoretical overview of the elasticity tensor » -> « Section 2 gives the 
background of the elasticity theory ».

Changed accordingly.

l.66: « Where the » -> « whose »



Reformulated.

Eqn. 1: Give the assumption underlying this equation (Hill’s lemma).

Hill’s lemma stated now.

l72-73: Explain what is « transversely isotropic » and that z is vertical (?).

The coordinate system is now properly defined at the beginning of the section.

Eqn. 2: Report also sigma and epsilon (as in Eqn. 1), so that the Voigt notation is explicit (there may
be some variations with some 1/2, 2 coeff.).

Voigt notation is explicitly defined now.

l77: « common relations ». It would be convenient to have these relations in the appendix. Indeed, 
the paper change from one notation to another (C_ij, Lamé, bulk modulus, etc.) and it is sometimes 
difficult to follow.

Relations are stated in the appendix now.

l80-83: Only one Thomsen parameter is used after. Only present this one and explain in a few words
what it represents. 

We followed the suggestion.

l94 : « 33 component » -> « the component C_33 »

Reformulated.

l122: « elasiticity » -> « elasticity ». Check the orthograph in the whole paper with dedicated 
software to avoid typos.

Changed and spell check carried out.

l132: « HS bounds predict the effective elastic properties ». No, they are bounds (with one equal to 
zero).

From our perspective, bounds still *predict* the effective elastic properties. The HS bounds 
are even realized for specific microstructures. This implies, that the prediction can be even 
exact. So in some cases a *prediction* via bounds is very good, in other cases less good. We 
therefore keep our formulation.

l160: « influence of anisotropy increases monotonically ». Clarify if its relative anisotropy.

Formulation changed.

Fig. 1: show in log scale to be consistent with the rest of the paper. Show the expected range of 
validity of the models. 

We tested this as shown in the Fig below. However, we believe that at this point of schematic 
introduction, the log scale is more confusing to the readers. Hence, we prefer the non-log scale.



« Illustration » -> « Evolution »

Changed.

Table 1 : « Isothtermal » -> « Isothermal »

Corrected.

Section 3.4. Give reference to the choice of the ice properties.

Reference included.

Fig. 2: Are the first row and last column really necessary? You could gain space to make the 
subfigures larger.

We think they are illustrative (also in view of another reviewer’s comment): The  three 
columns  progressively shows how the data collapse is attained by 1/ including the correct 
symmetry/anisotropy 2/ rescaling by the underlying ice parameters (in particular through the 
first row).  This now better described. But we also increased the space for the subfigures by 
relocating the legend.

Fig. 3: comparing C_FEM to C_G_33 (power law) is somehow unfair (scatter due to the fact that, 
e.g. C12 != C11). Indeed refits of the power law on each component show very little scatter (Tab. 
2).

There was a typo in the x-label of the Figure 3d subplot. We now corrected from C_G_33 to 
C_G_ij. Indeed, also for (e) or (f) we have C12!=C11. But here the data collapse is attained 
even without fitting components individually. This illustrates that the underlying symmetry 
supplied by the fabric/Eshelby tensor is the relevant ingredient (see comment above) 

Fig. 6b: I am not sure this figure makes any sense. Anisotropy at high density affects elasticity 
anisotropy, but it appears that porous ice is not anisotropic (due to ice physics). See main 
comments. Can you make the same figure but with the FEM as the ground truth?



This is also related to your comment further above: At high density, the elastic anisotropy due 
to geometry must vanish (as shown by the figure) and the difference between the anisotropic 
and the isotropic formulation tends to zero. The geometrical anisotropy in porous ice (at least 
for the samples analysed here) remains very weak, but still visible. This is exactly how you 
expected it to be in your comment above. The figure cannot be done using FEM data since the 
data does not fill the plane continuously.

Sect. 4.6: This is not clear to me why epsilon_cryst should decay with increasing porosity. For sure, 
it cannot go above the value for a single mono-crystal. Moreover, you do not need this decay to 
draw your conclusion (geometric anisotropy is dominant for most of the densities). Simplify.

Assume a volume-filling monocrystal with zero porosity, which is represented by epsilon_cryst
as the the maximally, possible anisotropy. Now add a mechanically isotropic inclusion phase 
(air). As a result, the elastic anisotropy must decay. We still believe that this schematic is 
illustrative since it re-emphasizes the necessity of revisiting the dominant anisotropy for very 
high density. This is maybe less of a concern for snow, but this is very important for fabric 
analysis of ice. We changed the text to make this clearer. 

l287 : significantly

Changed accordingly.

l340-342: You discuss here possible improvements. Does it really make sense with the given current
performance and the uncertainty on the measurements? Delete paragraph?

We agree, paragraph deleted.

l388: « The new parameterization constitutes a significant simplification ». I would not say it is 
simple but rather, « it is a crucial tool »

Reformulated.
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References added.

Pascal Hagenmuller


