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The Influence of Carbon Cycling on Oxygen Depletion in North-Temperate Lakes
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Abstract. Hypolimnetic oxygen depletion during summer stratification in lakes can lead to
hypoxic and anoxic conditions. Hypolimnetic anoxia is a water quality issue with many
consequences, including reduced habitat for cold-water fish species, reduced quality of
drinking water, and increased nutrient and organic carbon (OC) release from sediments. Both
allochthonous and autochthonous OC loads contribute to oxygen depletion by providing
substrate for microbial respiration; however, their relative importance in depleting oxygen
across diverse lake systems remains uncertain. Lake characteristics, such as trophic state,
hydrology, and morphometry are also influential in carbon cycling processes and may impact
oxygen depletion dynamics. To investigate the effects of carbon cycling on hypolimnetic
oxygen depletion, we used a two-layer process-based lake model to simulate daily
metabolism dynamics for six Wisconsin lakes over twenty years (1995-2014). Physical
processes and internal metabolic processes were included in the model and were used to
predict dissolved oxygen (DO), particulate OC (POC), and dissolved OC (DOC). In our
study of oligotrophic, mesotrophic, and eutrophic lakes, we found autochthony to be far more
important than allochthony to hypolimnetic oxygen depletion. Autochthonous POC
respiration in the water column contributed the most towards hypolimnetic oxygen depletion
in the eutrophic study lakes. POC water column respiration and sediment respiration had

similar contributions in the mesotrophic and oligotrophic study lakes. Differences in source
1
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of respiration are discussed with consideration of lake productivity and the processing and

fates of organic carbon loads.
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1 Introduction

Hypolimnetic oxygen depletion is a persistent and global phenomenon that degrades lake
ecosystems services (Nurnberg 1995; Cole & Weihe 2016; Jenny et al. 2016). In lakes where
oxygen depletion results in hypoxia and even anoxia, habitat availability for cold-water fish
species is eliminated (Magee et al. 2019), quality of drinking water is reduced (Bryant et al.
2011), and nutrient and OC release from lake sediments becomes elevated (Hoffman et al.
2013, McClure et al. 2020). An increase in the prevalence of hypolimnetic anoxia and
associated water quality degradation in temperate lakes indicates the need to better
understand how lake ecological processes interact with external forcings, such as hydrology

and nutrient inputs, to control the development of anoxia (Jenny et al, 2016 a,b).

Allochthonous organic carbon (OC) loading to lakes that explains the prevalence of negative
net ecosystem production (i.e., net heterotrophy) provides substrate for hypolimnetic oxygen
depletion (Houser et al. 2003). Allochthonous OC sources have also been shown to influence
dissolved oxygen (DO) and carbon dynamics in lakes by providing recalcitrant substrate for
respiration (Cole et al. 2002; Hanson et al. 2014, Solomon et al. 2015). In lake surveys,
dissolved allochthonous OC correlates positively with net heterotrophy ((Jansson et al.
2000), indicating the importance of allochthony to both the carbon balance and dynamics of
dissolved gases (Prairie et al. 2002; Hanson et al. 2003). However, the persistent and often
stable concentration of allochthonous DOC in the water column of lakes also indicates its
recalcitrant nature, raising the question of whether allochthony alone can support high

oxygen demand in the sediments and deeper waters of lakes.
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The contributions of OC from autochthony to hypolimnetic oxygen depletion may be
important as well, despite its low concentrations relative to that of allochthonous OC in many
lakes (Cole et al. 2002). Autochthonous OC tends to be highly labile (Amon & Brenner 1996,
Thorpe & Delong 2002), and spot samples from lake surveys may not detect autochthonous
DOC, reducing its power as a correlate of ecosystem function. Positive correlation between
anoxia and lake phosphorus concentrations suggests autochthony may contribute
substantially to hypolimnetic oxygen demand (Rhodes et al. 2017; Rippey & McSorley,
2009; Jenny et al. 2016a,b); however, the link between nutrient concentrations, autochthony,
and hypolimnetic respiration is rarely quantified. Lakes with high autochthony can still be net
heterotrophic (Staehr et al. 2010; Cole et al. 2000), however, it matters where in the lake
autochthony is respired. Export of phytoplankton from the epilimnion to the hypolimnion and
sediments contributes to deep water oxygen demand (Miiller et al. 2012; Rhodes et al. 2017;
Beutel 2003), and the magnitude and timing of organic carbon inputs to deeper waters in

lakes and the subsequent fate of that carbon deserves further exploration.

Understanding the relative importance of autochthony and allochthony to hypolimnetic
oxygen depletion requires consideration of a number of physical and biological processes
controlling oxygen sources and sinks in lakes (Hanson et al. 2015). For dimictic north
temperate lakes, the timing and dynamics of seasonal stratification determine the ambient
temperature and light conditions for metabolism and the extent to which the hypolimnion is
isolated from oxygen-rich surface waters (Snortheim et al. 2017, Ladwig et al. 2021). In
many lakes, the hypolimnion is below the euphotic zone, but in very clear lakes, primary

production within the hypolimnion may be an oxygen source (Houser et al. 2003). Lake

4
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morphometry influences the spatial extents of stratified layers, which determines the ratio of
hypolimnetic volume to sediment surface area and the magnitude the sediment oxygen sink
for the hypolimnetic oxygen budget (Livingstone & Imboden 1996). Thus, the sources and
labilities of OC, lake morphometry, and lake hydrodynamics all contribute to hypolimnetic
oxygen budgets, making it an emergent ecosystem property with a plethora of causal

relationships to other ecologically important variables.

The availability of long-term observational data combined with process-based models
provides an opportunity to investigate OC sources and their control over the dynamics of lake
DO across multiple time scales. Long-term studies of lakes on regional and global scales
highlight how environmental trends can influence metabolic processes in lakes, and how
lakes can broaden our understanding of large-scale ecosystem processes (Richardson et al.
2017, Kraemer et al. 2017, Williamson et al. 2008). For example, long-term studies allow us
to investigate the impact that current and legacy conditions have on lake ecosystem function
in a given year (Carpenter et al. 2007). Process-based modeling has been used to investigate
metabolism dynamics and understand both lake carbon cycling (Hanson et al. 2004, Cardille
et al. 2007) and formation of anoxia (Ladwig et al. 2022); however, explicitly tying lake
carbon cycling and metabolism dynamics with long-term hypolimnetic DO depletion across a
variety of lakes remains largely unexplored. The combination of process-based modeling
with available long-term observational data, including exogenous driving data representative
of climate variability, can be especially powerful for recreating representations of long-term

lake metabolism dynamics (Staehr et al. 2010, Cardille et al. 2007).
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In this study, our goal is to investigate OC source contributions to lake carbon cycling and
hypolimnetic oxygen depletion. We are particularly interested in the relative loads of
autochthonous and allochthonous OC to lakes and how they contribute to hypolimnetic DO
depletion across seasonal to decadal scales. We use a process-based lake metabolism model,
combined with daily external driving data and long-term limnological data, to study six lakes
within the North Temperate Lakes Long-Term Ecological Research network (NTL LTER)
over a twenty-year period (1995-2014). We address the following questions: (1) What are the
dominant sources of organic carbon that contribute to hypolimnetic oxygen depletion, and
how do their contributions differ across a group of diverse lakes over two decades? (2) How
does lake trophic state influence the processing and fates of organic carbon loads in ways that

affect hypolimnetic dissolved oxygen?

2 Methods

2.1 Study Site

This study includes six Wisconsin lakes from the NTL-LTER program (Magnuson et al.
2006). Trout Lake (TR), Big Muskellunge Lake (BM), Sparkling Lake (SP), and Allequash
Lake (AL) are in the Northern Highlands Lake District of Wisconsin and have been regularly
sampled since 1981 (Magnuson et al. 2006). Lake Mendota (ME) and Lake Monona (MO)
are in southern Wisconsin and have been regularly sampled by the NTL-LTER since 1995
(NTL-LTER, Magnuson et al. 2006). The NTL-LTER provides a detailed description of each
lake (Magnuson et al. 2006). The six lakes span gradients in size, morphometry, landscape

setting, and hydrology, which creates diverse carbon cycling characteristics and processes
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across these systems. TR and AL are drainage lakes with high allochthonous carbon inputs
from surface water, while BM and SP are groundwater seepage systems with allochthony
dominated by aerial OC inputs from the surrounding landscape (Hanson et al. 2014). All four
northern lakes (TR, AL, BM, SP) are surrounded by a forested landscape. ME and MO are
both eutrophic drainage lakes surrounded by an urban and agricultural landscape. Although
the full range of DOC concentrations for lakes in northern Wisconsin varies from about 2 to
>30 mg L+ (Hanson et al. 2007), DOC concentrations among our study lakes covered a
relatively narrow range typical of non-dystrophic lakes in Wisconsin (Hanson et al. 2007)
and are near the global averages previously estimated, i.e., 3.88 mg/L (Toming et al. 2020)
and 5.71 mg/L (Sobek et al. 2007), respectively. Morphometry, hydrology, and other

information can be found in Table 1.
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Table 1. Physical and biogeochemical characteristics of the study lakes. The table includes
lake area (Area), maximum depth (Zmax), hydrologic residence time (RT), mean annual
temperature (Temp), mean annual surface total phosphorus concentration (Mean TP), and
mean annual surface DOC (Mean DOC).

RT 34 Temp? | Mean TP! Mean DOC'!

Lake Area (ha) Zmax (m)  (years) (°0O) (ngl) (mgL)
Allequash Lake (AL) 168.4 8 0.73 10.5 14 39
Big Muskellunge (BM)  396.3 21.3 5.1 10.5 7 3.8
Sparkling Lake (SP) 64 20 8.88 10.6 5 3.12
Trout Lake (TR) 1607.9 35.7 5.28 9.8 5 2.8
Mendota (ME) 3961 253 4.3 12.5 50 5.6
Monona (MO) 1324 22.5 0.7 13.8 47 5.8

1 - Magnuson et al. (2020, 2006)
2 - Magnuson et al. (2022)

3 - Hunt et al. (2013)

4 - Webster et al. (1996)

2.2 Driving Data and Limnological Data
Most driving data for the model is provided by the “Process-based predictions of water
temperature in the Midwest US” USGS data product (Read et al. 2021). This includes lake

characteristic information such as lake area and hypsometry, daily modeled temperature
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profiles, ice flags, meteorology data, and solar radiation for the six study lakes. Derived
hydrology data is used in calculating daily OC loading and outflow for the study lakes.
Hydrology for the northern lakes is taken from Hunt & Walker (2017), which was estimated
using a surface and groundwater hydrodynamic model. Hydrology for ME is taken from
Hanson et al. (2020), which used the Penn State Integrated Hydrologic Model (Qu & Dufty
2007). We assume for ME and MO that evaporation from the lake surface is approximately
equal to precipitation on the lake surface and that groundwater inputs and outputs to the lake
are a small part of the hydrologic budgets (Lathrop & Carpenter 2014). Therefore, ME
outflow is assumed to be equal to ME inflow. ME is the predominant hydrologic source for
MO (Lathrop & Carpenter 2014), thus, MO inflow is assumed to be equal to ME outflow,
and MO outflow is assumed to be equal to MO inflow. We found that the derived discharge
data for ME, TR, AL, and SP was approximately 20-50% higher than previously reported
values (Hunt et al. 2013, Webster et al. 1996), depending on the lake, while hydrology in BM
was approximately 25% too low (Hunt et al. 2013). To accommodate this issue, we adjusted
total annual hydrological inputs to match published water residence times for each lake
(Table 1), while retaining temporal hydrological patterns. NTL-LTER observational data are
interpolated to estimate daily nutrient concentration values, which are used in calculating

daily primary production in the model (Magnuson et al. 2020).

The NTL-LTER observational data used to calibrate and validate the model for the six lakes
include DO, DOC, and Secchi depth (Magnuson et al. 2020, Magnuson et al. 2022).

Saturation values for DO and gas exchange velocity used in calculating atmospheric
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exchange for DO are calculated using the “o02.at.sat.base” and using the Cole and Caraco gas
exchange method from the “K600.2. KGAS.base” function within the USGS

“LakeMetabolizer” package in R (Winslow et al. 2016).

2.3 The Model

The goal of our model is to use important physical and metabolic processes involved in the
lake ecosystem carbon cycle to best predict DO, DOC, and POC, while keeping the model
design simple in comparison with more comprehensive water quality models (e.g., Hipsey et
al. 2022). We ran our model with a daily time step over a twenty-year period (1995-2014) for
each lake and included seasonal physical dynamics, such as lake mixing, stratification, and
ice cover from Read et al. 2021. Throughout each year, the model tracks state variables and
fluxes in the lake for each day (Fig. 1). These state variables include DO and the labile and
recalcitrant components of particulate organic carbon (POC) and dissolved organic carbon
(DOC). Initial conditions for each state variable are based on literature values or lake
observational data (SI Table 5). The model is initialized on January 1st of the first year, so
we set the initial labile POC mass to zero under the assumption that the concentration is low
in the middle of winter. The initial DO value is set to the saturation value based on the
conditions of the initial model run day and is calculated using the LakeMetabolizer R
package (Winslow et al. 2016). During stratified periods, the state variables and fluxes for
the epilimnion and hypolimnion are tracked independently. Atmosphere, sediments, and

hydrologic inputs and outputs are boundary conditions.

10
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Figure 1. Conceptual lake model showing state variables (boxes) and fluxes (arrows). The
model has two thermal layers under stratified conditions, as shown here, and tracks state
variables separately for each layer. The sediment (SED), atmosphere (ATM), inflow and
outflow are system boundaries. The state variables included are DO (dissolved oxygen),
DOC_L (labile dissolved organic carbon), DOC_R (recalcitrant dissolved organic carbon),
POC _L (labile particulate organic carbon), and POC_R (recalcitrant particulate organic
carbon). Observed total phosphorus (TP) is used as a driving variable for primary production
in the model.

The model is built specifically for this analysis; however, many of the assumptions around
the model complexity and mathematical formulations are borrowed from literature cited
(Ladwig et al. 2022, Hipsey et al. 2022, Hanson et al. 2014, McCullough et al. 2018). We
chose to develop our own process-based model rather than use an existing model, such as
GLM (Hipsey et al. 2022) or Simstrat (Goudsmit et al. 2002), so that we could simulate and

measure the specific metabolism fluxes related to our study questions.
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2.3.1 Stratification Dynamics

Lake physical dynamics are taken from the output of a previous hydrodynamic modeling
study on these same lakes over a similar time period (Read et al. 2021), which used the
General Lake Model (Hipsey et al. 2019). Before running the metabolism model, a
thermocline depth for each time step is estimated using derived temperature profiles for each
lake (Read et al. 2021) by determining the center of buoyancy depth (Read et al. 2011). After
calculating the thermocline depth, the volumes and average temperatures for each layer, and
the specific area at thermocline depth are determined using lake-specific hypsography. The
criteria for stratification include a vertical density gradient between the surface and bottom
layer of at least 0.05 kg m™, an average water column temperature above 4 °C, and the
presence of a derived thermocline (Ladwig et al. 2022). For any day that does not meet all of
these criteria, the water column is considered to be fully mixed. The thermocline depth
values are smoothed using a moving average with a window size of 14 days to prevent large
entrainment fluxes that can destabilize the model at very short time scales when thermal
strata are shallow. During mixed periods, the entire lake is treated as the epilimnion, and a
separate hypolimnion is not incorporated into the model dynamics. Ice cover in the model is
determined using the “ice flag” provided in the derived temperature profile data from Read et
al. (2021). Our metabolism model does simulate under-ice conditions, however we do not

include the presence of inverse stratification during winter periods.

12
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2.3.2 External Lake and Environment Physical Fluxes

Atmospheric exchange of DO, external loading of OC, and outflow of OC are the three
environmental boundary fluxes accounted for in the water quality model (Table 3 Eq. 9-11).
The gas exchange velocity for atmospheric exchange is determined using the Cole and
Caraco model (1998) and is calculated using the LakeMetabolizer R package (Winslow et al.
2016). Oxygen saturation values are also calculated using this package. During ice covered
conditions, we assume that the atmospheric exchange value is ten percent of the value during
non-ice covered conditions based on sea ice gas exchange estimates (Loose and Schlosser,

2011).

For the northern lakes (TR, AL, BM, SP), we assume that allochthonous OC loads consist of
entirely recalcitrant substrates. We verify total OC load, total inflow concentration, and
recalcitrant OC export values with estimates from Hanson et al. (2014). For ME, we verify
the total annual allochthonous OC load and OC inflow concentrations against observed
inflow data from Hart et al. (2017) by back calculating inflow concentrations based on the
modeled OC equilibrium of the lake. MO inflow concentrations are equivalent to the in-lake
epilimnetic concentrations of OC from ME at each model time step. The total OC loads for
MO are verified based on the total allochthonous load found in McCullough et al. 2018.
Table 2. Equations for the model, organized by state variables, [DO (dissolved oxygen),
DOCL (labile dissolved organic carbon), DOCR( recalcitrant dissolved organic carbon),
POCL (labile particulate organic carbon), POCR (recalcitrant particulate organic carbon),
Secchi] and relevant fluxes. Note: The entrainment flux (Entr) is only included during
thermally stratified periods. The inflow (/N) and outflow (OUT) fluxes are not included in

the calculations for the hypolimnetic layer. The inflow of labile DOC (INpocr) parameter in
Eq. 2 is only used for calculating allochthonous OC loads for MO. Atmospheric gas

13



306  exchange of dissolved oxygen (AtmExch) is not included for the hypolimnetic DO

307  calculation. Normalized total phosphorus is represented by (7Pom). The volume (V) term
308 represents the respective lake layer volume, or the discharge volume for the inflow and
309  outflow equations. The term (74) is included in Eq. 13 to represent the respiration rates of
310  the different OC pools. It is included to simplify the table of equations. Terms not defined
311  here are included in Table 3.

312

State Variables

DO [gDO

abo

“ac = (NPP * Ozconvert) + AtmExch + EntrDO - (Rsed * Ozconvert) - (ch * Ozconuert) (1)

DOCL [gC

dDdotCL = (NPP * (1 = Cypp)) + INpocr, + Entrpoc, — Rpocr, — OUTpoct 2)

DOCR [gC

dDocC
at B = INpocg + Entrpocg — OUTpocr — Rpocr Epi (3)

POCL [gC
Mixed and Epi: 4roc,

dat
dPoC
Hypo: TL = (NPPyypo * Cypp) + Settlepocy, ppi — Settlepocr nypo — RpocL Hypo — ENtroct 5)

= (NPPgp; * Cypp) + INpoc, + Entrpoc,—Rpoct epi — Settlepocy, gpi — OUTpocy, 4

POCR [gC
Mixed and Epi: 4POCk

dat
dPoC
Hypo: a B = Settlepocr gpi — Settlepocr nypo — Rpocruypo — ENtTeocr @)

= INpocr + Entrpocr — OUTpocr — Rpocr pi — Settlepocr epi (6)

Secchi [m]

. 1.7
Secchi =

®)

Kiec

Fluxes

Atm exchange [¢gDO d'']
AtmExch = KDO * (DOSat - Doprediction) * Areasfc (9)

Inflow [gC d']
IN = Carbon Concentrationyfiow * Vinfiow (10)

Outflow [¢C d™']
OUT = Carbon Concentrationgyeriow * Voutfiow (11)

Net Primary Productivity [gC d']
_ _(—IpsEiahty (T-20)
NPP =Pmax*(1—e Pmax’) * TR, rm * Onpp 2% (12)

Respiration [gC d']
R, = Carbon Pool * 1,41, * Opes

- DO i
. (T-20) " Concentration (1 3)
D012 + DO concentration

Sediment Respiration [gC d']

T—20 bo i
p( ) % Concentration * Areased (14)
DO1/2+ DO concentration

Rsea = Tsea * Opes

POC settle [gC d']
Settle = (POC Pool * Kpy¢) * Arvea (15)

14
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Entrainment [gC d'']

VEntT = Vepi(t) - Vepi(t - 1) (16)
Vener > 0 (Epilimnion growing)
Vi ntr
Entr = VHE—y;o * Carbon Pooly,,, (17)
Vener < 0 (Epilimnion shrinking)
Entr = 2« Carbon Poolgy; (18)
VEpi
Light [W m?]
Light = fZZ:(IZ1 x e~ (Kec*2)) dz + (1 — ) (19)
Light Extinction Coefficient [Unitless]
POCL POCR pocL DOCR
Kiec = LECyqater + (LECpoc * (( " ) + (T) ) + (LECpoc * ((T) + ))) (20)

2.3.3 Internal Lake Physical Fluxes

The two in-lake physical fluxes included in the model are POC settling and entrainment of all

state variables. POC settling is the product of a sinking rate (m d!) and the respective POC
pool (g), divided by the layer depth (m) (Table 3 Eq. 15). Sinking rates are either borrowed
from literature values (Table 3) or fit during model calibration (see below). Entrainment is

calculated as a proportion of epilimnetic volume change (Table 2 Eq. 17-18). A decrease in
epilimnetic volume shifts mass of state variables from the epilimnion into the hypolimnion,

and an increase in volume shifts mass from the hypolimnion to the epilimnion.

15
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Table 3. Model Parameters, grouped into three categories: constants, which are values that
were not tuned; manually calibrated, which are parameters manually tuned, typically guided
by ranges from the literature; and parameters calibrated through constrained parameter
search, which are calibrated through an automated search of parameter space.

Parameter Abbreviation Value Units Source
Constants
Conversion of 02 onvert 2.67 Unitless Mass Ratio of C:O

Carbon to Oxygen
Respiration rate of Tpocr 0.001 day™?! (Hanson et al., 2011)
DOCR
Respiration rate of Tpocr 0.005 day™! Taken from ranges provided
POCR in (Hanson et al. 2004)
Respiration rate of Tpocr 0.005 day™! Taken from ranges provided
POCR in (Hanson et al. 2004)
Respiration rate of TpocL 0.2 day™! Taken from ranges provided
POCL in (Hipsey et al. 2022)
Michaelis-Menten DO, , 0.5 g m3 Taken from ranges provided
DO half saturation in (Hipsey et al. 2022)
coefficient

Light extinction LEC,qter 0.125 m~1 Taken from ranges in
coefficent of water Hart et al. (2017)
Ratio of DOC to Cnpp 0.8 Unitless Biddanda & Benner (1997)
POC production
from NPP
Albedo a 0.3 Unitless Global average (Marshall &

Plumb, 2008)

Atmospheric gas Cyinter 0.1 Unitless Taken from ranges in
exchange (Loose & Schlosser, 2011)
adjustment during
ice covered
conditions
Coefficient of light Cice 0.05 Unitless Taken from ranges provided
transmitted through in (Lei et al. 2011)
ice
Settling velocity Kpocr 1.2 m day™?! Taken from ranges found in
rate of POC_R (Reynolds et al.1987)

16




Parameter Abbreviation Value Units Source

Settling velocity Kpoct 1 m day™! Taken from ranges ranges

rate of POC L found in (Reynolds et
al.1987)

Temperature Onpp 1.12 Unitless Taken from values provided

scaling coefficient in (Hipsey et al. 2022) and

for NPP (Ladwig et al. 2022)

Temperature Oresp 1.04 Unitless Taken from values provided

scaling coefficient in (Hipsey et al. 2022) and

for Respiration (Ladwig et al. 2022)

Manually
calibrated

Light extinction of LECpoc 0.02 - 0.06 m?g~! Manually calibrated based

DOC on observed Secchi Depth
ranges for the study lakes

Light extinction of LECppc 0.7 m?g~! Manually calibrated based

POC on observed Secchi Depth
ranges for the study lakes

Maximum Daily Pmax 0.5-5 g m3day?! Manually calibrated from

Productivity mean productivity values
from Wetzel (2001)

Recalcitrant DOC DOCRy 10w 5-10 g m3 Based on ranges found in

inflow (Hanson et al. 2014,

concentration McCullough et al. 2018,
Hart et al. 2017)

Recalcitrant POC POCRf10w 2-5 g m3 Based on ranges found in

inflow (Hanson et al. 2014,

concentration McCullough et al. 2018,
Hart et al. 2017)

Calibrated

through

constrained

parameter search

Slope of the p 0.045,0.015 | gCd~*(Wm™2)~! | Based on ranges found in

irradiance/producti (Platt et al. 1980) and tuned

vity curve separately for each lake

region (South, North)

17




330
331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

Parameter Abbreviation Value Units Source

Sediment TsED 0.05-04 g m2day! Based on ranges found in
respiration flux (Ladwig et al. 2021) and (Mi
et al. 2020) and fit
independently for each lake

Respiration rate of TpocL 0.015-0.025 day™t Based on ranges found in

DOCL (McCullough et al. 2018)
and fit for each lake
independently

2.3.4 Internal Lake Metabolism Fluxes

The metabolism fluxes in the model are net primary production (NPP) and respiration (R).
Respiration includes water column respiration for each OC state variable in the epilimnion
and hypolimnion and is calculated at each time step as the product of the OC state variable
and its associated first order decay rate (Table 2, Eq. 13). Sediment respiration for the
hypolimnion during stratified periods and the epilimnion (entire lake) during mixed periods
is a constant daily rate that is individually fit for each lake. Note that we did not include
anaerobic carbon metabolism in our modeling approach and discuss potential shortcomings
in the discussion section. We assume inorganic carbon is not a limiting carbon source. In the
model, we consider any DO concentration less than 1 g DO m™ to be anoxic (Niirnberg

1995).

NPP is tracked in both the epilimnion and hypolimnion. NPP is a function of light, total
phosphorus concentration, temperature, a maximum productivity coefficient (Pmax), and a
slope parameter defining the irradiance and productivity curve (/P) (Table 2 Eq. 12). Total
phosphorus concentration in a layer taken is from observational data for each lake

interpolated to the daily time scale. Maximum daily primary production rates were taken
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from Wetzel (2001). As these maximum production rates are not phosphorus-specific but
subsume lake-specific nutrient concentrations, we multiplied them with time-transient,
normalized TP concentrations. Normalizing was done by removing the mean of observed TP
and dividing by TP variance. This allows us to retain the time dynamics of the normalized
TP, which we use to represent seasonal TP dynamics for each lake. The Arrhenius equation
provides temperature control for NPP, and we determined through model fitting a 6 of 1.12.
All OC derived from NPP is assumed to be labile and is split between particulate and
dissolved OC production, with eighty percent produced as POC and twenty percent produced
as DOC. This ratio was determined through model fitting and is similar to previously
reported values (Hipsey et al. 2022). Average light in a layer is calculated for each day and is
dependent on the depth of a layer and the light extinction coefficient (Table 2 Eq. 19). During
ice covered conditions, average light is assumed to be five percent of the average non-ice

covered value (Lei et al. 2011).

Epilimnetic and hypolimnetic water column respiration is tracked independently for each OC
pool in the model. During mixed periods, there are four OC pools — DOCR, DOCL, POCR,
POCL. During stratified periods, those pools are split into a total of eight pools that are
tracked independently for the epilimnion and hypolimnion. Respiration is calculated as a
product of the mass of a respective variable, a first order decay rate coefficient, temperature,
and oxygen availability (Table 2 Eq. 13). The respiration decay rate coefficients are based on
literature values (Table 3) or were fit during model calibration. An Arrhenius equation is

used for temperature control of respiration, with fres, equal to 1.04, which was determined
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through manual model fitting. The respiration fluxes are also scaled by oxygen availability
using the Michaelis-Menten equation with a half saturation coefficient of 0.5 g DO m, such

that at very low DO concentrations, the respiration flux approaches zero.

Sediment respiration is calculated from a constant daily respiration flux, adjusted for
temperature and oxygen availability, using the Arrhenius and Michaelis-Menten equations,
respectively (Table 2 Eq. 14). The mass of sediment OC is not tracked in the model. During
stratified periods, we assume that the majority of epilimnetic sediment area is in the photic
zone, and therefore has associated productivity from macrophytes and other biomass. It is
assumed that this background productivity and sediment respiration are of similar magnitude
and inseparable from water column metabolism, given the observational data. Therefore,
epilimnetic sediment respiration is not accounted for in the model during stratified
conditions. During mixed conditions, we assume that sediment respiration is active on all
lake sediment surfaces, which are assumed to be equivalent in area to the total surface lake
area. During stratified periods, we use the area at the thermocline as the sediment area for

calculating hypolimnetic sediment respiration.

2.3.5 Other in-lake calculations and assumptions

We calculate a total light extinction coefficient (LEC) for the epilimnion and hypolimnion.
The total LEC for each layer is calculated by multiplying the dissolved and particulate
specific LEC values with their respective OC state variable concentrations, combined with a

general LEC value for water (Table 2 Eq. 20). This total LEC value is used to calculate a
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daily estimate of Secchi depth (Table 2 Eq. 8). The coefficients for the light extinction of
water, DOC, and POC are manually calibrated based on observed Secchi depth ranges for the

study lakes (Table 3, SI Table 5).

2.4 Model Sensitivity and Parameter Calibration

To better understand the sensitivities of the model output to parameter values, we performed
a sensitivity analysis of the model parameters using the global sensitivity method from
Morris (1991). The sensitivity analysis showed that there were nine parameters to which the
model was consistently sensitive across the six study lakes. This group included the ratio of
DOC to POC produced from NPP (Cnpp), the maximum daily productivity parameter
(Pmax), the inflow concentration of recalcitrant POC (POCRs0w), the setting velocity of
recalcitrant POC (Kpocr), the temperature fitting coefficients for productivity and respiration
(Onpp, Oresp) the slope of the irradiance/productivity curve (/P), the sediment respiration flux
(rsep), and the respiration rate of DOCL (rpocr). We chose a subset of the nine parameters to
include in the uncertainty analysis based on the following justifications. The model results
showed that recalcitrant substrates are of lesser importance for lake metabolism dynamics, so
we chose not to further investigate the uncertainty of the POCR;»si0w and Kpocr parameters.
The Pmax and IP parameters are directly correlated, so we chose to remove Pmax from
further uncertainty considerations. The Onpp and Oresp parameters act as substitutes for water
temperature, a well-known “master variable” in water quality modeling, and directly reflect
seasonality in the model. Therefore, we chose to omit these parameters for further

uncertainty calculations. The final subset of parameters for uncertainty analysis consisted of
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Cnpp, rpoct, rsep, and IP. Of the four parameters, we felt Cypp was best constrained by the
literature. To reduce the number of parameters estimated in the calibration process we

restricted the automated constrained parameter search to the remaining three.

Model parameters are grouped into three categories: constants, manually calibrated, and
parameters calibrated through an automated constrained parameter search. The constant
parameters are consistent across the study lakes and are not tuned. The manually calibrated
parameters were allowed to vary by lake and are typically guided by ranges from the
literature. The constrained parameter search uses an automated search of parameter space,
constrained by literature values, to fit the IP, rsep, and rpocr. parameters for the study lakes.
Specifically, we performed a constrained fitting of the model to observational data using the
Levenberg-Marquardt algorithm within the “modFit” function of the “FME” R package

(Soetaert & Petzoldt, 2010).

The first 15 years of the model output was used for calibration and the last 5 years were used
for model validation. We chose the first 15 years for calibration because the observational
data were relatively stable and were not indicative of any large trends in ecosystem
processes, as opposed to the last five years which showed slightly more model deviation

from DOC observational data in the southern lakes (SI Fig. 2).

2.5 Model Uncertainty
Sensitivity guided the uncertainty analysis. To quantify uncertainty around model

predictions, we sampled /P, rsep, and rpocr simultaneously from uniform distributions
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defined by +-30% of the literature ranges used for our calibrated parameter values (Table 3).
We ran one hundred model iterations randomly sampling the three model state variables
across these distributions. We plotted the minimum and maximum values for these uniform

distributions and included them in the time series plots (Fig. 2, 3, 4, SI Fig. 1,2,3).

3 Results

3.1 Model Fit to Ecosystem States

Model predictions of DO reproduce observed seasonal variability well. Note that RMSE
values presented here represent model error combined over both the validation and
calibration periods (see Supplementary Material: Table S1 for calibration and validation
specific RMSE values), and that state variables are presented with truncated time ranges for
visual clarity (see Supplementary Material: Fig. S1-S3 for full time series). Epilimnetic DO
generally has lower RMSE than DO in the hypolimnion (Fig. 2). In the epilimnion, RMSE
ranges from 0.74 ¢ DO m> (TR) to 2.11 g DO m™* (MO), and in the hypolimnion, RMSE
ranges from 1.22 ¢ DO m> (ME) to 2.77 g DO m> (AL, SP). Validation NSE values for DO
ranged from -1.45 (AL) to 0.02 (ME) in the epilimnion and -0.30 (SP) to 0.86 (ME) in the
hypolimnion. Validation KGE values for DO ranged from 0.40 (AL) to 0.90 (TR) in the
epilimnion and 0.35 (SP) to 0.80 (ME) in the hypolimnion. KGE and NSE values for all
lakes can be found in SI Table 7. In the southern lakes, modeled values reach anoxic levels
and generally follow the DO patterns recorded in the observed data (Fig. 2a-b).

Observational data for the northern lakes show an occasional late summer onset of anoxia,
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and these events are generally captured in the model output. A late summer spike in
hypolimnetic DO predictions commonly occurs as well, which is likely a model artifact
caused by the reduction of hypolimnetic volumes to very small values over short time periods
prior to fall mixing. Reduction to small volumes, coincident with modest fluxes due to high
concentration gradients, result in transient high concentrations. Overall, the goodness-of-fit
of hypolimnetic DO in our study lakes does not seem to follow any regional or lake

characteristic patterns.
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Figure 2. Dissolved oxygen (DO) time series for the years, 2005-2010, for the six study

lakes (a-f). Model predictions are represented by lines, and circles represent the observational
data. Epilimnetic DO values are blue and Hypolimnetic DO values are red. Fully mixed
periods for the lake are indicated by a single black line. RMSE values (epilimnion,
hypolimnion; g m) for the validation period are included in the upper right of each panel.
Uncertainty is represented by gray shading.
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The two southern lakes (ME, MO) have epilimnetic DOC RMSE values greater than 1.00 g
C m, while the RMSE for northern lakes ranges from 0.41 g C m (TR) to 0.70 g C m*®
(AL) (Fig. 3). In the southern lakes, NSE epilimnetic DOC values were below -3.00 and
KGE values ranged from -0.29 to -0.32. In the northern lakes, NSE values for DOC ranged
between -2.75 (SP) and -0.31 (AL). KGE values ranged from -0.07 (BM) to 0.35 (TR). All
NSE and KGE metrics for DOC can be found in SI Table 7. Observational data in both
southern lakes indicate a decrease in DOC concentration beginning around 2010, which is
largely missed in the model predictions (Fig.3a-b, Supplementary Material: Fig. S2a-b) and
cause an overestimation of DOC by about 1-2 g C m. However, model predictions converge
with observed DOC toward the end of the study period (Supplementary Material: Fig. S2a-
b). In AL, the seasonal patterns of modeled DOC are smaller in amplitude than the

observational data (Supplementary Material: Fig. S2d).
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Figure 3. Epilimnetic dissolved organic carbon (DOC) time series for the years, 2005-2010,
for the six study lakes (a-f). Model predictions are represented by lines, and circles represent
the observational data. RMSE values for the validation period are included for each lake (g C
m™). Uncertainty is represented by gray shading.

Secchi depth predictions reproduce the mean and seasonal patterns in all lakes (Fig. 4).
Although the model produced annual cycles of Secchi depth that generally covered the range
of observed values, short term deviations from annual patterns in the observed data are not
reproduced. The timing of minima and maxima Secchi depth sometimes differed between
predicted and observed values for the northern lakes. In addition, winter extremes in
observed Secchi depth are not always reproduced by the model, which is especially evident

for ME (Fig. 4a). However, winter observational data for Secchi are more sparse than other

s€asons.
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Figure 4. Secchi depth time series for the years, 2005-2010, for the six study lakes (a-f).
Model predictions are represented by lines, and circles represent the observational data.
RMSE values for the validation period are included for each lake (m). Uncertainty is
represented by gray shading.

3.2 Ecosystem Processes

The mean annual OC budgets of all six lakes show large differences in the sources and fates
of OC among lakes (Fig. 5; Supplementary Material: Table S3). Autochthony is the dominant
source of OC for all study lakes. Water column respiration is the largest portion of whole-
lake respiration in ME, MO, TR, SP, and BM. Sediment respiration contributions are a lower
proportion of total respiration in ME, MO, and TR (mean of 14.1%), and are slightly higher
in BM and SP (mean of 18.7%). AL has a more even distribution of OC fates. OC burial

amounts also vary across the study lakes, with the highest percentage in AL (34.1%), and

lowest in SP (5.25%).
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Figure 5. Total annual budget, sources (left stacked bars) and fates (right stacked bars), of
organic carbon (OC) in each lake over the study period. The OC sources include
allochthonous OC (OCarrocn) and autochthonous OC (OCaurocn). The OC fates include
burial of OC (OCguriaLr), export of OC (OCegxport), sediment respiration of OC (Rsep), and
water column respiration of OC (Rwc). Standard error bars for the annual means are
indicated for each source and fate as well. Note that the magnitudes of the y-axis differ
among the lakes. A significance test comparing these fluxes across the study lakes can be
found in SI Table 6.

The lakes show inter-annual variation in trophic state, as quantified by NEP (Fig. 6). Total
respiration (water column and sediment) exceeds autochthony in SP, BM, and TR, indicating
predominantly net heterotrophy for these systems. The remaining lakes (ME, MO, AL) are
generally net autotrophic. The southern lakes (ME, MO) are net autotrophic (positive NEP)
for the majority of the study years but became less autotrophic over the last five years of the

study period (2010-2014). BM and SP are mostly net heterotrophic (negative NEP) over the

study period with a few brief instances of net autotrophy. The strongest autotrophic signal for
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these lakes occurred around 2010. TR experienced prolonged periods of both autotrophy and
heterotrophy. AL is net autotrophic over the study period but had lower average NEP than
the southern lakes. ME, MO, and AL all have negative trends in NPP, but only ME and AL
were significant (p_value < 0.1, Mann-Kendall test) (SI Table 2). Of these three lakes, ME
and AL also have decreasing significant trends in annual total phosphorus concentration (SI
Table 2). No significant trends were found for NPP or total phosphorus in the other lakes

(MO, TR, BM, SP).
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Figure 6. Time series of calibrated lake Net Primary Production (green), Total Respiration
(red) (top panels), and Net Ecosystem Production (NEP, bottom panels) for the six lakes: (a)
Lake Mendota; (b) Lake Monona; (c) Trout Lake; (d) Allequash Lake; (e) Big Muskellunge
Lake, and; (f) Sparkling Lake. Fluxes are in units of gC m~2y~1. Solid line represents
prediction based on best parameter estimates. Shaded regions represent prediction
uncertainty based on parameter ranges in Table 3. Shaded region for NEP not shown to
reduce axis limits and emphasize NEP pattern.

Hypolimnetic DO consumption during stratified periods was modeled as a function of the

two components of hypolimnetic respiration, hypolimnetic water column respiration and
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hypolimnetic sediment respiration. Water column respiration contributes more than sediment
respiration to total hypolimnetic respiration in the southern lakes compared to the northern
lakes, with the exception of TR, where cumulative water column respiration is much larger
than cumulative sediment respiration. In ME and MO, the mass of summer autochthonous
POC entering the hypolimnion is similar to the total hypolimnetic OC mass respired for the
beginning of the stratified period (Fig. 7a-b; green line). Later in the stratified period, an
increase in epilimnetic POC and associated settling exceeds total hypolimnetic respiration
(Fig. 7a-b; green hashed area). This is due, in part, to lower respiration rates that occur once
DO (gray line) has been fully depleted, which occurs in early July for ME and late June for
MO. In BM and SP the total hypolimnetic respiration slightly exceeds autochthonous POC
inputs during parts of the stratified period, indicating the importance of allochthony in these
systems (Fig. 7c,f). BM shows that autochthonous POC entering the hypolimnion and total
hypolimnetic respiration are similar for much of the stratified period (Fig. 7d). AL is the only
lake to have autochthonous POC inputs consistently larger than total hypolimnetic respiration
during the stratified season. All lakes show that summer allochthonous POC entering the

hypolimnion is a small contribution to the overall hypolimnetic POC load.
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Figure 7. Hypolimnetic dissolved oxygen, allochthonous (alloch) and autochthonous (auto)
organic carbon loading, and respiration dynamics during one stratified period (2005) for each
lake. Fluxes are cumulative gC m~2 and DO is presented as percent saturation. Labels are in
panel (a). Note that the cumulative water column (WC) and sediment (Sed) respiration fluxes
are stacked, while other cumulative fluxes are not.

Respiration of autochthonous POC and sediment respiration account for most of the total
hypolimnetic respiration in all lakes (Fig. 8). Respiration of DOC accounts for a relatively
small proportion of total respiration. Total hypolimnetic respiration is higher in the southern
lakes than the northern lakes. TR has the highest amount of hypolimnetic respiration for the
northern lakes, and AL and BM have the least amounts of hypolimnetic respiration. Water
column respiration contributed the most towards total hypolimnetic respiration in all lakes.
Sediment respiration contributed the largest proportion towards total hypolimnetic respiration

in BM and SP. DOC water column respiration was the smallest proportion of total

hypolimnetic respiration in all six study lakes.
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Figure 8. Total average annual hypolimnetic respiration, separated by percentages attributed
to water column DOC (Rpoc wc), water column POC (Rpoc wc), and sediment (Rsep) organic
carbon sources. Standard error bars for the annual respiration values are indicated as well.

4 Discussion

4.1 Autochthonous and Allochthonous Loads

Autochthony was the dominant source of OC subsidizing hypolimnetic respiration in the
study lakes. The importance of autochthonous OC pools in ecosystem respiration was
surprising, given ample research highlighting the dominance of allochthonous OC in north
temperate lakes (Wilkinson et al. 2013; Hanson et al. 2011; Hanson et al. 2014). This
outcome emphasizes the utility of process-based models in studying mechanisms that discern

the relative contributions of different pools of organic matter to lake metabolism.
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Autochthonous OC pools have higher turnover rates than allochthonous OC pools (Dordoni
et al., 2022) and often are lower in concentration than the more recalcitrant allochthonous
pools (Wilkinson et al. 2013). Thus, studies based on correlative relationships between lake
concentrations of organic matter and water quality metrics, likely overlook the importance of
more labile organic matter in driving observable ecosystem phenomena, such as gas flux and
formation of hypolimnetic anoxia (Evans et al., 2005; Feng et al., 2022). By quantifying
metabolism fluxes relevant to both OC pools, we can recreate shorter-term OC processes that
quantify high turnover of labile organic matter, which would typically be missed by

empirical studies based on monthly or annual observations.

Allochthony and autochthony are important to lake carbon cycling, but in ways that play out
at different time scales. Allochthonous OC has been well-established as an important factor
in driving negative NEP through a number of mechanisms (Wilkinson et al., 2013; Hanson et
al., 2014; Hanson et al., 2011). Allochthony contributes to water quality variables, such as
Secchi depth (Solomon et al. 2015), by providing the bulk of DOC in most lakes (Wilkinson
et al., 2013) and can drive persistent hypolimnetic anoxia in dystrophic lakes (Knoll et al.,
2018). In contrast, autochthony contributes to seasonal dynamics of water quality through
rapid changes in OC that can appear and disappear within a season. Within that seasonal time
frame, autochthonous POC settling from the epilimnion can drive hypolimnetic respiration,
thus controlling another key water quality metric, oxygen depletion. It is worth noting that
our model does not discern allochthonous and autochthonous sediment OC, however we

show that autochthonous OC makes up the largest proportion of OC loads in our study lakes
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and therefore autochthony likely contributes substantially to the sediment OC pool. For
highly eutrophic lakes, the model results show excess autochthony stored in the sediments
which may carry into subsequent years, potentially providing additional substrate for
sediment respiration. Thus, understanding and predicting controls over hypolimnetic oxygen

depletion benefits from quantifying both allochthonous and autochthonous OC cycles.

Differences in trophic status, hydrologic residence time, and inflow sources help explain the
relative proportion of allochthonous versus autochthonous OC among lakes in our study.
Water residence times (Hotchkiss et al. 2018; McCullough et al. 2018) and surrounding land
cover (Hanson et al. 2014) have been shown to have a substantial impact on OC dynamics by
controlling allochthonous OC loading and NEP trends on lakes included in our study
(Hanson et al. 2014, McCullough et al. 2018). We built upon these ideas by recreating daily
watershed loading dynamics of POC and DOC from derived discharge data and incorporating
nutrient control over lake primary production by using high quality and long-term
observational data. The northern lakes are embedded in a forest and wetland landscape,
which are characteristic of having higher DOC than the urban and agricultural landscape of
the southern lakes (Creed et al., 2003). This creates variation in allochthonous loading across
the study lakes. Lake trophic state and productivity are a major control for autochthonous
production, which influences autochthonous loads across the study lakes as well. For lake
metrics that are comparable between studies, such as allochthonous loading and export,
allochthonous water column respiration, and total OC burial, our results were within 20% of

values in related studies (Hanson et al. 2014, McCullough et al. 2018).
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4.2 Hypolimnetic Respiration

Given the importance of autochthonous POC to hypolimnetic respiration, we assume it
contributes substantially to both sediment respiration and respiration in the water column.
While previous work found that sediment respiration was the dominant respiration source for
lakes with depth ranges encompassed within our study (Steinsberger 2020), we found that
water column respiration was at least as important, if not more so. Differences in these
findings could be linked to uncertainty in the settling velocity of POC, due to lack of
empirical POC settling velocity measurements. Perhaps, POC mineralized in the hypolimnia
of our modeled lakes passes more quickly to the sediments in real ecosystems, shifting the
balance of respiration more toward the sediments. OC respiration can contribute substantially
to hypolimnetic DO depletion in both lakes and reservoirs (Beutel, 2003), and POC settling
velocities can be highly variable, suggesting that assumptions around vertical distribution of
lake POC deserve further investigation. Another possible explanation for these differences
could be that our model missed allochthonous POC loads from extreme events (Carpenter et
al., 2012), which can increase the amount of legacy OC stored in the sediments and increase
sediment respiration. Our model also does not account for reduced respiration rates due to
OC aging, which may explain our higher values of water column respiration. Finally, our
model includes entrainment as a possible oxygen source to the hypolimnion, which must be
offset by respiration to fit observed hypolimnetic DO changes. Any study that underestimates

DO sources to the hypolimnion likely underestimates total respiration.
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Anaerobic mineralization of organic carbon is an important biogeochemical process and can
be a substantial carbon sink through methanogenesis (Maerki et al. 2009). Although
methanogenesis is not incorporated into our model, methane dissolved in the water column of
Lake Mendota is mostly oxidized (Hart 2017), thus contributing to the overall oxygen
demand, which is accounted for in our model. What remains unaccounted is ebullition of
methane, which is a carbon flux that is difficult to quantify (McClure et al. 2020). Future
metabolism studies that include these processes might find a decrease in annual OC burial
rates relative to rates in our study. Although we believe that ebullition is not a substantial
portion of the lake’s carbon mass budget, that remains to be studied more carefully. As the
model accounts for DO consumption through calibration, the overall flux would not change
even if we link DO consumption to methane oxidation, only the process description would be

more realistic.

Our findings highlight the importance of autochthonous POC in hypolimnetic oxygen
depletion and suggest that related processes, such as the timing of nutrient loading, changes
in thermocline depth, or zooplankton grazing, could impact overall lake respiration dynamics

and anoxia formation (Schindler et al., 2016; Ladwig et al., 2021; Miiller et al., 2012).

4.3 Long-term Dynamics
Although autochthonous OC dominated the loads across the study lakes, analysis of the long-
term OC dynamics supports the importance of allochthony in lakes. Net Ecosystem

Production (NEP) has been used to quantify heterotrophy and autotrophy in lakes (Odum
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1956, Hanson et al. 2003, Cole et al. 2000, Lovett et al. 2006), and using this metric over
multiple decades allowed us to analyze long-term impacts of allochthony. TR, BM, and SP
fluctuated between heterotrophy and autotrophy, usually in tandem with trends in hydrology,
which acts as a main control of allochthonous OC. This suggests that allochthonous OC
inputs may be less important for seasonal anoxia but can still drive a lake toward negative
NEP and contribute to sediment carbon storage over long time periods. ME, MO, and AL
tended to become less autotrophic over time (Fig. 6), a pattern that coincided with significant
decreasing trends in mean epilimnetic total phosphorus concentrations for ME and AL (SI
Fig. 5). In our model, NPP and phosphorus are directly related, so decreases in phosphorus
are likely to cause decreases in NEP. Short-term respiration of autochthonous POC can
account for rapid decreases in hypolimnetic DO, but allochthonous POC, which tends to be
more recalcitrant, provides long-term subsidy of ecosystem respiration that can result in
long-term net heterotrophy. Thus, it’s critical to understand and quantify both the rapid

internal cycling based on autochthony and the long and slow turnover of allochthony.

Through explicitly simulating the cycling of both allochthony and autochthony, we can
expand our conceptual model of metabolism to better understand time dynamics of lake
water quality at the ecosystem scale. Autochthony has pronounced seasonal dynamics,
typically associated with the temporal variability of phytoplankton communities and the
growth and senescence of macrophytes (Rautio et al., 2011). While allochthony can also have
strong seasonal patterns associated with leaf litter input, pollen blooms, and spring runoff

events, its more recalcitrant nature leads to a less pronounced seasonal signal at the
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ecosystem scale (Wilkinson et al., 2013, Tranvik 1998). When considered together, it seems
that allochthony underlies long and slow changes in metabolism patterns, while autochthony
overlays strong seasonality. Both OC pools are important for ecosystem scale metabolism
processes, and their consequences are evident at different time scales. Therefore, the
interactions of both OC sources and their influences on water quality patterns deserve further

investigation.

Autochthonous OC control over hypolimnetic respiration should be a primary consideration
for understanding the influence of OC on ecosystem dynamics. Hypolimnetic oxygen
depletion and anoxia in productive lakes can be mitigated by reducing autochthonous
production of OC, which we show is mainly driven by nutrient availability. This study also
identifies the need for a better understanding of internal and external OC loads in lakes.
Previous studies have found heterotrophic behavior in less productive lakes, but our findings
highlight the importance of autochthony in these lakes, especially for shorter-time scale
processes that can be missed by looking at broad annual patterns. By using a one-
dimensional, two-layer model, we are able to also understand how surface metabolism
processes can impact bottom layer dynamics, which would not be possible with a zero-
dimensional model. Looking forward, we believe that our understanding of these processes
could be improved by building a coupled watershed - metabolism model to more closely
explore causal relations between watershed hydrology, nutrient dynamics, and lake

morphometry.
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