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Abstract. Fluxgate magnetometers are commonly used to provide high-fidelity vector magnetic field measurements. The 

magnetic noise of the measurement is typically dominated by that intrinsic to a ferromagnetic core used to modulate (gate) the 

local field as part of the fluxgate sensing mechanism. A polycrystalline molybdenum-nickel-iron alloy (6.0-81.3 Mo 

Permalloy) has been used in fluxgates since the 1970s for its low magnetic noise. Guided by previous investigations of high 

permeability copper-nickel-iron alloys, we investigate alternative materials for fluxgate sensing by examining the magnetic 10 

properties and fluxgate performance of that permalloy regime in the range 28-45%Cu by weight. Optimizing the alloy 

constituents within this regime enables us to create fluxgate cores with both lower noise and lower power consumption than 

equivalent cores based on the traditional molybdenum alloy. Racetrack geometry cores using six layers of ~30 mm long foil 

washers consistently yield magnetic noise around 4-5 pT/√Hz at 1 Hz and 6-7 pT/√Hz at 0.1 Hz meeting the 2012 1-second 

INTERMAGNET standard of less than 10 pT/√Hz noise at 0.1 Hz. 15 

1 Introduction 

In December 2007 one of us (Narod) rediscovered a paper by von Auwers and Neumann (1935), titled in English “On Iron-

Nickel-Copper Alloys of High Initial Permeability,” and this eventually set into motion our examination of copper permalloys 

as potentially useful materials for fluxgate magnetometer sensors. Specifically, we are interested in copper permalloy’s 

potential to simultaneously provide low magnetic noise and low power consumption in a fluxgate sensing application. With 20 

the assistance of colleagues at Zentralanstalt für Meteorologie und Geodynamik [ZAMG, now Geosphere Austria] we had 

located a loose paper copy in a box of collected papers, situated in the library of the Austrian Academy of Sciences in Vienna, 

a collection which conveniently for us had been catalogued by their librarians. This paper was last cited in 1961 (Puzei, 1961), 

and had disappeared from living memory. A single citation of it in Bozorth (1951) had caused us to spend several years 

searching for it. The collection of copper permalloy data included in von Auwers and Neumann (1935), extraordinary in both 25 

quantity and quality, are reproduced in translation in Appendix A.  
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Prior to our present efforts 6.0% Molybdenum (6%Mo, all %-compositions are given in weight-percent compositions.) 

permalloy was the state-of-the art sensor material for the best performing fluxgate sensors for geophysics and space physics 

(Gordon et al., 1968). However, the markets for such materials are small and in 1996 our community’s ready access to such 

material ceased. Since that moment we and others have undertaken investigations of 6%Mo permalloy procurement and 30 

processing, to create new supplies (Müller et al., 1998; Narod, 2014; Miles et al., 2022).  

We have now arrived at a place where we are able to melt in small quantities any permalloy, roll it, draw it, heat treat it and 

machine it to any desired shape, in any sequence of process steps. We began by fabricating 6%Mo permalloy (Narod 2014; 

Miles et al., 2016; Miles et al., 2022; Greene et al., 2022), and from it a variety of novel fluxgate sensors.  

1.1 The case for copper permalloys 35 

Miles et al., (2022) presented along with 6%Mo permalloy our first trial of a copper permalloy. This alloy consisted of 28% 

copper, 62% nickel and balance iron, which we designate 28Cu62Ni. The case for 28Cu62Ni went as follows: 

We knew that 6%Mo permalloy has several properties that are thought advantageous for fluxgate sensor materials. These are 

1) minimum magnetocrystalline anisotropy, 𝐾 , 2) minimum bulk magnetoelastic anisotropy (magnetostriction) 𝝀 , 3) 

minimum saturation magnetization 𝑩  of all such materials satisfying 1) and 2), and 4) a requirement for slow cooling during 40 

heat treatment, to minimize residual stress (Pfeifer, 1966; English and Chin, 1967; Pfeifer and Boll, 1969; Musmann and 

Afanassiev, 2010). Pfeifer (1966) and the subsequent papers all placed the zero-crossings satisfying 1) and 2) over a range of 

compositions including 4-6% molybdenum. But from their Figures 6%Mo uniquely also satisfied both 3) and 4), and these 

papers’ Figures ultimately drove the choice to use 6%Mo in a new generation of fluxgate magnetometers (M. Acuña, 1981, 

personal communication). 45 

We then sought a copper alloy composition that satisfied four equivalent conditions, a choice which was enabled by data 

presented in the von Auwers and Neumann (1935) paper. Their Figures 8, 11, 13, included here in Appendix A, respectively 

plot contours of initial permeability, magnetostriction and saturation magnetization for a collection of measurements from 130 

copper permalloys, all specimens having undergone the authors’ “1100-treatment”, a slow-cooled heat treatment. 

We consider the 1100-treatment to be functionally equivalent to that of the slow-cooling of Pfeifer (1966). We have also taken 50 

the highest initial permeability to be a proxy for minimum total anisotropy, both magnetocrystalline and magnetoelastic. 

For their “permalloy-treatment”, essentially quenching, we noted in their Figure 6 that maximum initial permeability locates 

at a composition including 14%Cu, while for 1100-treatment the maximum locates at a composition including 28%Cu. The 
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saturation magnetizations, 𝑩 , for the two cases were respectively 750 mT and 550 mT. Our condition 3) then led us to 

28Cu62Ni as our first copper test alloy which conveniently would share the same heat treatment as 6%Mo permalloy. 55 

Our first trial with a fluxgate sensor made from 28Cu62Ni (Miles et al., 2022) produced performance results comparable to a 

nominally identical sensor made from 6%Mo permalloy, and for some parameters such as power consumption the 28Cu62Ni 

alloy sensor outperformed. The success of our initial copper alloy trial encouraged us to expand our investigations of copper 

permalloys, seeking more resolution in composition and extending our fluxgate sensor builds to alloys with much higher 

copper contents. It is well known that lower 𝑩  leads to improved noise performance (Musmann and Afanassiev, 2010), and 60 

Appendix A, Fig. 13 shows clearly that higher copper content reduces 𝑩 , but higher copper content also worsens initial 

permeability, our proxy for anisotropy. With respect to noise the theory of Narod (2014, Eq. 8) suggests that the effect of lower 

𝑩  could dominate over lower permeability.  

The choices for our alloy compositions were again guided by Figures 8, 11, 13, of von Auwers and Neumann (1935). For the 

copper contents we selected the range 28-45%Cu. For our minimum copper-content alloys we chose 28%Cu with about 60%Ni. 65 

This coincided with the maximum initial permeability measured by von Auwers and Neumann (1935). For our maximum 

copper-content alloy we chose 45%Cu, 50%Ni, 5%Fe which has a saturation induction of about 200 mT. We were concerned 

we might be running into a Curie temperature limitation; however, this has now been determined not to be the case. For the 

nickel contents we selected a range of 5%Ni content centred on the zero magnetostriction contour. On the copper and nickel 

axes our specimen spacings were typically 2% and 1% respectively. This collection included 52 specimens, with the 70 

composition range plotted in Fig. 1.  
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Fig. 1. The range of copper-permalloy compositions in our study, outlined in red and superimposed on von Auwers and Neumann 
(1935) Fig. 8, their contour plot of initial permeabilities after their 1100 treatment. 

The organization of the remainder of this paper is as follows: We first offer a look at the history of permalloy development, 75 

beginning in the 1920’s, with our attempt to answer a question: How is it possible that copper permalloys for use in fluxgate 

magnetometers was missed for most of a century? We then continue with descriptions of our experimental work including 

sample preparation and data acquisition, and the presentation of our data. We conclude with our interpretation of our data. 

1.2 History of Permalloys as soft magnetic materials 

We have asked ourselves how was it possible for high copper-content permalloys to have remained undiscovered for nearly a 80 

century, for their use as suitable sensor materials for low noise, low power fluxgate magnetometer sensors? Here we examine 

the history of permalloy development and attempt to consider this question. We loosely use the word permalloy to mean a low 

loss, low coercivity alloy of more than 35% nickel, with some iron content (Nature, 1948). Other alloying elements may 

include chromium, molybdenum, or copper.  

Our earliest period of interest began in 1921 with Gustav W. Elmen's filing for US Patent 1,586,884 while employed by the 85 

Western Electric Co. of New York (Elmen, 1926), later, Bell Telephone Laboratories. This period concluded in 1947 with the 

development of 'Supermalloy’ (Boothby and Bozorth 1947), also at Bell Telephone Laboratories. This interval features the 

invention of the fluxgate magnetometer by Hans Aschenbrenner and Georg Goubau (1936), and the development of the Gulf 

magnetometer in 1941 (Vacquier, 1946a,b; Wyckoff, 1948). The interval also included the development for The Telegraph 

Construction and Maintenance Co. Ltd. in the United Kingdom by Willoughby Statham Smith and Henry Joseph Garnett of 90 
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early copper permalloys (Smith and Garnett, 1925,1926,1927), both investigating developments for magnetic loading of 

communications cables. In the 1930's Otto von Auwers and Hans Neumann, both at Siemens & Halske in Berlin, investigated 

a range of ternary iron-nickel-copper alloys, for both inductive and permanent magnet properties (von Auwers and Neumann, 

1935; Neumann, 1934; Neumann et al., 1937). We shall now look more closely at the US, UK, and Germany efforts. 

1.2.1 USA 95 

Elmen's 1921 patent filing claimed an alloy comprising 78.5% nickel / 21.5% iron, the first higher-permeability nickel-iron 

alloy. Elmen noted within the patent text the inverse relation between minimum hysteresis losses and maximum permeability 

in the vicinity of the target composition, the presence of a resistivity maximum at mid-range compositions above the Invar 

transition, and the presence of the "well known maximum ... that precedes the attainment of the critical temperature" 

attributable to Hopkinson (1889). In 1926 Elmen filed his second permalloy patent application (US patent 1,768,443, 1930), 100 

claiming a lower loss, lower coercivity alloy of about 78.5% nickel, 16%-18.5% iron and 3%-4% molybdenum. The motivation 

for Elmen's efforts was the creation of low loss magnetic materials for the magnetic loading of central-conductor trans-ocean 

communications cables, with the intent of increasing their signalling speed (Foster, 1928). Elmen noted in the 1930 patent that 

3.7% molybdenum content developed for that time the highest initial permeability of any known magnetic material. 

The importance of the alloy’s heat treatment was to some extent understood by Elmen. A typical heat treatment features a 105 

reducing atmosphere, a period held at a higher temperature, e.g., 1100C (the soak), and a controlled cooling from 600C to 

room temperature. Extrema to the cooling could be a quench where a 600C work piece was removed from heat and placed on 

a copper slab, or a furnace cool when a furnace was allowed to slow cool to room temperature, taking perhaps 15 hours to 

complete. Elmen tested both types referring to them as "A - slow cooling", and "B - rapid cooling".  

Twenty years later Boothby and Bozorth (1947) reported on their lab's highest yet initial permeability in a 5% molybdenum 110 

permalloy, which they named "Supermalloy". Unlike prior materials their new alloy benefited from "a definite cooling rate to 

be used below the temperature at which atomic ordering begins", without disclosing the rate, which likely was in the vicinity 

of 200C/hour (Carpenter Technology, 1991). Their hypothesis was that the addition of only molybdenum to the binary nickel-

iron alloy together with a particular cooling rate caused magnetoelastic anisotropy (magnetostriction) and magnetocrystalline 

anisotropy to "disappear at the same time".  115 

In subsequent years both Elmen and Bozorth participated in investigations at the magnetics laboratory of the US Naval 

Ordnance Laboratory. It appears at all times these US efforts to develop permalloy materials concentrated on only ternary 

molybdenum permalloys. 
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1.2.2 United Kingdom 

Smith and Garnett obtained three patents with respect to copper permalloys for use in communications cables (Smith and 120 

Garnett,1925,1926,1927). Their development of 5% copper permalloy enabled them to circumvent the molybdenum patents 

of Elmen. The first two patents could be considered together as a single publication as they have identical filing dates and 

almost identical content. There are differences between their claims. The 1925 patent claims compositions including 15%-

25% copper. The 1926 patent claims compositions including 5%-6% copper. In both patents' claims the iron content is never 

less than 17%. The 1927 patent refers primarily to the heat treatment of magnetically loaded wires and makes no claims with 125 

respect to compositions. That said this patent does refer to one composition: 76% Nickel, 16.5% Iron, 5% Copper, 2.0% 

Chromium, 0.5% Manganese which became the historical composition of "Mumetal". Smith and Garnett in these patents do 

not describe a role for the copper content, but they very clearly ascribe a role for a fourth element, typically a transition metal, 

vanadium through to chromium, or molybdenum, that role being to increase the resistivity of the alloy.  

The US investigators and the United Kingdom investigators thus had very different understandings regarding the role of 130 

molybdenum in ternary or quaternary permalloys. What follows now should demonstrate that in Germany the Siemens & 

Halske investigators were thinking in line with the United Kingdom investigators. 

1.2.3 Germany  

Similar investigations were undertaken in the 1930's in Berlin at Siemens & Halske Wernerwerkes. These efforts led to the 

development of their commercial alloy "1040", also known as "M-1040" (Pfeifer and Boll, 1969). "1040"s composition is 72% 135 

nickel, 11% iron, 14% copper, and 3% molybdenum (Neumann 1934). Neumann specifically states its resistivity as "0.56" 

(presumably 56 microohm-cm), which is competitive with modern molybdenum-permalloy resistivities, and significantly 

higher than our own measurements of 28% copper-permalloy resistivity near 31 microohm-cm.  

Comparing magnetic values for "1040" with those for ternary 14% copper-permalloy (von Auwers and Neumann, 1935) the 

addition of 3% molybdenum reduced saturation magnetization from about 800 mT to 600 mT, a significant reduction, and 140 

similar to that for a modern molybdenum permalloy with saturation magnetization typically about 0.75T. Whether the Siemens 

& Halske investigators understood the full role of molybdenum content in permalloy is unclear. They certainly appreciated its 

role in reducing conductance losses and would have noted its effect on saturation magnetization. Our own investigations 

replicating "1040" found one more issue. Our "1040" specimen developed significant chemical segregation when cooled 

slowly, presumably due to its quaternary composition. Enoch and Murrell (1969) also conjectured such segregation in 145 

quaternary permalloys. Thus like 14% ternary copper-permalloy "1040" likely developed its best magnetic properties when it 

underwent "permalloy-handling", that is, air-quenching from 625C (von Auwers and Neumann, 1935). 
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Like Elmen, von Auwers’ and Neumann’s 1935 broad-based study of 130 ternary iron-nickel-copper alloys also considered 

two distinct heat treatments, one rapid and one slow. As noted above, a 14% copper-permalloy achieved its best performance 

for the rapid cool, with respect to initial permeability. For their furnace-cooled specimens their highest initial permeability was 150 

achieved at 28% copper, the composition also used for our first copper-permalloy test (Miles, 2022).  

Georg Keinath (Melz, 1960) was in this period the head of Siemens & Halske’s entire development department of the 

Wernerwerkes for measuring technology. In 1937 he and his Jewish wife emigrated to the USA. Keinath’s departure from 

Berlin coincided with Siemens & Halske’s diminution or cessation of permalloy research in general and of copper-permalloy 

research in particular. 155 

1.2.4 Chromium and molybdenum 

Keinath (1932) presented a study of the effects of chromium and molybdenum in ternary permalloys, He looked particularly 

at their effects on resistivity, Curie temperature, and saturation moment. Measured by weight percentage, chromium produced 

the larger effect, affecting resistivity by about 10% in excess of molybdenum’s effect, and for saturation moment almost 

doubling that of molybdenum. For 3.7% chromium content the saturation moment compared to binary permalloy, was reduced 160 

from 1.0T to below 800 mT. Curie temperature went from 580C for binary permalloy, to 450C for 3.7%Mo-permalloy, to 

230C for 10%Mo-permalloy to -20C for 15%Mo-permalloy.  

Farcas’ (1937) data plotted by Bozorth (1951), Fig. 10-11, shows a strong dilution effect of chromium upon cobalt. Narod 

(2014) from a variety of data sources found that one molybdenum atom was able to cancel those effects from almost eight 

nickel atoms, or two iron atoms, a result broadly in agreement with the approaches of Enoch and Fudge (1966), and Enoch 165 

and Murrell (1969). 

Considering atomic percentages as contrasted with weight percentages the effects of chromium and molybdenum on saturation 

moment on a per atom basis are nearly identical. With respect to resistivity on a per atom basis the effect of molybdenum is 

noticeably larger than that of chromium. Today molybdenum dominates within the ternary permalloys. Chromium may also 

have fallen out of favour in part due to its volatility at high temperatures in the presence of hydrogen, a trait we have observed 170 

directly. 

1.2.5 The second Interval (1953-1969) 

In the 1960’s another look was taken at these alloys, with regard to better understanding magnetic anisotropies, and also 

specifically looking for improved magnetic materials for fluxgate magnetometer sensors (Bozorth, 1953; Puzei and Molotitov, 

1958; Puzei, 1961; Puzei, 1962; Odani, 1964; Lykens, 1966; Scanlon, 1966; Pfeifer, 1966; Odani and Sunazawa, 1967; Cohen, 175 

1967; Scholefield et al., 1967; Snee, 1967; Gordon et al., 1968; English and Chin, 1969; Pfeifer and Boll, 1969). This activity 
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covered the planet, from Nippon Telegraph and Telephone in Japan, Telcon Metals Ltd. in the United Kingdom, 

Vacuumschmelze in Germany, the Central Research Institute of Ferrous Metallurgy in the former Soviet Union, and in the 

USA, Bell Telephone Laboratories, Carpenter Steel Co., Allegheny Ludlum Steel Corp., Magnetics Inc., and the U.S. Naval 

Ordnance Laboratory. 180 

With respect to fluxgate sensors, this led to Gordon et al.’s (1968) well known 6.0% molybdenum permalloy, a slow-cooled 

material. 14% copper-permalloy was still in human memory at this time (Pfeifer and Boll, 1969) but it appears that the slow-

cooled 28% copper-permalloy had been ignored or forgotten, including in the 1951 book “Ferromagnetism” (Bozorth, 1951).  

The role of molybdenum was described in detail by Pfeifer (1966), after data from Puzie (1962) and Puzie and Molotitov 

(1958). His Fig. 5 presents contours of zero magnetostriction, (𝜆 0, 𝜆 0, 𝜆 0), and zero magnetocrystalline 185 

anisotropy (𝐾 0) for various cooling rates including oil quenching and very slow cooling, and notes the two coincided for 

rapid cooling at about 4%Mo, and for very slow cooling at a little over 6%Mo.  

1.2.6 1969 – present 

For the purpose of producing improved fluxgate magnetometers in quantity, in 1969 the US Naval Ordnance Laboratory 

commissioned an ingot of the 6.0%Mo, 81.3%Ni, Fe balance alloy (6Mo81Ni), and had it rolled to 12.5µm foil (M. Acuña, 190 

1981, personal communication). The ingot and foil were processed by the Hamilton Watch Company and their then 

metallurgical division, later spun off as Hamilton Precision Metals (John Scarzello, 2023, personal communication). 

Eventually this material went to Infinetics Inc., then a producer of ring-cores, where they created their S1000 6-81 ring-core, 

which from 1979 to 1996 were provided to fluxgate magnetometer developers, going end-of-line for lack of alloy foil. In the 

1990’s Müller et al., (1998) in Germany also investigated 6%Mo permalloys but with significantly different results and lower 195 

yields (H. U. Auster, personal communication, June 12, 2008), possibly due to significant constraints on their available heat 

treatments (K. H. Fornacon, 2017, personal communication). Ring-cores were produced with noise levels "less than 2 pT/rtHz 

in the frequency band between 0.1 and 64 Hz." (Fornacon et al., 1999).  The ring-cores developed at that time were a 

cooperative effort of Karl Heinz Fornacon (Technischen Universität, Braunschweig), Manfred Müller (Zentralinstitut für 

Werkstoffforschung,Technischen Universität Dresden) and Yuri V. Afanasiev (Russian Academy of Sciences, Moscow, and 200 

elsewhere). This work was also undertaken in a part by Halbzeugwerk Auerhammer, now Auerhammer Metallwerk. (K. H. 

Fornacon, 2023, personal communication). 

The success of the Naval Ordnance Laboratory 6.0% molybdenum-permalloy as a fluxgate material (Gordon et al., 1968) 

effectively obviated the immediate need for seeking other novel materials. Then as now, 4-5% molybdenum permalloys are 

also used for fluxgate sensors. It was not until the introduction of amorphous alloys to fluxgates (Shirae, 1984, Narod et al., 205 

1985) that any newer materials were added to the fluxgate sensor roster. These authors noted strong correlations between 
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fluxgate noise with respectively, Curie temperature and saturation moment, 𝑩 . Musmann and Afanassiev (2010) has more 

recently pointed out that this relationship has become common knowledge.  

More recent permalloy studies have looked at crystallographic influences on performance rather than chemistries, for example: 

Major and Martin, (1970); Couderchon et al., (1989); Herzer (1990); Herzer, (1993); Müller et al., (1998). All have found that 210 

grain alignment or size have significant effects on magnetic properties. Anticipating this direction, Odani (1964), (Odani and 

Sunazawa,1967) was an earlier investigator to consider recrystallization, both primary and secondary, to have a role in 

determining magnetic material performance, in parallel with the effect of alloy compositions.  

None of these relatively recent studies considered copper as suitable content for permalloy. 14%Cu-permalloy was likely 

abandoned due to its lower resistivity, which would lower its usable bandwidth (Chaston, 1936). 28%Cu-permalloy was never 215 

considered as being suitable for anything. 6%Mo-permalloy never entered the mainstream for magnetic materials due to its 

higher material cost, lower saturation moment and awkward optimal heat treatment (slow cooled). 

Puzei (1961) was the last investigator to look at ternary copper-permalloys. A copy of the only publication with extensive 

copper-permalloy soft magnetic data (von Auwers and Neumann, 1935) proved very difficult to locate, its only citations being 

in Chaston (1936), Bozorth (1951) and Puzei (1961). To address this shortfall, we offer an English language translation of it, 220 

in Appendix A. 

2 Sample preparations 

Part of our acquired data were intended to fill in measured parameters presented in von Auwers and Neumann (1935). These 

include room temperature saturation magnetization, initial permeability, coercivity and magnetostriction. Our additional 

measures include DC resistivity, and for four selected compositions we acquired 𝑩 𝑯⁄  curves across a range of temperatures, 225 

up to their Curie temperatures. We also used these same four compositions in fluxgate sensor builds. Here we describe in detail 

our specimens’ production. 

2.1 Alloy manufacturing 

For our investigations we have planned to produce up to seventy individual Cu-Ni-Fe alloy specimens, with copper weight 

contents from 28% to 50%. Here we report our initial phase in which we have produced fifty-two and tested fifty alloys with 230 

copper contents from 28% to 45%. The alloys were produced as batches of fifteen 30g circular ingots, melted at 1550C from 

high purity powders, each in a covered ceramic crucible. Two ingots failed during cold rolling. The full procedure is described 

in Miles et al., (2022). 



10 

 

We then made three experimental specimens from each alloy, one each for magnetostriction, DC resistivity, and 𝑩 𝑯⁄  

explorations. After metal fabrication, all specimens received a common heat treatment featuring a four-hour soak at 1125C, 235 

and a slow cool (35C/hour) from 600C to room temperature. Details regarding the heat treatment are also available in Miles 

et al., (2022). [For comparison, the 1935 Siemens study used 7kg melts, (von Auwers and Neumann, 1935).] 

2.2 Magnetostriction specimens 

Magnetostriction specimens were the first to be produced from the alloys. We cold rolled each ingot to a thickness of 1.00mm, 

then cut a rectangular specimen 8.0mm x 50.0mm. Each specimen received a stamped four-digit numerical code to reflect its 240 

identity, a marking that would survive the heat treatment. We polished one surface of each specimen to better reveal the grain 

structure after heat treatment. Each specimen received a MgO dipped coating for isolation during the heat treatment. After heat 

treatment each specimen received a 12mm x 3mm strain gauge, attached using cyanoacrylate adhesive. Magnetostriction 

measurements have now been left for a future investigation. [For comparison, the 1935 Siemens study used strips 0.35mm 

thickness, 10mm width, 100mm length, with less than half the cross-section of our present specimens] 245 

2.3 Resistivity specimens 

The resistivity and 𝑩 𝑯⁄  specimens both utilized permalloy strips of nominally 0.100mm x 3.20mm cross section. 2g remnants 

from the 1mm sheets got further cold rolled to thickness 0.100mm, then slit to 3.2mm strips. We selected one such strip each 

for the resistivity and 𝑩 𝑯⁄  specimens.  

We again polished part of the first strip surface, stamped a two-digit identity mark into the strip, and coated it with a MgO dip. 250 

80mm was the minimum length used for the resistivity measurement. We measured strip thicknesses, widths, lengths, and 

masses prior to the heat treatments. Together these data provide some redundancy, which we used for estimating errors. We 

estimate dimensional and mass rms error for resistivity at 0.2%. Curiously von Auwers and Neumann (1935) did not include 

DC resistivity measurements although it was well known in their time that copper alloy resistivities could be undesirably low 

(Smith and Garrett, 1925,1926; Neumann, 1934). 255 

2.4 𝑩 𝑯⁄  specimens 

For each 𝑩 𝑯⁄  specimen we produced a bobbin machined from a Sch80 ¾” [20mm] pipe [nominal O.D. 26.67mm], grooved 

to receive the permalloy strip, groove diameter about 23.5mm. The bobbin material chosen for good thermal match was 70% 

cupronickel, UNS C71500. Bobbins were stamped with two-digit identity codes to match those for the resistivity specimens. 

Again, dimensions and masses were measured for each bobbin assembly to reduce 𝑩 𝑯⁄  errors introduced by such 260 

inaccuracies, and again we estimate such errors at 0.2% rms. In all cases mass measurements were rationalized with 
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dimensional measurements using alloy densities estimated by elemental mixing. We estimated magnetic path length from the 

mass and cross-section area data.  

After heat treatment each ring received twenty-turn, color-coded bifilar windings. Foil overlaps for spot welding likely 

produced the largest uncertainties which we estimate created typical errors of about 1% in all magnetic measurements. [For 265 

comparison, the 1935 Siemens study used punched circular rings in groups of ten, 0.35mm thickness, 45mm inside diameter, 

60mm outside diameter.] 

2.5 Curie temperature specimens 

Of the fifty alloys we tested, fourteen were selected for possible magnetic properties studies at elevated temperatures, up to 

their respective Curie temperatures. These rings received windings of AWG26 [400 micron] single-strand bare-copper, 270 

insulated with color-coded, FBGS series, braided-fiberglass sleeving (Omega Sensing Solutions, 2022). This insulation has a 

rating of 616C for short durations. 

2.6 Vibrating sample magnetometer specimens [VSM] 

A few alloys received further cold rolling to 0.050mm thickness. We have cut 3mm discs from these and flattened them prior 

to heat treatment. Our plan is to subject these to a more careful 𝑩 𝑯⁄  examinations via VSM, and x-ray diffraction examinations 275 

seeking recrystallization fabrics such as those found by Major and Martin, (1970). 

3 Data acquisition 

We collected resistivity and 𝑩 𝑯⁄  data for all specimens. We summarize all our test data on composition-based grids laid out 

as shown in Fig. 2. 
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 280 

Fig. 2. Compositions of the fifty-two copper-permalloy specimens.  

Here copper content is plotted in 1% increments, increasing to the right. Nickel content is also plotted in 1% increments, 

increasing down. Our physical specimens’ cells are all marked in colour. Each cell composition then has a four-digit code 

indicating the alloy content with the first two digits stating copper content, and the last two digits indicating nickel content. 

Iron content is the remainder, indicated in the un-used cells Fig. 2. Here the colour code indicates iron content with low iron 285 

contents in reds located to the right, and high iron contents in blues located to the left. Cells with black outlines are compositions 

included in the von Auwers and Neumann (1935) study. 

Four cells presented with red lettering codes, namely 2860, 3358, 3954 and 4550 are our specimens also used in Curie 

temperature tests and in fluxgate sensor builds. 

3.1 Resistivity 290 

To measure resistivity each strip specimen was driven with a 2.00A DC current, and pin probes with either 80mm or 100mm 

separation completed a four-contact resistance measurement. Resistivity data are presented in Fig. 3. Highest values occur for 

highest copper contents, where nickel contents are similar. This is a well-known effect associated with such alloy mixing. 

Higher resistivities are also associated with higher nickel contents for similar copper contents. Both effects are to our advantage 

and will be discussed further. 295 
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Fig. 3. Resistivity data, in units of ohm-metres x10-7. Colour coding indicates lowest resistivities in reds, to the left, and highest 
resistivities in blues, to the right. 

3.2 Saturation induction 

Saturation induction values range from 600 mT for a 28Cu60Ni specimen down to below 200 mT for the highest copper 300 

content specimens. Our values are consistent with those presented in von Auwers and Neumann, (1935). Subject to error limits, 

saturation induction consistently decreases with either increasing Ni or increasing Cu content. One high-copper-content, high-

nickel-content specimen, namely 4453, is paramagnetic at room temperature. Data are presented in Fig. 4. 

Test conditions for saturation inductions were magnetic field amplitude ±1000 A/m, triangle field waveform at 24Hz. These 

fields were generated using a generic signal generator, one of the 20-turn windings and an Accel Instruments TS250-0 305 

waveform amplifier. Data were acquired from the second 20-turn winding using an operational amplifier integrator and a 12-

bit PicoScope as our digitizer. 
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Fig. 4. Saturation induction, 𝑩𝒔, in mT. Highest values are presented in blues, to the left, and lowest values are presented in reds, to 
the right. 310 

3.3 Curie temperatures 

 

Fig. 5. Curie temperatures. We have six specimens with Curie temperature estimates. These specimens are indicated as red-outlined 
cells, with Curie temperature Celsius estimates marked with red lettering therein. 
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We estimated Curie temperatures (𝑇 ) for our selected specimens by raising their temperature and estimating when saturation 315 

induction went to zero. All specimens were contained within an airtight quartz glass cylinder with suitable electrical 

feedthroughs. We heated the specimens under argon gas up to 360C, so as not to risk affecting their magnetic properties. Data 

are presented in Fig. 5. 

As expected, alloy 28Cu60Ni had the highest 𝑇 , over 360C, somewhat higher than that we measured for molybdenum 

permalloy, 6-81 [360C]. Alloys 45Cu50Ni and 44Cu51Ni both measured at about 100C making them potentially useful in 320 

magnetometers. Alloy 44Cu53Ni being paramagnetic received a 𝑇  estimate, <20C.  

3.4 Initial permeability (relative) 

Test conditions for initial permeabilities were magnetic field amplitude ±0.4A/m, triangle waveform at 240Hz. Our results are 

presented in Fig. 6. 

 325 

Fig. 6. Initial permeabilities. Highest permeabilities are colour-coded as blues and browns. Fifteen cells have been outlined in red 
with which we are indicating local high values for initial permeabilities.  

In Fig. 6 we’ve selected fifteen cells to highlight with red outlines. These are local high values and decrease to the right. This 

overall decline in permeability values with increasing copper content is slight, not as high as for saturation induction. For 

fluxgate magnetometers this effect should be beneficial. With increasing copper content, while saturation induction is declining 330 

(beneficial) the other predicted key magnetic property, anisotropy, as reflected in permeability is not degrading rapidly, if at 

all. In the next section on coercivity the same fifteen red outlines are repeated in Fig. 7.  
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3.5 Coercivity 

The test conditions for coercivity were magnetic field amplitude ±50A/m, triangle waveform at 10Hz. We increased the sensing 

windings to 84 turns. Our results are presented in Fig. 7. For the fifteen marked cells coercivity ranges from a high of 7.5 A/m 335 

for the lowest copper content specimens, down to 2.5 A/m for the highest copper contents. These values are comparable to 

those of amorphous alloys favoured by fluxgate developers, e.g., VITROVAC 6025, (Sekels, 2019).  

 

Fig. 7. Low frequency coercivities. Highest coercivities are colour-coded as blues and browns. Fifteen cells have been outlined in red 
with which we are indicating local low values for coercivity. Values are in units of A/m. 340 

The fifteen locally low value coercivities correspond almost perfectly to the locally high permeability values in Fig. 6. We 

believe these two measurements are exploring the same phenomenon – magnetic anisotropy’s influence on domain wall 

motion. For permeability, the measurements examine reversible domain wall motion. For coercivity, the measurements 

examine the endpoint of reversible domain wall motion and the entry into irreversible domain wall motion. In both cases, 

permeability and coercivity, higher domain wall mobility improves our measurements’ results.  345 

3.6 Fluxgate tests 

Alloys 28Cu60Ni, 33Cu58Ni, 39Cu54Ni and 45Cu50Ni were fabricated into racetrack fluxgate sensors of the same design as 

in Miles et al., (2022), three sensor cores per alloy. We included sensors incorporating alloy 6.0%Mo,81.3%Ni (6Mo81Ni), 

for comparisons. Each sensor core included three 50-micron racetrack foils.  
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Our fluxgate testing results for five alloys are presented in Fig. 8. For each of the fifteen sensors we have noise power spectral 350 

densities [PSD] at both 1.0Hz and 0.10Hz, and core drive power consumption. In all cases power consumption for a copper 

alloy sensor from these cores is lower than power consumption for any 6-81 sensor of our own build. Generally copper alloy 

sensors have lower noise PSD at both frequencies, and significantly so for 45Cu50Ni sensors which have 1.0Hz noise PSD 

values within the range 6-8 pT/√Hz. 

 355 

Fig. 8. Fluxgate noise PSD and power consumption for five alloys. 

We further examined the performance of alloy 45Cu50Ni by producing twenty-five 6-layer racetrack core sensors. Noise PSD 

results for these sensors are presented in Fig. 9. 
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Fig. 9. 1.0Hz and 0.10Hz noise PSDs probability density plot for twenty-five 6-layer 45Cu50Ni racetrack sensor cores. Cross-hatched 360 
columns indicate sensor cores for both test frequencies. 

Here we found 1.0Hz noise PSDs in the range 3-8 pT/√Hz and most likely in the range 4-5 pT/√Hz. 0.10Hz noise PSDs are in 

the range 4-14 pT/√Hz, peaking at 6-7 pT/√Hz. Of the twenty-five cores, twenty-one have 0.10Hz noise PSD below 10 pT/√Hz, 

that is the noise target for INTERMAGNET magnetic observatory variometers (Turbitt, 2014). These cores are intended for 

use in pairs in our TESSERACT sensors (Greene et al., 2022). No Infinetics S1000 ring-core ever achieved these noise PSDs. 365 

4 Discussion 

The concept for our investigation has been to fill in magnetic properties data within the range of copper-permalloys presented 

in Fig. 1, and to test fluxgate magnetometer performance for a small selection of compositions within that range.  

Regarding the magnetic properties data, we have replicated the results of von Auwers and Neumann (1935) and improved 

chemical content resolution. We discuss here our results in the order in which we have presented our data. 370 

4.1 Resistivity 

Resistivity has been investigated for binary copper-nickel alloys but has to our knowledge not been previously investigated 

for ternary iron-nickel-copper alloys. For copper-nickels, resistivity peaks at about 45%Cu (Copper Development Association 

Inc, 2023). Our data broadly replicate those early results. From 28%Cu to 45%Cu resistivity increases about 2% for every 1% 

increase in copper. In addition, we see a roughly 8% increase in resistivity for every 1% increase in nickel content. For our 375 
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lowest noise tested alloy, 45Cu50Ni, we measured resistivity 4.30x10-7ohm-m, of similar magnitude to Mo-permalloys. From 

our measurements we have concluded that resistivities for our alloys of interest are not a limitation. 

4.2 Saturation induction 

Our data closely replicate results in von Auwers and Neumann (1935). Because saturation induction varies only slowly with 

alloy composition our results have only filled in predictable details. 380 

4.3 Curie temperatures (𝑻𝒄) 

Prior to going into our 50-alloy study we knew that 28Cu60Ni would be a usable alloy for magnetic sensors. Von Auwers and 

Neumann (1935) had viable saturation data with as high as 50% copper, but in order to determine what could be a usable range 

of alloys we selected three additional alloys for 𝑇  measurements. 45Cu50Ni has a 100C 𝑇  and has been tested as a viable 

magnetometer sensor material. The other two, 33Cu58Ni and 39Cu54Ni have 𝑇 ’s respectively 310C and 250C, while our 385 

28% copper alloy, 28Cu60Ni has a 𝑇  exceeding 360C. From the perspective of Curie temperature almost our entire range-

under-test is usable as magnetometer sensor material. Alloy 44Cu53Ni is paramagnetic thus out of range. 

4.4 Initial permeability and coercivity 

Our results for these measurements are also consistent with the von Auwers and Neumann (1935) Figures. Our choice of 1% 

composition increments has enabled a closer look at the location of the ridge of highest permeability/lowest coercivity as noted 390 

by those authors. For 28%Cu compositions 62%Ni gives our highest permeability which could not have been resolved by the 

earlier data. For 33%Cu and 39%Cu alloys, their nickel contents may need to be slightly higher to achieve maximum 

permeability and hopefully lower magnetometer noise. Alloy 45Cu50Ni appears to be on target for maximum 

permeability/minimum coercivity for that copper content. However, by moving only 2% in content to 43Cu52Ni values for 

both measures significantly improve, permeability increased a factor of six and coercivity declined a factor of 0.75. There may 395 

be a material optimum near that content. 

Of particular interest is the very large changes in properties with only single percent changes in contents. Looking at the 

sequence 42Cu50Ni, 42Cu51Ni, 42Cu52Ni, 43Cu52Ni, 44Cu52Ni, 44Cu53Ni, we note that 42Cu50Ni is a permanent magnet, 

three later – 43Cu52Ni is near a high permeability optimum, and two after that – 44Cu53Ni is paramagnetic. Von Auwers and 

Neumann (1935) were aware of a permanent magnetization regime at higher iron contents within these ternary alloys but did 400 

not have a good location for it. 
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Fig. 10 shows two 𝑩 𝑯⁄  plots for 42Cu50Ni and 45Cu50Ni, only 3% apart. The first plot shows the squareness and large 

coercivity of a permanent magnet. The second shows the rounded, low-loss form of our so-far lowest noise magnetometer 

material. 

 405 

Fig. 10. Saturation 𝑩 𝑯⁄  curves for alloys 42Cu50Ni and 45Cu50Ni. 

4.5 Fluxgate tests 

We expected that as we increased copper content both power consumption and noise PSD would be reduced, the former from 

the lower field strength needed for saturation and the latter due to the well-known relation between saturation and noise PSD. 

These relations were both confirmed. What we did not know in advance was how hypothetical poorer magnetic anisotropy 410 

levels might impact the measured magnetic properties and noise levels. Narod (2014) predicted that such impacts should vary 

only slowly with anisotropy and our data confirm that. By far the biggest impact magnetic properties have on sensor noise 

performance is that of saturation induction.  

5 Concluding remarks 

Our investigation of the 28-45% copper permalloy regime’s magnetic properties has led us to alloys which have yielded 415 

fluxgate sensors with noise PSD and power consumption improvements over those of the legacy 6Mo81.3Ni permalloy 

composition. Racetrack sensors of our lowest noise and power alloy, 45Cu50Ni, have noise PSD levels well below 10pT/√Hz 

at both 1.0Hz and 0.10Hz, easily satisfying the 1-second INTERMAGNET requirement (Turbitt, 2014).  

We have now begun to refine our investigation, seeking additional improvements in noise PSD and/or power consumption. 

Our first alloy selected for further sensor testing, 43Cu52Ni, shares its 100C 𝑇  with our lowest noise alloy, 45Cu50Ni, but 420 
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has much higher initial permeability. Many uses for low noise magnetic sensors require long durations of data collection, and 

sensor stability, over both time and temperature is an issue. Our future investigations must address these properties. 

Our present results have relied heavily on the existence of the data presented by von Auwers and Neumann (1935), but no such 

comprehensive examination of molybdenum permalloys was ever undertaken (Chaston, 1936). There may yet be room for 

improvement of molybdenum permalloys in fluxgate sensors, with molybdenum content higher than that of the legacy 6% 425 

materials. In our future work we plan to investigate these alloys. 

The performance of these new alloys is expected to enable further miniaturization of the fluxgate sensor while preserving 

geophysically useful magnetic sensing performance. 
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Appendix A: Translation of “On Iron-Nickel-Copper Alloys of high initial permeability” by Otto v. Auwers and Hans 
Neumann 555 

Preface to the translation 

In this translation my intent has been to replicate in English the style as it was composed in German. The reader in English 

will find many of the sentences awkward, long and sometimes using a questionable vocabulary. The inverted order of many 

sentences is as it appears in German, above and beyond the usual word order differences between English and German.  

Much of this would be the writing style of that time, 1935, in both languages. My hope is that I have been able to provide the 560 

look and feel of writings of that time. 
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Translation notes are included in-line. I would like to acknowledge the helpful comments on the translation from F. Harpain 

and T. O’Connor. 

About the authors: 

Otto von Auwers was born in Heidelberg on July 1, 1885, son of chemist Karl Friedrich von Auwers. He studied natural 565 

sciences at the universities in Heidelberg, Munich, and Marburg. He then worked as an assistant at the universities of Gdansk 

and Greifswald, where he also did his doctorate. 

From 1924 he worked as a physicist in the laboratories of Siemens & Halske, where he mainly worked in research. In 1935 he 

was able to habilitate at the University of Berlin and was employed there in 1943 as an associate professor. After the war 

ended, Von Auwers went to Clausthal in 1946 as a full professor, where he taught for three years. Von Auwers died on 570 

November 4, 1949, at the age of 54.1 

Hans Neumann worked at Siemens & Halske in Berlin. He is known for the invention of a diaphragm loudspeaker with a 

planar voice coil (US patent US1987412A, 1935), and for Siemens magnetic alloy, M1040, which from 1934 to 1941 held a 

record for maximum magnetic permeability2 

Provenance: 575 

This paper was difficult to locate. This original reprint copy was provided by the Central Laboratory of Wernerwerkes of 

Siemens & Halske, and made its way to Dr. Egon Ritter von Schweidler, a Vienna physicist. Von Schweidler was vice president 

(1939-1945) of the Austrian Academy of Sciences. 

There is a gap between von Schweidler’s death in 1948 and the locating of this photocopy. It was found in a box of loose 

materials in 2007, in the Austria Academy of Sciences Library in Vienna, scanned to a pdf file, and forwarded to colleagues 580 

at Zentralanstalt für Meteorologie und Geodynamik, (ZAMG) in Vienna, now GeoSphere Austria. 

I wish to acknowledge help of the AAS library’s director and staff who catalogued the loose material and found the photocopy, 

and B. Leichter and colleagues at ZAMG who enabled the paper’s arrival in my hands. 

B. Barry Narod 

  585 

 

1 Wikipedia, Germany 
2 R. Bozorth, 1951, Ferromagnetism, p. 120. 
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1. Magnetic properties of high permeability FeNiCu-alloys3 

Among magnetic materials with higher initial permeability (𝜇 ) alloys comprise a special type. It is possible with alloys to 600 

obtain not only higher but also more uniform 𝜇 -values than it is with pure metals, for which the variable content of impurities 

has much larger influence on the magnetic values than with the alloys. For 12 years the 𝜇 -values of pure and of silicon iron 

stayed between 400 and 1000. It was therefore a huge step forward for them for the equally important areas of electrical 

measurement and telecommunications for materials with higher initial permeability and smaller coercive force (𝑯 ), which 

was achieved in 1923 by G.W. Elmen (1), with the making of an FeNi-alloy ("Permalloy" with 78.5%Ni and 21.5%Fe)4, with 605 

a particular annealing showing 10-times higher 𝜇 -values (4000 to 10000). Because of the extensive technical applications 

found in the meantime for the FeNi-alloys, this was the territory of a large number of researchers who have gone in various 

investigative directions, usually with the technical goal to achieve higher 𝜇 -values. This was finally made possible by the 

addition of specific metals to the FeNi-alloys; among these Cr, Mo and especially Cu have proven particularly suitable. A very 

well-known magnetic FeNiCu-alloy is Mu-Metal (2), (3), an alloy with 76%Ni, 17%Fe, 5%Cu, 2%Cr, with 𝜇 -values to 610 

20,0005. Other magnetic alloys of the FeNiCu-system that have found uses in the electrical technologies are Thermalloy (5) 

by J.T. Kinnard and H.T. Faus, an alloy of about 70%Ni, 30%Cu with some Fe, and the very similar Monel-metal (6), a natural 

alloy with variable composition (about 67%Ni, 29%Cu, balance Fe and other metals). Because of their negative temperature 

coefficients both alloys were utilized to compensate the temperature coefficients of permanent magnets (as magnetic shunts in 

an air gap). Furthermore, should be mentioned those cold-rolled FeNiCu-alloys (namely, about 40%Ni, 60%Fe with Cu-615 

additions to 15%) alloys investigated by O. Dahl, J. Pfaffenberger, H. Sprung (7), M. Kersten (8) and F. Preisach (9), which 

because of their admittedly low, but very field-strength-independent permeability could win new interest for 

telecommunications. 

 

3 Chapters 1 and 3 are work of H.Neumann (measurements joint with H.Reinboth), chapter 2 O. v. Auwers. 
4 The statements in this work are weight-percentages. 
5 With an alloy of 72%Ni, 11%Fe, 14%Cu, 3%Mo, H.Neumann (4) has realized the highest ever measured 𝜇 -value (recently 
to 51,000). 
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Fig. A1. Locations of alloys investigated in the FeNiCu-diagram in weight-percent (x) and in atomic-percent (o). Locations of phase 620 
separation region boundaries (a, b, c, d) taken from other authors. 

A systematic investigation of the FeNiCu-system is so far still not accomplished. Already R.Vogel (10) has detected that in 

the FeCu-system there exists a phase separation [“miscibility gap” in the original] region reaching far into the ternary zone (up 

to about 40% Ni), gradually narrowing (Fig. A1, curve c); this limit applies however only for higher temperatures (about 

1000C). P.A. Chevenard (11) et al. concluded from dilatometer measurements, that the phase separation region at room 625 

temperature extends into the Nickel corner in the ternary region (Fig. A1 curve b), and O. Dahl and J. Pfaffenberger (12) could 

essentially confirm this limit by magnetic measurement. Their findings shift the course of the limit of the phase separation 

region (Fig. A1 curve a) towards still higher Ni content. A. Kussman and B. Scharnow (13) in contrast, with measurements of 

the coercive force on the line 50%Ni, 50%Fe (to the Cu-corner) put the limit on the phase separation region to about 17%Cu, 

42%Ni set (Fig. A1 point d). The FeCu and NiCu binary systems were as well metallurgically and magnetically investigated. 630 

For the first system we can name the works of R. Sahmen (14), A. Müller (15), R. Ruer (16), R. Ruer and F. Georens (17), A. 

Kussmann (18), for the second case are those of W. Guertler and G. Tammann (19) and E.H. Williams (20) et al. 

From the above statements, because of the phase separation region, alloys in the FeNiCu-system in the neighbourhood of the 

FeCu-line are not expected to have high permeability; in the neighbourhood of the NiCu-line, particularly towards the Cu-

corner, the Curie-points are too low, and on these grounds we cannot expect very high values of permeability; there remains a 635 

quite sizable phase separation zone, adjacent to the highly permeable FeNi-alloys, that few have investigated. The problem of 

the present investigation was then, to investigate and clarify the FeNiCu-system by measurements of the magnetic properties, 

and for various heat treatments to ascertain the extent and form of the highly permeable zones in the ternary system. A further 
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sought verification was whether a connection existed between the height of initial permeability as compared with the coercive 

force and the magnetostriction. 640 

Making of the alloys 

The alloys were cast as ingots from 7 kg melts made in a high-frequency-oven. The starting materials used were Mondnickel 

of 99.84% purity, wood charcoal iron and electrolytic copper. Compositions were specified as values of the weights. The 

poured ingots were rolled out to plates of 0.35mm, from which were punched rings of 60mm outer- and 45mm inner diameter. 

A final annealing process followed in dry hydrogen. 645 

Measurement methods 

The measurement method was the usual ballistic ring method, in which about 10 rings were set in ring-formed ebonite casings 

to keep out mechanical stresses (when direct winding the cores) (21); because of the mainly high 𝜇  values, the air-form 

correction was needed in only a few cases. 

What was recorded: the magnetization curves and loops for a maximum magnetic field strength 𝑯  10 Oe; this value 650 

sufficed, because of the high permeabilities for most alloys, for achieving the limiting values for coercive force (𝑯 ) and 

remanence (𝑩 ), and in many cases even for the saturation. For the alloys with larger coercive forces (𝑯 3 Oe) the field 

was increased to 100 Oe; for the magnetostriction measurements sheet metal strips were made, and for control were annealed 

together with some rings from the same alloy. For these rings the coercive force was measured ballistically, an 𝑯 -

measurement for the strips by the familiar ballistic method; An 𝑯  measurement of the strips according to the known ballistic 655 

method (in which the sample during the determination of the apparent remanence is pulled from an induction coil), failed 

because of the too small sample cross section of 3.5 mm2 which would have necessitated a much too high winding number of 

the induction coil, of roughly 100,000 windings. The measurement was made with the astatic compensating magnetometer of 

H. Gerdien and H. Neumann (22), and in spite of the small apparent remanences (of only 20 Gauss) and the small coercive 

forces (as low as 0.02 Oe) the strips still possessed sufficient sensitivity. In this instance the measurement was only possible 660 

by having the sample approach very closely to the moving coil magnetometer. For this reason, we did not use the normal two 

field coils in opposing circuits, rather utilized a long through-spool, the magnetic moment of which is cancelled in a 

compensating field in our operating moving-coil system (22), upon which the second, astatic moving-coil worked. 

Locations of investigated alloys 

There were about 130 alloys investigated, their locations are given in Fig. A1 with crosses (x). For a number of alloys, the 665 

location is also given in atomic-%. The locations of those with (O) indication points, in most cases did not significantly deviate 
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from the locations of the cross. The coherence of the individual points is clear; for the alloys for which only the percents-by-

weight are stated, the atomic-percentages are so close besides, that a draftsman-made diagram was not possible. 

Error sources 

The magnetic values for the investigated alloys, to some degree scatter around naturally within a particular neighbourhood. 670 

Here the following influences are responsible: fluctuations in the alloy composition, particularly a varying influence from 

contamination, as well as inevitable fluctuations from rolling and annealing processes. For the analysis of the results also arise 

errors owing to the occasional inadequate density of the alloy-point locations. In contrast to these errors, the errors of the 

magnetic measurements of only about 2% are very small. Because in general during repetition of the melting and heat treating 

it is possible to obtain a tolerance of only about 10 to 20%, for the quantitative reproducibility of the magnetic values therefore 675 

the above accuracy of 2% is entirely satisfactory, in order to obtain with reasonable certainty in a sequence of alloys, for 

example, the optimum for the initial permeability of a composition. Thus because of the aforementioned scatter in the magnetic 

values it is difficult to decide if particular small irregularities in the plotted curves have a real underlying reason or not. 

Heat treatments 

Since our investigations started with high nickel content, to wit the connection to Permalloys, we first of all retained even 680 

during variations of the copper content that heat treatment ("Permalloy treatment", one-hour long heating at 900C with air 

quenching at 625C) which was designed by G.W. Elmen to obtain for these alloys the best 𝜇  values. Comparative 

measurements with other heat treatments (for example one hour heating at 900C with air quenching or with slow cooling of 

the oven) did not yield significant deviations with respect to the location in the later described regions of highest initial 

permeability below 70%Ni but did of course yield differences in the size of the magnetic values. As a second heat treatment 685 

with a principally different effect on the alloy was chosen a two-hour long heating at 1100C with slow oven cooling (“1100C 

treatment”). The following results thus cover in the main these two heat treatments.  
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Fig. A2. Induction 𝑩 as function of Cu-content for various field strengths; section for 70% Ni; Permalloy-handing. 

Analysis of the measurement details 690 

The results of the numerous (and unreported) individual measurements were evaluated in the following manner where sections 

for various Ni-contents (between 40 and 90%Ni) were placed in the alloy triangle, and the magnetic properties, for all 𝜇 , 𝑯  

and the induction 𝑩  for 𝑯 10 Oe, were presented as functions of the Cu-contents. For example, Fig. A2 presents for a 

section of 70%Ni the 𝑩-value as a function of the Cu-contents, for various field strengths. One recognizes an instability in the 

magnetic properties for about 16%Cu, for small 𝑯-values (zone of initial permeability) is particularly prominent and which 695 

almost vanishes with increasing saturation. Fig. A3 presents a similar typical section for 40%Ni. Here is present a very 

pronounced maximum in magnetizability for 50%Cu, which is separated from still higher magnetizable alloys with small Cu-

content by a wide valley between 30 and 49%Cu. This valley is due to the channelling through of the edge of the upper peak 

of the phase separation region, a zone of poor magnetizability. Similar curves result, when one selects the sections for constant 

Cu-content, whereas for constant Fe-content the differences were not so obvious. Since according to both of the last images 700 

the magnetization for small field strengths, that is, 𝜇 , is not only of technical significance, but also constitutes a very 

characteristic property, therefore one could dispense with the presentation of the field dependence of induction; hence in Fig. 

A4 the 𝜇 -values for the Permalloy-treatment are presented as functions of the Cu-contents, and the various Ni-contents 

presented as a parameter. One recognizes clearly that there is always a quite peaked maximum found in the initial permeability, 
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for each of the various Cu-contents examined. Surprisingly furthermore is the fact, that even with lower Ni-contents (45%Ni) 705 

and very high Cu contents (50% Cu) high 𝜇 -values (4000) were still found. There exists therefore a certainly narrow, but 

quite long zone of highest 𝜇 -values in the FeNiCu-system between 40 and 80%Ni, and within this narrow zone is a 𝜇 -

maximum definitely present at about 70%Ni. Figure A5 gives the same measurements for the 1100C-treatment; here also there 

is a narrow zone of higher initial permeability with a 𝜇  maximum present, only this [maximum] is shifted towards smaller 

Ni-contents (60 to 65%Ni). The coercive forces yield, processed in the same manner, give the same plot, equally so for the 710 

maximum permeabilities. The location of the high permeability zone becomes more apparent if in "van't Hoffschen" triangles 

one puts in lines of constant magnetic properties; so in Figures A6 through A13 are drawn the lines of constant values for 𝜇 , 

𝑯  and 𝑩  for the two heat treatments. Figures A7 and A9 are photographs of spatial models of the initial permeability (𝜇 -

values presented vertical) for the pair of heat treatments, which make these conditions very apparent. For the individual Figures 

we observe the following: Figs. A6 and A7: For the Permalloy treatment the zone of highest initial permeability takes a narrow, 715 

band-form from the Permalloy-alloys with 78.5%Ni (𝜇 ~8000) with steady rise of 𝜇 -values to its top, peaking from 68 

to 75%Ni and 9 to 19%Cu, a maximum with 𝜇 12,000 and then sloped relatively steeply (the saddle minimum for 60%Ni 

is probably not real), sagging to 52%Cu with 𝜇 500 to 1000, the values for technical iron. Also drawn in the diagram are 

the phase separation regions as reported by various authors; one sees that its impact is still noticeable up to the highest Ni-

contents beneath the 𝜇 -maximum for 70%Ni, as a flaring of the lines of constant initial permeability. In the lower part of the 720 

highly permeable zone around 40%Ni, 50%Cu the band of higher permeability bends somewhat in the direction towards the 

alloy 50%Fe, 50%Cu. Figures A8 and A9 give similar ratios for the 1100C-handling. Here the location for the 𝜇 -zone is the 

same, only the 𝜇 -maximum within this zone has shifted to lower Ni- and higher Cu-contents. Whereas the direction the 𝜇 -

zones between 𝜇 4000 and 𝜇 12,000 is roughly the same as for the Permalloy-handling, for this heat treatment the 

highest initial permeability on the NiFe-line is for more than 78.5%Ni, but less than 88%Ni. The influence of the phase 725 

separation region on the form of lines of constant permeability is only indicated for alloys of more than 30%Cu; the saddle 

minimum for 60%Ni, 30%Cu, 10%Fe as well as the bent ends on the 𝜇 -zones that went towards the FeCu-line are completely 

absent here. Also noteworthy is that the width of the 𝜇 -comb has become noticeably smaller, as follows from the denser 

positioning of the contours’ layers. This could be because the chosen higher treatment temperature and slow cooling effect a 

precipitation hardening itself much more noticeable than with the Permalloy-handling with the lower anneal temperature and 730 

the air quenching. Figures A10 and A11 show the 𝑯 -values for the two heat treatments. The small 𝑯 -zone developed quite 

similarly as that of the initial permeability, and this was true for both heat treatments. For the Permalloy-treatment the 𝑯 -

minimum moves towards the alloy 81%Ni, the 𝜇 -maximum towards 78.5%, whereas for the 1100C-treatment the valley of 

coercive force bends towards 88%Ni, much as in Fig. A8 the initial permeability does for the same heat treatment. The 𝜇 - 

and 𝑯 -zones thus develop similarly for each of the two heat treatments, but of course differently for the two heat treatments. 735 

Again, one notices a degree of influence of the phase separation region; it is worthy of mention here that the 1100C treatment 
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produced a larger zone of smaller 𝑯 -values (0.03) as compared to the Permalloy treatment in which the 𝑯 -minimum is 

shifted towards smaller Ni and higher Cu-contents. There is nevertheless this fact to take into consideration, that because of 

the very small remanences in the neighbourhood of the NiCu-line the coercive force is difficult to determine there, this is in 

contrast to 𝜇 , the measurement of which presents difficulties only as one approaches very small values. Therefore, one could 740 

think of circumstances that for 1100C treatment (Fig. A11) the site of the 𝑯 -minima within the small zone is also the same 

as the site of the 𝜇 -maxima in Fig. A8. With that having been shown, the 1100C-handling delivered an unambiguous, definite 

site for the optimum of both magnetic values (𝜇  and 𝑯 ) for about 60% Ni, 28% Cu, whereas for the Permalloy-handling the 

main effect is exerted only on the initial permeability; while the locations of 𝜇 -maxima have shifted in the direction of the 

Permalloy-alloys (for about 68 to 75%Ni), probably the locations of 𝑯 -minima have gone in the opposite direction, or 745 

otherwise expressed: For the 1100C-handling the sites of optimums for 𝑯  and 𝜇  stayed the same, for the Permalloy-handling 

in comparison both optimum zones moved apart. To decide if this effect is a result of the differing anneal temperatures or of 

the cooling rate, a series of alloys was annealed one hour at the same temperature of 900C, in this series some alloys were 

again oven cooled, and some were quenched in air. The result was as follows: the location of 𝜇 -maxima within the zone of 

high permeability alloys remained practically the same for both the 900C heat treatment and for the Permalloy treatment, so 750 

that the determining factor was not the size of the cooling rate but is credited to the height the anneal temperature. The 

difference between both heat treatments for 900C consists thusly, that the width of the 𝜇 -ridges for slow cooling is smaller 

than for the air-cooled, particularly for low Ni- and high Cu- contents. The explanation for this might therefore again be sought 

in the differing actions of precipitation-hardening in the neighbourhood of the mixed phase zone, which for slow cooling must 

become stronger than for quenching in which the precipitation is suppressed; therefore, the zone of higher permeability, that 755 

is, smaller coercive force, must become constricted with increased precipitation-hardening.  

 

Fig. A3. Induction 𝑩 as function of Cu-content for various field strengths; section for 40% Ni; Permalloy-handling. 
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Fig. A4. Initial permeability 𝝁𝟎 as function of Cu-content; sections for various Ni-contents; Permalloy-handling. 760 

 

Fig. A5. Initial permeability 𝝁𝟎 as function of Cu-content; sections for various Ni-contents; 1100C-handling. 
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Fig. A6: Lines of constant initial permeability (-) in the FeNiCu system; Permalloy handling; Boundaries of phase separation region 
from other authors (a,b,c,d); Line of constant Ni:Fe ratio ( ---). 765 

 

Fig. A7: Spatial drawing of Fig. 6; ordinate = initial permeability. 
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Figures A12 and A13 give the lines of constant induction at 𝑯 10 Oe, for the two heat treatments (Permalloy and 1100C 

treatment). Here the locations for the 𝜇 -contours shown for lower Ni-contents (about 40%Ni) are only implied, which perhaps 

alloys might leave for the same magnitude of magnetic field strength of 10 Oe, the values for the higher permeability alloys 770 

(for higher Ni content) having gone to saturation, for alloys with smaller Ni contents having not. Possibly the proximity of the 

phase separation region is responsible for the shapes of the curves, which shapes are still not exactly known for room-

temperature in this zone. Apart from this, the locations of the contour lines for the two heat treatments are nearly the same, as 

the height of the saturation values depends only a little on the heat treatment - irrespective of the formation of an ordered 

atomic distribution; in contrast it is known that the ease of the magnetization, that is the field strength for a specified induction 775 

(that is, the permeability), depends strongly on the heat treatment. 

 

Fig. A8: Lines of constant initial permeability (-) and line for magnetostriction null in the FeNiCu system; (1100C-handling)(-x-x); 
Line of constant Ni:Fe ratio ( ---); Boundaries of phase separation region from other authors (a,b,c,d). 
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 780 

Fig. A9: Spatial drawing of Fig. A8; ordinate = initial permeability. 

 

Fig. A10. Lines of constant coercivity (-) in the FeNiCu system; Permalloy-handling. 
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Fig. A11. Lines of constant coercivity (-) and line of zero magnetostriction in the FeNiCu system (-x-x); 1100C-handling. 785 

 

Fig. A12. Lines of constant induction (in Gauss) (-) for 𝑯 𝟏𝟎 Oe in the FeNiCu system; Permalloy-handling. 
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Fig. A13. Lines of constant induction (in Gauss) (-) for 𝑯 𝟏𝟎 Oe in the FeNiCu system; 1100C-handling. 

Changing the heat treatment 790 

This becomes especially clear when one follows the trace of 𝜇  or of 𝑯  along the highly permeable zones. Thus, because of 

the different positions of the optimal values of 𝜇  and 𝑯 , in every case there has to be a boundary at which both heat treatments 

yield the same values for 𝜇  and for 𝑯 . Figure A14 presents each of the achieved maximum values of 𝜇  for each of the heat 

treatments as a function of the Cu content while Fig. A15 gives the same for the 𝑯  values. While the associated Ni-contents 

for both curves are not entirely the same, it is clearly apparent that for 𝜇  the boundary is at 22%Cu and for 𝑯  the boundary 795 

is at 13%Cu; the reason being that the contour lines of the 𝜇  crests are at that place coincidentally parallel to the lines of 

constant Cu content as is apparent from Figs. A6, A8 and A11. This is only one quantitative indication for the already 

mentioned fact, that for high Ni and low Cu-contents the Permalloy treatment gives the better magnetic values, while for low 

Ni- and high Cu-contents it is the 1100C-handling. 

Reproducibility of the measurements on sheet metal strips 800 

Some evidence is shown in Fig. A16, for the good reproducibility of measurements regarding the locations of 𝜇 -maxima c.f. 

the 𝑯 -minima, for the section 70%Ni and 1100C-treatment. 𝜇  and 𝑯  are presented as functions of the Cu-content, once for 

the sheet metal rings used and once for the later-on treated sheet metal strips, on which the associated magnetostriction 

measurements were done. The two large drawn-in circles represent the 𝜇 -values of the rings that were annealed together with 
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the sheet metal strips; the conformity between the values and the curves is, as shown, very good with respect to the positions 805 

of the optima, even though regarding the magnitude of the magnetic values there are present, as previously mentioned, 

somewhat larger fluctuations. 

 

Fig. A14. Points of 𝝁𝟎-maxima as function of Cu-content (the figures on the curves signify the Ni-content). 
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 810 

Fig. A15. Points of minimum coercive force 𝑯𝒄, as function of Cu-content (the figures on the curves signify the Ni-content). 

 

Fig. A16. Initial permeability 𝝁𝟎 and coercive force 𝑯𝒄 of rings; coercive force 𝑯𝒄 and saturation magnetostriction (𝝀 ) MS on strips 
as function of Cu-content; section for 70% Ni; 1100C-handling. 
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2. The Connection with Magnetostriction 815 

The idea to bring a connection between high initial permeabilities and small magnetostriction-values 𝜆, was first mentioned 

by L.W. McKeehan (23) in the form of a stress-hypothesis with respect to the then highest known permeability values for 

Permalloys, and found wider development subsequently in the works of N.S. Akulov (24), R. Becker (25) and R. Becker and 

M. Kersten (26), which led M. Kersten (l.c.) to the simple formula 

   𝑿
𝑻

       (1) 820 

(𝑿  = initial susceptibility, 𝑻  = magnetic saturation, 𝜆 = saturation-magnetostriction, 𝑠  = mean stress). In broad outline the 

usefulness of this formula (after replacement of the difficult to obtain measurement for inside tension 𝑠  by 𝜆 𝐸) 

   𝜇
𝑻

       (2) 

(𝐸 = elastic modulus) was confirmed in the FeNi-series, by M. Kersten (27).  

In this situation it appears interesting6 if and which connections exist for the above described high-permeability alloys of the 825 

FeNiCu-system with the magnetostriction values of these alloys. Thus 28 alloys of this system were investigated for their 

longitudinal magnetostriction. According to the earlier work of O. v. Auwers (28), R. Becker (29) and M. Kornetzki (30) one 

can from their documents also determine the behaviour of volume-magnetostriction.  

The related alloys were the same as those used in the first part the work. For the magnetostriction measurements metal strips 

of 100 x 10 x 0.35 mm3, together with some rings that had been used for the magnetic measurements, underwent the same (c.f. 830 

Fig. A16) heat treatments (1100C-treatment and Permalloy-treatment). The present investigation was then done on those alloys 

slowly cooled from 1100C. The measuring apparatus was recreated as that of M. Kornetzki (30), the measuring-length 30mm. 

A. Longitudinal Magnetostriction 

All alloys were measured in fields up to 1000 Oe. This field-strength proved to be adequate to determine with sufficient 

accuracy, in spite of the unfavourable aspect ratios, not only the saturation magnetostriction but also the linear increase of 835 

 

6 Prior search in this direction was done in Inst. of Prof. R.Becker, Charlottenburg, in 1933 by M.Kornetzki and H.Neumann. 
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longitudinal magnetostriction, for all the high permeability alloys with exception of the alloys with 40%Ni. From this gradient 

one can, as is well known (31), determine the volume-effect, since7 

    𝜶
𝚫𝑽 𝑽⁄

𝑯 𝑯𝟎
3
𝚫𝒍

𝒍
     (3) 

The validity of these relations was confirmed by M. Kornetzki (l.c.) for iron and by O. v. Auwers8 in numerous FeNi-single-

crystals from F.Lichtenberger (32). Fig. A17 may give an example of the magnetostriction-values for alloys with 70%Ni, 840 

which fundamentally shows the recurring behaviour for all other section tests. From these curves, for which the connection 

with the magnetization intensity 𝑩 will be elaborated later, were determined the magnetostriction-saturation values 𝜆 , that 

means the 𝜆-values, for which the 𝜆-H-curves passed into the linear part above the technical saturation together with the 

associated field strengths 𝑯 . With the thus collected 𝜆 -values one can plot various sections, for which Fig. A16 gives an 

example. The intersections these curves make with the zero-line give the chemical compositions, for which the integrated9 845 

magnetostriction of the polycrystalline alloys becomes zero. Carrying these values into the alloy-triangle, its connecting-line 

(Fig. A18, curve a) (with exception higher Nickel-contents) becomes practically coincident with the contour lines of initial 

permeability for the same heat treatment (1100C) (Fig. A18, curve b) within the error-bounds. 

Figure A18 presents other lines of constant saturation magnetostriction values, which in their aggregate course show a close 

connection with initial permeability (Fig. A8). In Figs. A8 and A11 the lines for magnetostriction null are drawn in as well; 850 

here also the connection is clearly recognized. Thus is given convincing evidence not only for the far reaching importance of 

Equations (1) and (2), but at the same time a plausible explanation for the course of initial permeability in the FeNiCu-system: 

the initial permeability has the maximum value, where the longitudinal magnetostriction was zero. 

 

7 on the impact of 𝑯  cf. below and v.Auwers (28). 
8 Unpublished. 
9 This naturally says nothing about the magnetostrictive behaviour in the various crystal-orientations, which individually can 
be different from zero and even need not agree in polarity; c.f. F.Lichtenberger (l.c.) 
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Fig. A17. Magnetostriction ∆𝒍 𝒍⁄  as function of the applied field strength for 70% Ni, for various Cu-contents; 1100C-handling. 855 

 

Fig. A18. Lines of constant magnetostriction; line of magnetostriction nulls (curve a); Line of highest initial permeability for 1100C-
handling (curve c) and for Permalloy-handling (curve b). 

Against the obvious objections, that for Equations (1) and (2) for 𝜆 0 their validity must fail, one can exercise two points of 

view: 1. the denominator could be assembled as the sum of two10 energies, for which the second in general can have negligible 860 

size, as compared to 𝜆 ∗ 𝑠 , whereby the value 𝜇 ∞ is excluded when 𝜆 goes to zero; and 2, one must consider, that the 

 

10 The magnetostrictive strain-energy in the crystal lattice and as always - also in a well annealed lattice - available deformation-
energy. 
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equations are derived for "anisotropic" magnetostriction, that is, by neglecting the fact that magnetostriction is generally to 

some extent anisotropic, that means it does not go to zero simultaneously in all orientations of the crystal lattice. 

That alone is sufficient to always maintain for the gross magnetostriction strain in polycrystalline materials a certain underlying 

stress level that originates in the crystallographic anisotropy of magnetostriction and must formally make itself noticeable as 865 

an additive component in the denominator. 

 B. The 𝑯𝟎 Field 

Taking from the 𝜆 𝑯  curves the outer ones, depending on the shape 11 , for which field-values 𝑯  for saturation-

magnetostriction 𝜆  have been reached, and contour plotting in the alloy-triangle (Fig. A19), one can also recognize here a 

close connection of the course of the crest-lines with the initial permeability peaks: the contour lines close to minima of 870 

coercivity and the saddle between them. But maybe this connection is less a dependence on the magnetostrictive properties 

and is rather an immediate effect of the regime of permeability, as 𝑯  must naturally be smaller, as ever lighter magnetic 

saturation values were reached. 

C. Volume magnetostriction 

In the same manner were handled the linear ramps of the 𝜆 𝑯-curves (cf. Fig. A17) above technical saturation. They gave, 875 

as already observed, [p.103 (sic)], again one-third the volume effects. Notice once again the lines of constant volume-effect 

∆𝑉 3𝑉⁄  in the alloy-triangle, as follows in Fig. A20; its comparison with the course of both crest-lines of initial permeability, 

in spite of their larger complexity can yet still reveal some coherence. In this example the crest lines of initial permeability for 

both heat treatments go with great accuracy across the narrowest and lowest position of the canyon between 65 and 75%Ni. 

The alloys with 40%Ni given up to 1000 Oe still easily bent 𝜆 𝑯-curves. A basis for their ill form might be sought in the 880 

larger coercive forces of these alloys (cf. Fig. A11). It is interesting, that the volume magnetostriction in the FeNiCu-system 

is similar to that of the FeNiCo-system12, a similar embedded saddle was found in it. 

 

11 The other dimensions were the same for all probes, so that the values "ceteris paribus" [all else being equal] are comparable. 
The internal field-strength oriented 𝑯 -value might be very much smaller. 
12 cf. O. v. Auwers; 1, e, p.827, Fig. 6. 
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Fig. A19. Lines of constant field strength for saturation magnetostriction; Line of magnetostriction null (curve a); Lines of highest 
initial permeability for 1100C-handling (curve c) and for Permalloy-handling (curve b). 885 

 

Fig. A20. Lines of constant volume magnetostriction, (x 10-9); Line of zero magnetostriction (curve a); line of maximum initial 
permeability for 1100C-handling (curve c) and for Permalloy-handling (curve b). 
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D. Effects of thermal handling 

The magnetostriction measurements described above were all for alloys for which 1100C slow cooling were executed. To 890 

clarify the question, considering the above-noted effects of thermal processing on the initial permeability, and whether it may 

also make a noticeable effect in the magnetostriction values, some samples made as metal bands were given Permalloy handing. 

It was thus shown that the heat treatment has no noticeable effect on the null line of longitudinal magnetostriction. More about 

this and of a likely equivalent effect on volume magnetostriction will be reported fully in a later publication.  

E. Results 895 

In summary one can say that the present magnetostriction measurements on high permeability FeNiCu-alloys not only narrows 

the relation between initial permeability and the magnetostrictive behaviour these alloys have expressed, but together have 

given a convincing story for the accuracy of modern theories of magnetization in ferromagnetic crystal lattices, theories that 

establish all of the legendary importance of magnetostriction for the magnetic behaviour of ferromagnetics. This connection 

has still one evident restriction, in so far as the tests point, that aside from magnetostriction as already indicated above, still 900 

other magnitudes can have significance for the permeability (cf. for example alloys above 70%Ni). This can also be expressed, 

that the position of the magnetostriction curves, in contrast to the curve of maximum permeability, is entirely independent 

from the thermal process used. 

3. Overview 

In an overview of the entirety of the acquired results, the following can be said: There was found a long, narrow zone of highest 905 

𝜇 -values, below 70%Ni found practically coincident with the zone of smallest coercivity. In the zone above 70%Ni the heat 

treatment had a particular influence and occurs on both magnetic attributes (𝜇  and 𝑯 ) in the same sense. For both magnetic 

values there existed within the narrow zone an optimum zone, for 𝜇  a maximum, for 𝑯  a minimum; for an 1100C anneal 

temperature both optima fall together, whereas for a 900C anneal temperature the 𝜇  maximum has shifted to 70%Ni and the 

𝑯  minimum to 45%Ni. On the width of the high permeability zone and its form taken in the lower part, there is a phase 910 

separation region extending from the FeCu-line, and due to differences in the segregation processes the particular heat 

treatment has some influence. 

The line for zero magnetostriction in polycrystals with less than 70%Ni, practically coincided with the zone of 𝑯  minima and 

𝜇  maxima; the sites of 𝜇  maxima and 𝑯  minima respectively, within the high permeability zone had no natural expression 

in the line for zero magnetostriction. In the region above 70%Ni there exists a deviation of the magnetostriction line away 915 

from the regime of optimal 𝜇  and 𝑯  zones respectively; the line of zero magnetostriction for both heat treatments runs 
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approximately to the alloy 82%Ni, 18%Fe, then for highest initial permeability for 1100C-handling to 88%Ni, 12%Fe, for the 

Permalloy handling to 78.5%Ni, while the 𝑯  minimum for Permalloy-handling went to 81%Ni and for the 1100C-handling 

to 88%Ni. About the as yet unexplained reason for these deviations, more should also be reported. 

In addition to the clearly confirmed connection with the magnetostriction there is the following remarkable fact: the direction 920 

of the narrow high permeability zone, originating at the FeNi-line, passes towards the Cu-corner, while the location of the exit 

point of the regions, as discussed above, can shift according to the heat treatment. The whole regime of zones of higher 

permeability can - irrespective of the deviations in the vicinity of the FeNi-line - indicate, as whether we are involved in this 

zone with alloys of constant Ni:Fe ratio. One draws a specific line originating at 84%Ni 16%Fe (respectively the ratio Ni5:Fe) 

and going towards the Cu-corner, which follows, especially from about 70%Ni, along the general regime of 𝜇 -crests (Fig. 925 

A6) and also lies together, in good agreement with the line for the magnetostriction null (Fig. A8). The divergences for lower 

Ni-content and within the large zone near the NiCu-line should perhaps be taken conditionally; the alloys in this zone have 

typically very low Curie-points, for example under 100C for an alloy of 45%Ni, 50%Cu, 5%Fe, compared with an alloy of 

70%Ni, 10%Cu, 20%Fe, which has 490C. Because of the various intervals of the measurement temperature (+20C) to the 

Curie-points the results for the individual alloys were thus not directly comparable, and it is conceivable that with lower 930 

temperatures the alloys with low Curie-points give values to the zone of higher permeability, something others could also do. 

This question is to be investigated later. 

Summary. 

There was found in the FeNiCu-system a zone of high initial permeability and small coercivity, its location goes from about 

80%Ni, 20%Fe reaching down to 40%Ni, 50%Cu, 10%Fe. 935 

For the large, upper part of this zone there existed a broad connection with magnetostriction in such a way that at alloys with 

highest initial permeability the magnetostriction sign reversed. 
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