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Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to 7 

hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many 8 

consequences, including reduced habitat for cold-water fish species, reduced quality of 9 

drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both 10 

allochthonous and autochthonous OC loads contribute to oxygen depletion by providing 11 

substrate for microbial respiration; however, their relative importance in depleting oxygen 12 

across diverse lake systems remains uncertain. Lake characteristics, such as trophic state, 13 

hydrology, and morphometry are also influential in carbon cycling processes and may impact 14 

oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic 15 

oxygen depletion, we used a two-layer process-based lake model to simulate daily 16 

metabolism dynamics for six Wisconsin lakes over twenty years (1995-2014). Physical 17 

processes and internal metabolic processes were included in the model and were used to 18 

predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our 19 

study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more 20 

important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC 21 

respiration in the water column contributed the most towards hypolimnetic oxygen depletion 22 

in the eutrophic study lakes. POC water column respiration and sediment respiration had 23 

similar contributions in the mesotrophic and oligotrophic study lakes. Differences in source 24 
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of respiration are discussed with consideration of lake productivity and the processing and 25 

fates of organic carbon loads. 26 
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1 Introduction 67 
 68 
Hypolimnetic oxygen depletion is a persistent and global phenomenon that degrades lake 69 

ecosystems services (Nurnberg 1995; Cole & Weihe 2016; Jenny et al. 2016). In lakes where 70 

oxygen depletion results in hypoxia and even anoxia, habitat availability for cold-water fish 71 

species is eliminated (Magee et al. 2019), quality of drinking water is reduced (Bryant et al. 72 

2011), and nutrient and OC release from lake sediments becomes elevated (Hoffman et al. 73 

2013, McClure et al. 2020). An increase in the prevalence of hypolimnetic anoxia and 74 

associated water quality degradation in temperate lakes indicates the need to better 75 

understand how lake ecological processes interact with external forcings, such as hydrology 76 

and nutrient inputs, to control the development of anoxia (Jenny et al, 2016 a,b). 77 

 78 
Allochthonous organic carbon (OC) loading to lakes that explains the prevalence of negative 79 

net ecosystem production (i.e., net heterotrophy) provides substrate for hypolimnetic oxygen 80 

depletion (Houser et al. 2003).  Allochthonous OC sources have also been shown to influence 81 

dissolved oxygen (DO) and carbon dynamics in lakes by providing recalcitrant substrate for 82 

respiration (Cole et al. 2002; Hanson et al. 2014, Solomon et al. 2015). In lake surveys, 83 

dissolved allochthonous OC correlates positively with net heterotrophy ((Jansson et al. 84 

2000), indicating the importance of allochthony to both the carbon balance and dynamics of 85 

dissolved gases (Prairie et al. 2002; Hanson et al. 2003). However, the persistent and often 86 

stable concentration of allochthonous DOC in the water column of lakes also indicates its 87 

recalcitrant nature, raising the question of whether allochthony alone can support high 88 

oxygen demand in the sediments and deeper waters of lakes. 89 

 90 



 4 

The contributions of OC from autochthony to hypolimnetic oxygen depletion may be 91 

important as well, despite its low concentrations relative to that of allochthonous OC in many 92 

lakes (Cole et al. 2002). Autochthonous OC tends to be highly labile (Amon & Brenner 1996, 93 

Thorpe & Delong 2002), and spot samples from lake surveys may not detect autochthonous 94 

DOC, reducing its power as a correlate of ecosystem function. Positive correlation between 95 

anoxia and lake phosphorus concentrations suggests autochthony may contribute 96 

substantially to hypolimnetic oxygen demand (Rhodes et al. 2017; Rippey & McSorley, 97 

2009; Jenny et al. 2016a,b); however, the link between nutrient concentrations, autochthony, 98 

and hypolimnetic respiration is rarely quantified. Lakes with high autochthony can still be net 99 

heterotrophic (Staehr et al. 2010; Cole et al. 2000), however, it matters where in the lake 100 

autochthony is respired. Export of phytoplankton from the epilimnion to the hypolimnion and 101 

sediments contributes to deep water oxygen demand (Müller et al. 2012; Rhodes et al. 2017; 102 

Beutel 2003), and the magnitude and timing of organic carbon inputs to deeper waters in 103 

lakes and the subsequent fate of that carbon deserves further exploration.    104 

 105 
Understanding the relative importance of autochthony and allochthony to hypolimnetic 106 

oxygen depletion requires consideration of a number of physical and biological processes 107 

controlling oxygen sources and sinks in lakes (Hanson et al. 2015). For dimictic north 108 

temperate lakes, the timing and dynamics of seasonal stratification determine the ambient 109 

temperature and light conditions for metabolism and the extent to which the hypolimnion is 110 

isolated from oxygen-rich surface waters (Snortheim et al. 2017, Ladwig et al. 2021). In 111 

many lakes, the hypolimnion is below the euphotic zone, but in very clear lakes, primary 112 

production within the hypolimnion may be an oxygen source (Houser et al. 2003). Lake 113 
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morphometry influences the spatial extents of stratified layers, which determines the ratio of 114 

hypolimnetic volume to sediment surface area and the magnitude the sediment oxygen sink 115 

for the hypolimnetic oxygen budget (Livingstone & Imboden 1996). Thus, the sources and 116 

labilities of OC, lake morphometry, and lake hydrodynamics all contribute to hypolimnetic 117 

oxygen budgets, making it an emergent ecosystem property with a plethora of causal 118 

relationships to other ecologically important variables. 119 

 120 
The availability of long-term observational data combined with process-based models 121 

provides an opportunity to investigate OC sources and their control over the dynamics of lake 122 

DO across multiple time scales. Long-term studies of lakes on regional and global scales 123 

highlight how environmental trends can influence metabolic processes in lakes, and how 124 

lakes can broaden our understanding of large-scale ecosystem processes (Richardson et al. 125 

2017, Kraemer et al. 2017, Williamson et al. 2008). For example, long-term studies allow us 126 

to investigate the impact that current and legacy conditions have on lake ecosystem function 127 

in a given year (Carpenter et al. 2007). Process-based modeling has been used to investigate 128 

metabolism dynamics and understand both lake carbon cycling (Hanson et al. 2004, Cardille 129 

et al. 2007) and formation of anoxia (Ladwig et al. 2022); however, explicitly tying lake 130 

carbon cycling and metabolism dynamics with long-term hypolimnetic DO depletion across a 131 

variety of lakes remains largely unexplored. The combination of process-based modeling 132 

with available long-term observational data, including exogenous driving data representative 133 

of climate variability, can be especially powerful for recreating representations of long-term 134 

lake metabolism dynamics (Staehr et al. 2010, Cardille et al. 2007). 135 

 136 
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In this study, our goal is to investigate OC source contributions to lake carbon cycling and 137 

hypolimnetic oxygen depletion. We are particularly interested in the relative loads of 138 

autochthonous and allochthonous OC to lakes and how they contribute to hypolimnetic DO 139 

depletion across seasonal to decadal scales. We use a process-based lake metabolism model, 140 

combined with daily external driving data and long-term limnological data, to study six lakes 141 

within the North Temperate Lakes Long-Term Ecological Research network (NTL LTER) 142 

over a twenty-year period (1995-2014). We address the following questions: (1) What are the 143 

dominant sources of organic carbon that contribute to hypolimnetic oxygen depletion, and 144 

how do their contributions differ across a group of diverse lakes over two decades? (2) How 145 

does lake trophic state influence the processing and fates of organic carbon loads in ways that 146 

affect hypolimnetic dissolved oxygen? 147 

 148 

2 Methods 149 

2.1 Study Site 150 

This study includes six Wisconsin lakes from the NTL-LTER program (Magnuson et al. 151 

2006). Trout Lake (TR), Big Muskellunge Lake (BM), Sparkling Lake (SP), and Allequash 152 

Lake (AL) are in the Northern Highlands Lake District of Wisconsin and have been regularly 153 

sampled since 1981 (Magnuson et al. 2006). Lake Mendota (ME) and Lake Monona (MO) 154 

are in southern Wisconsin and have been regularly sampled by the NTL-LTER since 1995 155 

(NTL-LTER, Magnuson et al. 2006). The NTL-LTER provides a detailed description of each 156 

lake (Magnuson et al. 2006). The six lakes span gradients in size, morphometry, landscape 157 

setting, and hydrology, which creates diverse carbon cycling characteristics and processes 158 
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across these systems. TR and AL are drainage lakes with high allochthonous carbon inputs 159 

from surface water, while BM and SP are groundwater seepage systems with allochthony 160 

dominated by aerial OC inputs from the surrounding landscape (Hanson et al. 2014). All four 161 

northern lakes (TR, AL, BM, SP) are surrounded by a forested landscape. ME and MO are 162 

both eutrophic drainage lakes surrounded by an urban and agricultural landscape. Although 163 

the full range of DOC concentrations for lakes in northern Wisconsin varies from about 2 to 164 

>30 mg L-1 (Hanson et al. 2007), DOC concentrations among our study lakes covered a 165 

relatively narrow range typical of non-dystrophic lakes in Wisconsin (Hanson et al. 2007) 166 

and are near the global averages previously estimated, i.e., 3.88 mg/L (Toming et al. 2020) 167 

and 5.71 mg/L (Sobek et al. 2007), respectively. Morphometry, hydrology, and other 168 

information can be found in Table 1.  169 

 170 
 171 
 172 
 173 
 174 
 175 
 176 
 177 
 178 
 179 
 180 
  181 
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Table 1. Physical and biogeochemical characteristics of the study lakes. The table includes 182 
lake area (Area), maximum depth (Zmax), hydrologic residence time (RT), mean annual 183 
temperature (Temp), mean annual surface total phosphorus concentration (Mean TP), and 184 
mean annual surface DOC (Mean DOC).  185 
 186 

Lake Area (ha) Zmax (m) 
RT 3,4 

(years)             
Temp 2  

(°C) 
Mean TP 1 

(μgL) 
Mean DOC 1 

(mgL) 

Allequash Lake (AL) 168.4 8 0.73 10.5 14 3.9 

Big Muskellunge (BM) 396.3 21.3 5.1 10.5 7 3.8 

Sparkling Lake (SP) 64 20 8.88 10.6 5 3.12 

Trout Lake (TR) 1607.9 35.7 5.28 9.8 5 2.8 

       

Mendota (ME) 3961 25.3 4.3 12.5 50 5.6 

Monona (MO) 1324 22.5 0.7 13.8 47 5.8 

___________________________ 187 
1 - Magnuson et al. (2020, 2006) 188 
2 - Magnuson et al. (2022) 189 
3 - Hunt et al. (2013) 190 
4 - Webster et al. (1996) 191 
 192 

 193 

2.2 Driving Data and Limnological Data 194 

Most driving data for the model is provided by the “Process-based predictions of water 195 

temperature in the Midwest US” USGS data product (Read et al. 2021). This includes lake 196 

characteristic information such as lake area and hypsometry, daily modeled temperature 197 
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profiles, ice flags, meteorology data, and solar radiation for the six study lakes. Derived 198 

hydrology data is used in calculating daily OC loading and outflow for the study lakes. 199 

Hydrology for the northern lakes is taken from Hunt & Walker (2017), which was estimated 200 

using a surface and groundwater hydrodynamic model. Hydrology for ME is taken from 201 

Hanson et al. (2020), which used the Penn State Integrated Hydrologic Model (Qu & Duffy 202 

2007). We assume for ME and MO that evaporation from the lake surface is approximately 203 

equal to precipitation on the lake surface and that groundwater inputs and outputs to the lake 204 

are a small part of the hydrologic budgets (Lathrop & Carpenter 2014). Therefore, ME 205 

outflow is assumed to be equal to ME inflow. ME is the predominant hydrologic source for 206 

MO (Lathrop & Carpenter 2014), thus, MO inflow is assumed to be equal to ME outflow, 207 

and MO outflow is assumed to be equal to MO inflow. We found that the derived discharge 208 

data for ME, TR, AL, and SP was approximately 20-50% higher than previously reported 209 

values (Hunt et al. 2013, Webster et al. 1996), depending on the lake, while hydrology in BM 210 

was approximately 25% too low (Hunt et al. 2013). To accommodate this issue, we adjusted 211 

total annual hydrological inputs to match published water residence times for each lake 212 

(Table 1), while retaining temporal hydrological patterns. NTL-LTER observational data are 213 

interpolated to estimate daily nutrient concentration values, which are used in calculating 214 

daily primary production in the model (Magnuson et al. 2020).  215 

 216 

The NTL-LTER observational data used to calibrate and validate the model for the six lakes 217 

include DO, DOC, and Secchi depth (Magnuson et al. 2020, Magnuson et al. 2022). 218 

Saturation values for DO and gas exchange velocity used in calculating atmospheric 219 
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exchange for DO are calculated using the “o2.at.sat.base” and using the Cole and Caraco gas 220 

exchange method from the “K600.2.KGAS.base” function within the USGS 221 

“LakeMetabolizer” package in R (Winslow et al. 2016).  222 

 223 

2.3 The Model 224 

The goal of our model is to use important physical and metabolic processes involved in the 225 

lake ecosystem carbon cycle to best predict DO, DOC, and POC, while keeping the model 226 

design simple in comparison with more comprehensive water quality models (e.g., Hipsey et 227 

al. 2022). We ran our model with a daily time step over a twenty-year period (1995-2014) for 228 

each lake and included seasonal physical dynamics, such as lake mixing, stratification, and 229 

ice cover from Read et al. 2021. Throughout each year, the model tracks state variables and 230 

fluxes in the lake for each day (Fig. 1). These state variables include DO and the labile and 231 

recalcitrant components of particulate organic carbon (POC) and dissolved organic carbon 232 

(DOC).  Initial conditions for each state variable are based on literature values or lake 233 

observational data (SI Table 5). The model is initialized on January 1st of the first year, so 234 

we set the initial labile POC mass to zero under the assumption that the concentration is low 235 

in the middle of winter. The initial DO value is set to the saturation value based on the 236 

conditions of the initial model run day and is calculated using the LakeMetabolizer R 237 

package (Winslow et al. 2016). During stratified periods, the state variables and fluxes for 238 

the epilimnion and hypolimnion are tracked independently. Atmosphere, sediments, and 239 

hydrologic inputs and outputs are boundary conditions.  240 

 241 
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 242 
Figure 1. Conceptual lake model showing state variables (boxes) and fluxes (arrows).  The 243 
model has two thermal layers under stratified conditions, as shown here, and tracks state 244 
variables separately for each layer. The sediment (SED), atmosphere (ATM), inflow and 245 
outflow are system boundaries. The state variables included are DO (dissolved oxygen), 246 
DOC_L (labile dissolved organic carbon), DOC_R (recalcitrant dissolved organic carbon), 247 
POC_L (labile particulate organic carbon), and POC_R (recalcitrant particulate organic 248 
carbon). Observed total phosphorus (TP) is used as a driving variable for primary production 249 
in the model.  250 
 251 

The model is built specifically for this analysis; however, many of the assumptions around 252 

the model complexity and mathematical formulations are borrowed from literature cited 253 

(Ladwig et al. 2022, Hipsey et al. 2022, Hanson et al. 2014, McCullough et al. 2018). We 254 

chose to develop our own process-based model rather than use an existing model, such as 255 

GLM (Hipsey et al. 2022) or Simstrat (Goudsmit et al. 2002), so that we could simulate and 256 

measure the specific metabolism fluxes related to our study questions. 257 

 258 

 259 
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2.3.1 Stratification Dynamics 260 

Lake physical dynamics are taken from the output of a previous hydrodynamic modeling 261 

study on these same lakes over a similar time period (Read et al. 2021), which used the 262 

General Lake Model (Hipsey et al. 2019). Before running the metabolism model, a 263 

thermocline depth for each time step is estimated using derived temperature profiles for each 264 

lake (Read et al. 2021) by determining the center of buoyancy depth (Read et al. 2011). After 265 

calculating the thermocline depth, the volumes and average temperatures for each layer, and 266 

the specific area at thermocline depth are determined using lake-specific hypsography. The 267 

criteria for stratification include a vertical density gradient between the surface and bottom 268 

layer of at least 0.05 kg m-3, an average water column temperature above 4 °C, and the 269 

presence of a derived thermocline (Ladwig et al. 2022). For any day that does not meet all of 270 

these criteria, the water column is considered to be fully mixed. The thermocline depth 271 

values are smoothed using a moving average with a window size of 14 days to prevent large 272 

entrainment fluxes that can destabilize the model at very short time scales when thermal 273 

strata are shallow. During mixed periods, the entire lake is treated as the epilimnion, and a 274 

separate hypolimnion is not incorporated into the model dynamics. Ice cover in the model is 275 

determined using the “ice flag” provided in the derived temperature profile data from Read et 276 

al. (2021). Our metabolism model does simulate under-ice conditions, however we do not 277 

include the presence of inverse stratification during winter periods. 278 

  279 
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2.3.2 External Lake and Environment Physical Fluxes 280 

Atmospheric exchange of DO, external loading of OC, and outflow of OC are the three 281 

environmental boundary fluxes accounted for in the water quality model (Table 3 Eq. 9-11). 282 

The gas exchange velocity for atmospheric exchange is determined using the Cole and 283 

Caraco model (1998) and is calculated using the LakeMetabolizer R package (Winslow et al. 284 

2016). Oxygen saturation values are also calculated using this package. During ice covered 285 

conditions, we assume that the atmospheric exchange value is ten percent of the value during 286 

non-ice covered conditions based on sea ice gas exchange estimates (Loose and Schlosser, 287 

2011).  288 

 289 

For the northern lakes (TR, AL, BM, SP), we assume that allochthonous OC loads consist of 290 

entirely recalcitrant substrates. We verify total OC load, total inflow concentration, and 291 

recalcitrant OC export values with estimates from Hanson et al. (2014). For ME, we verify 292 

the total annual allochthonous OC load and OC inflow concentrations against observed 293 

inflow data from Hart et al. (2017) by back calculating inflow concentrations based on the 294 

modeled OC equilibrium of the lake. MO inflow concentrations are equivalent to the in-lake 295 

epilimnetic concentrations of OC from ME at each model time step. The total OC loads for 296 

MO are verified based on the total allochthonous load found in McCullough et al. 2018. 297 

 298 
Table 2. Equations for the model, organized by state variables, [DO (dissolved oxygen), 299 
DOCL (labile dissolved organic carbon), DOCR( recalcitrant dissolved organic carbon), 300 
POCL (labile particulate organic carbon),  POCR (recalcitrant particulate organic carbon), 301 
Secchi] and relevant fluxes. Note: The entrainment flux (Entr) is only included during 302 
thermally stratified periods. The inflow (IN) and outflow (OUT) fluxes are not included in 303 
the calculations for the hypolimnetic layer. The inflow of labile DOC (INDOCL) parameter in 304 
Eq. 2 is only used for calculating allochthonous OC loads for MO. Atmospheric gas 305 
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exchange of dissolved oxygen (AtmExch) is not included for the hypolimnetic DO 306 
calculation. Normalized total phosphorus is represented by (TPnorm). The volume (V) term 307 
represents the respective lake layer volume, or the discharge volume for the inflow and 308 
outflow equations. The term (rrate) is included in Eq. 13 to represent the respiration rates of 309 
the different OC pools. It is included to simplify the table of equations. Terms not defined 310 
here are included in Table 3. 311 
 312 

State Variables  
DO [gDO] 
!"#
!$

= (𝑁𝑃𝑃 ∗ 𝑂2%&'()*$) 	+ 	𝐴𝑡𝑚𝐸𝑥𝑐ℎ + 𝐸𝑛𝑡𝑟"# − (𝑅+)!	 ∗ 𝑂2%&'()*$) − (𝑅-% ∗ 	𝑂2%&'()*$)                                       (1) 
DOCL [gC]  
!"#.!
!$

= (𝑁𝑃𝑃 ∗ (1 − 𝐶/00)) + 𝐼𝑁"#.1 + 𝐸𝑛𝑡𝑟"#.1 − 𝑅"#.1 −𝑂𝑈𝑇"#.1                                                                       (2) 
DOCR [gC] 
!"#."
!$

= 	𝐼𝑁"#.2 + 𝐸𝑛𝑡𝑟"#.2 −𝑂𝑈𝑇"#.2 − 𝑅"#.2	345                                                                                                       (3) 
POCL [gC] 
Mixed and Epi: !0#.!

!$
=	 	(𝑁𝑃𝑃345 ∗ 𝐶/00) 	+ 𝐼𝑁0#.1 + 𝐸𝑛𝑡𝑟0#.1−𝑅0#.1	345 − 𝑆𝑒𝑡𝑡𝑙𝑒0#.1	345 −𝑂𝑈𝑇0#.1                       (4) 

Hypo: !0#.!
!$

=	 	(𝑁𝑃𝑃674& ∗ 𝐶/00) + 𝑆𝑒𝑡𝑡𝑙𝑒0#.1	345 − 𝑆𝑒𝑡𝑡𝑙𝑒0#.1	674& − 𝑅0#.1	674& − 𝐸𝑛𝑡0#.1                                       (5) 
POCR [gC] 
Mixed and Epi: !0#."

!$
= 	𝐼𝑁0#.2 + 	𝐸𝑛𝑡𝑟0#.2 −𝑂𝑈𝑇0#.2 	−	𝑅0#.2	345 	− 	𝑆𝑒𝑡𝑡𝑙𝑒0#.2	345	         (6) 

Hypo: !0#."
!$

= 	𝑆𝑒𝑡𝑡𝑙𝑒0#.2	345 − 	𝑆𝑒𝑡𝑡𝑙𝑒0#.2	674& 		−	𝑅0#.2	674& 		− 	𝐸𝑛𝑡𝑟0#.2                                                                  (7) 
Secchi [m] 
𝑆𝑒𝑐𝑐ℎ𝑖	 = 	 8.:

;!#$
                                                                                                                                                                       (8) 

Fluxes 
Atm exchange [gDO d-1] 
𝐴𝑡𝑚𝐸𝑥𝑐ℎ	 = 	𝐾"# ∗ (𝐷𝑂+<$ −𝐷𝑂4*)!5%$5&') 	∗ 𝐴𝑟𝑒𝑎+=%	                                                                                                          (9) 
Inflow [gC d-1] 
𝐼𝑁	 = 	𝐶𝑎𝑟𝑏𝑜𝑛	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛5'=>&- 	 ∗ 𝑉5'=>&-                                                                                                                     (10) 
Outflow [gC d-1] 
𝑂𝑈𝑇	 = 	𝐶𝑎𝑟𝑏𝑜𝑛	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛&?$=>&- 	 ∗ 𝑉&?$=>&-                                                                                                               (11) 
Net Primary Productivity [gC d-1] 

𝑁𝑃𝑃 = 𝑃𝑚𝑎𝑥 ∗ (1 − 𝑒(AB0∗
!%&'(
𝑃𝑚𝑎𝑥)) ∗ 𝑇𝑃'&*E ∗ 𝜃/00(FAGH) ∗ 𝑉                                                                                                 (12) 

Respiration [gC d-1] 
𝑅-% = 𝐶𝑎𝑟𝑏𝑜𝑛	𝑃𝑜𝑜𝑙	 ∗ 𝑟*<$) 	 ∗ 	𝜃2)+4(FAGH) ∗

"#	$*+,-+(./(%*+
"#0/2	I	"#	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

                                                                                      (13) 
Sediment Respiration [gC d-1] 
𝑅+)! 	= 	 𝑟+)! ∗ 𝜃2)+4(FAGH) ∗

"#	$*+,-+(./(%*+
"#0/2I	"#	𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

∗ 𝐴𝑟𝑒𝑎+)!                                                                                                   (14) 

POC settle [gC d-1] 
𝑆𝑒𝑡𝑡𝑙𝑒	 = 	 (𝑃𝑂𝐶	𝑃𝑜𝑜𝑙 ∗ 𝐾0#.) ∗

J*)<
K

                                                                                                                                     (15) 



 15 

Entrainment [gC d-1] 
𝑉3'$* 	= 	𝑉)45(𝑡) 	−	𝑉)45(𝑡 − 1)             (16) 
 

𝑉3'$* > 	0	(Epilimnion growing) 
𝐸𝑛𝑡𝑟	 = 	 K#+(.

K345*
∗ 𝐶𝑎𝑟𝑏𝑜𝑛	𝑃𝑜𝑜𝑙674&           (17) 

 
𝑉3'$* < 0 (Epilimnion shrinking) 

                               𝐸𝑛𝑡𝑟	 = 	K#+(.
K#5%

∗ 𝐶𝑎𝑟𝑏𝑜𝑛	𝑃𝑜𝑜𝑙345                                                                                                                (18) 

Light [W m-2] 
	𝐿𝑖𝑔ℎ𝑡 = ∫ (𝐼L0 ∗ 𝑒

A(;!#$	∗	L))L2
L0

𝑑𝑧 ∗ (1 − 𝛼)                                                                                                                     (19) 
Light Extinction Coefficient [Unitless] 
𝐾13. = 𝐿𝐸𝐶-<$)* + (𝐿𝐸𝐶0#. ∗ ((

0#.1
K
) 	+ (0#.2

K
)	)) + (𝐿𝐸𝐶"#. ∗ ((

"#.1
K
) 	+ ("#.2

K
)	))                                                     (20) 

 313 

2.3.3 Internal Lake Physical Fluxes 314 

The two in-lake physical fluxes included in the model are POC settling and entrainment of all 315 

state variables. POC settling is the product of a sinking rate (m d-1) and the respective POC 316 

pool (g), divided by the layer depth (m) (Table 3 Eq. 15). Sinking rates are either borrowed 317 

from literature values (Table 3) or fit during model calibration (see below). Entrainment is 318 

calculated as a proportion of epilimnetic volume change (Table 2 Eq. 17-18). A decrease in 319 

epilimnetic volume shifts mass of state variables from the epilimnion into the hypolimnion, 320 

and an increase in volume shifts mass from the hypolimnion to the epilimnion. 321 

 322 
 323 
  324 
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Table 3. Model Parameters, grouped into three categories: constants, which are values that 325 
were not tuned; manually calibrated, which are parameters manually tuned, typically guided 326 
by ranges from the literature; and parameters calibrated through constrained parameter 327 
search, which are calibrated through an automated search of parameter space.   328 
 329 

Parameter Abbreviation Value Units Source 

Constants     

Conversion of 
Carbon to Oxygen  

𝑂2!"#$%&'	 2.67 Unitless Mass Ratio of C:O 

Respiration rate of 
DOCR 

𝑟()*+	 0.001 𝑑𝑎𝑦,-	  (Hanson et al., 2011) 

Respiration rate of 
POCR 

𝑟.)*+	 0.005 𝑑𝑎𝑦,-	 Taken from ranges provided 
in (Hanson et al. 2004) 

Respiration rate of 
POCR 

𝑟.)*+	 0.005 𝑑𝑎𝑦,-	 Taken from ranges provided 
in (Hanson et al. 2004) 

Respiration rate of 
POCL 

𝑟.)*/	 0.2 𝑑𝑎𝑦,-	 Taken from ranges provided 
in (Hipsey et al. 2022) 

Michaelis-Menten 
DO half saturation 
coefficient 

𝐷𝑂-/1	 0.5 𝑔 𝑚,2                                                                      Taken from ranges provided 
in (Hipsey et al. 2022)  

Light extinction 
coefficent of water 

𝐿𝐸𝐶34'%&	 0.125 𝑚,-	 Taken from ranges in 
Hart et al. (2017) 

Ratio of DOC to 
POC production 
from NPP 

𝐶5..	 0.8 Unitless Biddanda & Benner (1997) 

Albedo α 0.3 Unitless Global average (Marshall & 
Plumb, 2008) 

Atmospheric gas 
exchange 
adjustment during 
ice covered 
conditions 

𝐶36#'%&	 0.1 Unitless Taken from ranges in  
(Loose & Schlosser, 2011) 

Coefficient of light 
transmitted through 
ice 

𝐶6!%	 0.05 Unitless Taken from  ranges provided 
in (Lei et al. 2011)  

Settling velocity 
rate of POC_R 

𝐾.)*+	 1.2 𝑚 𝑑𝑎𝑦,-	 Taken from  ranges found in 
(Reynolds et al.1987)  
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Parameter Abbreviation Value Units Source 

Settling velocity 
rate of POC_L 

𝐾.)*/	 1 𝑚 𝑑𝑎𝑦,-	 Taken from ranges ranges 
found in (Reynolds et 
al.1987) 

Temperature 
scaling coefficient 
for NPP 

𝜃5..	 1.12 Unitless Taken from values provided 
in (Hipsey et al. 2022) and 
(Ladwig et al. 2022)  

Temperature 
scaling coefficient 
for Respiration 

𝜃+%78	 1.04 Unitless Taken from values provided 
in (Hipsey et al. 2022) and 
(Ladwig et al. 2022)  

Manually 
calibrated  

	    

Light extinction of 
DOC 

𝐿𝐸𝐶()* 	 0.02 - 0.06 𝑚1𝑔,-	 Manually calibrated based 
on observed Secchi Depth 
ranges for the study lakes 

Light extinction of 
POC 

𝐿𝐸𝐶.)* 	 0.7 𝑚1𝑔,-	 Manually calibrated based 
on observed Secchi Depth 
ranges for the study lakes 

Maximum Daily 
Productivity 

Pmax 0.5-5 𝑔 𝑚,2𝑑𝑎𝑦,-	 Manually calibrated from 
mean productivity values 
from Wetzel (2001) 

Recalcitrant DOC 
inflow 
concentration 

𝐷𝑂𝐶𝑅6#9:"3	 5-10 𝑔 𝑚,2	 Based on ranges found in 
(Hanson et al. 2014, 
McCullough et al. 2018, 
Hart et al. 2017)  

Recalcitrant POC 
inflow 
concentration 

𝑃𝑂𝐶𝑅6#9:"3	 2-5 𝑔 𝑚,2	 Based on ranges found in 
(Hanson et al. 2014, 
McCullough et al. 2018, 
Hart et al. 2017)  

Calibrated 
through 
constrained 
parameter search 

    

Slope of the 
irradiance/producti
vity curve 

IP 0.045, 0.015 𝑔𝐶𝑑,-(𝑊𝑚,1),-	 Based on  ranges found in 
(Platt et al. 1980) and tuned  
separately for each lake 
region (South, North)  
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Parameter Abbreviation Value Units Source 

Sediment 
respiration flux 

𝑟;<(	 0.05 – 0.4 𝑔 𝑚,1𝑑𝑎𝑦,-	 Based on ranges found in 
(Ladwig et al. 2021) and (Mi 
et al. 2020) and fit 
independently for each lake 

Respiration rate of 
DOCL 

𝑟()*/	 0.015 - 0.025 𝑑𝑎𝑦,-	 Based on ranges found in 
(McCullough et al. 2018) 
and fit for each lake 
independently 

 330 

2.3.4 Internal Lake Metabolism Fluxes 331 

The metabolism fluxes in the model are net primary production (NPP) and respiration (R). 332 

Respiration includes water column respiration for each OC state variable in the epilimnion 333 

and hypolimnion and is calculated at each time step as the product of the OC state variable 334 

and its associated first order decay rate (Table 2, Eq. 13). Sediment respiration for the 335 

hypolimnion during stratified periods and the epilimnion (entire lake) during mixed periods 336 

is a constant daily rate that is individually fit for each lake. Note that we did not include 337 

anaerobic carbon metabolism in our modeling approach and discuss potential shortcomings 338 

in the discussion section. We assume inorganic carbon is not a limiting carbon source. In the 339 

model, we consider any DO concentration less than 1 g DO m-3 to be anoxic (Nürnberg 340 

1995).  341 

 342 

NPP is tracked in both the epilimnion and hypolimnion. NPP is a function of light, total 343 

phosphorus concentration, temperature, a maximum productivity coefficient (Pmax), and a 344 

slope parameter defining the irradiance and productivity curve (IP) (Table 2 Eq. 12). Total 345 

phosphorus concentration in a layer taken is from observational data for each lake 346 

interpolated to the daily time scale. Maximum daily primary production rates were taken 347 
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from Wetzel (2001). As these maximum production rates are not phosphorus-specific but 348 

subsume lake-specific nutrient concentrations, we multiplied them with time-transient, 349 

normalized TP concentrations. Normalizing was done by removing the mean of observed TP 350 

and dividing by TP variance. This allows us to retain the time dynamics of the normalized 351 

TP, which we use to represent seasonal TP dynamics for each lake. The Arrhenius equation 352 

provides temperature control for NPP, and we determined through model fitting a 𝛳 of 1.12. 353 

All OC derived from NPP is assumed to be labile and is split between particulate and 354 

dissolved OC production, with eighty percent produced as POC and twenty percent produced 355 

as DOC. This ratio was determined through model fitting and is similar to previously 356 

reported values (Hipsey et al. 2022). Average light in a layer is calculated for each day and is 357 

dependent on the depth of a layer and the light extinction coefficient (Table 2 Eq. 19). During 358 

ice covered conditions, average light is assumed to be five percent of the average non-ice 359 

covered value (Lei et al. 2011). 360 

 361 

Epilimnetic and hypolimnetic water column respiration is tracked independently for each OC 362 

pool in the model. During mixed periods, there are four OC pools – DOCR, DOCL, POCR, 363 

POCL. During stratified periods, those pools are split into a total of eight pools that are 364 

tracked independently for the epilimnion and hypolimnion. Respiration is calculated as a 365 

product of the mass of a respective variable, a first order decay rate coefficient, temperature, 366 

and oxygen availability (Table 2 Eq. 13). The respiration decay rate coefficients are based on 367 

literature values (Table 3) or were fit during model calibration. An Arrhenius equation is 368 

used for temperature control of respiration, with θResp equal to 1.04, which was determined 369 
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through manual model fitting. The respiration fluxes are also scaled by oxygen availability 370 

using the Michaelis-Menten equation with a half saturation coefficient of 0.5 g DO m-3, such 371 

that at very low DO concentrations, the respiration flux approaches zero. 372 

 373 

Sediment respiration is calculated from a constant daily respiration flux, adjusted for 374 

temperature and oxygen availability, using the Arrhenius and Michaelis-Menten equations, 375 

respectively (Table 2 Eq. 14). The mass of sediment OC is not tracked in the model. During 376 

stratified periods, we assume that the majority of epilimnetic sediment area is in the photic 377 

zone, and therefore has associated productivity from macrophytes and other biomass. It is 378 

assumed that this background productivity and sediment respiration are of similar magnitude 379 

and inseparable from water column metabolism, given the observational data. Therefore, 380 

epilimnetic sediment respiration is not accounted for in the model during stratified 381 

conditions. During mixed conditions, we assume that sediment respiration is active on all 382 

lake sediment surfaces, which are assumed to be equivalent in area to the total surface lake 383 

area. During stratified periods, we use the area at the thermocline as the sediment area for 384 

calculating hypolimnetic sediment respiration.  385 

 386 

2.3.5 Other in-lake calculations and assumptions 387 

We calculate a total light extinction coefficient (LEC) for the epilimnion and hypolimnion. 388 

The total LEC for each layer is calculated by multiplying the dissolved and particulate 389 

specific LEC values with their respective OC state variable concentrations, combined with a 390 

general LEC value for water (Table 2 Eq. 20). This total LEC value is used to calculate a 391 
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daily estimate of Secchi depth (Table 2 Eq. 8). The coefficients for the light extinction of 392 

water, DOC, and POC are manually calibrated based on observed Secchi depth ranges for the 393 

study lakes (Table 3, SI Table 5). 394 

 395 

2.4 Model Sensitivity and Parameter Calibration 396 

To better understand the sensitivities of the model output to parameter values, we performed 397 

a sensitivity analysis of the model parameters using the global sensitivity method from 398 

Morris (1991). The sensitivity analysis showed that there were nine parameters to which the 399 

model was consistently sensitive across the six study lakes. This group included the ratio of 400 

DOC to POC produced from NPP (CNPP), the maximum daily productivity parameter 401 

(Pmax), the inflow concentration of recalcitrant POC (POCRinflow), the setting velocity of 402 

recalcitrant POC (KPOCR), the temperature fitting coefficients for productivity and respiration 403 

(θNPP, θResp) the slope of the irradiance/productivity curve (IP), the sediment respiration flux 404 

(rSED), and the respiration rate of DOCL (rDOCL). We chose a subset of the nine parameters to 405 

include in the uncertainty analysis based on the following justifications. The model results 406 

showed that recalcitrant substrates are of lesser importance for lake metabolism dynamics, so 407 

we chose not to further investigate the uncertainty of the POCRinflow and KPOCR parameters. 408 

The Pmax and IP parameters are directly correlated, so we chose to remove Pmax from 409 

further uncertainty considerations. The θNPP and θRESP parameters act as substitutes for water 410 

temperature, a well-known “master variable” in water quality modeling, and directly reflect 411 

seasonality in the model. Therefore, we chose to omit these parameters for further 412 

uncertainty calculations. The final subset of parameters for uncertainty analysis consisted of 413 
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CNPP, rDOCL, rSED, and IP. Of the four parameters, we felt CNPP was best constrained by the 414 

literature. To reduce the number of parameters estimated in the calibration process we 415 

restricted the automated constrained parameter search to the remaining three. 416 

 417 
Model parameters are grouped into three categories: constants, manually calibrated, and 418 

parameters calibrated through an automated constrained parameter search. The constant 419 

parameters are consistent across the study lakes and are not tuned. The manually calibrated 420 

parameters were allowed to vary by lake and are typically guided by ranges from the 421 

literature. The constrained parameter search uses an automated search of parameter space, 422 

constrained by literature values, to fit the IP, rSED, and rDOCL parameters for the study lakes. 423 

Specifically, we performed a constrained fitting of the model to observational data using the 424 

Levenberg-Marquardt algorithm within the “modFit” function of the “FME” R package 425 

(Soetaert & Petzoldt, 2010).   426 

 427 
The first 15 years of the model output was used for calibration and the last 5 years were used 428 

for model validation. We chose the first 15 years for calibration because the observational 429 

data were relatively stable and were not indicative of any large trends in ecosystem 430 

processes, as opposed to the last five years which showed slightly more model deviation 431 

from DOC observational data in the southern lakes (SI Fig. 2). 432 

  433 

2.5 Model Uncertainty 434 

Sensitivity guided the uncertainty analysis. To quantify uncertainty around model 435 

predictions, we sampled IP, rSED, and rDOCL simultaneously from uniform distributions 436 
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defined by +-30% of the literature ranges used for our calibrated parameter values (Table 3). 437 

We ran one hundred model iterations randomly sampling the three model state variables 438 

across these distributions. We plotted the minimum and maximum values for these uniform 439 

distributions and included them in the time series plots (Fig. 2, 3, 4, SI Fig. 1,2,3). 440 

 441 
 442 

3 Results 443 

 444 
3.1 Model Fit to Ecosystem States 445 

Model predictions of DO reproduce observed seasonal variability well. Note that RMSE 446 

values presented here represent model error combined over both the validation and 447 

calibration periods (see Supplementary Material: Table S1 for calibration and validation 448 

specific RMSE values), and that state variables are presented with truncated time ranges for 449 

visual clarity (see Supplementary Material: Fig. S1-S3 for full time series). Epilimnetic DO 450 

generally has lower RMSE than DO in the hypolimnion (Fig. 2). In the epilimnion, RMSE 451 

ranges from 0.74 g DO m-3 (TR) to 2.11 g DO m-3 (MO), and in the hypolimnion, RMSE 452 

ranges from 1.22 g DO m-3 (ME) to 2.77 g DO m-3 (AL, SP). Validation NSE values for DO 453 

ranged from -1.45 (AL) to 0.02 (ME) in the epilimnion and -0.30 (SP) to 0.86 (ME) in the 454 

hypolimnion. Validation KGE values for DO ranged from 0.40 (AL) to 0.90 (TR) in the 455 

epilimnion and 0.35 (SP) to 0.80 (ME) in the hypolimnion. KGE and NSE values for all 456 

lakes can be found in SI Table 7. In the southern lakes, modeled values reach anoxic levels 457 

and generally follow the DO patterns recorded in the observed data (Fig. 2a-b). 458 

Observational data for the northern lakes show an occasional late summer onset of anoxia, 459 



 24 

and these events are generally captured in the model output. A late summer spike in 460 

hypolimnetic DO predictions commonly occurs as well, which is likely a model artifact 461 

caused by the reduction of hypolimnetic volumes to very small values over short time periods 462 

prior to fall mixing. Reduction to small volumes, coincident with modest fluxes due to high 463 

concentration gradients, result in transient high concentrations. Overall, the goodness-of-fit 464 

of hypolimnetic DO in our study lakes does not seem to follow any regional or lake 465 

characteristic patterns. 466 

  467 
Figure 2. Dissolved oxygen (DO) time series for the years, 2005-2010, for the six study 468 
lakes (a-f). Model predictions are represented by lines, and circles represent the observational 469 
data. Epilimnetic DO values are blue and Hypolimnetic DO values are red. Fully mixed 470 
periods for the lake are indicated by a single black line. RMSE values (epilimnion, 471 
hypolimnion; g m-3) for the validation period are included in the upper right of each panel. 472 
Uncertainty is represented by gray shading.  473 
 474 

 475 
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The two southern lakes (ME, MO) have epilimnetic DOC RMSE values greater than 1.00 g 476 

C m-3, while the RMSE for northern lakes ranges from 0.41 g C m-3 (TR) to 0.70 g C m-3 477 

(AL) (Fig. 3). In the southern lakes, NSE epilimnetic DOC values were below -3.00 and 478 

KGE values ranged from -0.29 to -0.32. In the northern lakes, NSE values for DOC ranged 479 

between -2.75 (SP) and -0.31 (AL). KGE values ranged from -0.07 (BM) to 0.35 (TR). All 480 

NSE and KGE metrics for DOC can be found in SI Table 7. Observational data in both 481 

southern lakes indicate a decrease in DOC concentration beginning around 2010, which is 482 

largely missed in the model predictions (Fig.3a-b, Supplementary Material: Fig. S2a-b) and 483 

cause an overestimation of DOC by about 1-2 g C m-3. However, model predictions converge 484 

with observed DOC toward the end of the study period (Supplementary Material: Fig. S2a-485 

b). In AL, the seasonal patterns of modeled DOC are smaller in amplitude than the 486 

observational data (Supplementary Material: Fig. S2d). 487 

 488 
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 489 
Figure 3. Epilimnetic dissolved organic carbon (DOC) time series for the years, 2005-2010, 490 
for the six study lakes (a-f). Model predictions are represented by lines, and circles represent 491 
the observational data. RMSE values for the validation period are included for each lake (g C 492 
m-3). Uncertainty is represented by gray shading.  493 
 494 

Secchi depth predictions reproduce the mean and seasonal patterns in all lakes (Fig. 4). 495 

Although the model produced annual cycles of Secchi depth that generally covered the range 496 

of observed values, short term deviations from annual patterns in the observed data are not 497 

reproduced. The timing of minima and maxima Secchi depth sometimes differed between 498 

predicted and observed values for the northern lakes. In addition, winter extremes in 499 

observed Secchi depth are not always reproduced by the model, which is especially evident 500 

for ME (Fig. 4a). However, winter observational data for Secchi are more sparse than other 501 

seasons.  502 

 503 
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 504 
Figure 4. Secchi depth time series for the years, 2005-2010, for the six study lakes (a-f). 505 
Model predictions are represented by lines, and circles represent the observational data. 506 
RMSE values for the validation period are included for each lake (m). Uncertainty is 507 
represented by gray shading.  508 
 509 

3.2 Ecosystem Processes 510 

The mean annual OC budgets of all six lakes show large differences in the sources and fates 511 

of OC among lakes (Fig. 5; Supplementary Material: Table S3). Autochthony is the dominant 512 

source of OC for all study lakes. Water column respiration is the largest portion of whole-513 

lake respiration in ME, MO, TR, SP, and BM. Sediment respiration contributions are a lower 514 

proportion of total respiration in ME, MO, and TR (mean of 14.1%), and are slightly higher 515 

in BM and SP (mean of 18.7%). AL has a more even distribution of OC fates. OC burial 516 

amounts also vary across the study lakes, with the highest percentage in AL (34.1%), and 517 

lowest in SP (5.25%).  518 

 519 
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 520 
Figure 5.  Total annual budget, sources (left stacked bars) and fates (right stacked bars), of 521 
organic carbon (OC) in each lake over the study period. The OC sources include 522 
allochthonous OC (OCALLOCH) and autochthonous OC (OCAUTOCH). The OC fates include 523 
burial of OC (OCBURIAL), export of OC (OCEXPORT), sediment respiration of OC (RSED), and 524 
water column respiration of OC (RWC). Standard error bars for the annual means are 525 
indicated for each source and fate as well. Note that the magnitudes of the y-axis differ 526 
among the lakes. A significance test comparing these fluxes across the study lakes can be 527 
found in SI Table 6. 528 
 529 

The lakes show inter-annual variation in trophic state, as quantified by NEP (Fig. 6).  Total 530 

respiration (water column and sediment) exceeds autochthony in SP, BM, and TR, indicating 531 

predominantly net heterotrophy for these systems. The remaining lakes (ME, MO, AL) are 532 

generally net autotrophic. The southern lakes (ME, MO) are net autotrophic (positive NEP) 533 

for the majority of the study years but became less autotrophic over the last five years of the 534 

study period (2010-2014). BM and SP are mostly net heterotrophic (negative NEP) over the 535 

study period with a few brief instances of net autotrophy. The strongest autotrophic signal for 536 
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these lakes occurred around 2010. TR experienced prolonged periods of both autotrophy and 537 

heterotrophy. AL is net autotrophic over the study period but had lower average NEP than 538 

the southern lakes. ME, MO, and AL all have negative trends in NPP, but only ME and AL 539 

were significant (p_value < 0.1, Mann-Kendall test) (SI Table 2). Of these three lakes, ME 540 

and AL also have decreasing significant trends in annual total phosphorus concentration (SI 541 

Table 2). No significant trends were found for NPP or total phosphorus in the other lakes 542 

(MO, TR, BM, SP). 543 

 544 
Figure 6. Time series of calibrated lake Net Primary Production (green), Total Respiration 545 
(red) (top panels), and Net Ecosystem Production (NEP, bottom panels) for the six lakes: (a) 546 
Lake Mendota; (b) Lake Monona; (c) Trout Lake; (d) Allequash Lake; (e) Big Muskellunge 547 
Lake, and; (f) Sparkling Lake. Fluxes are in units of gC 𝑚!"𝑦!#. Solid line represents 548 
prediction based on best parameter estimates. Shaded regions represent prediction 549 
uncertainty based on parameter ranges in Table 3. Shaded region for NEP not shown to 550 
reduce axis limits and emphasize NEP pattern. 551 
 552 
 553 
Hypolimnetic DO consumption during stratified periods was modeled as a function of the 554 

two components of hypolimnetic respiration, hypolimnetic water column respiration and 555 
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hypolimnetic sediment respiration. Water column respiration contributes more than sediment 556 

respiration to total hypolimnetic respiration in the southern lakes compared to the northern 557 

lakes, with the exception of TR, where cumulative water column respiration is much larger 558 

than cumulative sediment respiration. In ME and MO, the mass of summer autochthonous 559 

POC entering the hypolimnion is similar to the total hypolimnetic OC mass respired for the 560 

beginning of the stratified period (Fig. 7a-b; green line). Later in the stratified period, an 561 

increase in epilimnetic POC and associated settling exceeds total hypolimnetic respiration 562 

(Fig. 7a-b; green hashed area). This is due, in part, to lower respiration rates that occur once 563 

DO (gray line) has been fully depleted, which occurs in early July for ME and late June for 564 

MO. In BM and SP the total hypolimnetic respiration slightly exceeds autochthonous POC 565 

inputs during parts of the stratified period, indicating the importance of allochthony in these 566 

systems (Fig. 7c,f). BM shows that autochthonous POC entering the hypolimnion and total 567 

hypolimnetic respiration are similar for much of the stratified period (Fig. 7d). AL is the only 568 

lake to have autochthonous POC inputs consistently larger than total hypolimnetic respiration 569 

during the stratified season. All lakes show that summer allochthonous POC entering the 570 

hypolimnion is a small contribution to the overall hypolimnetic POC load.  571 

 572 
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 573 
Figure 7. Hypolimnetic dissolved oxygen, allochthonous (alloch) and autochthonous (auto) 574 
organic carbon loading, and respiration dynamics during one stratified period (2005) for each 575 
lake. Fluxes are cumulative gC 𝑚!" and DO is presented as percent saturation. Labels are in 576 
panel (a). Note that the cumulative water column (WC) and sediment (Sed) respiration fluxes 577 
are stacked, while other cumulative fluxes are not. 578 
 579 

Respiration of autochthonous POC and sediment respiration account for most of the total 580 

hypolimnetic respiration in all lakes (Fig. 8). Respiration of DOC accounts for a relatively 581 

small proportion of total respiration. Total hypolimnetic respiration is higher in the southern 582 

lakes than the northern lakes. TR has the highest amount of hypolimnetic respiration for the 583 

northern lakes, and AL and BM have the least amounts of hypolimnetic respiration. Water 584 

column respiration contributed the most towards total hypolimnetic respiration in all lakes. 585 

Sediment respiration contributed the largest proportion towards total hypolimnetic respiration 586 

in BM and SP. DOC water column respiration was the smallest proportion of total 587 

hypolimnetic respiration in all six study lakes. 588 
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 589 
Figure 8. Total average annual hypolimnetic respiration, separated by percentages attributed 590 
to water column DOC (RDOC WC), water column POC (RPOC WC), and sediment (RSED) organic 591 
carbon sources. Standard error bars for the annual respiration values are indicated as well.  592 
 593 

4 Discussion 594 

 595 

4.1 Autochthonous and Allochthonous Loads 596 

Autochthony was the dominant source of OC subsidizing hypolimnetic respiration in the 597 

study lakes. The importance of autochthonous OC pools in ecosystem respiration was 598 

surprising, given ample research highlighting the dominance of allochthonous OC in north 599 

temperate lakes (Wilkinson et al. 2013; Hanson et al. 2011; Hanson et al. 2014). This 600 

outcome emphasizes the utility of process-based models in studying mechanisms that discern 601 

the relative contributions of different pools of organic matter to lake metabolism. 602 
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Autochthonous OC pools have higher turnover rates than allochthonous OC pools (Dordoni 603 

et al., 2022) and often are lower in concentration than the more recalcitrant allochthonous 604 

pools (Wilkinson et al. 2013). Thus, studies based on correlative relationships between lake 605 

concentrations of organic matter and water quality metrics, likely overlook the importance of 606 

more labile organic matter in driving observable ecosystem phenomena, such as gas flux and 607 

formation of hypolimnetic anoxia (Evans et al., 2005; Feng et al., 2022). By quantifying 608 

metabolism fluxes relevant to both OC pools, we can recreate shorter-term OC processes that 609 

quantify high turnover of labile organic matter, which would typically be missed by 610 

empirical studies based on monthly or annual observations.  611 

 612 

Allochthony and autochthony are important to lake carbon cycling, but in ways that play out 613 

at different time scales. Allochthonous OC has been well-established as an important factor 614 

in driving negative NEP through a number of mechanisms (Wilkinson et al., 2013; Hanson et 615 

al., 2014; Hanson et al., 2011). Allochthony contributes to water quality variables, such as 616 

Secchi depth (Solomon et al. 2015), by providing the bulk of DOC in most lakes (Wilkinson 617 

et al., 2013) and can drive persistent hypolimnetic anoxia in dystrophic lakes (Knoll et al., 618 

2018). In contrast, autochthony contributes to seasonal dynamics of water quality through 619 

rapid changes in OC that can appear and disappear within a season. Within that seasonal time 620 

frame, autochthonous POC settling from the epilimnion can drive hypolimnetic respiration, 621 

thus controlling another key water quality metric, oxygen depletion. It is worth noting that 622 

our model does not discern allochthonous and autochthonous sediment OC, however we 623 

show that autochthonous OC makes up the largest proportion of OC loads in our study lakes 624 
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and therefore autochthony likely contributes substantially to the sediment OC pool. For 625 

highly eutrophic lakes, the model results show excess autochthony stored in the sediments 626 

which may carry into subsequent years, potentially providing additional substrate for 627 

sediment respiration. Thus, understanding and predicting controls over hypolimnetic oxygen 628 

depletion benefits from quantifying both allochthonous and autochthonous OC cycles.    629 

 630 

Differences in trophic status, hydrologic residence time, and inflow sources help explain the 631 

relative proportion of allochthonous versus autochthonous OC among lakes in our study. 632 

Water residence times (Hotchkiss et al. 2018; McCullough et al. 2018) and surrounding land 633 

cover (Hanson et al. 2014) have been shown to have a substantial impact on OC dynamics by 634 

controlling allochthonous OC loading and NEP trends on lakes included in our study 635 

(Hanson et al. 2014, McCullough et al. 2018). We built upon these ideas by recreating daily 636 

watershed loading dynamics of POC and DOC from derived discharge data and incorporating 637 

nutrient control over lake primary production by using high quality and long-term 638 

observational data. The northern lakes are embedded in a forest and wetland landscape, 639 

which are characteristic of having higher DOC than the urban and agricultural landscape of 640 

the southern lakes (Creed et al., 2003). This creates variation in allochthonous loading across 641 

the study lakes. Lake trophic state and productivity are a major control for autochthonous 642 

production, which influences autochthonous loads across the study lakes as well. For lake 643 

metrics that are comparable between studies, such as allochthonous loading and export, 644 

allochthonous water column respiration, and total OC burial, our results were within 20% of 645 

values in related studies (Hanson et al. 2014, McCullough et al. 2018).  646 
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 647 

4.2 Hypolimnetic Respiration 648 

Given the importance of autochthonous POC to hypolimnetic respiration, we assume it 649 

contributes substantially to both sediment respiration and respiration in the water column. 650 

While previous work found that sediment respiration was the dominant respiration source for 651 

lakes with depth ranges encompassed within our study (Steinsberger 2020), we found that 652 

water column respiration was at least as important, if not more so. Differences in these 653 

findings could be linked to uncertainty in the settling velocity of POC, due to lack of 654 

empirical POC settling velocity measurements. Perhaps, POC mineralized in the hypolimnia 655 

of our modeled lakes passes more quickly to the sediments in real ecosystems, shifting the 656 

balance of respiration more toward the sediments. OC respiration can contribute substantially 657 

to hypolimnetic DO depletion in both lakes and reservoirs (Beutel, 2003), and POC settling 658 

velocities can be highly variable, suggesting that assumptions around vertical distribution of 659 

lake POC deserve further investigation. Another possible explanation for these differences 660 

could be that our model missed allochthonous POC loads from extreme events (Carpenter et 661 

al., 2012), which can increase the amount of legacy OC stored in the sediments and increase 662 

sediment respiration. Our model also does not account for reduced respiration rates due to 663 

OC aging, which may explain our higher values of water column respiration. Finally, our 664 

model includes entrainment as a possible oxygen source to the hypolimnion, which must be 665 

offset by respiration to fit observed hypolimnetic DO changes. Any study that underestimates 666 

DO sources to the hypolimnion likely underestimates total respiration. 667 

 668 
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Anaerobic mineralization of organic carbon is an important biogeochemical process and can 669 

be a substantial carbon sink through methanogenesis (Maerki et al. 2009). Although 670 

methanogenesis is not incorporated into our model, methane dissolved in the water column of 671 

Lake Mendota is mostly oxidized (Hart 2017), thus contributing to the overall oxygen 672 

demand, which is accounted for in our model. What remains unaccounted is ebullition of 673 

methane, which is a carbon flux that is difficult to quantify (McClure et al. 2020). Future 674 

metabolism studies that include these processes might find a decrease in annual OC burial 675 

rates relative to rates in our study. Although we believe that ebullition is not a substantial 676 

portion of the lake’s carbon mass budget, that remains to be studied more carefully. As the 677 

model accounts for DO consumption through calibration, the overall flux would not change 678 

even if we link DO consumption to methane oxidation, only the process description would be 679 

more realistic. 680 

 681 

Our findings highlight the importance of autochthonous POC in hypolimnetic oxygen 682 

depletion and suggest that related processes, such as the timing of nutrient loading, changes 683 

in thermocline depth, or zooplankton grazing, could impact overall lake respiration dynamics 684 

and anoxia formation (Schindler et al., 2016; Ladwig et al., 2021; Müller et al., 2012). 685 

 686 

4.3 Long-term Dynamics 687 

Although autochthonous OC dominated the loads across the study lakes, analysis of the long-688 

term OC dynamics supports the importance of allochthony in lakes. Net Ecosystem 689 

Production (NEP) has been used to quantify heterotrophy and autotrophy in lakes (Odum 690 
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1956, Hanson et al. 2003, Cole et al. 2000, Lovett et al. 2006), and using this metric over 691 

multiple decades allowed us to analyze long-term impacts of allochthony.  TR, BM, and SP 692 

fluctuated between heterotrophy and autotrophy, usually in tandem with trends in hydrology, 693 

which acts as a main control of allochthonous OC. This suggests that allochthonous OC 694 

inputs may be less important for seasonal anoxia but can still drive a lake toward negative 695 

NEP and contribute to sediment carbon storage over long time periods. ME, MO, and AL 696 

tended to become less autotrophic over time (Fig. 6), a pattern that coincided with significant 697 

decreasing trends in mean epilimnetic total phosphorus concentrations for ME and AL (SI 698 

Fig. 5). In our model, NPP and phosphorus are directly related, so decreases in phosphorus 699 

are likely to cause decreases in NEP. Short-term respiration of autochthonous POC can 700 

account for rapid decreases in hypolimnetic DO, but allochthonous POC, which tends to be 701 

more recalcitrant, provides long-term subsidy of ecosystem respiration that can result in 702 

long-term net heterotrophy. Thus, it’s critical to understand and quantify both the rapid 703 

internal cycling based on autochthony and the long and slow turnover of allochthony.  704 

 705 

Through explicitly simulating the cycling of both allochthony and autochthony, we can 706 

expand our conceptual model of metabolism to better understand time dynamics of lake 707 

water quality at the ecosystem scale. Autochthony has pronounced seasonal dynamics, 708 

typically associated with the temporal variability of phytoplankton communities and the 709 

growth and senescence of macrophytes (Rautio et al., 2011). While allochthony can also have 710 

strong seasonal patterns associated with leaf litter input, pollen blooms, and spring runoff 711 

events, its more recalcitrant nature leads to a less pronounced seasonal signal at the 712 
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ecosystem scale (Wilkinson et al., 2013, Tranvik 1998). When considered together, it seems 713 

that allochthony underlies long and slow changes in metabolism patterns, while autochthony 714 

overlays strong seasonality. Both OC pools are important for ecosystem scale metabolism 715 

processes, and their consequences are evident at different time scales. Therefore, the 716 

interactions of both OC sources and their influences on water quality patterns deserve further 717 

investigation. 718 

 719 

Autochthonous OC control over hypolimnetic respiration should be a primary consideration 720 

for understanding the influence of OC on ecosystem dynamics. Hypolimnetic oxygen 721 

depletion and anoxia in productive lakes can be mitigated by reducing autochthonous 722 

production of OC, which we show is mainly driven by nutrient availability. This study also 723 

identifies the need for a better understanding of internal and external OC loads in lakes. 724 

Previous studies have found heterotrophic behavior in less productive lakes, but our findings 725 

highlight the importance of autochthony in these lakes, especially for shorter-time scale 726 

processes that can be missed by looking at broad annual patterns. By using a one-727 

dimensional, two-layer model, we are able to also understand how surface metabolism 728 

processes can impact bottom layer dynamics, which would not be possible with a zero-729 

dimensional model. Looking forward, we believe that our understanding of these processes 730 

could be improved by building a coupled watershed - metabolism model to more closely 731 

explore causal relations between watershed hydrology, nutrient dynamics, and lake 732 

morphometry. 733 
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