

1 **The Influence of Carbon Cycling on Oxygen Depletion in North-Temperate Lakes**

2

3 Austin Delany¹, Robert Ladwig¹, Cal Buelo¹, Ellen Albright¹, Paul C. Hanson¹

4 ¹Center for Limnology, University of Wisconsin-Madison, Madison, WI, USA

5 Correspondence to: Austin Delany (adelany@wisc.edu)

6

7 **Abstract.** Hypolimnetic oxygen depletion during summer stratification in lakes can lead to
8 hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many
9 consequences, including reduced habitat for cold-water fish species, reduced quality of
10 drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both
11 allochthonous and autochthonous OC loads contribute to oxygen depletion by providing
12 substrate for microbial respiration; however, their relative importance in depleting oxygen
13 across diverse lake systems remains uncertain. Lake characteristics, such as trophic state,
14 hydrology, and morphometry are also influential in carbon cycling processes and may impact
15 oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic
16 oxygen depletion, we used a two-layer process-based lake model to simulate daily
17 metabolism dynamics for six Wisconsin lakes over twenty years (1995-2014). Physical
18 processes and internal metabolic processes were included in the model and were used to
19 predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our
20 study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more
21 important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC
22 respiration in the water column contributed the most towards hypolimnetic oxygen depletion
23 in the eutrophic study lakes. POC water column respiration and sediment respiration had
24 similar contributions in the mesotrophic and oligotrophic study lakes. Differences in source
1

25 of respiration are discussed with consideration of lake productivity and the processing and
26 fates of organic carbon loads.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67 **1 Introduction**
68

69 Hypolimnetic oxygen depletion is a persistent and global phenomenon that degrades lake
70 ecosystems services (Nurnberg 1995; Cole & Weihe 2016; Jenny et al. 2016). In lakes where
71 oxygen depletion results in hypoxia and even anoxia, habitat availability for cold-water fish
72 species is eliminated (Magee et al. 2019), quality of drinking water is reduced (Bryant et al.
73 2011), and nutrient and OC release from lake sediments becomes elevated (Hoffman et al.
74 2013, McClure et al. 2020). An increase in the prevalence of hypolimnetic anoxia and
75 associated water quality degradation in temperate lakes indicates the need to better
76 understand how lake ecological processes interact with external forcings, such as hydrology
77 and nutrient inputs, to control the development of anoxia (Jenny et al, 2016 a,b).

78
79 Allochthonous organic carbon (OC) loading to lakes that explains the prevalence of negative
80 net ecosystem production (i.e., net heterotrophy) provides substrate for hypolimnetic oxygen
81 depletion (Houser et al. 2003). Allochthonous OC sources have also been shown to influence
82 dissolved oxygen (DO) and carbon dynamics in lakes by providing recalcitrant substrate for
83 respiration (Cole et al. 2002; Hanson et al. 2014, Solomon et al. 2015). In lake surveys,
84 dissolved allochthonous OC correlates positively with net heterotrophy ((Jansson et al.
85 2000), indicating the importance of allochthony to both the carbon balance and dynamics of
86 dissolved gases (Prairie et al. 2002; Hanson et al. 2003). However, the persistent and often
87 stable concentration of allochthonous DOC in the water column of lakes also indicates its
88 recalcitrant nature, raising the question of whether allochthony alone can support high
89 oxygen demand in the sediments and deeper waters of lakes.

90

91 The contributions of OC from autochthony to hypolimnetic oxygen depletion may be
92 important as well, despite its low concentrations relative to that of allochthonous OC in many
93 lakes (Cole et al. 2002). Autochthonous OC tends to be highly labile (Amon & Brenner 1996,
94 Thorpe & Delong 2002), and spot samples from lake surveys may not detect autochthonous
95 DOC, reducing its power as a correlate of ecosystem function. Positive correlation between
96 anoxia and lake phosphorus concentrations suggests autochthony may contribute
97 substantially to hypolimnetic oxygen demand (Rhodes et al. 2017; Rippey & McSorley,
98 2009; Jenny et al. 2016a,b); however, the link between nutrient concentrations, autochthony,
99 and hypolimnetic respiration is rarely quantified. Lakes with high autochthony can still be net
100 heterotrophic (Staehr et al. 2010; Cole et al. 2000), however, it matters where in the lake
101 autochthony is respired. Export of phytoplankton from the epilimnion to the hypolimnion and
102 sediments contributes to deep water oxygen demand (Müller et al. 2012; Rhodes et al. 2017;
103 Beutel 2003), and the magnitude and timing of organic carbon inputs to deeper waters in
104 lakes and the subsequent fate of that carbon deserves further exploration.

105
106 Understanding the relative importance of autochthony and allochthony to hypolimnetic
107 oxygen depletion requires consideration of a number of physical and biological processes
108 controlling oxygen sources and sinks in lakes (Hanson et al. 2015). For dimictic north
109 temperate lakes, the timing and dynamics of seasonal stratification determine the ambient
110 temperature and light conditions for metabolism and the extent to which the hypolimnion is
111 isolated from oxygen-rich surface waters (Snortheim et al. 2017, Ladwig et al. 2021). In
112 many lakes, the hypolimnion is below the euphotic zone, but in very clear lakes, primary
113 production within the hypolimnion may be an oxygen source (Houser et al. 2003). Lake

114 morphometry influences the spatial extents of stratified layers, which determines the ratio of
115 hypolimnetic volume to sediment surface area and the magnitude the sediment oxygen sink
116 for the hypolimnetic oxygen budget (Livingstone & Imboden 1996). Thus, the sources and
117 labilities of OC, lake morphometry, and lake hydrodynamics all contribute to hypolimnetic
118 oxygen budgets, making it an emergent ecosystem property with a plethora of causal
119 relationships to other ecologically important variables.

120
121 The availability of long-term observational data combined with process-based models
122 provides an opportunity to investigate OC sources and their control over the dynamics of lake
123 DO across multiple time scales. Long-term studies of lakes on regional and global scales
124 highlight how environmental trends can influence metabolic processes in lakes, and how
125 lakes can broaden our understanding of large-scale ecosystem processes (Richardson et al.
126 2017, Kraemer et al. 2017, Williamson et al. 2008). For example, long-term studies allow us
127 to investigate the impact that current and legacy conditions have on lake ecosystem function
128 in a given year (Carpenter et al. 2007). Process-based modeling has been used to investigate
129 metabolism dynamics and understand both lake carbon cycling (Hanson et al. 2004, Cardille
130 et al. 2007) and formation of anoxia (Ladwig et al. 2022); however, explicitly tying lake
131 carbon cycling and metabolism dynamics with long-term hypolimnetic DO depletion across a
132 variety of lakes remains largely unexplored. The combination of process-based modeling
133 with available long-term observational data, including exogenous driving data representative
134 of climate variability, can be especially powerful for recreating representations of long-term
135 lake metabolism dynamics (Staehr et al. 2010, Cardille et al. 2007).

136

137 In this study, our goal is to investigate OC source contributions to lake carbon cycling and
138 hypolimnetic oxygen depletion. We are particularly interested in the relative loads of
139 autochthonous and allochthonous OC to lakes and how they contribute to hypolimnetic DO
140 depletion across seasonal to decadal scales. We use a process-based lake metabolism model,
141 combined with daily external driving data and long-term limnological data, to study six lakes
142 within the North Temperate Lakes Long-Term Ecological Research network (NTL LTER)
143 over a twenty-year period (1995-2014). We address the following questions: (1) What are the
144 dominant sources of organic carbon that contribute to hypolimnetic oxygen depletion, and
145 how do their contributions differ across a group of diverse lakes over two decades? (2) How
146 does lake trophic state influence the processing and fates of organic carbon loads in ways that
147 affect hypolimnetic dissolved oxygen?

148

149 **2 Methods**

150 **2.1 Study Site**

151 This study includes six Wisconsin lakes from the NTL-LTER program (Magnuson et al.
152 2006). Trout Lake (TR), Big Muskeg Lake (BM), Sparkling Lake (SP), and Allequash
153 Lake (AL) are in the Northern Highlands Lake District of Wisconsin and have been regularly
154 sampled since 1981 (Magnuson et al. 2006). Lake Mendota (ME) and Lake Monona (MO)
155 are in southern Wisconsin and have been regularly sampled by the NTL-LTER since 1995
156 (NTL-LTER, Magnuson et al. 2006). The NTL-LTER provides a detailed description of each
157 lake (Magnuson et al. 2006). The six lakes span gradients in size, morphometry, landscape
158 setting, and hydrology, which creates diverse carbon cycling characteristics and processes

159 across these systems. TR and AL are drainage lakes with high allochthonous carbon inputs
160 from surface water, while BM and SP are groundwater seepage systems with allochthony
161 dominated by aerial OC inputs from the surrounding landscape (Hanson et al. 2014). All four
162 northern lakes (TR, AL, BM, SP) are surrounded by a forested landscape. ME and MO are
163 both eutrophic drainage lakes surrounded by an urban and agricultural landscape. Although
164 the full range of DOC concentrations for lakes in northern Wisconsin varies from about 2 to
165 >30 mg L⁻¹ (Hanson et al. 2007), DOC concentrations among our study lakes covered a
166 relatively narrow range typical of non-dystrophic lakes in Wisconsin (Hanson et al. 2007)
167 and are near the global averages previously estimated, i.e., 3.88 mg/L (Toming et al. 2020)
168 and 5.71 mg/L (Sobek et al. 2007), respectively. Morphometry, hydrology, and other
169 information can be found in Table 1.

170
171
172
173
174
175
176
177
178
179
180
181

182 **Table 1.** Physical and biogeochemical characteristics of the study lakes. The table includes
183 lake area (Area), maximum depth (Zmax), hydrologic residence time (RT), mean annual
184 temperature (Temp), mean annual surface total phosphorus concentration (Mean TP), and
185 mean annual surface DOC (Mean DOC).

186

Lake	Area (ha)	Zmax (m)	RT ^{3,4} (years)	Temp ² (°C)	Mean TP ¹ (µgL)	Mean DOC ¹ (mgL)
Allequash Lake (AL)	168.4	8	0.73	10.5	14	3.9
Big Muskellunge (BM)	396.3	21.3	5.1	10.5	7	3.8
Sparkling Lake (SP)	64	20	8.88	10.6	5	3.12
Trout Lake (TR)	1607.9	35.7	5.28	9.8	5	2.8
Mendota (ME)	3961	25.3	4.3	12.5	50	5.6
Monona (MO)	1324	22.5	0.7	13.8	47	5.8

187

188 1 - Magnuson et al. (2020, 2006)

189 2 - Magnuson et al. (2022)

190 3 - Hunt et al. (2013)

191 4 - Webster et al. (1996)

192

193

194 **2.2 Driving Data and Limnological Data**

195 Most driving data for the model is provided by the “Process-based predictions of water
196 temperature in the Midwest US” USGS data product (Read et al. 2021). This includes lake
197 characteristic information such as lake area and hypsometry, daily modeled temperature

198 profiles, ice flags, meteorology data, and solar radiation for the six study lakes. Derived
199 hydrology data is used in calculating daily OC loading and outflow for the study lakes.
200 Hydrology for the northern lakes is taken from Hunt & Walker (2017), which was estimated
201 using a surface and groundwater hydrodynamic model. Hydrology for ME is taken from
202 Hanson et al. (2020), which used the Penn State Integrated Hydrologic Model (Qu & Duffy
203 2007). We assume for ME and MO that evaporation from the lake surface is approximately
204 equal to precipitation on the lake surface and that groundwater inputs and outputs to the lake
205 are a small part of the hydrologic budgets (Lathrop & Carpenter 2014). Therefore, ME
206 outflow is assumed to be equal to ME inflow. ME is the predominant hydrologic source for
207 MO (Lathrop & Carpenter 2014), thus, MO inflow is assumed to be equal to ME outflow,
208 and MO outflow is assumed to be equal to MO inflow. We found that the derived discharge
209 data for ME, TR, AL, and SP was approximately 20-50% higher than previously reported
210 values (Hunt et al. 2013, Webster et al. 1996), depending on the lake, while hydrology in BM
211 was approximately 25% too low (Hunt et al. 2013). To accommodate this issue, we adjusted
212 total annual hydrological inputs to match published water residence times for each lake
213 (Table 1), while retaining temporal hydrological patterns. NTL-LTER observational data are
214 interpolated to estimate daily nutrient concentration values, which are used in calculating
215 daily primary production in the model (Magnuson et al. 2020).
216
217 The NTL-LTER observational data used to calibrate and validate the model for the six lakes
218 include DO, DOC, and Secchi depth (Magnuson et al. 2020, Magnuson et al. 2022).
219 Saturation values for DO and gas exchange velocity used in calculating atmospheric

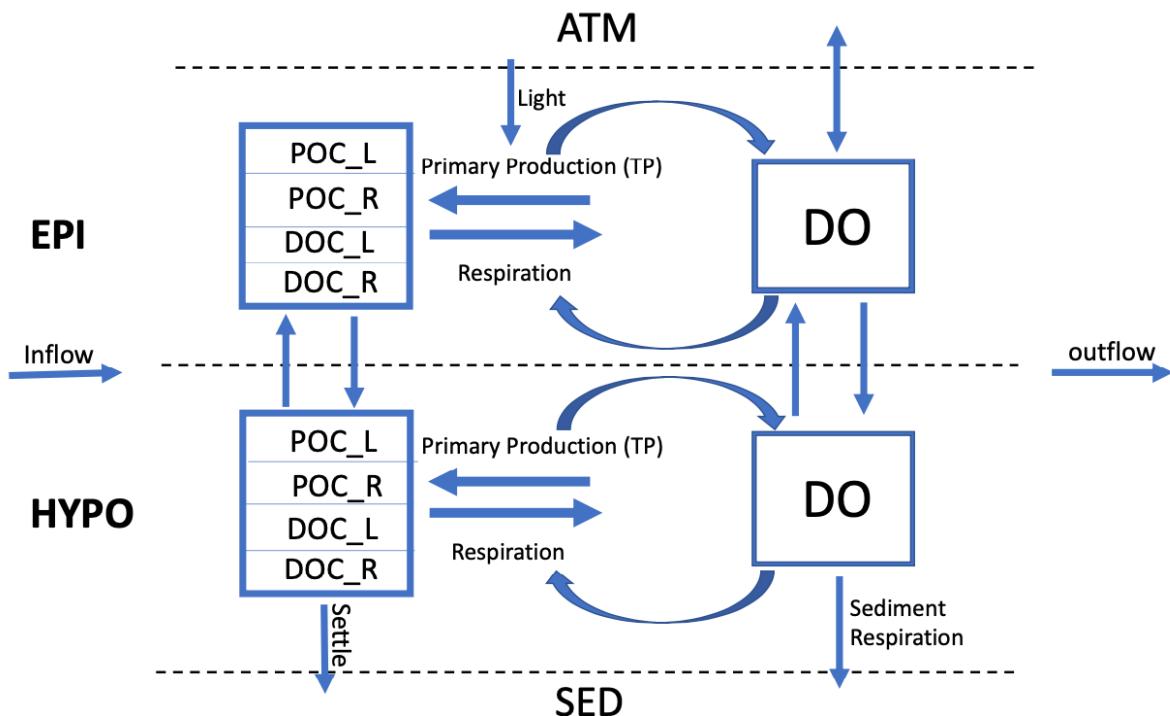
220 exchange for DO are calculated using the “o2.at.sat.base” and using the Cole and Caraco gas
221 exchange method from the “K600.2.KGAS.base” function within the USGS
222 “LakeMetabolizer” package in R (Winslow et al. 2016).

223

224 **2.3 The Model**

225 The goal of our model is to use important physical and metabolic processes involved in the
226 lake ecosystem carbon cycle to best predict DO, DOC, and POC, while keeping the model
227 design simple in comparison with more comprehensive water quality models (e.g., Hipsey et
228 al. 2022). We ran our model with a daily time step over a twenty-year period (1995-2014) for
229 each lake and included seasonal physical dynamics, such as lake mixing, stratification, and
230 ice cover from Read et al. 2021. Throughout each year, the model tracks state variables and
231 fluxes in the lake for each day (Fig. 1). These state variables include DO and the labile and
232 recalcitrant components of particulate organic carbon (POC) and dissolved organic carbon
233 (DOC). Initial conditions for each state variable are based on literature values or lake
234 observational data (SI Table 5). The model is initialized on January 1st of the first year, so
235 we set the initial labile POC mass to zero under the assumption that the concentration is low
236 in the middle of winter. The initial DO value is set to the saturation value based on the
237 conditions of the initial model run day and is calculated using the LakeMetabolizer R
238 package (Winslow et al. 2016). During stratified periods, the state variables and fluxes for
239 the epilimnion and hypolimnion are tracked independently. Atmosphere, sediments, and
240 hydrologic inputs and outputs are boundary conditions.

241



242
 243 **Figure 1.** Conceptual lake model showing state variables (boxes) and fluxes (arrows). The
 244 model has two thermal layers under stratified conditions, as shown here, and tracks state
 245 variables separately for each layer. The sediment (SED), atmosphere (ATM), inflow and
 246 outflow are system boundaries. The state variables included are DO (dissolved oxygen),
 247 DOC_L (labile dissolved organic carbon), DOC_R (recalcitrant dissolved organic carbon),
 248 POC_L (labile particulate organic carbon), and POC_R (recalcitrant particulate organic
 249 carbon). Observed total phosphorus (TP) is used as a driving variable for primary production
 250 in the model.
 251

252 The model is built specifically for this analysis; however, many of the assumptions around
 253 the model complexity and mathematical formulations are borrowed from literature cited
 254 (Ladwig et al. 2022, Hipsey et al. 2022, Hanson et al. 2014, McCullough et al. 2018). We
 255 chose to develop our own process-based model rather than use an existing model, such as
 256 GLM (Hipsey et al. 2022) or Simstrat (Goudsmit et al. 2002), so that we could simulate and
 257 measure the specific metabolism fluxes related to our study questions.

258

259

260 **2.3.1 Stratification Dynamics**

261 Lake physical dynamics are taken from the output of a previous hydrodynamic modeling
262 study on these same lakes over a similar time period (Read et al. 2021), which used the
263 General Lake Model (Hipsey et al. 2019). Before running the metabolism model, a
264 thermocline depth for each time step is estimated using derived temperature profiles for each
265 lake (Read et al. 2021) by determining the center of buoyancy depth (Read et al. 2011). After
266 calculating the thermocline depth, the volumes and average temperatures for each layer, and
267 the specific area at thermocline depth are determined using lake-specific hypsography. The
268 criteria for stratification include a vertical density gradient between the surface and bottom
269 layer of at least 0.05 kg m^{-3} , an average water column temperature above 4°C , and the
270 presence of a derived thermocline (Ladwig et al. 2022). For any day that does not meet all of
271 these criteria, the water column is considered to be fully mixed. The thermocline depth
272 values are smoothed using a moving average with a window size of 14 days to prevent large
273 entrainment fluxes that can destabilize the model at very short time scales when thermal
274 strata are shallow. During mixed periods, the entire lake is treated as the epilimnion, and a
275 separate hypolimnion is not incorporated into the model dynamics. Ice cover in the model is
276 determined using the “ice flag” provided in the derived temperature profile data from Read et
277 al. (2021). Our metabolism model does simulate under-ice conditions, however we do not
278 include the presence of inverse stratification during winter periods.

279

280 **2.3.2 External Lake and Environment Physical Fluxes**

281 Atmospheric exchange of DO, external loading of OC, and outflow of OC are the three
282 environmental boundary fluxes accounted for in the water quality model (Table 3 Eq. 9-11).
283 The gas exchange velocity for atmospheric exchange is determined using the Cole and
284 Caraco model (1998) and is calculated using the LakeMetabolizer R package (Winslow et al.
285 2016). Oxygen saturation values are also calculated using this package. During ice covered
286 conditions, we assume that the atmospheric exchange value is ten percent of the value during
287 non-ice covered conditions based on sea ice gas exchange estimates (Loose and Schlosser,
288 2011).

289

290 For the northern lakes (TR, AL, BM, SP), we assume that allochthonous OC loads consist of
291 entirely recalcitrant substrates. We verify total OC load, total inflow concentration, and
292 recalcitrant OC export values with estimates from Hanson et al. (2014). For ME, we verify
293 the total annual allochthonous OC load and OC inflow concentrations against observed
294 inflow data from Hart et al. (2017) by back calculating inflow concentrations based on the
295 modeled OC equilibrium of the lake. MO inflow concentrations are equivalent to the in-lake
296 epilimnetic concentrations of OC from ME at each model time step. The total OC loads for
297 MO are verified based on the total allochthonous load found in McCullough et al. 2018.

298

299 **Table 2.** Equations for the model, organized by state variables, $[DO]$ (dissolved oxygen),
300 $DOCL$ (labile dissolved organic carbon), $DOCR$ (recalcitrant dissolved organic carbon),
301 $POCL$ (labile particulate organic carbon), $POCR$ (recalcitrant particulate organic carbon),
302 $Secchi$] and relevant fluxes. *Note:* The entrainment flux ($Entr$) is only included during
303 thermally stratified periods. The inflow (IN) and outflow (OUT) fluxes are not included in
304 the calculations for the hypolimnetic layer. The inflow of labile DOC (IN_{DOCL}) parameter in
305 Eq. 2 is only used for calculating allochthonous OC loads for MO. Atmospheric gas

306 exchange of dissolved oxygen (*AtmExch*) is not included for the hypolimnetic DO
 307 calculation. Normalized total phosphorus is represented by (*TP_{norm}*). The volume (*V*) term
 308 represents the respective lake layer volume, or the discharge volume for the inflow and
 309 outflow equations. The term (*r_{rate}*) is included in Eq. 13 to represent the respiration rates of
 310 the different OC pools. It is included to simplify the table of equations. Terms not defined
 311 here are included in Table 3.
 312

<i>State Variables</i>	
<u>DO [gDO]</u>	$\frac{dDO}{dt} = (NPP * O2_{convert}) + AtmExch + Entr_{DO} - (R_{sed} * O2_{convert}) - (R_{wc} * O2_{convert})$ (1)
<u>DOCL [gC]</u>	$\frac{dDOCL}{dt} = (NPP * (1 - C_{NPP})) + IN_{DOCL} + Entr_{DOCL} - R_{DOCL} - OUT_{DOCL}$ (2)
<u>DOCR [gC]</u>	$\frac{dDOCR}{dt} = IN_{DOCR} + Entr_{DOCR} - OUT_{DOCR} - R_{DOCR Epi}$ (3)
<u>POCL [gC]</u>	Mixed and Epi: $\frac{dPOCL}{dt} = (NPP_{Epi} * C_{NPP}) + IN_{POCL} + Entr_{POCL} - R_{POCL Epi} - Settle_{POCL Epi} - OUT_{POCL}$ (4) Hypo: $\frac{dPOCL}{dt} = (NPP_{Hypo} * C_{NPP}) + Settle_{POCL Epi} - Settle_{POCL Hypo} - R_{POCL Hypo} - Entr_{POCL}$ (5)
<u>POCR [gC]</u>	Mixed and Epi: $\frac{dPOCR}{dt} = IN_{POCR} + Entr_{POCR} - OUT_{POCR} - R_{POCR Epi} - Settle_{POCR Epi}$ (6) Hypo: $\frac{dPOCR}{dt} = Settle_{POCR Epi} - Settle_{POCR Hypo} - R_{POCR Hypo} - Entr_{POCR}$ (7)
<u>Secchi [m]</u>	$Secchi = \frac{1.7}{K_{LEC}}$ (8)
<i>Fluxes</i>	
<u>Atm exchange [gDO d⁻¹]</u>	$AtmExch = K_{DO} * (DO_{sat} - DO_{prediction}) * Area_{sfc}$ (9)
<u>Inflow [gC d⁻¹]</u>	$IN = Carbon\ Concentration_{inflow} * V_{inflow}$ (10)
<u>Outflow [gC d⁻¹]</u>	$OUT = Carbon\ Concentration_{outflow} * V_{outflow}$ (11)
<u>Net Primary Productivity [gC d⁻¹]</u>	$NPP = Pmax * (1 - e^{(-IP * \frac{Light}{Pmax})}) * TP_{norm} * \theta_{NPP}^{(T-20)} * V$ (12)
<u>Respiration [gC d⁻¹]</u>	$R_{wc} = Carbon\ Pool * r_{rate} * \theta_{Resp}^{(T-20)} * \frac{DO\ Concentration}{DO_{1/2} + DO\ Concentration}$ (13)
<u>Sediment Respiration [gC d⁻¹]</u>	$R_{sed} = r_{sed} * \theta_{Resp}^{(T-20)} * \frac{DO\ Concentration}{DO_{1/2} + DO\ Concentration} * Area_{sed}$ (14)
<u>POC settle [gC d⁻¹]</u>	$Settle = (POC\ Pool * K_{POC}) * \frac{Area}{V}$ (15)

<u>Entrainment [gC d⁻¹]</u>	
$V_{Entr} = V_{epi}(t) - V_{epi}(t-1)$	(16)
$V_{Entr} > 0$ (Epilimnion growing)	
$Entr = \frac{V_{Entr}}{V_{Hypo}} * Carbon\ Pool_{Hypo}$	(17)
$V_{Entr} < 0$ (Epilimnion shrinking)	
$Entr = \frac{V_{Entr}}{V_{Epi}} * Carbon\ Pool_{Epi}$	(18)
<u>Light [W m⁻²]</u>	
$Light = \int_{z_1}^{z_2} (I_{z_1} * e^{-(K_{LEC} * z)}) dz * (1 - \alpha)$	(19)
<u>Light Extinction Coefficient [Unitless]</u>	
$K_{LEC} = LEC_{water} + (LEC_{POC} * ((\frac{POCL}{V}) + (\frac{POCR}{V}))) + (LEC_{DOC} * ((\frac{DOCL}{V}) + (\frac{DOCR}{V})))$	(20)

313

314 **2.3.3 Internal Lake Physical Fluxes**

315 The two in-lake physical fluxes included in the model are POC settling and entrainment of all
 316 state variables. POC settling is the product of a sinking rate (m d⁻¹) and the respective POC
 317 pool (g), divided by the layer depth (m) (Table 3 Eq. 15). Sinking rates are either borrowed
 318 from literature values (Table 3) or fit during model calibration (see below). Entrainment is
 319 calculated as a proportion of epilimnetic volume change (Table 2 Eq. 17-18). A decrease in
 320 epilimnetic volume shifts mass of state variables from the epilimnion into the hypolimnion,
 321 and an increase in volume shifts mass from the hypolimnion to the epilimnion.

322
 323
 324

325 **Table 3.** Model Parameters, grouped into three categories: constants, which are values that
 326 were not tuned; manually calibrated, which are parameters manually tuned, typically guided
 327 by ranges from the literature; and parameters calibrated through constrained parameter
 328 search, which are calibrated through an automated search of parameter space.
 329

Parameter	Abbreviation	Value	Units	Source
Constants				
Conversion of Carbon to Oxygen	$O2_{convert}$	2.67	Unitless	Mass Ratio of C:O
Respiration rate of DOCR	r_{DOCR}	0.001	day^{-1}	(Hanson et al., 2011)
Respiration rate of POCR	r_{POCR}	0.005	day^{-1}	Taken from ranges provided in (Hanson et al. 2004)
Respiration rate of POCL	r_{POCL}	0.005	day^{-1}	Taken from ranges provided in (Hanson et al. 2004)
Respiration rate of POCL	r_{POCL}	0.2	day^{-1}	Taken from ranges provided in (Hipsey et al. 2022)
Michaelis-Menten DO half saturation coefficient	$DO_{1/2}$	0.5	$g m^{-3}$	Taken from ranges provided in (Hipsey et al. 2022)
Light extinction coefficient of water	LEC_{water}	0.125	m^{-1}	Taken from ranges in Hart et al. (2017)
Ratio of DOC to POC production from NPP	C_{NPP}	0.8	Unitless	Biddanda & Benner (1997)
Albedo	α	0.3	Unitless	Global average (Marshall & Plumb, 2008)
Atmospheric gas exchange adjustment during ice covered conditions	C_{winter}	0.1	Unitless	Taken from ranges in (Loose & Schlosser, 2011)
Coefficient of light transmitted through ice	C_{ice}	0.05	Unitless	Taken from ranges provided in (Lei et al. 2011)
Settling velocity rate of POC_R	K_{POCR}	1.2	$m day^{-1}$	Taken from ranges found in (Reynolds et al. 1987)

Parameter	Abbreviation	Value	Units	Source
Settling velocity rate of POC_L	K_{POCL}	1	$m \ day^{-1}$	Taken from ranges found in (Reynolds et al.1987)
Temperature scaling coefficient for NPP	θ_{NPP}	1.12	Unitless	Taken from values provided in (Hipsey et al. 2022) and (Ladwig et al. 2022)
Temperature scaling coefficient for Respiration	θ_{Resp}	1.04	Unitless	Taken from values provided in (Hipsey et al. 2022) and (Ladwig et al. 2022)
Manually calibrated				
Light extinction of DOC	LEC_{DOC}	0.02 - 0.06	$m^2 g^{-1}$	Manually calibrated based on observed Secchi Depth ranges for the study lakes
Light extinction of POC	LEC_{POC}	0.7	$m^2 g^{-1}$	Manually calibrated based on observed Secchi Depth ranges for the study lakes
Maximum Daily Productivity	P_{max}	0.5-5	$g \ m^{-3} day^{-1}$	Manually calibrated from mean productivity values from Wetzel (2001)
Recalcitrant DOC inflow concentration	$DOC R_{inflow}$	5-10	$g \ m^{-3}$	Based on ranges found in (Hanson et al. 2014, McCullough et al. 2018, Hart et al. 2017)
Recalcitrant POC inflow concentration	$POC R_{inflow}$	2-5	$g \ m^{-3}$	Based on ranges found in (Hanson et al. 2014, McCullough et al. 2018, Hart et al. 2017)
Calibrated through constrained parameter search				
Slope of the irradiance/productivity curve	IP	0.045, 0.015	$gCd^{-1}(Wm^{-2})^{-1}$	Based on ranges found in (Platt et al. 1980) and tuned separately for each lake region (South, North)

Parameter	Abbreviation	Value	Units	Source
Sediment respiration flux	r_{SED}	0.05 – 0.4	$g \ m^{-2} day^{-1}$	Based on ranges found in (Ladwig et al. 2021) and (Mi et al. 2020) and fit independently for each lake
Respiration rate of DOCL	r_{DOCL}	0.015 - 0.025	day^{-1}	Based on ranges found in (McCullough et al. 2018) and fit for each lake independently

330

331 **2.3.4 Internal Lake Metabolism Fluxes**

332 The metabolism fluxes in the model are net primary production (NPP) and respiration (R).
 333 Respiration includes water column respiration for each OC state variable in the epilimnion
 334 and hypolimnion and is calculated at each time step as the product of the OC state variable
 335 and its associated first order decay rate (Table 2, Eq. 13). Sediment respiration for the
 336 hypolimnion during stratified periods and the epilimnion (entire lake) during mixed periods
 337 is a constant daily rate that is individually fit for each lake. Note that we did not include
 338 anaerobic carbon metabolism in our modeling approach and discuss potential shortcomings
 339 in the discussion section. We assume inorganic carbon is not a limiting carbon source. In the
 340 model, we consider any DO concentration less than 1 g DO m⁻³ to be anoxic (Nürnberg
 341 1995).

342

343 NPP is tracked in both the epilimnion and hypolimnion. NPP is a function of light, total
 344 phosphorus concentration, temperature, a maximum productivity coefficient (P_{max}), and a
 345 slope parameter defining the irradiance and productivity curve (IP) (Table 2 Eq. 12). Total
 346 phosphorus concentration in a layer taken is from observational data for each lake
 347 interpolated to the daily time scale. Maximum daily primary production rates were taken
 18

348 from Wetzel (2001). As these maximum production rates are not phosphorus-specific but
349 subsume lake-specific nutrient concentrations, we multiplied them with time-transient,
350 normalized TP concentrations. Normalizing was done by removing the mean of observed TP
351 and dividing by TP variance. This allows us to retain the time dynamics of the normalized
352 TP, which we use to represent seasonal TP dynamics for each lake. The Arrhenius equation
353 provides temperature control for NPP, and we determined through model fitting a θ of 1.12.
354 All OC derived from NPP is assumed to be labile and is split between particulate and
355 dissolved OC production, with eighty percent produced as POC and twenty percent produced
356 as DOC. This ratio was determined through model fitting and is similar to previously
357 reported values (Hipsey et al. 2022). Average light in a layer is calculated for each day and is
358 dependent on the depth of a layer and the light extinction coefficient (Table 2 Eq. 19). During
359 ice covered conditions, average light is assumed to be five percent of the average non-ice
360 covered value (Lei et al. 2011).

361

362 Epilimnetic and hypolimnetic water column respiration is tracked independently for each OC
363 pool in the model. During mixed periods, there are four OC pools – DOCR, DOCL, POCL,
364 POCL. During stratified periods, those pools are split into a total of eight pools that are
365 tracked independently for the epilimnion and hypolimnion. Respiration is calculated as a
366 product of the mass of a respective variable, a first order decay rate coefficient, temperature,
367 and oxygen availability (Table 2 Eq. 13). The respiration decay rate coefficients are based on
368 literature values (Table 3) or were fit during model calibration. An Arrhenius equation is
369 used for temperature control of respiration, with θ_{Resp} equal to 1.04, which was determined

370 through manual model fitting. The respiration fluxes are also scaled by oxygen availability
371 using the Michaelis-Menten equation with a half saturation coefficient of 0.5 g DO m⁻³, such
372 that at very low DO concentrations, the respiration flux approaches zero.

373

374 Sediment respiration is calculated from a constant daily respiration flux, adjusted for
375 temperature and oxygen availability, using the Arrhenius and Michaelis-Menten equations,
376 respectively (Table 2 Eq. 14). The mass of sediment OC is not tracked in the model. During
377 stratified periods, we assume that the majority of epilimnetic sediment area is in the photic
378 zone, and therefore has associated productivity from macrophytes and other biomass. It is
379 assumed that this background productivity and sediment respiration are of similar magnitude
380 and inseparable from water column metabolism, given the observational data. Therefore,
381 epilimnetic sediment respiration is not accounted for in the model during stratified
382 conditions. During mixed conditions, we assume that sediment respiration is active on all
383 lake sediment surfaces, which are assumed to be equivalent in area to the total surface lake
384 area. During stratified periods, we use the area at the thermocline as the sediment area for
385 calculating hypolimnetic sediment respiration.

386

387 **2.3.5 Other in-lake calculations and assumptions**

388 We calculate a total light extinction coefficient (LEC) for the epilimnion and hypolimnion.
389 The total LEC for each layer is calculated by multiplying the dissolved and particulate
390 specific LEC values with their respective OC state variable concentrations, combined with a
391 general LEC value for water (Table 2 Eq. 20). This total LEC value is used to calculate a

392 daily estimate of Secchi depth (Table 2 Eq. 8). The coefficients for the light extinction of
393 water, DOC, and POC are manually calibrated based on observed Secchi depth ranges for the
394 study lakes (Table 3, SI Table 5).

395

396 **2.4 Model Sensitivity and Parameter Calibration**

397 To better understand the sensitivities of the model output to parameter values, we performed
398 a sensitivity analysis of the model parameters using the global sensitivity method from
399 Morris (1991). The sensitivity analysis showed that there were nine parameters to which the
400 model was consistently sensitive across the six study lakes. This group included the ratio of
401 DOC to POC produced from NPP (C_{NPP}), the maximum daily productivity parameter
402 (P_{max}), the inflow concentration of recalcitrant POC ($POCR_{inflow}$), the setting velocity of
403 recalcitrant POC (K_{POCR}), the temperature fitting coefficients for productivity and respiration
404 (θ_{NPP} , θ_{Resp}) the slope of the irradiance/productivity curve (IP), the sediment respiration flux
405 (r_{SED}), and the respiration rate of DOCL (r_{DOCL}). We chose a subset of the nine parameters to
406 include in the uncertainty analysis based on the following justifications. The model results
407 showed that recalcitrant substrates are of lesser importance for lake metabolism dynamics, so
408 we chose not to further investigate the uncertainty of the $POCR_{inflow}$ and K_{POCR} parameters.
409 The P_{max} and IP parameters are directly correlated, so we chose to remove P_{max} from
410 further uncertainty considerations. The θ_{NPP} and θ_{RESP} parameters act as substitutes for water
411 temperature, a well-known “master variable” in water quality modeling, and directly reflect
412 seasonality in the model. Therefore, we chose to omit these parameters for further
413 uncertainty calculations. The final subset of parameters for uncertainty analysis consisted of

414 C_{NPP} , r_{DOCL} , r_{SED} , and IP . Of the four parameters, we felt C_{NPP} was best constrained by the
415 literature. To reduce the number of parameters estimated in the calibration process we
416 restricted the automated constrained parameter search to the remaining three.

417
418 Model parameters are grouped into three categories: constants, manually calibrated, and
419 parameters calibrated through an automated constrained parameter search. The constant
420 parameters are consistent across the study lakes and are not tuned. The manually calibrated
421 parameters were allowed to vary by lake and are typically guided by ranges from the
422 literature. The constrained parameter search uses an automated search of parameter space,
423 constrained by literature values, to fit the IP , r_{SED} , and r_{DOCL} parameters for the study lakes.
424 Specifically, we performed a constrained fitting of the model to observational data using the
425 Levenberg-Marquardt algorithm within the “modFit” function of the “FME” R package
426 (Soetaert & Petzoldt, 2010).

427
428 The first 15 years of the model output was used for calibration and the last 5 years were used
429 for model validation. We chose the first 15 years for calibration because the observational
430 data were relatively stable and were not indicative of any large trends in ecosystem
431 processes, as opposed to the last five years which showed slightly more model deviation
432 from DOC observational data in the southern lakes (SI Fig. 2).

433

434 **2.5 Model Uncertainty**

435 Sensitivity guided the uncertainty analysis. To quantify uncertainty around model
436 predictions, we sampled IP , r_{SED} , and r_{DOCL} simultaneously from uniform distributions

437 defined by +/-30% of the literature ranges used for our calibrated parameter values (Table 3).
438 We ran one hundred model iterations randomly sampling the three model state variables
439 across these distributions. We plotted the minimum and maximum values for these uniform
440 distributions and included them in the time series plots (Fig. 2, 3, 4, SI Fig. 1,2,3).

441
442

443 **3 Results**

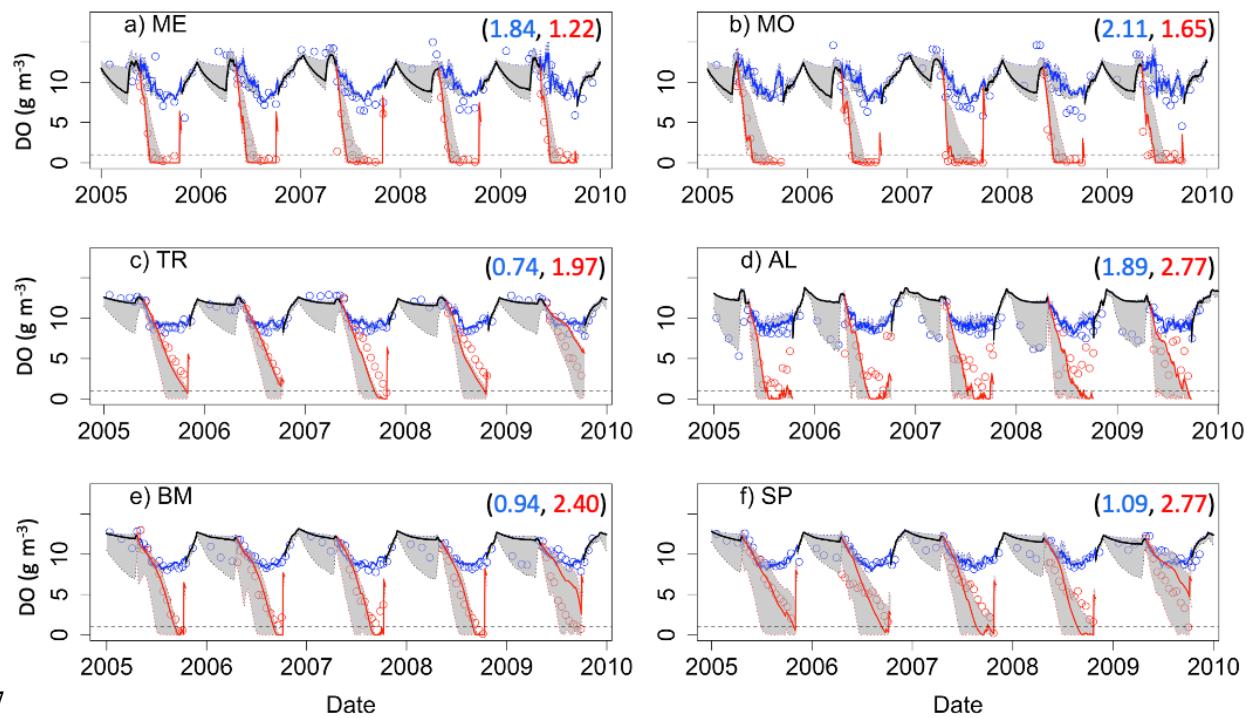
444
445

3.1 Model Fit to Ecosystem States

446 Model predictions of DO reproduce observed seasonal variability well. Note that RMSE
447 values presented here represent model error combined over both the validation and
448 calibration periods (see Supplementary Material: Table S1 for calibration and validation
449 specific RMSE values), and that state variables are presented with truncated time ranges for
450 visual clarity (see Supplementary Material: Fig. S1-S3 for full time series). Epilimnetic DO
451 generally has lower RMSE than DO in the hypolimnion (Fig. 2). In the epilimnion, RMSE
452 ranges from 0.74 g DO m⁻³ (TR) to 2.11 g DO m⁻³ (MO), and in the hypolimnion, RMSE
453 ranges from 1.22 g DO m⁻³ (ME) to 2.77 g DO m⁻³ (AL, SP). Validation NSE values for DO
454 ranged from -1.45 (AL) to 0.02 (ME) in the epilimnion and -0.30 (SP) to 0.86 (ME) in the
455 hypolimnion. Validation KGE values for DO ranged from 0.40 (AL) to 0.90 (TR) in the
456 epilimnion and 0.35 (SP) to 0.80 (ME) in the hypolimnion. KGE and NSE values for all
457 lakes can be found in SI Table 7. In the southern lakes, modeled values reach anoxic levels
458 and generally follow the DO patterns recorded in the observed data (Fig. 2a-b).

459 Observational data for the northern lakes show an occasional late summer onset of anoxia,

460 and these events are generally captured in the model output. A late summer spike in
 461 hypolimnetic DO predictions commonly occurs as well, which is likely a model artifact
 462 caused by the reduction of hypolimnetic volumes to very small values over short time periods
 463 prior to fall mixing. Reduction to small volumes, coincident with modest fluxes due to high
 464 concentration gradients, result in transient high concentrations. Overall, the goodness-of-fit
 465 of hypolimnetic DO in our study lakes does not seem to follow any regional or lake
 466 characteristic patterns.

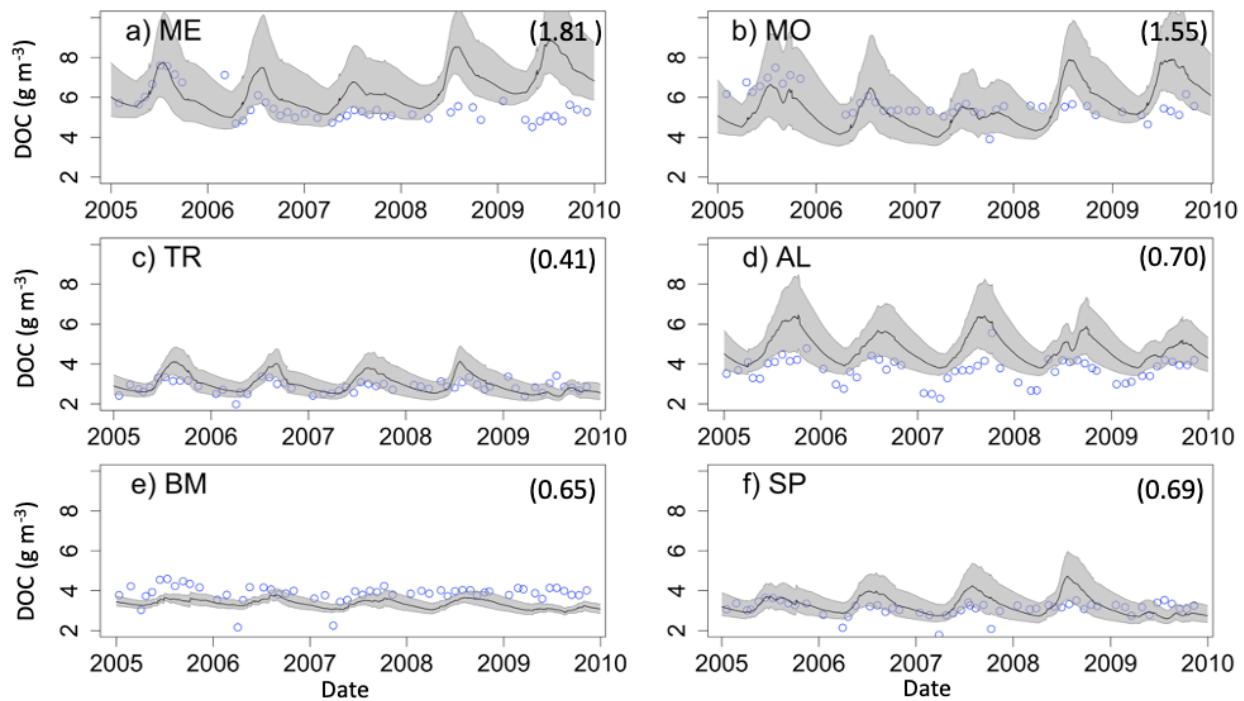


467
 468 **Figure 2.** Dissolved oxygen (DO) time series for the years, 2005-2010, for the six study
 469 lakes (a-f). Model predictions are represented by lines, and circles represent the observational
 470 data. Epilimnetic DO values are blue and Hypolimnetic DO values are red. Fully mixed
 471 periods for the lake are indicated by a single black line. RMSE values (epilimnion,
 472 hypolimnion; g m^{-3}) for the validation period are included in the upper right of each panel.
 473 Uncertainty is represented by gray shading.
 474

475

476 The two southern lakes (ME, MO) have epilimnetic DOC RMSE values greater than 1.00 g
477 C m⁻³, while the RMSE for northern lakes ranges from 0.41 g C m⁻³ (TR) to 0.70 g C m⁻³
478 (AL) (Fig. 3). In the southern lakes, NSE epilimnetic DOC values were below -3.00 and
479 KGE values ranged from -0.29 to -0.32. In the northern lakes, NSE values for DOC ranged
480 between -2.75 (SP) and -0.31 (AL). KGE values ranged from -0.07 (BM) to 0.35 (TR). All
481 NSE and KGE metrics for DOC can be found in SI Table 7. Observational data in both
482 southern lakes indicate a decrease in DOC concentration beginning around 2010, which is
483 largely missed in the model predictions (Fig.3a-b, Supplementary Material: Fig. S2a-b) and
484 cause an overestimation of DOC by about 1-2 g C m⁻³. However, model predictions converge
485 with observed DOC toward the end of the study period (Supplementary Material: Fig. S2a-
486 b). In AL, the seasonal patterns of modeled DOC are smaller in amplitude than the
487 observational data (Supplementary Material: Fig. S2d).

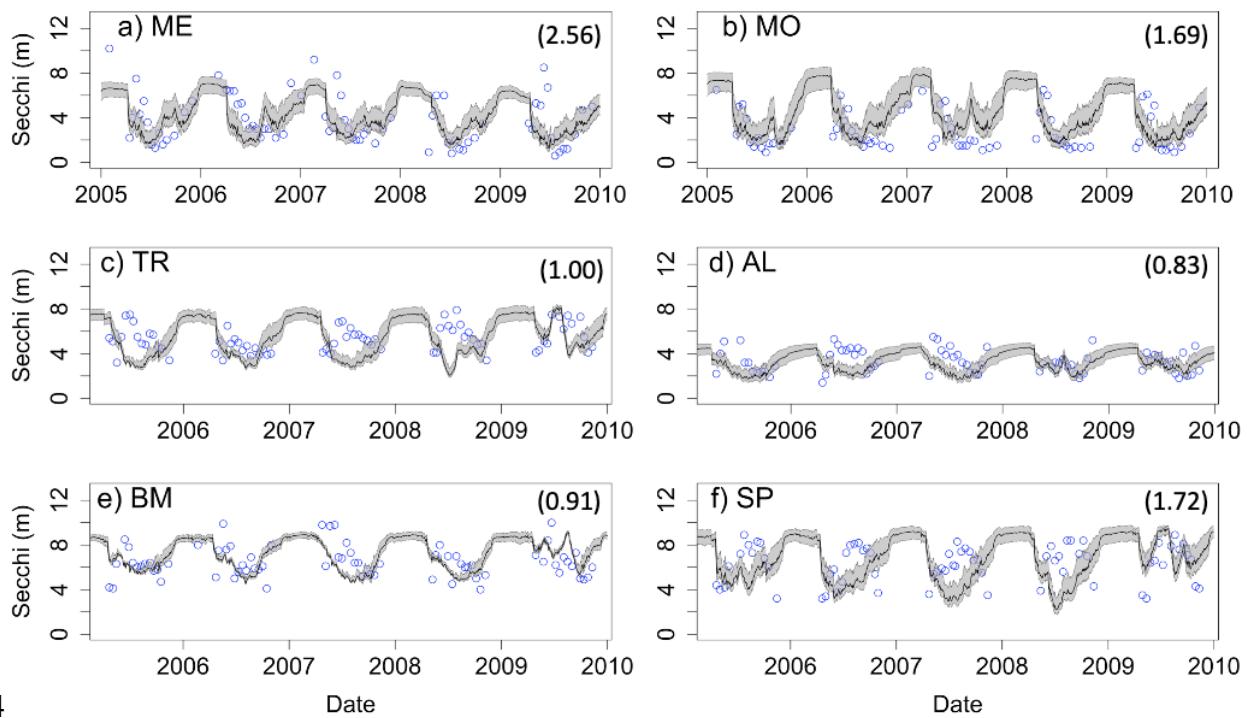
488



489
490 **Figure 3.** Epilimnetic dissolved organic carbon (DOC) time series for the years, 2005-2010,
491 for the six study lakes (a-f). Model predictions are represented by lines, and circles represent
492 the observational data. RMSE values for the validation period are included for each lake (g C
493 m^{-3}). Uncertainty is represented by gray shading.
494

495 Secchi depth predictions reproduce the mean and seasonal patterns in all lakes (Fig. 4).
496 Although the model produced annual cycles of Secchi depth that generally covered the range
497 of observed values, short term deviations from annual patterns in the observed data are not
498 reproduced. The timing of minima and maxima Secchi depth sometimes differed between
499 predicted and observed values for the northern lakes. In addition, winter extremes in
500 observed Secchi depth are not always reproduced by the model, which is especially evident
501 for ME (Fig. 4a). However, winter observational data for Secchi are more sparse than other
502 seasons.

503

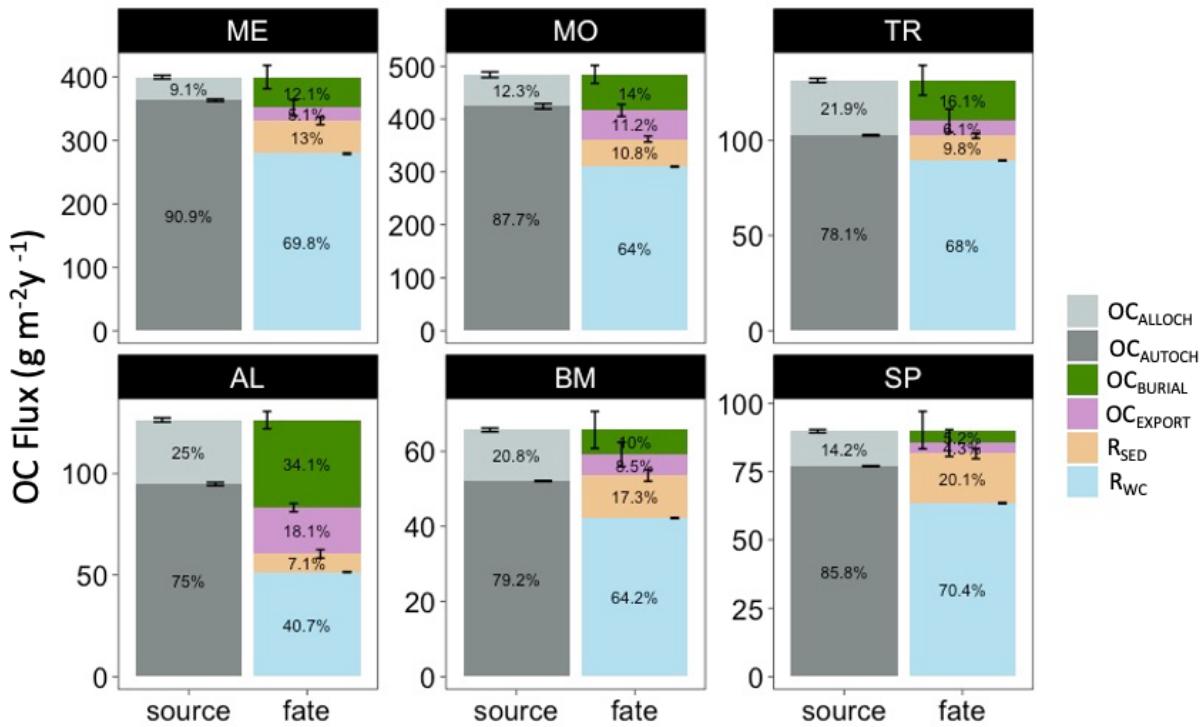


504
 505 **Figure 4.** Secchi depth time series for the years, 2005-2010, for the six study lakes (a-f).
 506 Model predictions are represented by lines, and circles represent the observational data.
 507 RMSE values for the validation period are included for each lake (m). Uncertainty is
 508 represented by gray shading.
 509

510 **3.2 Ecosystem Processes**

511 The mean annual OC budgets of all six lakes show large differences in the sources and fates
 512 of OC among lakes (Fig. 5; Supplementary Material: Table S3). Autochthony is the dominant
 513 source of OC for all study lakes. Water column respiration is the largest portion of whole-
 514 lake respiration in ME, MO, TR, SP, and BM. Sediment respiration contributions are a lower
 515 proportion of total respiration in ME, MO, and TR (mean of 14.1%), and are slightly higher
 516 in BM and SP (mean of 18.7%). AL has a more even distribution of OC fates. OC burial
 517 amounts also vary across the study lakes, with the highest percentage in AL (34.1%), and
 518 lowest in SP (5.25%).

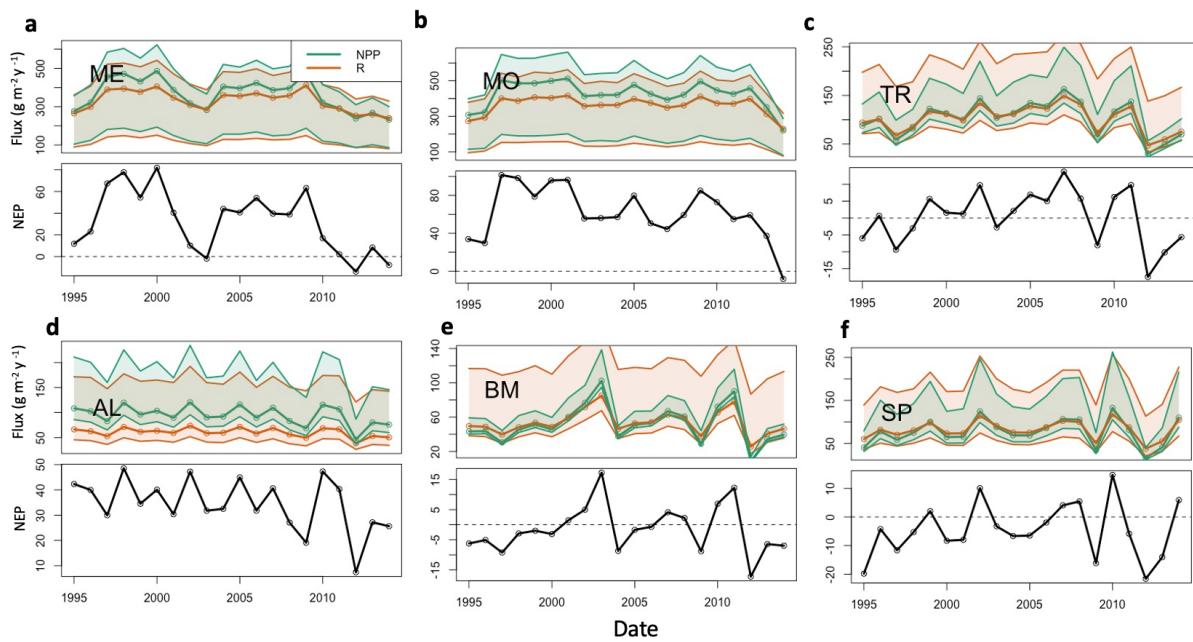
519



520
 521 **Figure 5.** Total annual budget, sources (left stacked bars) and fates (right stacked bars), of
 522 organic carbon (OC) in each lake over the study period. The OC sources include
 523 allochthonous OC (OC_{ALLOCH}) and autochthonous OC (OC_{AUTOCH}). The OC fates include
 524 burial of OC (OC_{BURIAL}), export of OC (OC_{EXPORT}), sediment respiration of OC (R_{SED}), and
 525 water column respiration of OC (R_{WC}). Standard error bars for the annual means are
 526 indicated for each source and fate as well. Note that the magnitudes of the y-axis differ
 527 among the lakes. A significance test comparing these fluxes across the study lakes can be
 528 found in SI Table 6.
 529

530 The lakes show inter-annual variation in trophic state, as quantified by NEP (Fig. 6). Total
 531 respiration (water column and sediment) exceeds autochthony in SP, BM, and TR, indicating
 532 predominantly net heterotrophy for these systems. The remaining lakes (ME, MO, AL) are
 533 generally net autotrophic. The southern lakes (ME, MO) are net autotrophic (positive NEP)
 534 for the majority of the study years but became less autotrophic over the last five years of the
 535 study period (2010-2014). BM and SP are mostly net heterotrophic (negative NEP) over the
 536 study period with a few brief instances of net autotrophy. The strongest autotrophic signal for

537 these lakes occurred around 2010. TR experienced prolonged periods of both autotrophy and
 538 heterotrophy. AL is net autotrophic over the study period but had lower average NEP than
 539 the southern lakes. ME, MO, and AL all have negative trends in NPP, but only ME and AL
 540 were significant ($p_{\text{value}} < 0.1$, Mann-Kendall test) (SI Table 2). Of these three lakes, ME
 541 and AL also have decreasing significant trends in annual total phosphorus concentration (SI
 542 Table 2). No significant trends were found for NPP or total phosphorus in the other lakes
 543 (MO, TR, BM, SP).

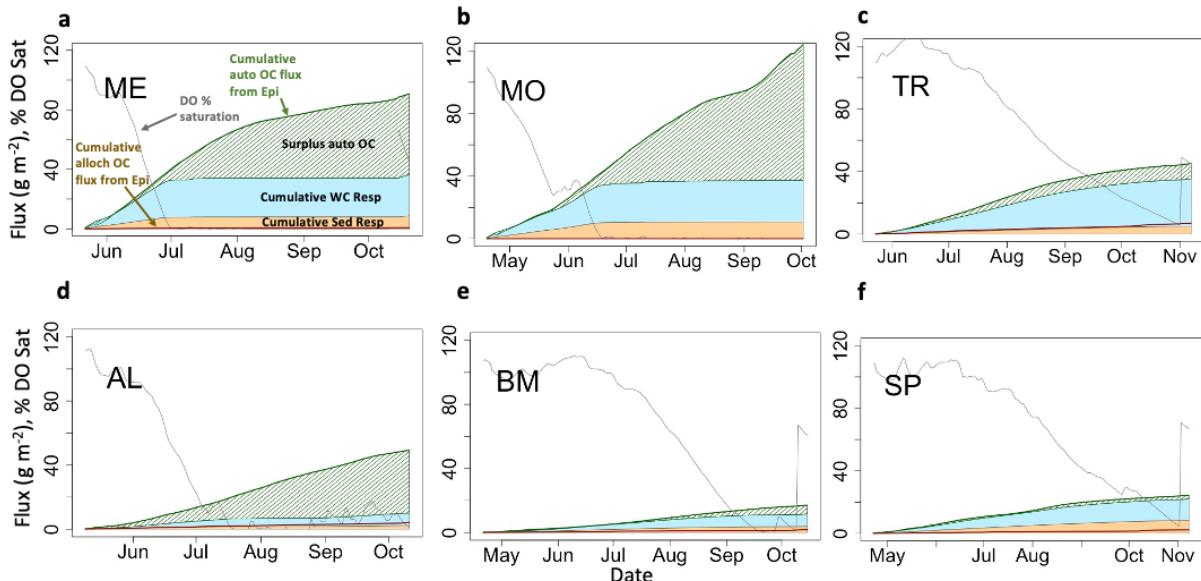


544
 545 **Figure 6.** Time series of calibrated lake Net Primary Production (green), Total Respiration
 546 (red) (top panels), and Net Ecosystem Production (NEP, bottom panels) for the six lakes: (a)
 547 Lake Mendota; (b) Lake Monona; (c) Trout Lake; (d) Allequash Lake; (e) Big Muskelunge
 548 Lake, and; (f) Sparkling Lake. Fluxes are in units of $gC\ m^{-2}y^{-1}$. Solid line represents
 549 prediction based on best parameter estimates. Shaded regions represent prediction
 550 uncertainty based on parameter ranges in Table 3. Shaded region for NEP not shown to
 551 reduce axis limits and emphasize NEP pattern.

552
 553
 554 Hypolimnetic DO consumption during stratified periods was modeled as a function of the
 555 two components of hypolimnetic respiration, hypolimnetic water column respiration and

556 hypolimnetic sediment respiration. Water column respiration contributes more than sediment
557 respiration to total hypolimnetic respiration in the southern lakes compared to the northern
558 lakes, with the exception of TR, where cumulative water column respiration is much larger
559 than cumulative sediment respiration. In ME and MO, the mass of summer autochthonous
560 POC entering the hypolimnion is similar to the total hypolimnetic OC mass resired for the
561 beginning of the stratified period (Fig. 7a-b; green line). Later in the stratified period, an
562 increase in epilimnetic POC and associated settling exceeds total hypolimnetic respiration
563 (Fig. 7a-b; green hashed area). This is due, in part, to lower respiration rates that occur once
564 DO (gray line) has been fully depleted, which occurs in early July for ME and late June for
565 MO. In BM and SP the total hypolimnetic respiration slightly exceeds autochthonous POC
566 inputs during parts of the stratified period, indicating the importance of allochthony in these
567 systems (Fig. 7c,f). BM shows that autochthonous POC entering the hypolimnion and total
568 hypolimnetic respiration are similar for much of the stratified period (Fig. 7d). AL is the only
569 lake to have autochthonous POC inputs consistently larger than total hypolimnetic respiration
570 during the stratified season. All lakes show that summer allochthonous POC entering the
571 hypolimnion is a small contribution to the overall hypolimnetic POC load.

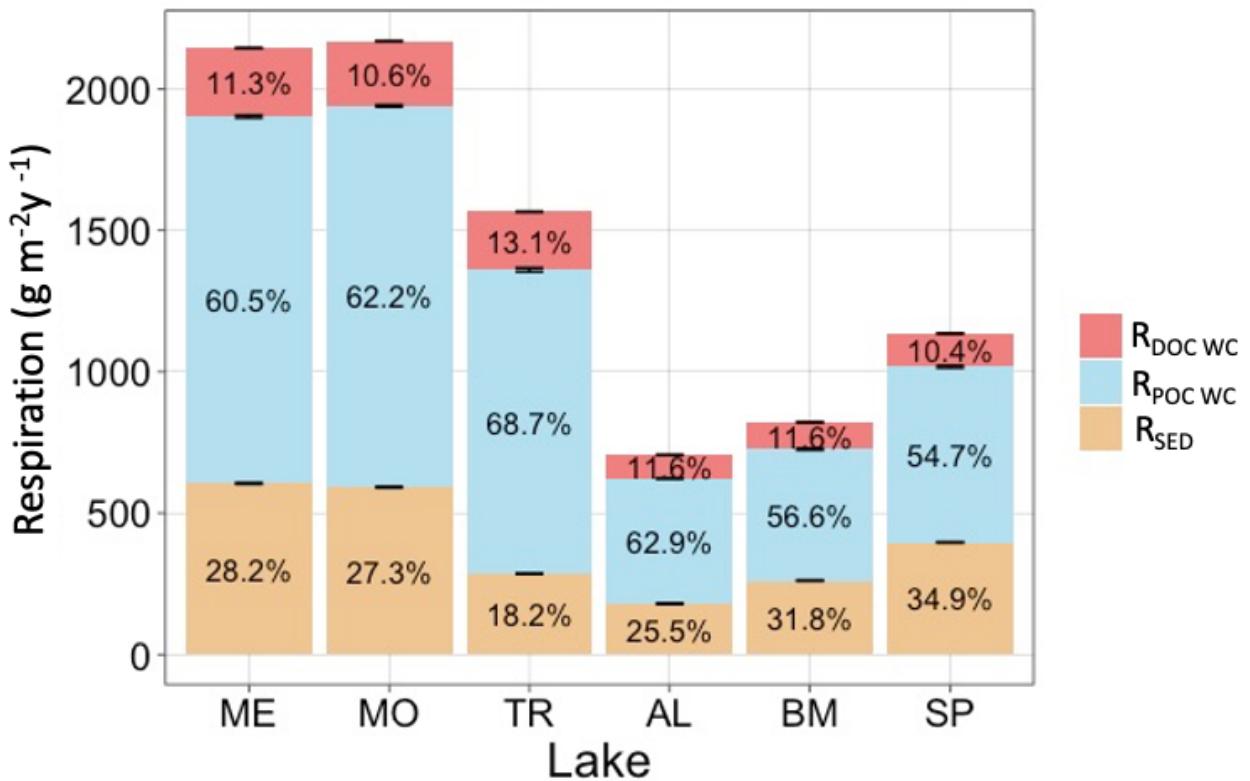
572



573
574
575
576
577
578
579

Figure 7. Hypolimnetic dissolved oxygen, allochthonous (alloch) and autochthonous (auto) organic carbon loading, and respiration dynamics during one stratified period (2005) for each lake. Fluxes are cumulative $gC\ m^{-2}$ and DO is presented as percent saturation. Labels are in panel (a). Note that the cumulative water column (WC) and sediment (Sed) respiration fluxes are stacked, while other cumulative fluxes are not.

580 Respiration of autochthonous POC and sediment respiration account for most of the total
581 hypolimnetic respiration in all lakes (Fig. 8). Respiration of DOC accounts for a relatively
582 small proportion of total respiration. Total hypolimnetic respiration is higher in the southern
583 lakes than the northern lakes. TR has the highest amount of hypolimnetic respiration for the
584 northern lakes, and AL and BM have the least amounts of hypolimnetic respiration. Water
585 column respiration contributed the most towards total hypolimnetic respiration in all lakes.
586 Sediment respiration contributed the largest proportion towards total hypolimnetic respiration
587 in BM and SP. DOC water column respiration was the smallest proportion of total
588 hypolimnetic respiration in all six study lakes.



589
590
591
592
593

Figure 8. Total average annual hypolimnetic respiration, separated by percentages attributed to water column DOC (R_{DOC} wc), water column POC (R_{POC} wc), and sediment (R_{SED}) organic carbon sources. Standard error bars for the annual respiration values are indicated as well.

594

4 Discussion

595

4.1 Autochthonous and Allochthonous Loads

596 Autochthony was the dominant source of OC subsidizing hypolimnetic respiration in the
597 study lakes. The importance of autochthonous OC pools in ecosystem respiration was
598 surprising, given ample research highlighting the dominance of allochthonous OC in north
599 temperate lakes (Wilkinson et al. 2013; Hanson et al. 2011; Hanson et al. 2014). This
600 outcome emphasizes the utility of process-based models in studying mechanisms that discern
601 the relative contributions of different pools of organic matter to lake metabolism.

603 Autochthonous OC pools have higher turnover rates than allochthonous OC pools (Dordoni
604 et al., 2022) and often are lower in concentration than the more recalcitrant allochthonous
605 pools (Wilkinson et al. 2013). Thus, studies based on correlative relationships between lake
606 concentrations of organic matter and water quality metrics, likely overlook the importance of
607 more labile organic matter in driving observable ecosystem phenomena, such as gas flux and
608 formation of hypolimnetic anoxia (Evans et al., 2005; Feng et al., 2022). By quantifying
609 metabolism fluxes relevant to both OC pools, we can recreate shorter-term OC processes that
610 quantify high turnover of labile organic matter, which would typically be missed by
611 empirical studies based on monthly or annual observations.

612

613 Allochthony and autochthony are important to lake carbon cycling, but in ways that play out
614 at different time scales. Allochthonous OC has been well-established as an important factor
615 in driving negative NEP through a number of mechanisms (Wilkinson et al., 2013; Hanson et
616 al., 2014; Hanson et al., 2011). Allochthony contributes to water quality variables, such as
617 Secchi depth (Solomon et al. 2015), by providing the bulk of DOC in most lakes (Wilkinson
618 et al., 2013) and can drive persistent hypolimnetic anoxia in dystrophic lakes (Knoll et al.,
619 2018). In contrast, autochthony contributes to seasonal dynamics of water quality through
620 rapid changes in OC that can appear and disappear within a season. Within that seasonal time
621 frame, autochthonous POC settling from the epilimnion can drive hypolimnetic respiration,
622 thus controlling another key water quality metric, oxygen depletion. It is worth noting that
623 our model does not discern allochthonous and autochthonous sediment OC, however we
624 show that autochthonous OC makes up the largest proportion of OC loads in our study lakes

625 and therefore autochthony likely contributes substantially to the sediment OC pool. For
626 highly eutrophic lakes, the model results show excess autochthony stored in the sediments
627 which may carry into subsequent years, potentially providing additional substrate for
628 sediment respiration. Thus, understanding and predicting controls over hypolimnetic oxygen
629 depletion benefits from quantifying both allochthonous and autochthonous OC cycles.

630

631 Differences in trophic status, hydrologic residence time, and inflow sources help explain the
632 relative proportion of allochthonous versus autochthonous OC among lakes in our study.
633 Water residence times (Hotchkiss et al. 2018; McCullough et al. 2018) and surrounding land
634 cover (Hanson et al. 2014) have been shown to have a substantial impact on OC dynamics by
635 controlling allochthonous OC loading and NEP trends on lakes included in our study
636 (Hanson et al. 2014, McCullough et al. 2018). We built upon these ideas by recreating daily
637 watershed loading dynamics of POC and DOC from derived discharge data and incorporating
638 nutrient control over lake primary production by using high quality and long-term
639 observational data. The northern lakes are embedded in a forest and wetland landscape,
640 which are characteristic of having higher DOC than the urban and agricultural landscape of
641 the southern lakes (Creed et al., 2003). This creates variation in allochthonous loading across
642 the study lakes. Lake trophic state and productivity are a major control for autochthonous
643 production, which influences autochthonous loads across the study lakes as well. For lake
644 metrics that are comparable between studies, such as allochthonous loading and export,
645 allochthonous water column respiration, and total OC burial, our results were within 20% of
646 values in related studies (Hanson et al. 2014, McCullough et al. 2018).

647

648 **4.2 Hypolimnetic Respiration**

649 Given the importance of autochthonous POC to hypolimnetic respiration, we assume it
650 contributes substantially to both sediment respiration and respiration in the water column.
651 While previous work found that sediment respiration was the dominant respiration source for
652 lakes with depth ranges encompassed within our study (Steinsberger 2020), we found that
653 water column respiration was at least as important, if not more so. Differences in these
654 findings could be linked to uncertainty in the settling velocity of POC, due to lack of
655 empirical POC settling velocity measurements. Perhaps, POC mineralized in the hypolimnia
656 of our modeled lakes passes more quickly to the sediments in real ecosystems, shifting the
657 balance of respiration more toward the sediments. OC respiration can contribute substantially
658 to hypolimnetic DO depletion in both lakes and reservoirs (Beutel, 2003), and POC settling
659 velocities can be highly variable, suggesting that assumptions around vertical distribution of
660 lake POC deserve further investigation. Another possible explanation for these differences
661 could be that our model missed allochthonous POC loads from extreme events (Carpenter et
662 al., 2012), which can increase the amount of legacy OC stored in the sediments and increase
663 sediment respiration. Our model also does not account for reduced respiration rates due to
664 OC aging, which may explain our higher values of water column respiration. Finally, our
665 model includes entrainment as a possible oxygen source to the hypolimnion, which must be
666 offset by respiration to fit observed hypolimnetic DO changes. Any study that underestimates
667 DO sources to the hypolimnion likely underestimates total respiration.

668

669 Anaerobic mineralization of organic carbon is an important biogeochemical process and can
670 be a substantial carbon sink through methanogenesis (Maerki et al. 2009). Although
671 methanogenesis is not incorporated into our model, methane dissolved in the water column of
672 Lake Mendota is mostly oxidized (Hart 2017), thus contributing to the overall oxygen
673 demand, which is accounted for in our model. What remains unaccounted is ebullition of
674 methane, which is a carbon flux that is difficult to quantify (McClure et al. 2020). Future
675 metabolism studies that include these processes might find a decrease in annual OC burial
676 rates relative to rates in our study. Although we believe that ebullition is not a substantial
677 portion of the lake's carbon mass budget, that remains to be studied more carefully. As the
678 model accounts for DO consumption through calibration, the overall flux would not change
679 even if we link DO consumption to methane oxidation, only the process description would be
680 more realistic.

681

682 Our findings highlight the importance of autochthonous POC in hypolimnetic oxygen
683 depletion and suggest that related processes, such as the timing of nutrient loading, changes
684 in thermocline depth, or zooplankton grazing, could impact overall lake respiration dynamics
685 and anoxia formation (Schindler et al., 2016; Ladwig et al., 2021; Müller et al., 2012).

686

687 **4.3 Long-term Dynamics**

688 Although autochthonous OC dominated the loads across the study lakes, analysis of the long-
689 term OC dynamics supports the importance of allochthony in lakes. Net Ecosystem
690 Production (NEP) has been used to quantify heterotrophy and autotrophy in lakes (Odum

1956, Hanson et al. 2003, Cole et al. 2000, Lovett et al. 2006), and using this metric over
multiple decades allowed us to analyze long-term impacts of allochthony. TR, BM, and SP
fluctuated between heterotrophy and autotrophy, usually in tandem with trends in hydrology,
which acts as a main control of allochthonous OC. This suggests that allochthonous OC
inputs may be less important for seasonal anoxia but can still drive a lake toward negative
NEP and contribute to sediment carbon storage over long time periods. ME, MO, and AL
tended to become less autotrophic over time (Fig. 6), a pattern that coincided with significant
decreasing trends in mean epilimnetic total phosphorus concentrations for ME and AL (SI
Fig. 5). In our model, NPP and phosphorus are directly related, so decreases in phosphorus
are likely to cause decreases in NEP. Short-term respiration of autochthonous POC can
account for rapid decreases in hypolimnetic DO, but allochthonous POC, which tends to be
more recalcitrant, provides long-term subsidy of ecosystem respiration that can result in
long-term net heterotrophy. Thus, it's critical to understand and quantify both the rapid
internal cycling based on autochthony and the long and slow turnover of allochthony.

705

706 Through explicitly simulating the cycling of both allochthony and autochthony, we can
707 expand our conceptual model of metabolism to better understand time dynamics of lake
708 water quality at the ecosystem scale. Autochthony has pronounced seasonal dynamics,
709 typically associated with the temporal variability of phytoplankton communities and the
710 growth and senescence of macrophytes (Rautio et al., 2011). While allochthony can also have
711 strong seasonal patterns associated with leaf litter input, pollen blooms, and spring runoff
712 events, its more recalcitrant nature leads to a less pronounced seasonal signal at the

713 ecosystem scale (Wilkinson et al., 2013, Tranvik 1998). When considered together, it seems
714 that allochthony underlies long and slow changes in metabolism patterns, while autochthony
715 overlays strong seasonality. Both OC pools are important for ecosystem scale metabolism
716 processes, and their consequences are evident at different time scales. Therefore, the
717 interactions of both OC sources and their influences on water quality patterns deserve further
718 investigation.

719

720 Autochthonous OC control over hypolimnetic respiration should be a primary consideration
721 for understanding the influence of OC on ecosystem dynamics. Hypolimnetic oxygen
722 depletion and anoxia in productive lakes can be mitigated by reducing autochthonous
723 production of OC, which we show is mainly driven by nutrient availability. This study also
724 identifies the need for a better understanding of internal and external OC loads in lakes.
725 Previous studies have found heterotrophic behavior in less productive lakes, but our findings
726 highlight the importance of autochthony in these lakes, especially for shorter-time scale
727 processes that can be missed by looking at broad annual patterns. By using a one-
728 dimensional, two-layer model, we are able to also understand how surface metabolism
729 processes can impact bottom layer dynamics, which would not be possible with a zero-
730 dimensional model. Looking forward, we believe that our understanding of these processes
731 could be improved by building a coupled watershed - metabolism model to more closely
732 explore causal relations between watershed hydrology, nutrient dynamics, and lake
733 morphology.

734

735

736

737 *Code Availability*
738 Model code and figure creation code are archived in the Environmental Data Initiative
739 repository (<https://doi.org/10.6073/PASTA/1B5B947999AA2F9E0E95C91782B36EE9>,
740 Delany, 2022).

741
742 *Data Availability*
743 Driving data, model configuration files, and model result data are archived in the
744 Environmental Data Initiative repository
745 (<https://doi.org/10.6073/PASTA/1B5B947999AA2F9E0E95C91782B36EE9>, Delany, 2022).

746
747 *Author Contributions*
748 AD, PH, RL, and CB assisted with model development and analysis of results. AD and PH
749 prepared the manuscript with contributions from RL, CB, and EA.

750
751 *Competing Interests*
752 The authors declare that they have no conflict of interest.

753
754 *Acknowledgements:*
755 Funding was provided through the National Science Foundation (NSF), with grants DEB-
756 1753639, DEB-1753657, and DEB-2025982. Funding for Ellen Albright was provided by the
757 NSF Graduate Research Fellowship Program (GRFP), and the Iowa Department of Natural
758 Resources (contract #22CRDLWBMBALM-0002). Funding for Robert Ladwig was
759 provided by the NSF ABI development grant (#DBI 1759865), UW-Madison Data Science
760 Initiative grant, and the NSF HDR grant (#1934633). Data were provided by the North
761 Temperate Lakes Long Term Ecological Research Program and was accessed through the
762 Environmental Data Initiative (DOI: 10.6073/pasta/0dbbfdbccdee623477c000106c444f3fd).

763

764 References

765 Amon, R. M. W., & Benner, R. (1996). Photochemical and microbial consumption of
766 dissolved organic carbon and dissolved oxygen in the Amazon River system.
767 *Geochimica et Cosmochimica Acta*, 60(10), 1783–1792. [https://doi.org/10.1016/0016-7037\(96\)00055-5](https://doi.org/10.1016/0016-7037(96)00055-5)

768

769 Beutel, M. W. (2003). Hypolimnetic Anoxia and Sediment Oxygen Demand in California
770 Drinking Water Reservoirs. *Lake and Reservoir Management*, 19(3), 208–221.
771 <https://doi.org/10.1080/07438140309354086>

772 Bryant, L. D., Hsu-Kim, H., Gantzer, P. A., & Little, J. C. (2011). Solving the problem at the
773 source: Controlling Mn release at the sediment-water interface via hypolimnetic
774 oxygenation. *Water Research*, 45(19), 6381–6392.
775 <https://doi.org/10.1016/j.watres.2011.09.030>

776 Cardille, J. A., Carpenter, S. R., Coe, M. T., Foley, J. A., Hanson, P. C., Turner, M. G., &
777 Vano, J. A. (2007). Carbon and water cycling in lake-rich landscapes: Landscape
778 connections, lake hydrology, and biogeochemistry. *Journal of Geophysical Research*,
779 112(G2), G02031. <https://doi.org/10.1029/2006JG000200>

780 Carpenter, S., Arrow, K., Barrett, S., Biggs, R., Brock, W., Crépin, A.-S., Engström, G.,
781 Folke, C., Hughes, T., Kautsky, N., Li, C.-Z., McCarney, G., Meng, K., Mäler, K.-G.,
782 Polasky, S., Scheffer, M., Shogren, J., Sterner, T., Vincent, J., ... Zeeuw, A. (2012).
783 General Resilience to Cope with Extreme Events. *Sustainability*, 4(12), 3248–3259.
784 <https://doi.org/10.3390/su4123248>

785 Carpenter, S. R., Benson, B. J., Biggs, R., Chipman, J. W., Foley, J. A., Golding, S. A.,
786 Hammer, R. B., Hanson, P. C., Johnson, P. T. J., Kamarainen, A. M., Kratz, T. K.,
787 Lathrop, R. C., McMahon, K. D., Provencher, B., Rusak, J. A., Solomon, C. T., Stanley,
788 E. H., Turner, M. G., Vander Zanden, M. J., ... Yuan, H. (2007). Understanding
789 Regional Change: A Comparison of Two Lake Districts. *BioScience*, 57(4), 323–335.
790 <https://doi.org/10.1641/B570407>

791 Catalán, N., Marcé, R., Kothawala, D. N., & Tranvik, Lars. J. (2016). Organic carbon
792 decomposition rates controlled by water retention time across inland waters. *Nature
793 Geoscience*, 9(7), 501–504. <https://doi.org/10.1038/ngeo2720>

794 Cole, G., & Weihe, P. (2016). *Textbook of Limnology*. Waveland Press, Inc.

795 Cole, J. J., & Caraco, N. F. (1998). Atmospheric exchange of carbon dioxide in a low-wind
796 oligotrophic lake measured by the addition of SF 6. *Limnology and Oceanography*,
797 43(4), 647–656. <https://doi.org/10.4319/lo.1998.43.4.0647>

798 Cole, J. J., Carpenter, S. R., Kitchell, J. F., & Pace, M. L. (2002). Pathways of organic carbon
799 utilization in small lakes: Results from a whole-lake ^{13}C addition and coupled model.
800 *Limnology and Oceanography*, 47(6), 1664–1675.
801 <https://doi.org/10.4319/lo.2002.47.6.1664>

802 Cole, J. J., Pace, M. L., Carpenter, S. R., & Kitchell, J. F. (2000). Persistence of net
803 heterotrophy in lakes during nutrient addition and food web manipulations. *Limnology
804 and Oceanography*, 45(8), 1718–1730. <https://doi.org/10.4319/lo.2000.45.8.1718>

805

806 Creed, I. F., Sanford, S. E., Beall, F. D., Molot, L. A., & Dillon, P. J. (2003). Cryptic
807 wetlands: Integrating hidden wetlands in regression models of the export of dissolved
808 organic carbon from forested landscapes. *Hydrological Processes*, 17(18), 3629–3648.
809 <https://doi.org/10.1002/hyp.1357>

810 Delany, A. (2022). *Modeled Organic Carbon, Dissolved Oxygen, and Secchi for six*
811 *Wisconsin Lakes, 1995-2014* [Data set]. Environmental Data Initiative.
812 <https://doi.org/10.6073/PASTA/1B5B947999AA2F9E0E95C91782B36EE9>

813 Dordoni, M., Seewald, M., Rinke, K., van Geldern, R., Schmidmeier, J., & Barth, J. A. C.
814 (2022). *Mineralization of autochthonous particulate organic carbon is a fast channel of*
815 *organic matter turnover in Germany's largest drinking water reservoir* [Preprint].
816 Biogeochemistry: Stable Isotopes & Other Tracers. <https://doi.org/10.5194/bg-2022-154>

818 Evans, C. D., Monteith, D. T., & Cooper, D. M. (2005). Long-term increases in surface water
819 dissolved organic carbon: Observations, possible causes and environmental impacts.
820 *Environmental Pollution*, 137(1), 55–71. <https://doi.org/10.1016/j.envpol.2004.12.031>

821 Feng, L., Zhang, J., Fan, J., Wei, L., He, S., & Wu, H. (2022). Tracing dissolved organic
822 matter in inflowing rivers of Nansi Lake as a storage reservoir: Implications for water-
823 quality control. *Chemosphere*, 286, 131624.
824 <https://doi.org/10.1016/j.chemosphere.2021.131624>

825

826

827 Goudsmit, G.-H., Burchard, H., Peeters, F., & Wüest, A. (2002). Application of k- ϵ
828 turbulence models to enclosed basins: The role of internal seiches: APPLICATION OF
829 k- ϵ TURBULENCE MODELS. *Journal of Geophysical Research: Oceans*, 107(C12),
830 23-1-23-13. <https://doi.org/10.1029/2001JC000954>

831 Hanson, P. C., Bade, D. L., Carpenter, S. R., & Kratz, T. K. (2003). Lake metabolism:
832 Relationships with dissolved organic carbon and phosphorus. *Limnology and
833 Oceanography*, 48(3), 1112–1119. <https://doi.org/10.4319/lo.2003.48.3.1112>

834 Hanson, P.C., Carpenter S.R., Cardille, J.A., Coe, M.T., & Winslow, L.A. (2007). Small lakes
835 dominate a random sample of regional lake characteristics. *Freshwater Biology* 52(5),
836 814–822. <https://doi.org/10.1111/j.1365-2427.2007.01730.x>

837 Hanson, P. C., Buffam, I., Rusak, J. A., Stanley, E. H., & Watras, C. (2014). Quantifying lake
838 allochthonous organic carbon budgets using a simple equilibrium model. *Limnology and
839 Oceanography*, 59(1), 167–181. <https://doi.org/10.4319/lo.2014.59.1.0167>

840 Hanson, P. C., Hamilton, D. P., Stanley, E. H., Preston, N., Langman, O. C., & Kara, E. L.
841 (2011). Fate of Allochthonous Dissolved Organic Carbon in Lakes: A Quantitative
842 Approach. *PLoS ONE*, 6(7), e21884. <https://doi.org/10.1371/journal.pone.0021884>

843 Hanson, P. C., Pace, M. L., Carpenter, S. R., Cole, J. J., & Stanley, E. H. (2015). Integrating
844 Landscape Carbon Cycling: Research Needs for Resolving Organic Carbon Budgets of
845 Lakes. *Ecosystems*, 18(3), 363–375. <https://doi.org/10.1007/s10021-014-9826-9>

846 Hanson, P. C., Pollard, A. I., Bade, D. L., Predick, K., Carpenter, S. R., & Foley, J. A.
847 (2004). A model of carbon evasion and sedimentation in temperate lakes:

848 LANDSCAPE-LAKE CARBON CYCLING MODEL. *Global Change Biology*, 10(8),
849 1285–1298. <https://doi.org/10.1111/j.1529-8817.2003.00805.x>

850

851 Hanson, P. C., Stillman, A. B., Jia, X., Karpatne, A., Dugan, H. A., Carey, C. C., Stachelek,
852 J., Ward, N. K., Zhang, Y., Read, J. S., & Kumar, V. (2020). Predicting lake surface
853 water phosphorus dynamics using process-guided machine learning. *Ecological
854 Modelling*, 430, 109136. <https://doi.org/10.1016/j.ecolmodel.2020.109136>

855 Hart, J., Dugan, H., Carey, C., Stanley, E., & Hanson, P. (2019). *Lake Mendota Carbon and
856 Greenhouse Gas Measurements at North Temperate Lakes LTER 2016* [Data set].
857 Environmental Data Initiative.

858 <https://doi.org/10.6073/PASTA/170E5BA0ED09FE3D5837EF04C47E432E>

859 Hipsey, M. R. (2022). *Modelling Aquatic Eco-Dynamics: Overview of the AED modular
860 simulation platform*. <https://doi.org/10.5281/ZENODO.6516222>

861 Hipsey, M. R., Bruce, L. C., Boon, C., Busch, B., Carey, C. C., Hamilton, D. P., Hanson, P.
862 C., Read, J. S., de Sousa, E., Weber, M., & Winslow, L. A. (2019). A General Lake
863 Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake
864 Ecological Observatory Network (GLEON). *Geoscientific Model Development*, 12(1),
865 473–523. <https://doi.org/10.5194/gmd-12-473-2019>

866 Hoffman, A. R., Armstrong, D. E., & Lathrop, R. C. (2013). Influence of phosphorus
867 scavenging by iron in contrasting dimictic lakes. *Canadian Journal of Fisheries and
868 Aquatic Sciences*, 70(7), 941–952. <https://doi.org/10.1139/cjfas-2012-0391>

869 Hotchkiss, E. R., Sadro, S., & Hanson, P. C. (2018). Toward a more integrative perspective
870 on carbon metabolism across lentic and lotic inland waters. *Limnology and*
871 *Oceanography Letters*, 3(3), 57–63. <https://doi.org/10.1002/lol2.10081>

872 Houser, J. N., Bade, D. L., Cole, J. J., & Pace, M. L. (2003). The dual influences of dissolved
873 organic carbon on hypolimnetic metabolism: Organic substrate and photosynthetic
874 reduction. *Biogeochemistry*, 64(2), 247–269. <https://doi.org/10.1023/A:1024933931691>

875 Hunt, R. J., & Walker, J. F. (2017). *2016 Update to the GSFLOW groundwater-surface water*
876 *model for the Trout Lake Watershed*. <https://doi.org/10.5066/F7M32SZ2>

877 Hunt, R. J., Walker, J. F., Selbig, W. R., Westenbroek, S. M., & Regan, R. S. (2013).
878 *Simulation of Climate-Change Effects on Streamflow, Lake Water Budgets, and Stream*
879 *Temperature Using GSFLOW and SNTEMP, Trout Lake Watershed, Wisconsin*. United
880 States Geological Survey.

881 Jane, S. F., Hansen, G. J. A., Kraemer, B. M., Leavitt, P. R., Mincer, J. L., North, R. L., Pilla,
882 R. M., Stetler, J. T., Williamson, C. E., Woolway, R. I., Arvola, L., Chandra, S.,
883 DeGasperi, C. L., Diemer, L., Dunalska, J., Erina, O., Flaim, G., Grossart, H.-P.,
884 Hambright, K. D., ... Rose, K. C. (2021). Widespread deoxygenation of temperate lakes.
885 *Nature*, 594(7861), 66–70. <https://doi.org/10.1038/s41586-021-03550-y>

886 Jansson, M., Bergström, A.-K., Blomqvist, P., & Drakare, S. (2000). ALLOCHTHONOUS
887 ORGANIC CARBON AND PHYTOPLANKTON/BACTERIOPLANKTON
888 PRODUCTION RELATIONSHIPS IN LAKES. *Ecology*, 81(11), 3250–3255.
889 [https://doi.org/10.1890/0012-9658\(2000\)081\[3250:AOCAPB\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2000)081[3250:AOCAPB]2.0.CO;2)

890 Jenny, J.-P., Francus, P., Normandeau, A., Lapointe, F., Perga, M.-E., Ojala, A.,
891 Schimmelman, A., & Zolitschka, B. (2016). Global spread of hypoxia in freshwater
892 ecosystems during the last three centuries is caused by rising local human pressure.
893 *Global Change Biology*, 22(4), 1481–1489. <https://doi.org/10.1111/gcb.13193>

894 Jenny, J.-P., Normandeau, A., Francus, P., Taranu, Z. E., Gregory-Eaves, I., Lapointe, F.,
895 Jautzy, J., Ojala, A. E. K., Dorioz, J.-M., Schimmelman, A., & Zolitschka, B. (2016).
896 Urban point sources of nutrients were the leading cause for the historical spread of
897 hypoxia across European lakes. *Proceedings of the National Academy of Sciences*,
898 113(45), 12655–12660. <https://doi.org/10.1073/pnas.1605480113>

899 Knoll, L. B., Williamson, C. E., Pilla, R. M., Leach, T. H., Brentrup, J. A., & Fisher, T. J.
900 (2018). Browning-related oxygen depletion in an oligotrophic lake. *Inland Waters*, 8(3),
901 255–263. <https://doi.org/10.1080/20442041.2018.1452355>

902 Kraemer, B. M., Chandra, S., Dell, A. I., Dix, M., Kuusisto, E., Livingstone, D. M.,
903 Schladow, S. G., Silow, E., Sitoki, L. M., Tamatamah, R., & McIntyre, P. B. (2017).
904 Global patterns in lake ecosystem responses to warming based on the temperature
905 dependence of metabolism. *Global Change Biology*, 23(5), 1881–1890.
906 <https://doi.org/10.1111/gcb.13459>

907 Ladwig, R., Hanson, P. C., Dugan, H. A., Carey, C. C., Zhang, Y., Shu, L., Duffy, C. J., &
908 Cobourn, K. M. (2021). Lake thermal structure drives interannual variability in summer
909 anoxia dynamics in a eutrophic lake over 37 years. *Hydrology and Earth System
910 Sciences*, 25(2), 1009–1032. <https://doi.org/10.5194/hess-25-1009-2021>

911 Lathrop, R., & Carpenter, S. (2014). Water quality implications from three decades of
912 phosphorus loads and trophic dynamics in the Yahara chain of lakes. *Inland Waters*,
913 4(1), 1–14. <https://doi.org/10.5268/IW-4.1.680>

914 Lei, R., Leppäranta, M., Erm, A., Jaatinen, E., & Pärn, O. (2011). Field investigations of
915 apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009.
916 *Estonian Journal of Earth Sciences*, 60(1), 50. <https://doi.org/10.3176/earth.2011.1.05>

917 Livingstone, D. M., & Imboden, D. M. (1996). The prediction of hypolimnetic oxygen
918 profiles: A plea for a deductive approach. *Canadian Journal of Fisheries and Aquatic
919 Sciences*, 53(4), 924–932. <https://doi.org/10.1139/f95-230>

920 Loose, B., & Schlosser, P. (2011). Sea ice and its effect on CO₂ flux between the atmosphere
921 and the Southern Ocean interior. *Journal of Geophysical Research: Oceans*, 116(C11),
922 2010JC006509. <https://doi.org/10.1029/2010JC006509>

923 Lovett, G. M., Cole, J. J., & Pace, M. L. (2006). Is Net Ecosystem Production Equal to
924 Ecosystem Carbon Accumulation? *Ecosystems*, 9(1), 152–155.
925 <https://doi.org/10.1007/s10021-005-0036-3>

926 Maerki, M., Müller, B., Dinkel, C., & Wehrli, B. (2009). Mineralization pathways in lake
927 sediments with different oxygen and organic carbon supply. *Limnology and
928 Oceanography*, 54(2), 428–438. <https://doi.org/10.4319/lo.2009.54.2.0428>

929 Magee, M. R., McIntyre, P. B., Hanson, P. C., & Wu, C. H. (2019). Drivers and Management
930 Implications of Long-Term Cisco Oxythermal Habitat Decline in Lake Mendota, WI.
931 *Environmental Management*, 63(3), 396–407. <https://doi.org/10.1007/s00267-018-0134-7>

933

934

935 Magnuson, J., Carpenter, S., & Stanley, E. (2020). *North Temperate Lakes LTER: Chemical*
936 *Limnology of Primary Study Lakes: Nutrients, pH and Carbon 1981 - current* [Data set].
937 Environmental Data Initiative.
938 <https://doi.org/10.6073/PASTA/8359D27BBD91028F222D923A7936077D>

939 Magnuson, J. J., Benson, B. J., & Kratz, T. K. (2006). *Long-term dynamics of lakes in the*
940 *landscape: Long-term ecological research on north temperate lakes*. Oxford University
941 Press on Demand.

942 Magnuson, J. J., Carpenter, S. R., & Stanley, E. H. (2022). *North Temperate Lakes LTER:*
943 *Physical Limnology of Primary Study Lakes 1981 - current* [Data set]. Environmental
944 Data Initiative.
945 <https://doi.org/10.6073/PASTA/925D94173F35471F699B5BC343AA1128>

946 McClure, R. P., Lofton, M. E., Chen, S., Krueger, K. M., Little, J. C., & Carey, C. C. (2020).
947 The Magnitude and Drivers of Methane Ebullition and Diffusion Vary on a Longitudinal
948 Gradient in a Small Freshwater Reservoir. *Journal of Geophysical Research: Biogeosciences*, 125(3). <https://doi.org/10.1029/2019JG005205>

950 McCullough, I. M., Dugan, H. A., Farrell, K. J., Morales-Williams, A. M., Ouyang, Z.,
951 Roberts, D., Scordo, F., Bartlett, S. L., Burke, S. M., Doubek, J. P., Krivak-Tetley, F. E.,
952 Skaff, N. K., Summers, J. C., Weathers, K. C., & Hanson, P. C. (2018). Dynamic
953 modeling of organic carbon fates in lake ecosystems. *Ecological Modelling*, 386, 71–82.
954 <https://doi.org/10.1016/j.ecolmodel.2018.08.009>

955

956 Mi, C., Shatwell, T., Ma, J., Wentzky, V. C., Boehrer, B., Xu, Y., & Rinke, K. (2020). The
957 formation of a metalimnetic oxygen minimum exemplifies how ecosystem dynamics
958 shape biogeochemical processes: A modelling study. *Water Research*, 175, 115701.
959 <https://doi.org/10.1016/j.watres.2020.115701>

960 Morris, M. D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments.
961 *Technometrics*, 33(2), 161–174. <https://doi.org/10.1080/00401706.1991.10484804>

962 Müller, B., Bryant, L. D., Matzinger, A., & Wüest, A. (2012). Hypolimnetic Oxygen
963 Depletion in Eutrophic Lakes. *Environmental Science & Technology*, 46(18), 9964–
964 9971. <https://doi.org/10.1021/es301422r>

965 Nürnberg, G. K. (1995). Quantifying anoxia in lakes. *Limnology and Oceanography*, 40(6),
966 1100–1111. <https://doi.org/10.4319/lo.1995.40.6.1100>

967 Nürnberg, G. K. (2004). Quantified Hypoxia and Anoxia in Lakes and Reservoirs. *The
968 Scientific World JOURNAL*, 4, 42–54. <https://doi.org/10.1100/tsw.2004.5>

969 Odum, H. T. (1956). Primary Production in Flowing Waters. *Limnology and Oceanography*,
970 1(2), 102–117. <https://doi.org/10.4319/lo.1956.1.2.0102>

971 Platt, T., Gallegos, C., & Harrison, W. (1980). Photoinhibition of photosynthesis in natural
972 assemblages of marine phytoplankton. *Journal of Marine Research*, 38(4), 687–701.

973 Prairie, Y. T., Bird, D. F., & Cole, J. J. (2002). The summer metabolic balance in the
974 epilimnion of southeastern Quebec lakes. *Limnology and Oceanography*, 47(1), 316–
975 321. <https://doi.org/10.4319/lo.2002.47.1.0316>

976 Qu, Y., & Duffy, C. J. (2007). A semidiscrete finite volume formulation for multiprocess
977 watershed simulation: MULTIPROCESS WATERSHED SIMULATION. *Water
978 Resources Research*, 43(8). <https://doi.org/10.1029/2006WR005752>

979 Rautio, M., Mariash, H., & Forsström, L. (2011). Seasonal shifts between autochthonous and
980 allochthonous carbon contributions to zooplankton diets in a subarctic lake. *Limnology
981 and Oceanography*, 56(4), 1513–1524. <https://doi.org/10.4319/lo.2011.56.4.1513>

982 Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A., Kroiss, R., Wu, C.
983 H., & Gaiser, E. (2011). Derivation of lake mixing and stratification indices from high-
984 resolution lake buoy data. *Environmental Modelling & Software*, 26(11), 1325–1336.
985 <https://doi.org/10.1016/j.envsoft.2011.05.006>

986 Read, J. S., Zwart, J. A., Kundel, H., Corson-Dosch, H. R., Hansen, G. J. A., Vitense, K.,
987 Appling, A. P., Oliver, S. K., & Platt, L. (2021). *Data release: Process-based
988 predictions of lake water temperature in the Midwest US* [Data set]. U.S. Geological
989 Survey. <https://doi.org/10.5066/P9CA6XP8>

990 Reynolds, C. S., Oliver, R. L., & Walsby, A. E. (1987). Cyanobacterial dominance: The role
991 of buoyancy regulation in dynamic lake environments. *New Zealand Journal of Marine
992 and Freshwater Research*, 21(3), 379–390.
993 <https://doi.org/10.1080/00288330.1987.9516234>

994 Rhodes, J., Hetzenauer, H., Frassl, M. A., Rothhaupt, K.-O., & Rinke, K. (2017). Long-term
995 development of hypolimnetic oxygen depletion rates in the large Lake Constance.
996 *Ambio*, 46(5), 554–565. <https://doi.org/10.1007/s13280-017-0896-8>

997 Richardson, D. C., Carey, C. C., Bruesewitz, D. A., & Weathers, K. C. (2017). Intra- and
998 inter-annual variability in metabolism in an oligotrophic lake. *Aquatic Sciences*, 79(2),
999 319–333. <https://doi.org/10.1007/s00027-016-0499-7>

1000 Rippey, B., & McSorley, C. (2009). Oxygen depletion in lake hypolimnia. *Limnology and*
1001 *Oceanography*, 54(3), 905–916. <https://doi.org/10.4319/lo.2009.54.3.0905>

1002 Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E., & Orihel, D. M. (2016).
1003 Reducing Phosphorus to Curb Lake Eutrophication is a Success. *Environmental Science*
1004 & Technology, 50(17), 8923–8929. <https://doi.org/10.1021/acs.est.6b02204>

1005 Snortheim, C. A., Hanson, P. C., McMahon, K. D., Read, J. S., Carey, C. C., & Dugan, H. A.
1006 (2017). Meteorological drivers of hypolimnetic anoxia in a eutrophic, north temperate
1007 lake. *Ecological Modelling*, 343, 39–53.
1008 <https://doi.org/10.1016/j.ecolmodel.2016.10.014>

1009 Sobek, S., Tranvik, L. J., Prairie, Y. T., Kortelainen, P., & Cole, J. J. (2007). Patterns and
1010 regulation of dissolved organic carbon: An analysis of 7,500 widely distributed lakes.
1011 *Limnology and Oceanography*, 52(3), 1208–1219.
1012 <https://doi.org/10.4319/lo.2007.52.3.1208>

1013 Soetaert, K., & Petzoldt, T. (2010). Inverse Modelling, Sensitivity and Monte Carlo Analysis
1014 in R Using Package **FME**. *Journal of Statistical Software*, 33(3).
1015 <https://doi.org/10.18637/jss.v033.i03>

1016

1017

1018 Solomon, C. T., Bruesewitz, D. A., Richardson, D. C., Rose, K. C., Van De Bogert, M. C.,
1019 Hanson, P. C., Kratz, T. K., Larget, B., Adrian, R., Babin, B. L., Chiu, C.-Y., Hamilton,
1020 D. P., Gaiser, E. E., Hendricks, S., Istvánovics, V., Laas, A., O'Donnell, D. M., Pace, M.
1021 L., Ryder, E., ... Zhu, G. (2013). Ecosystem respiration: Drivers of daily variability and
1022 background respiration in lakes around the globe. *Limnology and Oceanography*, 58(3),
1023 849–866. <https://doi.org/10.4319/lo.2013.58.3.0849>

1024 Solomon, C. T., Jones, S. E., Weidel, B. C., Buffam, I., Fork, M. L., Karlsson, J., Larsen, S.,
1025 Lennon, J. T., Read, J. S., Sadro, S., & Saros, J. E. (2015). Ecosystem Consequences of
1026 Changing Inputs of Terrestrial Dissolved Organic Matter to Lakes: Current Knowledge
1027 and Future Challenges. *Ecosystems*, 18(3), 376–389. <https://doi.org/10.1007/s10021-015-9848-y>

1029 Staehr, P. A., Bade, D., Van de Bogert, M. C., Koch, G. R., Williamson, C., Hanson, P.,
1030 Cole, J. J., & Kratz, T. (2010). Lake metabolism and the diel oxygen technique: State of
1031 the science: Guideline for lake metabolism studies. *Limnology and Oceanography: Methods*, 8(11), 628–644. <https://doi.org/10.4319/lom.2010.8.0628>

1033 Steinsberger, T., Schwefel, R., Wüest, A., & Müller, B. (2020). Hypolimnetic oxygen
1034 depletion rates in deep lakes: Effects of trophic state and organic matter accumulation.
1035 *Limnology and Oceanography*, 65(12), 3128–3138. <https://doi.org/10.1002/lno.11578>

1036 Thorp, J. H., & Delong, M. D. (2002). Dominance of autochthonous autotrophic carbon in
1037 food webs of heterotrophic rivers. *Oikos*, 96(3), 543–550.
1038 <https://doi.org/10.1034/j.1600-0706.2002.960315.x>

1039 Toming, K., Kotta, J., Uuemaa, E., Sobek, S., Kutser, T., & Tranvik, L. J. (2020). Predicting
1040 lake dissolved organic carbon at a global scale. *Scientific Reports*, 10(1), 8471.

1041 <https://doi.org/10.1038/s41598-020-65010-3>

1042 Tranvik, L. J. (1998). Degradation of Dissolved Organic Matter in Humic Waters by
1043 Bacteria. In D. O. Hessen & L. J. Tranvik (Eds.), *Aquatic Humic Substances* (Vol. 133,
1044 pp. 259–283). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03736-2_11

1045 Webster, K. E., Kratz, T. K., Bowser, C. J., Magnuson, J. J., & Rose, W. J. (1996). The
1046 influence of landscape position on lake chemical responses to drought in northern
1047 Wisconsin. *Limnology and Oceanography*, 41(5), 977–984.

1048 <https://doi.org/10.4319/lo.1996.41.5.0977>

1049 Wilkinson, G. M., Pace, M. L., & Cole, J. J. (2013). Terrestrial dominance of organic matter
1050 in north temperate lakes: ORGANIC MATTER COMPOSITION IN LAKES. *Global
1051 Biogeochemical Cycles*, 27(1), 43–51. <https://doi.org/10.1029/2012GB004453>

1052 Williamson, C. E., Dodds, W., Kratz, T. K., & Palmer, M. A. (2008). Lakes and streams as
1053 sentinels of environmental change in terrestrial and atmospheric processes. *Frontiers in
1054 Ecology and the Environment*, 6(5), 247–254. <https://doi.org/10.1890/070140>

1055 Winslow, L. A., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R.,
1056 Hanson, P. C., & Read, J. S. (2016). LakeMetabolizer: An R package for estimating lake
1057 metabolism from free-water oxygen using diverse statistical models. *Inland Waters*,
1058 6(4), 622–636. <https://doi.org/10.1080/IW-6.4.883>

1059

1060