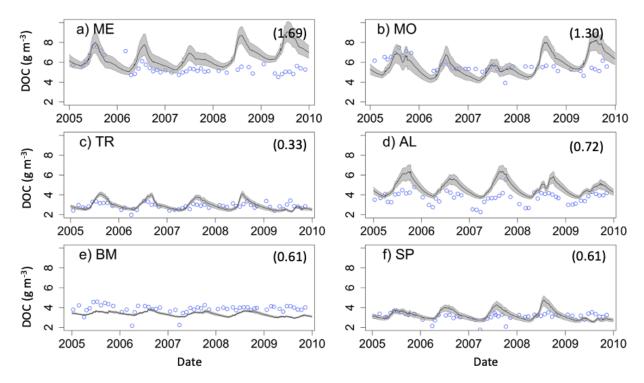
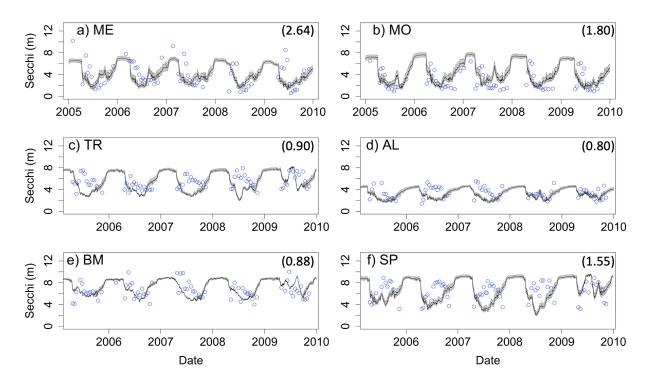
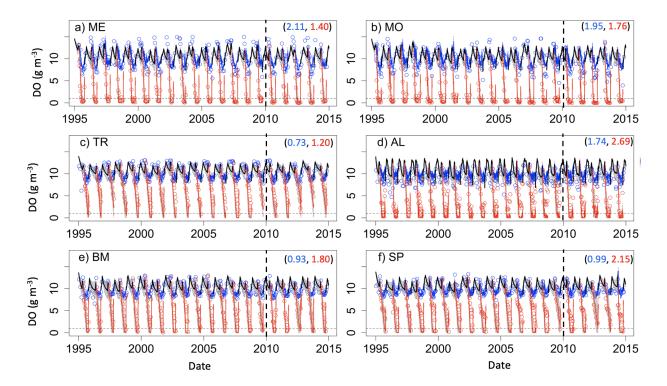
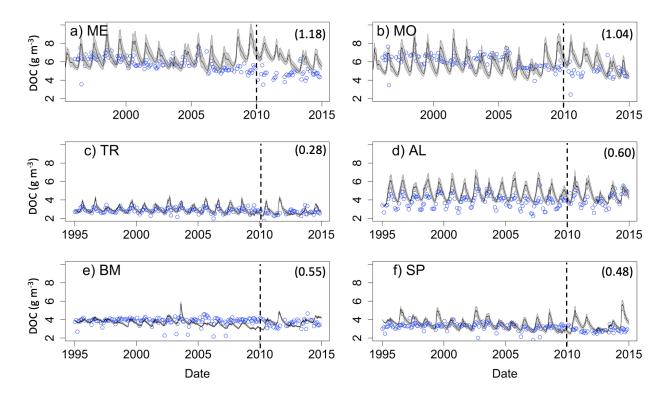

Table 3. Model Parameters, grouped into three categories: constants, which are values that were not tuned; manually calibrated, which are parameters manually tuned, typically guided by ranges from the literature; and parameters calibrated through constrained parameter search, which are calibrated through an automated search of parameter space.

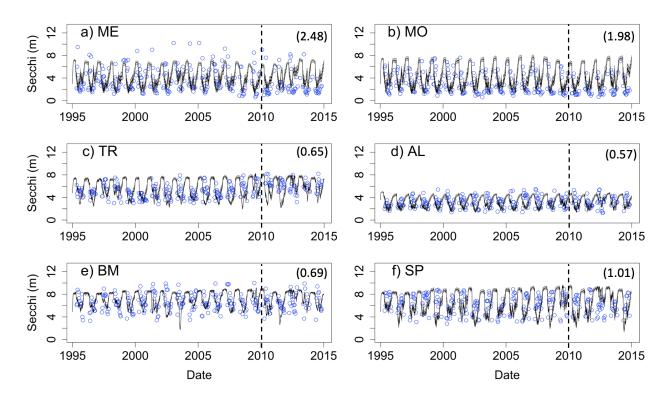

Parameter	Abbreviation	Value	Units	Source	
Constants					
Conversion of Carbon to Oxygen	02 _{convert}	2.67	Unitless	Mass Ratio of C:O	
Respiration rate of DOCR	r _{DOCR}	0.001	day^{-1}	(Hanson et al., 2011)	
Respiration rate of POCR	r POCR	0.005	day^{-1}	Taken from ranges provided in (Hanson et al. 2004)	
Respiration rate of POCR	r _{POCR}	0.005	day^{-1}	Taken from ranges provided in (Hanson et al. 2004)	
Respiration rate of POCL	$r_{_{POCL}}$	0.2	day^{-1}	Taken from ranges provided in (Hipsey et al. 2022)	
Michaelis-Menten DO half saturation coefficient	DO _{1/2}	0.5	$g m^{-3}$	Taken from ranges provided in (Hipsey et al. 2022)	
Light extinction coefficient of water	LEC water	0.125	m^{-1}	Taken from ranges in Hart et al. (2017)	
Ratio of DOC to POC production from NPP	$C_{_{NPP}}$	0.8	Unitless	Biddanda & Benner (1997)	
Albedo	α	0.3	Unitless	Global average (Marshall & Plumb, 2008)	
Atmospheric gas exchange adjustment during ice covered conditions	C _{winter}	0.1	Unitless	Taken from ranges in (Loose & Schlosser, 2011)	
Coefficient of light transmitted through ice	C _{ice}	0.05	Unitless	Taken from ranges provided in (Lei et al. 2011)	
Settling velocity rate of POC_R	K _{POCR}	1.2	$m day^{-1}$	Taken from ranges found in (Reynolds et al.1987)	
Settling velocity rate of POC_L	K _{POCL}	1	$m \ day^{-1}$	Taken from ranges ranges found in (Reynolds et al.1987)	

Parameter	Abbreviation	Value	Units	Source	
Temperature scaling coefficient for NPP	$\theta_{_{NPP}}$	1.12	Unitless	Taken from values provided in (Hipsey et al. 2022) and (Ladwig et al. 2022)	
Temperature scaling coefficient for Respiration	$ heta_{\it Resp}$	1.04	Unitless	Taken from values provided in (Hipsey et al. 2022) and (Ladwig et al. 2022)	
Manually calibrated					
Light extinction of DOC	LEC _{DOC}	0.02 - 0.06	m^2g^{-1}	Manually calibrated based on observed Secchi Depth ranges for the study lakes	
Light extinction of POC	LEC _{POC}	0.7	m^2g^{-1}	Manually calibrated based on observed Secchi Depth ranges for the study lakes	
Maximum Daily Productivity	Pmax	0.5-5	$g m^{-3} day^{-1}$	Manually calibrated from mean productivity values from Wetzel (2001)	
Recalcitrant DOC inflow concentration	DOCR _{inflow}	5-10	$g m^{-3}$	Based on ranges found in (Hanson et al. 2014, McCullough et al. 2018, Hart et al. 2017)	
Recalcitrant POC inflow concentration	POCR _{inflow}	2-5	$g m^{-3}$	Based on ranges found in (Hanson et al. 2014, McCullough et al. 2018, Hart et al. 2017)	
Calibrated through constrained parameter search					
Slope of the irradiance/producti vity curve	IP	0.055, 0.020	$gCd^{-1}(Wm^{-2})^{-1}$	Based on ranges found in (Platt et al. 1980) and tuned separately for each lake region (South, North)	
Sediment respiration flux	r sed	0.1 – 0.4	$g m^{-2} day^{-1}$	Based on ranges found in (Ladwig et al. 2021) and (Mi et al. 2020) and fit independently for each lake	
Respiration rate of DOCL	r _{DOCL}	0.015, 0.020	day^{-1}	Based on ranges found in (McCullough et al. 2018) and fit for each lake region	

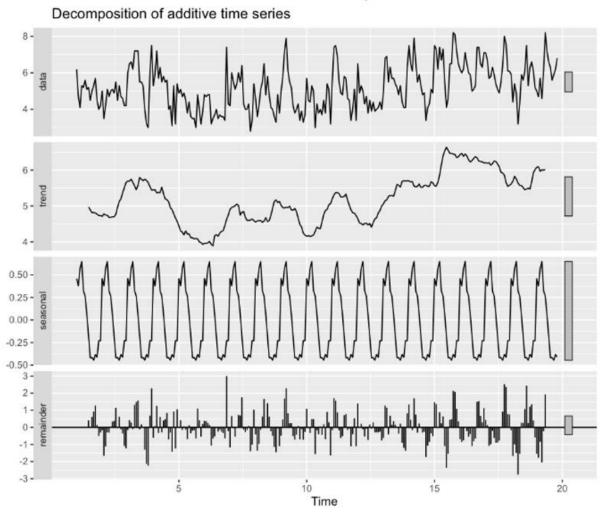

Parameter	Abbreviation	Value	Units	Source
				independently (South, North)


Figure 2. Dissolved oxygen (DO) time series for the years, 2005-2010, for the six study lakes (a-f). Model predictions are represented by lines, and circles represent the observational data. Epilimnetic DO values are blue and Hypolimnetic DO values are red. Fully mixed periods for the lake are indicated by a single black line. RMSE values (epilimnion, hypolimnion; g m⁻³) are included in the upper right of each panel. Uncertainty is represented by gray shading.


Figure 3. Epilimnetic dissolved organic carbon (DOC) time series for the years, 2005-2010, for the six study lakes (a-f). Model predictions are represented by lines, and circles represent the observational data. RMSE values are included for each lake (g C m⁻³). Uncertainty is represented by gray shading.


Figure 4. Secchi depth time series for the years, 2005-2010, for the six study lakes (a-f). Model predictions are represented by lines, and circles represent the observational data. RMSE values are included for each lake (m). Uncertainty is represented by gray shading.

Supplemental Figure 1. Dissolved oxygen (DO) time series for the years for all years. Model predictions are represented by lines, and points represent the observational data. Epilimnetic DO values are indicated in blue and Hypolimnetic DO values are indicated in red. RMSE values (Epi,Hypo) are included in the upper right of each panel. The calibration period (1995-2010) and validation period (2010-2015) are separated by a vertical dashed black line. Uncertainty is represented by gray shading.



Supplemental Figure 2. Dissolved organic carbon (DOC) time series for all years. Model predictions are represented by lines, and points represent the observational data. RMSE values are included for each lake. The calibration period (1995-2009) and validation period (2010-2014) are separated by a vertical dashed black line. Uncertainty is represented by gray shading.

Supplemental Figure 3. Secchi Depth time series for the all years. Model predictions are represented by lines, and points represent the observational data. RMSE values are included for each lake. The calibration period (1995-2009) and validation period (2010-2014) are separated by a vertical dashed black line. Uncertainty is represented by gray shading.

TR Time series analysis

Supplemental Figure 7. Time series decomposition for observed Secchi data for Trout Lake.

Supplemental Table 6. Results for the Wilcoxon significance test performed on the average annual OC sources and fates for our study lakes. Note, any p-value less than 0.05 was considered significant. All non-significant differences between lakes are indicated by "NS".

Autochthonous OC						
	ME	МО	TR	AL	BM	SP
ME						
MO	*					
TR	*	*				
AL	*	*	*			
BM	*	*	*	*		
SP	*	*	*	*	NS	
Allochthonous OC						
	ME	MO	TR	AL	BM	SP
ME						
MO	*					
TR	*	*				
AL	*	*	*			
BM	*	*	*	*		
SP	*	*	*	*	NS	
Water Column Respiration						
	ME	MO	TR	AL	BM	SP
ME						
MO	NS					
TR	*	*				
AL	*	*	*			
ВМ	*	*	*	NS		
SP	*	*	*	*	*	
Sediment Respiration						

	ME	МО	TR	AL	BM	SP
ME						
МО	NS					
TR	*	*				
AL	*	*	*			
BM	*	*	*	*		
SP	*	*	*	*	NS	
OC Export						
	ME	МО	TR	AL	BM	SP
ME						
МО	*					
TR	*	*				
AL	NS	*	*			
BM	*	*	*	*		
SP	*	*	*	*	*	
OC Burial						
	ME	МО	TR	AL	BM	SP
ME						
MO	NS					
TR	*	*				
AL	*	*	*			
BM	*	*	*	*		
SP	*	*	*	*	NS	