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Abstract. The presence of melt ponds on Arctic summer sea ice significantly alters its albedo and thereby the surface energy

budget and mass balance. Large-scale observations of melt pond coverage and sea ice albedo are crucial to investigate the role

of sea ice for Arctic amplification and its representation in global climate models. We present the new Melt Pond Detection 2

(MPD2) algorithm, which retrieves melt pond, sea ice, and open ocean fractions as well as surface albedo from Sentinel-

3 visible and near-infrared reflectances. In contrast to most other algorithms, our method uses neither fixed values for the5

spectral albedo of the surface constituents nor an artificial neural network. Instead, it aims for a fully physical representation

of the reflective properties of the surface constituents based on their optical characteristics. The state vector X , containing

the optical properties of melt ponds and sea ice along with the area fractions of melt ponds and open ocean, is optimized

in an iterative procedure to match the measured reflectances and describe the surface state. A major problem in unmixing a

compound pixel is that a mixture of half open water and half bright ice cannot be distinguished from a homogeneous pixel of10

darker ice. In order to overcome this, we suggest to constrain the retrieval with a priori information. Initial values and constraint

of the surface fractions are derived with an empirical retrieval which uses the same spectral reflectances as implemented in the

physical retrieval.

The snow grain size and optical thickness are changing with time and thus the ice surface albedo changes throughout the

season. Therefore, field observations of spectral albedo are used to develop a parameterization of the sea ice optical properties15

as a function of the temperature history of the sea ice. With this a priori data, the iterative optimization is initialized and

constrained, resulting in a retrieval uncertainty of below 8 % for melt pond and 9 % for open ocean fractions compared to

the reference dataset. As reference data for evaluation, a 10 m resolution product of melt pond and open ocean fraction from

Sentinel-2 optical imagery is used.

1 Introduction20

In the central Arctic, summer starts , depending on latitude, in May and lasts until late August or early September. This period

is defined by the presence of solar shortwave radiation rapidly warming the air and sea ice surface. The heat uptake by the

ocean is limited by the sea ice cover which acts as a protective shield against the incoming solar radiation because of its high
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albedo. Thick, white ice or even snow covered ice reflects more than 70 % of the incoming radiation back into the atmosphere

(Malinka et al., 2018; Light et al., 2022), while the darker, open ocean would absorb 90 % of the solar energy if it was not25

protected by sea ice (Pohl et al., 2020). Thus, changes in sea ice extent, thickness or albedo have a strong impact on the Arctic

energy budget (Fetterer and Untersteiner, 1998; Perovich et al., 2002; Nicolaus et al., 2012). Melt ponds, which form on the

Arctic sea ice surface once the melting point is exceeded, drastically lower the surface albedo (Eicken et al., 2004; Istomina

et al., 2015a; Light et al., 2022) and lead to an increased absorption of solar radiation in the sea ice and upper ocean (Perovich

et al., 2003). This in turn accelerated the sea ice melt and is known as the sea ice-albedo feedback mechanism (Curry et al.,30

1995; Perovich et al., 2008; Wendisch et al., 2023). Due to this feedback mechanism, some studies find that melt ponds could

be used to predict the seasonal Arctic sea ice extent minimum in September (Schröder et al., 2014; Liu et al., 2015), which

has been dramatically declining in the past decades (Stroeve et al., 2012b, a; Screen, 2021). Additionally, melt ponds strongly

impact the Arctic ecosystem, because the increased amount of available photosynthetically active radiation in and beneath the

ice enhances primary production (Frey et al., 2011; Light et al., 2015; Katlein et al., 2019; Nicolaus et al., 2022).35

Field observations help understanding the formation processes and seasonal evolution of melt ponds (Yackel et al., 2000;

Perovich et al., 2002; Eicken et al., 2004; Polashenski et al., 2012; Webster et al., 2022). However, these studies also show high

temporal and spatial variability of melt pond formation and coverage, especially on undeformed first year ice (Scharien and

Yackel, 2005). This variability is challenging but necessary to be represented in global climate models (Flocco and Feltham,

2007; Dorn et al., 2018; Hunke et al., 2013; Zhang et al., 2018) to realistically simulate the albedo and mass balance of Arc-40

tic sea ice. Therefore it is essential to analyze the large-scale distribution and evolution of melt ponds and thereby quantify

the importance of sea ice in terms of Arctic Amplification and its impact on the global climate system (Serreze et al., 2009;

Wendisch et al., 2023). For this purpose, satellite observations are the only suitable measurements. They can cover the entire

Arctic on a regular basis, at coarser resolutions of 500 m to 1.2 km even daily. The first pan-Arctic melt pond fraction product

was developed by Tschudi et al. (2008) using MODIS (Moderate Resolution Imaging Spectroradiometer) spectral surfaces45

reflectances in the optical range. They use fixed reflectance values for the surface type components though, which does not

account for the high variability of sea ice and melt pond optical properties, which can lead to misclassification and larger un-

certainties. Following approaches generating pan-Arctic melt pond fraction datasets mostly involve Artificial Neural Networks

(Rösel et al., 2012; Ding et al., 2020; Lee et al., 2020; Feng et al., 2022; Peng et al., 2022). However, there are discrepancies

of more than 10 % between melt pond fraction products (Lee et al., 2020) and the artificial character of the retrievals impedes50

the analysis and understanding of the physical reasons. Zege et al. (2015) have developed a physical retrieval, which is based

on field observations of melt pond and sea ice spectra (Polashenski et al., 2012; Istomina et al., 2013) and the representation of

the bi-directional reflectance of the surface as a function of its physical properties as suggested in Malinka et al. (2016, 2018).

This approach enables a better assessment of retrieval performance (Istomina et al., 2015a, b) and adjustments with regard to a

changing Arctic without the need of new training data.55

We present a new algorithm, called MPD2, that builds on the implementation of the physical MPD1 retrieval by Zege et al.

(2015); Istomina et al. (2015a, b). While MPD1 was developed for the distinction between two surface types, sea ice and melt

ponds, only, we add a third, open ocean, surface type class to avoid a systematic overestimation of melt ponds. Knowledge
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gained from field observations of summer sea ice and melt ponds is used to initialize and constrain the retrieval and thereby

afford the additional free parameter. A parameterization is developed from in-situ spectral albedo measurements to estimate sea60

ice properties as a function of the air temperatures the sea ice has undergone. This is motivated by the temporal sea ice albedo

change which also depends on the temperature (changes in snow grain size and optical thickness). As we are retrieving sub-

satellite-pixel surface fractions, such unaccounted albedo changes of the sea ice/snow surface type would negatively impact

the retrieval uncertainty. Additionally, we have developed an empirical retrieval of the three surface types, which serves as

an initial step to provide constrained surface fraction values as starting guess for the physical melt pond retrieval. This initial65

empirical retrieval is based on the difference between the spectral signals of the surface types (Tschudi et al., 2008; Rösel et al.,

2012; Istomina et al., 2015a; Light et al., 2022). The MPD2 algorithm is implemented for the Sentinel-3 satellite sensors OLCI

(Ocean and Land Color Instrument) and SLSTR (Sea and Land Surface Temperature Radiometer) using top of the atmosphere

(TOA) measured reflectances in the visible and near-infrared range at a spatial resolution of 1.2 km. Comparisons are drawn to

the MPD1 algorithm (Istomina et al., 2023) and to a 10 m resolution melt pond and open ocean fraction product derived from70

Sentinel-2 optical data (Niehaus et al., 2023). The focus of this study about the new MPD2 retrieval is the melt pond fraction

product, which is also mainly evaluated here. However, along with melt pond fraction, the open ocean fraction and surface

albedo are retrieved.

2 Datasets

The central algorithm presented in this work is based on optical data acquired by the Sentinel-3 satellites. For the processing,75

in addition, the low resolution sea ice drift product of the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI

SAF, www.osi-saf.org) and the reanalysis 2-m air temperature product by ERA5 are used. For the development, in-situ spectral

albedo measurements are investigated. The evaluation of the presented algorithm is performed based on the melt pond fraction

product derived from optical Sentinel-2 satellite data.

2.1 Sentinel-3 top of the atmosphere reflectances80

The retrieval algorithm uses top of the atmosphere (TOA) measurements supplied by the EU Copernicus Sentinel-3A and -3B

satellites operated by the European Space Agency (ESA) and European Organisation for the Exploitation of Meteorological

Satellites (EUMETSAT). The two satellites orbit the Earth, phased by 180 ◦, at an altitude of approximately 815 km in a polar,

sun-synchronous orbit since February 2016 and April 2018, respectively. With a swath width of 1270 km and a short revisit

time, they cover the full Arctic, north of 67 ◦, every day. However, optical observations are compromised by prevalent cloud85

contamination typical for the Arctic summer. Each of the two satellites carries multiple instruments, two of which are used in

this work: The Ocean and Land Color Instrument (OLCI) and the Sea and Land Surface Temperature Radiometer (SLSTR)

instrument. The OLCI instrument measures the Earth reflectance in 21 spectral bands in the visible and near-infrared (NIR)

range (400 nm-1020 nm) with a spatial resolution of 1.2 km in reduced resolution mode and 300 m in full resolution mode. In

this study we use the reduced resolution data in favor of computing time and because the complications of sub-pixel surface90
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type features apply to both resolutions. The SLSTR instrument measures TOA radiances and brightness temperatures in 9

spectral bands in a range from 554 nm to 12µm with a spatial resolution of 500 m-1 km. In the Level-1 products, the data

is provided as geolocated measurements for both instruments, for OLCI, additionally, the solar and observation angles are

provided.

2.2 OSI SAF drift product95

For the tracking of the sea ice motion, the OSI-405 low-resolution sea-ice drift product by EUMETSAT OSI-SAF (OSI) is

used. It provides sea ice motion vector fields for a nominal time span of 48 h merging single-sensor drift vectors derived from

various satellite sensors with an optimal interpolation scheme. The drift data is provided with an uncertainty estimate which

ranges from 4 km to 8 km. The product is a near real time product that is available daily since 2019 and with a grid spacing of

62.5 km, projected to the NSIDC polar-stereographic grid.100

2.3 ERA5 temperature

Along the drift track of ice parcels determined with the OSI SAF drift data, we use the 2-m air temperature provided by the

ECMWF fifth generation reanalysis ERA5 (Hersbach et al., 2020) to calculate a temperature index as described in section 4.2.

The data is downloaded from the ERA5 webpage with a spatial resolution of 0.25 ◦ and a temporal resolution of 6 h.

2.4 In-situ albedo observations of radiation stations105

in-situ observations of spectralalbedo from various measurement campaigns (TARA campaign 2007 (Nicolaus and Gerland,

2022), PS106-ARK31/1 expedition 2017, AlertMAPLI18 campaign 2018 and MOSAiC campaign 2019-2020 (Nicolaus et al.,

2022)) are used in this work to investigate the relation between surface properties and the air temperatures. The datasets were

obtained by the use of autonomous platforms installed on drifting sea-ice. These platforms comprised two RAMSES spectral

radiometers with a spectral resolution interpolated to 1 nm, covering wavelengths from 320 nm to 950 nm. They were mounted110

1 m above the sea-ice surface, measuring the incoming solar irradiance and upward reflected solar irradiance. From these

measurements spectral albedo is obtained and provided. More details on the measurement setup and instruments can be found

in Nicolaus et al. (2010).

2.5 Sentinel-2 melt pond fraction

For the development and evaluation of the MPD2 algorithm, 10 m spatial resolution melt pond fraction data derived from115

Sentinel-2 satellite Level-1C optical imagery (Niehaus et al., 2023) is used. The dataset provides melt pond fraction and open

ocean maps up to latitudes of 82.3 ◦, covering areas of 1000 km2 to 10000 km2 each (Niehaus and Spreen, 2022). The provided

Sentinel-2 scenes are filtered by the availability of reasonable, cloud-free Sentinel-3 data within a time difference of less than

1 h, which results in 33 remaining scenes. To enable a quantitative comparison, the data from Sentinel-2 is drift corrected to

match the Sentinel-3 product by using the OSI-SAF drift product described in section 2.2.120
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3 The Melt Pond Detection 2 algorithm

The Melt Pond Detection 2 (MPD2) algorithm builds on the Melt Pond Detection 1 (MPD1) algorithm which was developed by

Zege et al. (2015) to retrieve pan-Arctic melt pond fraction and surface albedo from optical satellite data. Initially, the algorithm

was designed for the application to data from the MERIS (MEdium Resolution Imaging Spectrometer) sensor on ENVISAT

(Environmental Satellite) which was operating from 2012 to 2022. The adaption for the application to the data acquired by the125

Sentinel-3 satellites is described in Istomina et al. (2023). In contrast to most other pan-Arctic retrievals, e.g., by Rösel et al.

(2012); Ding et al. (2020); Lee et al. (2020); Feng et al. (2022); Peng et al. (2022), the MPD algorithm is not based on the

implementation of Artificial Neural Networks but uses a radiative transfer model representing the reflective properties of melt

ponds and white ice based on their physical characteristics. Herein, the white ice category comprises various types of the sea

ice surface combined by their high albedo and white appearance. This includes bare sea ice with a thin but highly scattering130

surface layer ontop, which is formed after meltwater has drained (Tschudi et al., 2008; Malinka et al., 2016), as well as snow in

its different melting stages. These surfaces differ by their grain size, optical thickness and other properties which, however, are

all accounted for in the same metrics by Zege et al. (2015), so that sea ice and white ice are used synonymously in the following.

The bi-directional reflectance distribution function (BRDF) (of Standards and Nicodemus, 1977) of the snow/white ice/melt

pond surface is used instead of the albedo, to account for the special illumination conditions of low solar elevation angles in135

the Arctic as well as of different observation angles. This is important as the occurring sun glint significantly contributes to the

surface albedo but is not captured by the satellite observing at high elevation angles. The total BRDF R of a pixel at the sea

level is a linear combination of the surface components Rwi, Rmp and Roc, weighted by their surface fractions swi, smp and

soc, for white ice, melt pond and open ocean, respectively:

R= swi ·Rwi + smp ·Rmp + soc ·Roc. (1)140

The TOA relfectance is then calculated by modeling radiative transfer through the atmosphere. The novelty of the MPD2

algorithm is the representation of open ocean as a third surface type class, along with the sea ice and melt pond classes

that were considered in the MPD1 algorithm already. The area fractions of these three surfaces are related by the following

equations:

swi + smp + soc = 1 (2)145

swi = (1− fmp) · sic (3)

smp = fmp · sic (4)

Herein, it is important to distinguish between the melt pond surface area fraction smp that is given with respect to the total area

of a pixel and the melt pond fraction fmp which is considered with respect to the total area of sea ice sic. The total area of sea

ice sic combines the area fraction of melt ponds smp and the area fraction of white ice swi, which is the ice area that is not150

covered by melt ponds.

Because of the close to specular reflectance of the open ocean which is, as mentioned above, not captured by the satellite due
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the low sun elevation and high viewing angle of the satellite, the radiance reflected by the open ocean is neglected for the

BRDF calculation. With this assumption and the Equations (2), (3) and (4), Equation (1) can be transformed to:

R= (1− soc) · fmp ·Rmp +(1− soc) · (1− fmp) ·Rwi. (5)155

The area fractions soc and fmp are part of the retrieval output.

The BRDF of the white ice Rwi is calculated from the inherent optical properties of a stochastic medium using the model of

random mixture by Malinka (2014), resulting in three dominant physical parameters: The optical thickness τwi of a surface

layer, the mean effective grain size aeff and the absorption coefficient of yellow matter αy deposited on the ice surface. The

optical thickness of the sea ice describes the ability of light penetrating into the ice without being absorbed and is defined by160

the sea ice texture. The effective grain size is defined as the mean chord length of ice in snow and white ice and is related to

the widely used specific surface area (SSA) as

aeff =
4

ρice ·SSA
, (6)

where ρice is the ice density.

To derive the BRDF of melt ponds Rmp, only isotropic reflection from the pond bottom is taken into account, neglecting165

sideward reflections and deviations from the Lambertian law due to multiple reflections between pond bottom and surface.

Additionally, the melt water is assumed to be clear, without any contaminants. Although this might not be perfectly true,

especially in near coastal areas, the effect on the retrieval results in the form of an overestimation of melt pond fraction is

estimated to be negligibly small (Malinka et al., 2018). With the mentioned assumptions, three further parameters of importance

are determined: The pond depth hpond, the ice thickness underneath the pond hice and the transport scattering coefficient of170

that ice σice, defining the spectral albedo of the pond bottom (Malinka et al., 2018).

In combination with the area fractions soc and fmp, these physical parameters dominating the ice and pond surface reflections,

constitute the state vector

X = (fmp,soc, τwi,aeff ,αy,hpond,hice,σice) , (7)

which describes the state of the surface and is optimized in an iterative procedure to find the state that models the measured175

TOA reflectances the best. In Table 1 an overview of the parameters and their dimensions is given.

3.1 The algorithm structure

The input data to the algorithm is acquired by the Sentinel-3A and -3B satellite instruments OLCI and SLSTR introduced

in section 2.1 at a spatial resolution of 1.2 km. From the OLCI instrument the TOA radiances Ri of those channels (Table180

2) are used that correspond to the wavelengths of the channels used previously by the MERIS sensor for MPD1 (Istomina

et al., 2023). Additionally, the viewing and illumination zenith and azimuth angles are entered into the algorithm. For cloud
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Table 1. State vector X of optimized parameters

Symbol Characteristics Dimension

fmp melt pond fraction with respect to ice area dimensionless

soc open ocean fraction with respect to pixel area dimensionless

τwi optical thickness of white ice dimensionless

aeff effective grain size of ice surface µm

αy absorption coefficient of yellow matter m−1

hpond depth of melt pond m

hice ice thickness beneath melt pond m

σice transport scattering coefficient of pond bottom m−1

Table 2. OLCI and SLSTR spectral channels used. Channels near 550 nm are excluded in order to avoid the effect of ozone absorption.

# center wavelength [nm]

OLCI

2 412.5

3 442.5

4 490

10 681.25

12 753.75

16 778.75

17 865

18 885

SLSTR

S7 3742

S8 10854

S9 12022.5

screening, the channels S7, S8 and S9, with the wavelengths given in Table 2, from the SLSTR instrument are used (Istomina

et al., 2023).

As auxiliary input data to set the initial values the allowed range of parameters in X , the OSI-SAF drift product and the185

ERA5 2-m air temperature are used. This data is necessary to calculate the temperature history of every pixel and is inserted

into the process block where the initial values and boundaries for the state vector X are set. The details of this procedure are

the core of this study and will be discussed in detail in the Sections 4 and 5.

To reduce the input data to pixels where the algorithm is applicable, first a landmask is applied and secondly pixels with

cloud contamination are filtered out. To achieve this, cloud screening criteria introduced by Istomina et al. (2010, 2011) and190

the differential snow index criterion (Zege et al., 2015) are applied. Atmospheric corrections are applied by the use of the
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radiative transfer code RAY (Tynes, 2001) to take into account scattering and absorption by aerosols and gases, as well as

molecular scattering and is explained in detail in (Zege et al., 2015). The atmospheric correction block calculates for every

pixel the transmission ti and the reflection ri of the atmosphere in the spectral bands i of the used wavelengths. With these,

the maximal possible TOA reflectance RTOA
max , in case of perfect reflection at the surface, is calculated. This value is used in195

the iterative procedure as a threshold. These values, ti, ri and RTOA
max , are passed to the iterative procedure in combination with

the initialization and the boundaries of the state vector X for all the pixels that are determined to be reasonable pixels for the

algorithm. The following description of the iterative procedure is visualized in the flowchart in Figure 1. It is explained for a

single pixel as the processing is independent between pixels.

1. Starting with the initialized state vector X describing the surface, the TOA reflectances that would be expected are calculated

Figure 1. Flowchart of the MPD2 algorithm. The atmospheric correction block is left blank in favor of simplicity, the details can be found

in Zege et al. (2015). The red color marks parts of the algorithm where major changes have been introduced compared to the MPD1 version.

The current iteration step of the optimization process is denoted as n and k indicates the entries of the state vector X .

200

using Equation 5, the forward model (Malinka, 2014; Malinka et al., 2018) for the BRDF of the white ice and melt ponds, and

8



the transmission and reflectance coefficients of the atmosphere.

2. The measured TOA reflectances in the eight spectral channels i are compared to the reflectance threshold RTOA
max from the

atmosphric correction block for the respective channels. If the measured reflectance is higher than this threshold, fmp and

soc are zero because melt ponds or open ocean would reduce the measured TOA reflectance. Following, only the parameters205

describing the white ice reflectance, hpond, hice and σice, are included in further optimization steps. If the measured reflectance

is below the threshold, all parameters of X are included.

3. The state vector is updated according to the differences between the modeled and measured TOA reflectances. This procedure

relies on the Newton-Raphson method (Press, 2007). For every component Xk of the state vector and every channel i, the partial

derivative of RTOA
i is calculated numerically to compose the matrix M :210

M = (Mik) =

(
Xk ·

δRTOA
i

δXk

)
. (8)

With this matrix, the change applied to the components of X is determined from the current iteration step n:

∆Xn+1
k =Xn

k · e∆Xk , (9)

where the vector ∆X is the product of the Moore-Penrose pseudoinverse (pinv) of matrix M (Press, 2007) and the difference

vector between the measured TOA reflectances R and the TOA reflectances calculated in this iteration step Rn:215

∆X = pinv (M,λmin)× (R−Rn) . (10)

4. If any updated value of X is beyond the respective boundaries, which were initialized before the iteration process, it is set

to the passed boundaries and is no longer included in the remaining optimization process.

5. The steps 1.-4. are repeated until two abortion criteria are satisfied: The first requirement involves the intended change to the

components of X . If the condition220

∆Xk < 0.001, (11)

is met for all parameter k, it can be assumed that the algorithm has found a minimum where further iterations would not lead

to significant changes of the output. The second condition takes the root mean squared difference σ between the measured and

retrieved TOA reflectances into account to ensure that the minimum found can physically describe the surface state:

σ =

√√√√ 1

m

m∑
i=1

(Ri −Rn
i )

2
< 0.01 (12)225

Finally, the output of the retrieval algorithm are the melt pond fraction, open ocean fraction and the spectral albedos at wave-

lengths 400 nm to 900 nm, in 100 nm steps. Additionally, σ which is an estimator of the retrieval uncertainty for the specific

pixel is provided.
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3.2 Algorithm sensitivity to initial values of optimized parameters

The MPD2 algorithm is a complex, multiparameter retrieval. By including open ocean as third surface type class, the number of230

free parameters is increased to 8 (Table 1). In addition, open ocean is spectrally almost neutral with very little reflectance in the

broadband optical and NIR spectrum (Pohl et al., 2020). This can result in a situation where a mixed pixel consisting of open

ocean and bright ice is indistinguishable from a homogeneous pixel of darker ice and makes it virtually impossible to unmix

the spectral signals of the surface type components without additional information (Istomina et al., 2023). This additional

information could be inserted into the algorithm by finding a suitable initialization and constraint of the state vector X . As the235

cost function minimized in the retrieval is expected to be multimodal, a suitable initialization of X offers potential to improve

on the retrieval performance (as the optimization could otherwise run into a false local minimum in the distribution).

To investigate the algorithm sensitivity to the initial values of the optimized state vector X , a set of test pixels is selected. For

this selection the melt pond fraction product from Sentinel-2, described in Section 2.5 is used. After drift correction, the two

satellite products are overlapping and the 10 m resolution Sentinel-2 product (where 120x120 pixel correspond to one of the240

Sentinel-3 pixels) is used to identify 6 cases of different dominating surface type classes and their combinations. For each of

these 6 cases, 4 adjacent pixels of Sentinel-3 (corresponding to an area of 2.4 km x 2.4 km) are chosen yielding a testbed of 24

intentionally chosen pixels in total. Additionally, 6 cases of 4 pixels are chosen randomly. In Figure 2 the Sentinel-2 reference

melt pond fractions are displayed for all the 48 test pixels. In case of the intentionally chosen pixels, the present surface types

in these pixels are given, ordered from highest to lowest fraction. For further discussion, we focus on these manually chosen245

pixels and average the results for the four pixels representing one case.

Figure 2. Sentinel-2 melt pond fraction reference of the test pixels. Half (right) of the pixels is chosen randomly, the other half (left) chosen

with purpose to represent the typical surface types and their combinations as denoted by the labels. In this case, the present surface types in

the pixels are listed ordered by their occurrence.

On the Sentinel-3 input data of these test pixels we run a Monte-Carlo simulation of the MPD2 algorithm to investigate the

retrieval sensitivity to the initial values of the parameters in the state vector X . All parameters Xk are varied simultaneously

within according physical ranges. These ranges come from in-situ data and can be seen from the limits of the x-axes in Figure

3. This figure shows for each optimized parameter the probability density of retrieving a reasonable result as a function of the250
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initial guess for the different surface type combinations. The definition of a reasonable result is

fMPD2
mp − fS2

mp

1+2fS2
mp

< 0.1, (13)

where mpfMPD2 is the melt pond fraction retrieved with MPD2 and mpfS2 is the reference melt pond fraction of the respective

pixel from Sentinel-2. Equation 13 combines the estimation of the absolute and relative error, so that for small values of fmp

the absolute error needs to be less than 0.1, while for a 100 % melt pond surface the relative error should be below 0.3. Thus,255

this estimation smoothly transits from the relative difference to the absolute one at small values of fmp.

Figure 3. Probability densities of initial values yielding a reasonable result of melt pond fraction output. The reasonable output is defined

by two criteria: (1) the difference between the melt pond fraction output and the reference value from Sentinel-2 is below 0.1 or 10 % and (2)

the root mean square deviation (RMSD) of the retrieved reflectances compared to the measured reflectances is below 0.1. The eight panels

show the distributions for the different optimized parameters of the state vector X . The differently colored lines represent the average of the

four test pixels per dominant surface type (combinations). The triangles in the two upper left panels show the reference values of melt pond

and open ocean fraction from Sentinel-2.

To analyze Figure 3 it is important to note that the probability densities are standardized to the number of reasonable results.

There are two different ways to look at the graphs: 1. Either the focus is the difference between the curves representing the

surface types. This enables an interpretation of how important it is to choose the initial values for every surface separately. 2.

Or the focus is the dependency of a single curve or multiple similar curves on the initial value. This shows how important the260

initial values for this case (parameter, surface type) is and can help to choose suitable ones. If there is a strong peak the suitable

initialization is important. If the curve is close to a uniform distribution, it is not.
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For fmp and soc in the two upper left panels of Figure 3, the differences between the various surface types and combinations are

the strongest. The triangles at the top of these two panels give the reference values from the Sentinel-2 product. The comparison

of the reference values and the maxima of the probability density curves lead to the conclusion that the retrieval works better265

when the initial value is already somewhat close to the reality. Interestingly, an initial value of fmp = 0 is hardly ever good

for the performance of the retrieval. However, it is obvious that the initial value and boundary of fmp and soc should not be

fixed but adapted for every pixel to have a higher likelihood to achieve the best result. The effective grain size aeff of sea ice

is related to its albedo (Figure 6) and shows in the upper right panel a strong impact on the retrieval results for the ice and

the ice, water surfaces, the latter of which is also strongly dominated by ice. For the other surface types aeff seems to have270

little impact on the retrieval performance. Another noticeable feature is the strong peak at small scattering coefficients σice

for ponded pixels in the lower right panel, while all other surface types show almost a uniform distribution. This is neglected

because we expect the influence of the initial value for σice to decrease with other parameters being constrained. For the other

optimized parameters, τwi, αy , hpond, hice, the dependency of the probability of a reasonable result on the initial values is not

as strong.275

Based on this analysis, we conclude that an approach is needed to initialize and constrain fmp and soc as well as aeff . In the

following two chapters constraints for 1. aeff and τwi, which are correlated, and 2. fmp and soc are developed.

4 Initial values for effective grain size aeff and optical thickness τwi

The reflective properties of sea ice are highly variable. In April and May, most of it is covered by snow featuring a very high

albedo. This is because dry snow consists of small grains, typically around 100-300µm (Jäkel et al., 2021), leading to high280

(almost infinite) optical thickness and strong scattering (Perovich, 1979). When the air temperature approaches the melting

point, the surface becomes wetter and snow grains start to bond (Marsh, 1987), a process called sintering (Blackford, 2007).

Thereby the snow grain size increases and the optical thickness of the surface layer becomes finite. Once the snow is melted

and drained into surface depressions to form melt ponds, white ice is left. The reflection of this ice is defined by a surface

scattering layer (Grenfell and Maykut, 1977) and can be described by the same metrics as snow (Zege et al., 2015; Malinka285

et al., 2016). However, the grain sizes are much larger and the optical thickness is reduced.

It is eminent that the effective grain size aeff and optical thickness τwi of a sea ice surface layer (consisting of white ice or

snow) are correlated and define the albedo. Moreover, they depend on the wetness of the surface and thus on the air temperature.

The goal of this section is to find a simple relation between the temperature history that the sea ice experienced and the

physical properties aeff and τwi. For that purpose, the satellite spectral measurements of the surface reflectance are not longer290

considered a snapshot in time but as the result of the previous history of that surface. That means the drift trajectory of every

single satellite pixel is calculated from the time of measurement back to the beginning of the melt season using the OSI-SAF

drift product described in section 2.2. Along this drift track the 2-m air temperatures are collected from the ERA5 product

described in section 2.3. The empirical relation found between the temperature history along the drift track and the optical

properties is based on in-situ spectral albedo measurements introduced in section 2.4. The development and filtering of this295
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data is described in the following section 4.1. Afterwards, in section 4.2, the correlation between temperature history and

optical surface properties is explored and discussed.

4.1 In-situ data preparation

We use spectral albedo measurements from in-situ radiation station data introduced in Section 2.4 to develop the relationship

between temperature history and surface optical properties. It is necessary to make sure that only albedo measurements of sea300

ice and not of melt ponds are used for this analysis because aeff and τwi are not appropriate properties to describe melt pond

reflection. For this purpose, we use a conservative threshold applied to the ratio of the albedo at 500 nm and 900 nm, which is

sensitive to the water content of the surface (Nicolaus et al., 2010; Tao et al., 2023). If the ratio is >1.5, the data is removed

from the evaluation because there most likely is a melt pond in the observation area. Then the forward model used in the

MPD2 algorithm itself and described in Malinka et al. (2016) is used to derive aeff and τwi from the in-situ spectral albedo305

measurements. The model output comes along with an uncertainty estimate which is used to filter out measurements where the

model was not able to reproduce the observed spectra sufficiently and thus the derived values of aeff and τwi are not reliable.

Additionally, we use an averaged slope of the albedo curve in combination with the albedo at 400 nm to eliminate observations

where aeff is inexplicable high, probably because of irregular sky conditions of an undetected melt pond for which the model

is not valid. Subsequently, events of fresh snowfall after the melting had already started are removed from the in-situ dataset310

as these are not covered by the forward model. This is done by the application of a lower threshold of 300µm< aeff to the

effective grain size according to Jäkel et al. (2021). Figure 4 shows the time periods where observations are available after

these steps of filtering.

Figure 4. Overview of the available radiation station data throughout the summer period after data filtering. The first four digits of the station

names indicate the year of observation.
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4.2 Relation between the physical properties and the temperature history

To relate the modeled aeff and τwi to the temperature history dictating the current state of the sea ice surface we decided315

to use the approach of the Cumulative Melting Degree Day (CMDD) index, which is defined as the integrated temperature

above 0 °C over time. To be able to take into account short freezing periods in between the melting periods, we adapted the

conventional CMDD index resulting in an index we call Tidx. Starting at the beginning of observations, or at the date where

the backtracking of a pixel ends, the temperature is evaluated at every time step ti to add to or subtract from the current value

of the temperature index Tidx. It is important that this starting date of calculations lies before the melt onset. Figure 5 shows320

the iterative procedure that is used to gain the temperature index Tidx at any time of observation tobs. This procedure takes a

list of temperatures along the back projected drift trajectory of a pixel (observation) and comprises two blocks, one handling

the melting temperature (left, red part), the other handling the freezing periods (right, blue part). If the temperature is above

0 °C the common definition of cumulative melting degree days (CMDD) is used:

CMDD =

∫
t

T · dt. (14)325

When the temperature drops below 0 °C, Tidx is reduced in proportion to the time period, magnitude of negative temperature

and the current value of Tidx. This approach is based on the assumption of the surface getting drier when it is freezing again,

stopping the sintering and leading to a slight refinement of the grains. As soon as the temperature rises again above 0 °C, we

switch back to the increase of Tidx following the CMDD definition in Equation 14.

As an example, Figure 6 shows the modeled physical quantities aeff and τwi together with the 2-m air temperature T and330

the derived temperature index Tidx for the radiation station 2020R12. With an overall increasing Tidx, the optical thickness

of the surface layer is decreasing while the effective grain size is increasing. Strong fluctuations are especially visible for the

modeled grain size corresponding to different amounts of scattering layer. There are two distinct data gaps in the modeled data

at the end of May and around June 25. This is where the data has been filtered out because of the likely presence of melt ponds

(Nicolaus et al., 2010). Around these two gaps, the scatter is especially high showing the strong surface variability close to335

melting and freezing conditions.

The physical properties aeff and τwi as a function of the temperature history are shown in figures 7 and 8. Here, the

observations of all measurement stations are combined, with the color indicating the radiation station according to the color

code in Figure 4. We use the following fit functions to describe their relations:

aeff = a · log(b+Tidx)+ c (15)340

τwi = a · exp(−b ·Tidx)+ c (16)

These fits are applied to the full dataset to determine the initial value of the respective parameter as a function of the temper-

ature index. This initial value function we will later use in the MPD2 retrieval. To get upper and lower boundaries also as a

function of Tidx, we use the 95 and 5 percentiles of the data. The resulting fit parameters a,b and c for both properties are given

in Table 3.345

14



Figure 5. Flowchart of the calculation of the temperature index Tidx at any time of observation tobs. i iterates through the times steps of size

dt. As Tidx is initialized at 0, it is important that the beginning of this iteration (observation) period lies before the start of any melting.

In Figure 7, aeff features low values at Tidx = 0. With increasing Tidx also aeff increases as well as the scatter, which is

covered by the increasingly wider range of allowed values marked by the light gray area. For τwi there is a lot of scatter visible

at Tidx = 0 in Figure 8. This is covered by the wider range of allowed values marked by the light gray area. With increasing

Tidx, the variability gets less and the optical thickness converges at a lower value. Overall the dependence is not as strong as

for aeff which is expected from the sensitivity analysis in section 3.2.350
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Figure 6. Albedo at 400 nm (pink, thin solid line) measured by the radiation station 2020R12, effective grain size aeff (orange, dots) and

optical thickness τwi (dark blue, dots) retrieved from the spectral albedo measurements of the radiation station, 2-m air temperature (light

blue, thin solid line) from ERA5, and the temperature index Tidx (green, thick solid line) derived from the air temperature.

Table 3. Fit parameters to describe initial values and lower and upper boundaries for the optical thickness τwi and the effective grain size

aeff .

Initial guess Lower boundary Upper boundary

aeff

a 685.99 297.95 865.63

b 1.37 1.17 0.66

c 118.73 77.13 1142.93

τwi

a 23.18 8.69 49.27

b 0.27 0.23 0.36

c 12.24 8.20 16.35

5 Initial values for melt pond fmp and open ocean soc fraction

The spectral albedo of sea ice, melt ponds and open ocean features large variability. Even though the transition of the spectra

going from wet ice surfaces to light and shallow melt ponds is relatively fluent, there is great potential in the spectral mea-

surements to differentiate between the difference surface types given they are observed separately. Whereas melt ponds have a355

much lower albedo in the NIR (0.1–0.2) than in visible wavelengths (0.4–0.7), unponded, dry ice shows little changes in albedo

in the visible bluerange (0.7–1.0) and only a slight decrease towards the NIR (0.6–0.9) (Istomina et al., 2015a; Malinka et al.,

16



Figure 7. Scatter plot of modeled optical thickness aeff depending on the temperature index Tidx. The different colors indicate measurements

of different radiation stations. The thick black line is the fit to all data, which we later use to determine the initial value of aeff depending

on Tidx. The gray area marks the allowed values limited by the upper and lower boundaries derived from the 95 and 5 percentiles.

Figure 8. Scatter plot of modeled optical thickness τwi depending on the temperature index Tidx. The different colors indicate measurements

of different radiation stations. The thick black line is the fit to all data, which we later use to determine the initial value of τwi depending on

Tidx. The gray area marks the allowed values limited by the upper and lower boundaries derived from the 95 and 5 percentiles.
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2018; Light et al., 2022). As this spectral behavior is dictated by the amount of liquid water in the surface layer, the spectrum

of sea ice gets closer to the spectrum of a light melt pond, the wetter it is. Similar applies to wet snow which has a lower albedo

in NIR and complicates distiguishing the surface types even more. Open ocean has a constant low albedo of below 0.1 (Pohl360

et al., 2020) in the visible and NIR range. However, at the 1.2 km spatial resolution of the Sentinel-3 sensors, as the situation

becomes sub-pixel, it is complicated to disentangle the spectral signals of the mixed surface types (Istomina et al., 2023), which

already themselves feature large variability. In particular, different compositions of surface fractions of ice, melt ponds, and

open ocean can result in the same mixed spectral signal at 1.2 km resolution if boundary conditions for, e.g., the snow grain

size (larger grains reduce the albedo of the ice surface type), are not taken into account. Yet, there is the potential to get a good365

first guess of the composition of the surface types, which will be sufficient as initialization of the physical MPD2 algorithm.

In this chapter, we develop a first order empirical retrieval of melt pond and open ocean fractions to use as initial values for

the MPD2 algorithm. This empirical retrieval is based on the same TOA reflectances also fed into the physical MPD2 retrieval

algorithm. The empirical retrieval is developed on the 48 test pixels described in Section 3.2 and comprises two steps. First, we

define the brightness h of a pixel as the average TOA reflectance in the spectral bands shown in Figure 9. This value is used to370

estimate the total water fraction in the pixel without distinguishing between melt ponds and open ocean. This will be discussed

in the following Section 5.1. Second, we define the slope of the spectrum from the reflectance difference between 490 nm

and 754 nm. From this value the proportion of melt ponds and open ocean relative to the total water fraction is estimated, as

presented in Section 5.2.

Note that in spite of the difference between albedo and reflectance, as well as between in-situ and TOA measurements, we375

neglect both differences in this section because we only estimate the initial values and constraints empirically and the more

accurate values will be achieved in the retrieval iteration cycle.

5.1 Brightness criterion: Estimation of total water fraction

The brightness h of a pixel is defined as the TOA average reflectance in the eight spectral bands shown in Figure 9, which

includes atmospheric influence and serves for a rough empirical estimate: As sea ice is a much better reflecting surface than380

melt ponds or water, this quantity can be used to separate water and ice surfaces and thereby estimate the total water fraction

twf . This is the area fraction of a pixel that is covered either by melt ponds or by the open ocean. We set a fixed threshold

hmin on the brightness below which we assume the pixel to contain only water and no sea ice that is not covered by ponds.

The upper threshold hmax above which the pixel contains sea ice only, is expected to depend on the time of the year and region

of observation. This is because of the evolution of sea ice reflective properties with time and temperature (Marsh, 1987). Thus,385

we use again the temperature index Tidx defined in Section 4.2, as the temperature describes the seasonal cycle and regional

differences while observing exceptional weather situations. With increasing Tidx, the sea ice surface is comprising larger grain

sizes i.e. becoming wetter and thus less reflecting but still to be considered as pure ice surface:

hmin = 0.175 (17)

hmax = 0.75− 0.002 ·Tidx. (18)390
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Figure 9. TOA reflectance spectra measured by the OLCI instrument on the Sentinel-3 satellite for the 24 test pixels with known dominant

surface types (Figure 2, left part). These are indicated by the color and style of the lines connecting the measurements at eight different

wavelengths. Additionally, the percentage of the surface types, known from the Sentinel-2 reference product, is given. The vertical gray areas

mark the spectral bands used for the definition of the slope of the spectra in the empirical pre-retrieval.

The dependency in Equation 18 is determined from the in-situ spectral albedo measurements described in Sections 2.4 and

4.1. The brightness h of the measurements is calculated from the wavelengths matching the spectral channels of the OLCI

instrument used in the MPD2 algorithm. Then a linear fit is applied to extract a simple dependency and define a limit above

which it can be assumed that there is only sea ice observed. The inlay in figure 10 shows a density plot of the brightness h as a

function of Tidx and the linear fit.395

Between the lower hmin and the upper threshold hmax, corresponding to a pure water and pure sea ice pixel, respectively, a

linear transition is assumed:

twf =
1

hmin −hmax
·h+ hmax

hmax −hmin
. (19)

This yields the total water fraction twf as a funciton of the pixel brightness h as shown in Figure 10.

5.2 Slope criterion: Separation of melt ponds and open ocean400

The slope s for a satellite pixel is defined as the absolute ratio between the spectral reflectances at 490 nm and 754 nm. These

two channels are marked by the gray vertical areas in Figure 9. The choice of these channels is based on the well investigated
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Figure 10. Main figure: total water fraction twf as a linear function of the pixel brightness h (average of used TOA reflectances) between

the lower threshold hmin below which the pixel is fully covered by water surfaces and the upper threshold hmax above which the pixel

comprises only unponded sea ice surface. This threshold is a function of the temperature index Tidx. Inlay: The dependency of hmax on the

Tidx derived from in-situ spectral albedo measurements. Displayed is a density plot of the in-situ data, and a linear fit (gray line) describing

the threshold above which the surface is so bright that it is expected to be sea ice only, changing with Tidx.

reflectance difference of sea ice and melt pond between the blue and red/NIR range (Rösel et al., 2012; Wang et al., 2020). We

decided to use the channel at 753.75 nm instead of any other channel because for longer wavelength the ice reflectance shows

a stronger decrease, which would reduce the difference to the melt pond class (Figure 9). Based on s we now derive the pond405

fraction pf and the ocean fraction of . These quantities are defined relative to the total water fraction twf and not to the pixel.

Thus, the following explanation can be cut to the derivation of pf only because of is then defined by:

of = 1− pf. (20)

As shown in Figure 11, we assume a linear transition based on s, between the case of a 100 % ocean covered pixel (below

smin) and a 100 % melt pond covered pixel (above smax):410

pf =
1

smax − smin
· s+ smin

smin − smax
, (21)

Again, we make use of Tidx to take care of the seasonal and regional differences, mainly driven by the air temperature

history. In this case, both thresholds are depending on Tidx, and additionally on the twf . This is because the twf determines

the fraction of the spectrum that is defined by the melt pond/open ocean mixture: If twf is very small, the pixel spectrum will415

be dominated by the sea ice surface and have a small s, even though the small amount of water might be melt ponds with
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Figure 11. Pond fraction (solid line) and ocean fraction (dashed line) as a function of the spectrum slope s and given relative to the total

water fraction twf . Below the threshold smin, all water in the pixel is open ocean. Above the threshold smax, all water in the pixel is melt

ponds. Both thresholds depend on Tidx and twf .

large s. Figure 12 displays the linear dependency of the upper and lower threshold smin and smax on twf . If there is almost

no water in the pixel, the spectrum is fully dominated by the sea ice and it is impossible for the small amount of water to

distinguish between open ocean and melt ponds. This is one of the major issues of this empirical approach. However, it is a

common problem to separate melt ponds and open ocean from moderate resolution spectroradiometers, like on Sentinel-3 or420

MODIS, in the presence of sea ice because of the spectral neutrality of open ocean (Rösel and Kaleschke, 2011; Istomina et al.,

2015a, 2023). The value of s in case of a pure sea ice surface is derived as a function of Tidx from the in-situ spectral albedo

measurements. This datasets provides spectra of sea ice surfaces only related to Tidx, from which the slope s can be calculated.

The inlay in Figure 12 shows a density plot of this data with a linear fit of the average observed slope sice(Tidx). The other

extreme case is the complete absence of sea ice surface in a pixel. This further separates into two possible extreme cases:425

1. The sea ice is fully pond covered. For this case we found a threshold of spond = 0.605 to be suitable.

2. The pixel contains only open ocean. For this, a value of socean = 0.264 proved to be suitable.

These values are derived by testing combinations of these values in a reasonable range on the test pixels and then evaluating

the results in comparison with the Sentinel-2 reference scenes. Note that these values relate to TOA reflectance observations,

where atmospheric effect might lead to deviations from in-situ literature observations. Between the three tie points of extreme430

(pure surface type) cases, linear functions are used to describe the thresholds:

smin(twf,Tidx) = sice(Tidx)+ twf · (socean − sice(Tidx)) (22)

smax(twf,Tidx) = sice(Tidx)+ twf · (spond − sice(Tidx)) (23)

21



Figure 12. Main figure: lower threshold of the spectrum slope smin (solid line) below which all water is assumed to be open ocean and

upper threshold smax (dashed line) above which all water is melt ponds as a function of twf . Inlay: The dependency of sice on the Tidx

derived from in-situ spectral albedo measurements. Displayed is a density plot of s derived from in-situ data, and a linear fit (gray line) of

the average slope of the ice surfaces sice in dependency on Tidx.

5.3 Results of the empirical retrieval435

Putting together the estimation of the total water fraction and the separation of melt ponds and open ocean, we derive the

desired quantities:

fmp =
smp

sic
=

twf · pf
1− twf · of

(24)

soc = twf · of (25)

With this, the estimate of fmp and soc is improved from using constant values (Figure 13, upper row) to pixelwise adjusted440

values (Figure 13, middle row). Compared to the reference values from Sentinel-2 (Figure 13 bottom row), the uncertainty

is reduced from above 20 % to approximately 10 % within the test pixels. This is expected to be sufficient to function as

initialization for fmp and soc for the MPD2 physical retrieval. Despite the lower uncertainty of the initialization values, the

boundaries are set looser to ±25 % of the initial values.
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Figure 13. Melt pond fraction (left) and open ocean fraction (right) of the test pixels (see Figure 2). The upper row displays the previously

used, constant initialization of 40 % and 20 % for fmp and soc, respectively. The middle row displays the new, pixel specific initialization.

The lower row shows the reference from the Sentinel-2 data product.

6 Verification and discussion of results445

6.1 Evaluation on test pixels

The new initialization of the four parameters aeff , τwi, fmp and soc (Sections 4 and 5) is applied in another Monte Carlo

simulation on the 48 test pixels introduced in Section 3.2. For the remaining parameters the same random seed is used as

before, also the number of runs is the same. Based on these simulations, the optimal initial values and constraints for the

remaining parameters can be established. These values are not adapted pixelwise but fixed as constants (Table 4 and are used450

for the entire Arctic and season. A table of all parameters with their initial values and boundaries is given in Table 4. To evaluate

the improvement achieved by the newly developed pixel dependent initializations, we use again the definition of reasonable

results with the thresholds as defined in Section 3.2. Figure 14 shows the percentage of the results that are reasonable with and

without the new initializations. Additionally, the average deviation of fmp compared to the Sentinel-2 reference is shown.

By using the new initialization for the four parameters, the number of reasonable results has increased from an average of455

30 % of the 30000 runs to an average of 81 %. The improvement is visible for all assigned surface type combinations as well

as for the randomly chosen test pixels. Also, the deviation of fmp compared to the Sentinel-2 reference dataset is reduced in

all cases. Especially for strongly ponded pixels the improvement is pronounced, while still featuring the largest deviations. On

average, the deviation within these test pixels reduced from 14 % to 6 %. However, an improvement can be expected when

looking only at the test pixels that were used to develop the new initializations and constraints. Therefore we will look at the460
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Figure 14. Comparison of the Monte Carlo simulation results with and without the new initilization of aeff , τwi, fmp and soc. The upper

panel shows the percentage of the runs that gave a reasonable result. The lower panel shows average deviation of the retrieved fmp compared

to the Sentinel-2 reference. The colors indicate the assigned and the random surface type pixels that were used in the simulations.

independent Sentinel-2 reference dataset next.

Table 4. Overview of the initial values, boundaries and increments of optimized parameters.

Parameter Symbol Initial value Lower boundary Upper boundary Increment

Melt pond fraction fmp pixelwise derived from reflectances 0.0005

Open water fraction soc pixelwise derived from reflectances 0.0005

Effective grain size of ice surface aeff pixelwise derived from temperature history 3µm

Optical thickness of white ice τwi pixelwise derived from temperature history 0.1

Absorption of yellow matter αy 0.5 m−1 0 m−1 3 m−1 0.003 −1

Pond depth hpond 0.25 m 0.0001 m 4 m 0.00001 m

Ice thickness beneath melt pond hice 2 m 0.1 m 5 m 0.01 m

Scattering coefficient of pond bottom σice 4 m−1 0.2 m−1 10 m−1 0.01 m−1

6.2 Comparison to Sentinel-2 reference

The new initilization is used for processing the Sentinel-3 data of all the occasions, where the Sentinel-2 reference dataset

provides data. The possible time difference between the satellite overflights is regarded by the drift correction. Because of the465

time difference and varying cloud coverage some observations are discarded, if there is no overlapping data left. The same

data is processed with the former version of the retrieval, i.e., MPD1. Figure 15 shows an example map of fmp derived with
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MPD1 and MPD2 compared with the Sentinel-2 reference product. Figure 16 show soc derived from MPD2 compared with

the Sentinel-2 product for the same example case.

Figure 15. Regional maps of melt pond fraction fmp derived with the former algorithm MPD1 (left), the new retrieval version MPD2

(middle), and from the Sentinel-2 reference product (right). Shown is an example from July 3, 2017 close to the Queen Elizabeth Islands, at

approximately 79 ◦N and 120 ◦W. All maps share the same scale and color map.

The right panel of Figure 15 shows the reference fmp from Sentinel-2 scaled down to the 1.2 km resolution of the MPD470

products. Despite the downscaling, it contains higher resolution information leading to greater detail. The left panel shows

the result from the MPD1 version. It is covering a much smaller range of fmp smoothing the details and missing the overall

tendency of higher fmp in the upper left trending towards lower values in the lower right. This trend is much better resolved

by the MPD2 version which is displayed in the middle panel of Figure 15.

soc is only retrieved with the MPD2 algorithm and is not available for MPD1, thus only the MPD2 soc can be compared to475

sentinel-2 in Figure 16. The results for this case show consistently very low open ocean fractions. However, in the Sentinel-2

product few very small open ocean spots are detected which could not be resolved at the low resolution of the Sentinel-3 data

used in by the MPD2 algorithm.

Figure 17 shows the comparison of the retrieved MPD1 and MPD2 fmp with all Sentinel-2 reference scenes. The scatter

plot (left) shows the average values of the 33 scenes. While the MPD1 algorithm (cyan) struggles with low melt pond fractions,480

MPD2 (dark blue) shows improved results with consistently low retrieved pond fractions. In general the results with MPD1

show a much smaller range of retrieved fmp than those from MPD2, which is in better agreement with the Sentinel-2 reference.

This is clearly displayed by the slopes of the linear regressions fitted to the data, which is increased from 0.49 to 0.82, while the

correlation coefficient of the linear regression remains almost the same. However, the coefficient of determination R2 defined
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Figure 16. Regional maps of open ocean fraction soc derived with the new algorithm version MPD2 (left) and from the Sentinel-2 reference

product (right). Shown is an example from July 3, 2017 close to the Queen Elizabeth Islands, at approximately 79 ◦N and 120 ◦W. Both maps

share the same scale and color map.

as485

R2 = 1−
⟨(fMPD

mp − fS2
mp)

2⟩
⟨(fS2

mp − fS2
mp)

2⟩
(26)

clearly emphasizes the improvement of the retrieval, as is increases from 0.39 for MPD1 to 0.89 for MPD2. The density plots

(Figure 17 middle and right) show a comparison of the same data but without averaging all pixels of each scene. Again, the

problem of retrieving low melt pond fraction values with MPD1 in these cases is clearly visible. The range of retrieved values

for Sentinel-2 fmp < 5% is very broad and barely reaches the range of the reference values. At the reference fmp close to 10 %490

the overestimation is the highest with an average of 17 %. With increasing fmp the retrieval agrees better with the reference

data. Overall, the majority of the reference data ranges from 0 to 35 % but is squeezed into a retrieved interval of 20 to 35 % by

MPD1. This might be caused by the high initialization of fmp = 40% for all pixels and the inability of the retrieval to escape

a local minimum. Additionally, sub-pixel areas of open water often can be misclassified as melt ponds leading to the strong

overestimation at low fmp. This is also described by the bias of +9.1 describing a systematic tendency to overestimated fmpf ,495

while the RMSD is 12.9 %. By using MPD2 with the additional open ocean class and the dynamic initialization of the state

vector X , the agreement is improved significantly. The uncertainty estimated from the RMSD compared to the reference data is

reduced to 7.8 % and the bias is +1.6, independent of the melt pond fraction value. These values are comparable to uncertainties

of other pan-Arctic melt pond fraction products by e.g., Lee et al. (2020); Ding et al. (2020), while adding understanding and

usage of physical processes to the retrieval. For example, Rösel et al. (2012) present RMSD values in their comparison to500

reference data sets exceeding 10 %. Peng et al. (2022) give an overview of different pan-Arctic melt pond fractions product,
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showing that the difference between the products exceeds 5 % even when averaging over years, especially late in the melt

season. Interestingly, two major modes of retrieved pond fractions are visible in MPD2: One at very low values, which is not

surprising, as this relates to a completely unponded surface which is naturally a common observation before the beginning of

melt. The second mode is at fmp = 28%. This seems to be a common average value at the resolution of 1.2 km where extreme505

cases are rare because these would involve melt ponds with areas of around 1 km2.

Figure 17. Left: Scatterplot of melt pond fraction fmp derived with MPD1 (cyan) and MPD2 (blue) against the Sentinel-2 reference product,

averaged per Sentinel-2 scene. The dashed lines show a linear fit to the data points, the dotted line indicates the identity line. As a measure

of quality, the slope and the correlation coefficient r are specified. Middle and right: Density plots of fmp derived with MPD1 (middle) and

MPD2 (right) against the Sentinel-2 reference product, compared pixelwise after drift correction. The color scale is normalized such that the

area sums up to 1 and is valid for both densities.

The fraction of open ocean soc newly retrieved with MPD2 is compared to the Sentinel-2 reference data in Figure 18. The

scatter plot (Figure18 left) of soc shows a broader scattering than for fmp demonstrating the difficulties of detecting open ocean

due to its spectral neutrality in the visible and NIR range. Especially very small fractions <10 % are often not detected at all.

This is most likely because there are not many cases with large open ocean areas such as polynyas but rather small leads and510

broken floes beyond the spatial resolution of the MPD. However, the slope of the linear regression is 0.83 and the correlation

coefficient 0.79 showing reasonable agreement of the newly retrieved and the reference soc. The histogram of the pixelwise

comparison of the same data in the right panel of Figure 18, shows that the agreement is almost perfect when there is no open

ocean at all in the pixel. That is the case, MPD1 was originally developed for. Once there is a little amount of open ocean

within the pixel, MPD2 underestimates soc in comparison to the Sentinel-2 reference. The strongest differences occur above515

open ocean fractions of 40 %. Up to 80 % soc, MPD2 is underestimating and then up to 95 % it is overestimating soc. The

latter likely is because dark melt ponds (with very thin ice below) are being misclassified by the MPD2 algorithm because they

already look almost alike open ocean. Overall the uncertainty of the open ocean product is estimated to 9.1 % (RMSD) with a

bias of −0.8.
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Figure 18. Left: Scatterplot of open ocean fraction soc derived with MPD2 against the Sentinel-2 reference product, averaged per Sentinel-2

scene. The dashed line shows a linear fit to the data points. As a measure of quality, the slope and the correlation coefficient r are specified.

Right: Histograms of pixelwise soc by Sentinel-2 (orange) and MPD2 (dark blue). Note the logarithmic scale of the y-axis.

6.3 Arctic-wide application of MPD2520

Figure 19 shows an example of daily Arctic-wide maps of fmp (left), soc (middle) and surface albedo produced with the new

MPD2 algorithm from Sentinel-3 data. The swath-wise processed data is gridded into a polar stereographic grid (NSIDC grid)

of 6.25 km resolution. In the course of this, the data is averaged daily, discarding grid cells containing less than 10 data points

or exceeding a standard deviation of the averaged values of 15 %. The broadband albedo displayed in the right panel of Figure

19, is derived from the retrieved spectral albedo with the spectral-to-broadband conversion developed by Pohl et al. (2020).525

At the end of June, the melt season has already advanced. Especially on the level, landfast ice between the islands of the

Canadian Archipelago melt pond fractions higher than 50 % are observed, which is in agreement with in-situ and higher

resolution satellite observations from previous years (Landy et al., 2014; Li et al., 2020). Even at latitudes above 80 ◦, melt

pond fractions of around 20 % are observed. This is not unusual for this time of the year as shown by results from the MOSAiC

campaign in the same summer (Webster et al., 2022). The open ocean fraction is very low in the central Arctic, but closer to530

the sea ice edge, soc reaches values beyond 20 %, indicating the break-up of ice floes with heterogeneous mixture of sea ice,

melt ponds, and open ocean as the result. Thus, the broadband albedo is still quite high in the Central Arctic while already

significantly reduced in the Fram Strait, Kara Sea, Laptev Sea, and Canadian Arctic Archipelago.

7 Conclusions

This study presents the approach of the new MPD2 algorithm to retrieve melt pond (fmp) and open ocean (soc) fractions as535

well as the spectral and broadband albedo of sea ice from top of the atmosphere (TOA) reflectances in the optical and near

infrared (NIR) range measured by satellite. This algorithm builds on the MPD1 algorithm developed by Zege et al. (2015) using
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Figure 19. Pan-Arctic maps of melt pond fraction fmp (left), open ocean fraction soc (middle), and broadband albedo (right) derived

with MPD2 on June 30, 2020. The light blue color indicates open ocean where the retrieval has not been applied. Data gaps due to cloud

contamination are gray.

the forward model by Malinka et al. (2016, 2018) to find an analytical solution for the bi-directional reflection at the sea ice

surface. The novelty of the presented MPD2 algorithm is the introduction of the additional surface type class: open ocean. As

shown in Istomina et al. (2023), moderate resolution spectroradiometers need additional data to retrieve 3 surface type classes540

as just TOA reflectances are not sufficient. To afford this, we have improved on the initialization of the optimized state vector

X describing the surface, thereby minimizing the risk of running into unreasonable local minima. 2-m air temperatures from

ERA5 are used to calculate a temperature index along the drift track of the sea ice which is tracked with OSI-SAF sea ice drift

data (Ocean and Facility). With this temperature index we account for regional and seasonal changes, relating to the physical

properties of the sea ice surface. In this way the effective grain size aeff and the optical thickness τwi of the ice surface layer545

are constrained. Without such constrains the spectral unmixing on sub-pixel satellite scale of the three surface types - ice, melt

ponds, and open ocean - is not reliably possible. Additionally, we make use of the different spectral behavior of these three

surface types (Tschudi et al., 2008; Rösel et al., 2012; Istomina et al., 2015a; Light et al., 2022) to initialize and constrain their

area fractions. In fact, a first order, empirical retrieval of fmp and soc from TOA reflectances in the range 400 nm to 900 nm

has been developed and is implemented as initial guess for the physical forward model.550

By using the previously constructed temperature index, seasonal and regional differences of the sea ice optical properties

defining its spectral behavior are taken into account. With these improvements, the uncertainty of fmp could be reduced from

12.9 % (MPD1) to 7.8 %, while the uncertainty of soc is estimated to be 9 %. Furthermore, the bias of overestimating fmp

has been significantly reduced to +1.7 and the coefficient of determination compared to the reference Sentinel-2 data set has

been increased from 0.39 to 0.89. This is comparable to uncertainties of other melt pond fraction retrievals, e.g. by Rösel et al.555

(2012); Ding et al. (2020), and lower than the overestimation bias previously reported (Wright and Polashenski, 2020). While
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other pan-Arctic melt pond fraction retrievals use artificial neural networks, we have presented a fully physical algorithm to

detect melt ponds on sea ice and additionally also the fraction of open ocean in the Arctic summer. The longer time series

of melt pond and open ocean fractions from Sentinel-3 satellite data processed with MPD2 will be made available as netcdf

files via https://seaice.uni-bremen.de/. In future, it is also possible to apply the algorithm to ENVISAT data and thereby extend560

the time series back to 2002. This can be very useful for, e.g., the study of the sea ice energy budget (Perovich et al., 2002;

Nicolaus et al., 2012; Katlein et al., 2021) in the summer period. Thus it provides great potential to improve global climate

models (Hunke et al., 2013; Dorn et al., 2018) and better understand climate changes in the Arctic.

Data availability. The Sentinel-3 satellite data used, is publicly available under https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/450/

(last access August 14, 2023).565

The Sentinel-2 melt pond fraction product is available at PANGAEA: https://doi.org/10.1594/PANGAEA.950885.

ERA5 data are made available by the Copernicus Climate Change Service (C3S) at https://cds.climate.copernicus.eu/cdsapp#!/dataset/

reanalysis-era5-single-levels?tab=form.

The OSI-405-c sea ice drift data is available via https://thredds.met.no/thredds/catalog/osisaf/met.no/ice/drift_lr/merged/catalog.html.

The spectral albedo data used, is publicly available on PANGAEA and data.meereisportal.de and can be retrieved at the following list of570

links: TARA albedo measurements: https://doi.org/10.1594/PANGAEA.945286. Spectral albedo during Alert MAPLI18 measurement cam-

paign: https://doi.pangaea.de/10.1594/PANGAEA.949614. Spectral albedo from PS106-ARK31/1 expedition: https://data.meereisportal.de/

relaunch/buoy.php?buoytype=RB&region=all&buoystate=all&expedition=all&submit1=Anzeigen&active-tab1=method&ice-type=buoy&lang=

de&timeline=buoy&active-tab2=buoy&showMaps=y&dateRepeat=n. Albedo measurements from the MOSAiC campaign for the different

stations: https://doi.pangaea.de/10.1594/PANGAEA.948876, https://doi.pangaea.de/10.1594/PANGAEA.948828, https://doi.pangaea.de/10.575

1594/PANGAEA.948712, https://doi.pangaea.de/10.1594/PANGAEA.948572.
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Appendix A: Additional figures

Figure A1. Same as Figure 15 but for an example from July 5, 2018 at approximately 80 ◦N and 109 ◦W. All maps share the same scale and

color map.

Figure A2. Same as Figure 15 but for an example from July 3, 2017 at approximately 79 ◦N and 120 ◦W. All maps share the same scale and

color map.
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Figure A3. Same as Figure 15 but for an example from May 31, 2021 at approximately 74 ◦N and 133 ◦O. All maps share the same scale

and color map.

Figure A4. Same as Figure 15 but for an example from June 17, 2021 at approximately 81 ◦N and 131 ◦W. All maps share the same scale

and color map.
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