

1 **Extensional fault geometry and evolution within rifted margin**
2 **hyper-extended continental crust leading to mantle**
3 **exhumation and allochthon formation**

4
5 Júlia Gómez-Romeu^{1,*} & Nick Kusznir¹

6 ¹*Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK* ^{*}*Currently:*
7 M&U sasu, Sassenage, France

8
9 **Abstract**

10 Seismic reflection interpretation at magma-poor rifted margins shows that crustal thinning within the
11 hyper-extended domain occurs by in-sequence oceanward extensional faulting which terminates in a
12 sub-horizontal reflector in the top-most mantle immediately beneath tilted crustal fault blocks. This
13 sub-horizontal reflector is interpreted to be a detachment surface which develops sequentially with
14 oceanward in-sequence crustal faulting. We investigate the geometry and evolution of active and
15 inactive extensional faulting due to flexural isostatic rotation during magma-poor margin hyper-
16 extension using a recursive adaptation of the rolling hinge model of Buck (1988) and compare
17 modelling results with published seismic interpretation. In the case of progressive in-sequence faulting,
18 we show that sub-horizontal reflectors imaged on seismic reflection data can be generated by the
19 flexural isostatic rotation of faults with initially high-angle geometry. Our modelling supports the
20 hypothesis of Lymer et al. (2019) that the S reflector on the Galician margin is a sub-horizontal
21 detachment generated by the in-sequence incremental addition of the isostatically rotated soles of
22 block bounding extensional faults. Flexural isostatic rotation produces shallowing of emergent fault
23 angles, fault locking and the development of new high-angle short-cut fault segments within the
24 hanging-wall. This results in the transfer and isostatic rotation of triangular pieces of hangingwall onto
25 exhumed fault footwall, forming extensional allochthons which our modelling predicts are typically
26 limited to a few km in lateral extent and thickness. The initial geometry of basement extensional faults
27 is a long-standing question. Our modelling results show that a sequence of extensional listric or planar
28 faults with otherwise identical tectonic parameters produce very similar sea-bed bathymetric relief but
29 distinct Moho and allochthon shapes. Our preferred interpretation of our modelling results and seismic
30 data is that faults are initially planar in geometry but are isostatically rotated and coalesce at depth to

31 form the seismically observed sub-horizontal detachment in the top-most mantle. In-sequence
32 extensional faulting of hyper-extended continental crust results in a smooth bathymetric transition
33 from thinned continental crust to exhumed mantle; in contrast out-of-sequence faulting results in a
34 transition to exhumed mantle with bathymetric relief.

35 **1. Introduction**

36 The formation of a rifted continental margin during continental breakup requires continental crust and
37 lithosphere to be stretched and thinned. In the case of a magma-poor rifted margins, 5 progressive
38 stages of margin formation resulting in 5 distinct margin domains have been identified: proximal,
39 necking, hyper-extended, exhumed mantle and oceanic crust (Mohn et al. 2012, Tugend et al. 2014).
40 The hyper-extended domain of a magma-poor rifted margin forms when the crust is thinned to
41 approximately 10 km thickness or less and the crust becomes fully brittle allowing faults to penetrate
42 through the entire crust into the mantle (Pérez-Gussinyé et al., 2001; Manatschal, 2004). The hyper-
43 extended domain has a crustal architecture characterised by tilted crustal fault blocks separated by
44 oceanward dipping basement extensional faults and often underlain by a strong sub-horizontal seismic
45 reflector. This is illustrated on figure 1(a) which shows a seismic reflection dip section (Lymer et al.
46 2019) within the hyper-extended domain of the distal Galicia Bank margin west of Iberia. The sub-
47 horizontal reflector, known as the S reflector, has been interpreted to be a sub-horizontal detachment
48 within the top-most mantle (Krawczyk et al., 1996; Reston et al., 1996, Lymer et al. 2019) into which
49 basement extensional faults sole.

50 The geometry and evolution of extensional faults and their relationship to the S reflector within the
51 hyper-extended domain have been a long-standing question. Interpretation of 2D seismic reflection
52 data (Ranero and Pérez-Gussinyé, 2010) has revealed that basement extensional faulting within the
53 hyper-extended domain develops oceanward in-sequence with new faults developing in the oceanward
54 direction at the same time as abandonment of earlier faults. Recent high-quality 3D seismic reflection
55 seismic on the SW of Galicia Bank west of Iberia (Lymer et al 2019) confirms this oceanward in-
56 sequence fault development and additionally provides observations that determine the relationship
57 between the in-sequence basement extensional faulting and the underlying S sub-horizontal reflector.
58 Basement extensional faults are observed to sole out into the sub-horizontal detachment within the
59 top-most mantle imaged as the S seismic reflector. In 3D the S reflector shows corrugations that
60 indicate the direction of slip and correlate with corrugations within the extensional block-bounding
61 faults. Further analysis by Lymer et al. (2019) reveals that the S reflector is a composite surface made
62 by the progressive ocean-ward in-sequence development of a sub-horizontal detachment into which

63 the higher angle basement faults sole. Their analysis also reveals that as extension migrates oceanward
64 in-sequence, several faults may be active simultaneously. A similar relationship has been observed
65 between basement extensional faulting and sub-horizontal S type seismic reflectors in other rift basins
66 using 3 D seismic reflection data. Figure 1(b) shows corrugations on the sub-horizontal reflector
67 interpreted as a detachment surface and its relationship to basement extensional faulting above for the
68 Porcupine Basin west of Ireland (Lymer et al. 2022). Lymer et al. (2019) present a schematic summary
69 (Figure 1(c)) of extensional basement faulting in the hyper-extended domain and its relationship to the
70 sub-horizontal detachment within the top-most mantle, most probably controlled by serpentinization,
71 into which they sole.

72 [Dynamic thermo-rheological finite element models of continental lithosphere stretching and thinning](#)
73 [\(e.g. Lavier & Manatschal, 2006; Brune et al. 2014; Naliboff et al. 2017\) leading to continental breakup](#)
74 [and rifted margin formation have been successful in simulating the progression from necking to hyper-](#)
75 [extension to mantle exhumation. at magma-poor rifted margins. However these dynamic models do](#)
76 [not replicate the extensional fault and detachment structures observed on 2D and 3D seismic reflection](#)
77 [data. The dynamic model of Peron-Pinvidic & Naliboff \(2020\), specifically investigating extensional](#)
78 [detachment development, predicts extensional fault structures that penetrate to depths much greater](#)
79 [than the seismically observed S-type reflector; additionally their predicted fault geometries remain](#)
80 [steep failing to match the lower fault angles imaged on seismic reflection data. The kinematic model](#)
81 [presented by Ranero & Perez-Gussinye \(2010\) using extensional fault block rotation much better](#)
82 [replicates extensional fault and detachment structures imaged by 2D seismic within the hyper-](#)
83 [extended magma-poor margin domain. Their work however preceded the 3D seismic observations by](#)
84 [Lymer et al \(2019\) of the S-type detachment and its corrugations.](#)

85 Lymer et al. (2019) propose that their observations strongly support the development of the S seismic
86 reflector by a rolling-hinge process (Buck 1988) in which a sub-horizontal detachment is created by
87 the incremental addition of the soles of basement extensional faults. [The kinematic rolling-hinge model](#)
88 [of Buck \(1988\) has been successfully used at slow spreading ocean ridges to replicate and analyse](#)
89 [extensional faulting leading to footwall exhumation, detachment faulting and core complex formation](#)
90 [\(Smith et al. 2008; Schouten et al. 2010\).](#) In this paper, we use a recursive adaptation of the rolling
91 hinge model of Buck (1988) to examine how both active and inactive fault geometries are modified
92 by flexural isostatic rotation during sequential faulting to form the sub-horizontal structure imaged on
93 seismic reflection data.

94 A long-standing question is whether the initial geometry of crustal extension faults is planar or listric;
95 earthquake seismology and geodetic observations favour a planar geometry (Jackson 1987; Stein &
96 Barrientos 1985). Using the flexural isostatic rotation model, we also investigate whether an initial
97 listric or planar fault geometry better fits seismic observations of the sub-horizontal reflector and the
98 geometry of extensional allochthons. In addition, we examine the transition from hyper-extended
99 continental crust to exhumed mantle and how it depends on the sequence of extensional faulting.

100 **2. Model formulation**

101 We use a numerical model (RIFTER) to replicate faulting and fault block geometry within the hyper-
102 extended domain, and to investigate fault rotation, fault geometry interaction, the formation of crustal
103 allochthon blocks and the transition between hyper-extended and exhumed mantle domains. RIFTER
104 is a kinematic forward lithosphere deformation model that allows the production of flexural
105 isostatically compensated as well as balanced cross-sections. Within RIFTER, lithosphere is deformed
106 by faulting in the upper crust with underlying distributed pure-shear deformation in the lower crust
107 and mantle. RIFTER can be used to model and predict the structural development in extensional
108 tectonic settings as shown in Figure 2. The model is kinematically controlled with fault geometry, fault
109 displacement and pure-shear distribution given as model inputs as a function of time.

110 The kinematic formulation of RIFTER represents an advantage over dynamic modelling because the
111 input data given to RIFTER can be constrained by observed geology. Specifically fault position,
112 extension magnitude and sequence order with respect to other faults can be taken directly from the
113 interpretation of seismic reflection images and used to drive the kinematic model. This is in contrast
114 to dynamic models where fault location, extension magnitude and sequence order are predicted by the
115 model and may bare little relationship to an observed structural and stratigraphic cross-section. In a
116 kinematic model, while the lithosphere deformation is specified as an input, the thermal and isostatic
117 consequences may be dynamically determined to predict thermal uplift and subsidence (e.g. Gómez-
118 Romeu et al. 2019). Because model outputs are geological cross-sections which are flexural
119 isostatically compensated as well as structurally balanced, RIFTER provides for the isostatic testing
120 of palinspastic cross-sections and can also be used to explore different kinematic scenarios. A more
121 detailed description of the model formulation (originally called OROGENY) is given by Toth et al.,
122 (1996), Ford et al., (1999) and Jácome et al., (2003). These studies show the model formulation applied
123 to compressional tectonics however similar physical principles apply for an extensional tectonics
124 scenario. Gómez-Romeu et al., (2019) show how RIFTER can be used to reproduce both extensional
125 and compressional tectonics using the Western Pyrenees as a case-study.

126 Within RIFTER, loads resulting from extensional lithosphere deformation are compensated by
127 flexural isostasy. [These loads are generated by faulting, crustal thinning, sedimentation, erosion and](#)
128 [lithosphere thermal perturbation and re-equilibration \(Kuszni et al., 1991\)](#). The lithosphere flexural
129 strength must be considered to determine the isostatic rotation of faults during extension and therefore
130 to investigate their geometric evolution. For the purposes of calculating the flexural isostatic response,
131 the lithosphere is represented as an elastic plate of effective elastic thickness (T_e) floating on a fluid
132 substratum. The lithosphere effective elastic thickness (T_e) is defined as the equivalent thickness of a
133 perfectly elastic plate which has the same flexural strength as the lithosphere. Extension on basement
134 faults produces flexure which, as well as generating footwall uplift and hangingwall subsidence, gives
135 rise to substantial bending stresses (Magnavita et al., 1994) in the cooler upper lithosphere; these large
136 bending stresses are reduced by combined brittle and plastic failure. The flexural strength of the
137 lithosphere, and therefore T_e , are reduced by this brittle and plastic failure and this reduction becomes
138 greater with increase in extension (Magnavita et al., 1994). Therefore, in extensional tectonic settings,
139 a low effective elastic thickness (T_e) is expected and required to reproduce the consequences of
140 lithosphere deformation due to extensional faulting.

141 [We use a \$T_e\$ value of 0.5 km in our modelling of extensional faulting during the formation of the](#)
142 [hyperextended domain and mantle exhumation \(Figure 3\)](#). This value is consistent with those
143 determined at slow-spreading ocean ridges ranging between 0.5 and 1 km (e.g. [Buck, 1988](#); Smith et
144 al., 2008; Schouten et al., 2010) where a similar lithosphere flexural strength to that of the distal rifted
145 margins is expected. [The sensitivity of model predictions to \$T_e\$ is shown in Figure 4; increasing \$T_e\$](#)
146 [increases the bathymetric relief resulting from extensional faulting but otherwise the structural](#)
147 [architecture remains similar](#). The initial crustal geometry for our modelling of extensional faulting
148 within the hyperextended domain leading to mantle exhumation and allochthon formation is when the
149 continental crust has been thinned down to 10 km (Tugend et al., 2014) corresponding to the point
150 when faults within the seismogenic layer couple into the mantle (Pérez-Gussinyé et al., 2001). Prior to
151 that, during the necking zone stage of margin formation (Mohn et al., 2012), faults are expected to be
152 decoupled from the mantle by ductile deformation within the lower continental crust. The width of the
153 necking zone with crust 10 km thick at the start of hyperextension is set to 100 km although this width
154 value is not critical to this study. The starting bathymetry is set to 2 km corresponding to the isostatic
155 equilibrium of continental crust thinned to 10 km with a highly elevated lithosphere geotherm (Figure
156 3b). For simplicity we only model faulting during hyper-extension on one distal rifted margin and do
157 not include faulting within its distal conjugate. This simplified initial model template allows us to focus
158 on extensional faulting during the hyper-extension stage of magma-poor rifted margin formation

Deleted: We use a numerical model (RIFTER) to replicate faulting and fault block geometry within the hyper-extended domain, and to investigate fault rotation, fault geometry interaction, the formation of crustal allochthon blocks and the transition between hyper-extended and exhumed mantle domains. RIFTER is a kinematic forward lithosphere deformation model that allows the production of flexural isostatically compensated as well as balanced cross-sections. Within RIFTER, lithosphere is deformed by faulting in the upper crust with underlying distributed pure-shear deformation in the lower crust and mantle. A key attribute of RIFTER is that it incorporates the flexural isostatic response to extensional faulting and crustal thinning. Therefore, RIFTER can be used to model and predict the structural development of extensional tectonic settings (Figure 2). The model is kinematically controlled with fault geometry and displacement and pure-shear distribution given as model inputs as a function of time. Lithosphere flexural strength, parameterised as lithosphere effective elastic thickness, is also defined. Model outputs are geological cross-sections which are flexural isostatically compensated as well as structurally balanced (Figure 2). The kinematic formulation of RIFTER represents an advantage over dynamic modelling because the input data given to RIFTER can be constrained by observed geology. In addition, RIFTER provides for the isostatic testing of palinspastic cross-sections and can also be used to explore different kinematic scenarios. A more detailed description of the model formulation (originally called OROGENY) is given by Toth et al., (1996), Ford et al., (1999) and Jacome et al., (2003). These studies show the model formulation applied to compressional tectonics however similar physical principles apply for an extensional tectonics scenario. Gómez-Romeu et al., (2019) show how RIFTER can be used to reproduce both extensional and compressional tectonics using the Western Pyrenees as a case-study. ¶

Deleted: assumed to be

Deleted: These loads are generated by faulting, crustal thinning, sedimentation, erosion and lithosphere thermal perturbation and re-equilibration (Kuszni et al., 1991).

Formatted: Space After: 7,65 pt

Deleted:

Deleted: We

Deleted:

Deleted: use a T_e value of 0.5 km associated to each fault for the development of the transition between the hyper-extended domain and the initiation of exhumed mantle domain (Figure 3). ...

Deleted: ; Buck, 1988

Deleted: .

Deleted: ¶

209 avoiding the complexity occurring during the earlier rifting and necking phases. Figure 3c shows the
210 resultant model of a hyper-extended distal rifted margin. The detailed numerical model stages to
211 produce this are shown in Figures 3d-e and described below for the formation of the hyperextended
212 domain, the initiation of the exhumed mantle domain and the formation of extensional allochthons.

213 **3. Model application to sequential faulting within the hyper-extended margin**
214 **domain**

215 The interpretation of sub-horizontal seismic reflectors below fault blocks within the hyperextended
216 domain has been intensively debated (e.g. Reston et al., 1996). Interpretations suggested for the S-type
217 reflectors on the Iberian margin (de Charpal et al., 1978; Krawczyk et al., 1996) are ~~many~~ and are
218 reviewed later in the discussion. Despite this wide range of possible interpretations, after the work by
219 Reston et al. (1996) and Krawczyk et al. (1996), it has been generally accepted that the ~~S-type~~
220 reflectors are detachment faults (Manatschal et al., 2001). Ranero & Pérez-Gussinyé (2010) show that
221 extensional faulting within the hyper-extended domain develops oceanward insequence with initially
222 steeply dipping faults. As in-sequence faulting propagates oceanward, active fault rotation modifies
223 the deeper geometry of previously active faults leading to their deeper segments being passively
224 rotated to a lower angle producing an apparent listric fault geometry or even a sub-horizontal
225 appearance. Lymer et al., (2019) confirmed observationally that extensional faulting develops
226 oceanward in-sequence, and that extensional faulting soles out into the sub-horizontal detachment
227 imaged as the S-type-reflectors.

228 Figure 3d shows the modelling results of progressive deformation within the hyper-extended domain
229 resulting from a set of in-sequence extensional faults. The initial pre-movement dip of each extensional
230 fault at the surface is 60°. This value is consistent with Andersonian extensional fault mechanics
231 (Anderson 1905) and also the value of 55° – 60° determined for initial surface fault dip by Lymer et
232 al. (2019) from their analysis of 3D seismic reflection data on the SW Galicia Bank margin. Note that
233 our RIFTER modelling results shown in this paper, using high initial faults angles, do not apply to low
234 angle extensionally reactivated thrusts (Morley, 2009; Deng et al. 2022).

235 In the model results shown in Figure 3d-e the faults detach at 15 km depth corresponding to an assumed
236 brittle-plastic transition within the topmost mantle (results obtained from an initial planar fault
237 geometry are examined later). Flexural isostatic response to faulting leads to an uplift of the footwall
238 block, subsidence of the hanging-wall block and a rotation of the active fault plane reducing its dip
239 (Figure 3d1). The reduction of fault dip due to flexural isostatic rotation is expected to lead to the

Deleted:

Deleted:

242 locking of that fault and the initiation of new faults with steeper dip. This is shown in Figure 3d2 and
243 subsequent Figures 3d3-6.

244 Extension on each new fault not only reduces its own fault dip by flexural isostatic rotation but also
245 further reduces the fault dip of earlier active faults within its footwall. The cumulative result of this
246 process is that faults originally steeply dipping when active become sub-horizontal in their lower parts
247 as illustrated in Figures 3d5 for fault number 1. In this case the sub-horizontal inactive fault is almost
248 coincident with the Moho beneath the hyper-extended continental crustal fault-blocks (Figure 3d5). If
249 fault extension is sufficiently large and the hyper-extended continental crust is sufficiently thin,
250 footwall exhumation leads to mantle exhumation (Figure 3d6) (Manatschal et al., 2001).

251 Table 1 summarizes the fault parameters and sequential fault displacement required to reproduce the
252 structural architecture of the hyper-extended domain shown in Figure 3d.

253 **4. Model application to mantle exhumation and extensional allochthon
254 formation**

255 For even greater extension on the exhumation fault, the exhumed mantle footwall becomes sub-
256 horizontal at the sea-bed due to flexural isostatic rotation as predicted by the rolling-hinge model of
257 Buck (1988). Extensional allochthon blocks sitting above sub-horizontal exhumed footwall are
258 observed at magma-poor margins by seismic reflection imaging and field studies (Epin and Manatschal
259 and references therein, 2018).

260 We use RIFTER to investigate the formation of extensional allochthon blocks by the rolling hinge
261 model as suggested by Manatschal et al., (2001) and shown in Figure 3e. Allochthon blocks are
262 produced by new steeply dipping extensional faults cutting through the hangingwall block of a master
263 fault (fault 6 in our case in Figure 3e1) and pulling off triangular pieces of continental crust from the
264 hanging-wall (i.e. the rolling hinge model of Buck, 1988). These new faults, created when the
265 emergence angle of the master fault becomes too low ($\sim 30^\circ$ dip), are short-cuts of the master fault and
266 connect with it at depth. Depending on what depth they initiate at and their break-away position, the
267 size of the crustal allochthon block generated will vary (Figure 3e). The intersection depth between
268 the master fault and the new extensional faults is different in each model stage shown in Figure 3e but
269 it ranges between 5 and 10 km depth consistent with deMartin et al., (2007). Another parameter that
270 differs in each model stage is the distance between two consecutive allochthon blocks. This depends
271 on how much the new extensional fault moved before it locked. A small fault offset will not generate
272 exhumed mantle between two allochthon blocks as shown in Figures 3e3-4 whereas a large fault offset

273 will generate exhumed mantle and a sub-horizontal sea-bed geometry between two allochthon blocks
274 (Figures 3e4-5). Note that each allochthon block overlies sub-horizontal exhumed footwall generated
275 by flexural isostatic rotation.

276 [Table 2 summarizes the initial fault parameters and the chronological fault displacement required to](#)
277 [reproduce the structural architecture of the exhumed mantle domain shown in Figure 3e.](#) The RIFTER

Formatted: Indent: Left: 0 cm, First line: 0 cm

Deleted: ¶

278 model results shown in Figure 3 do not include sediment deposition during hyper-extension, mantle
279 exhumation and allochthon formation. In Figure 5, incremental sediment deposition and its isostatic
280 loading ~~are~~ included in the model; the tectonics remains the same as in Figure 3. [The model results of](#)
281 [increasing sediment supply are shown in Figures 5b-c and compared with the model result with no](#)
282 [sediment deposition shown in Figure 5a.](#) Because of the diachronous tectonics of oceanward in-
283 sequence extensional faulting during the formation of the distal magma-poor margin, sediments of the
284 same age may be syn-tectonic if they are deposited where active faulting is occurring, or they may be
285 post-tectonic if they are passive fill of accommodation space generated by earlier extensional faulting
286 that has ceased at that location. The important distinction between syn- and post-tectonic sedimentation
287 due to diachronous tectonics during rifted margin formation is described in greater detail in Ribes et
288 al. (2019) and Manatschal et al (2022).

Deleted: 4

Deleted: is

289 [Figure 5b shows a relatively small amount of sediment incrementally added to the model and is](#)
290 [consistent with a relatively sediment starved scenario corresponding to the SW Galicia margin as](#)
291 [imaged by the 3D seismic of Lymer et al \(2019\). The isostatic response to the small amount of sediment](#)
292 [loading shown in Figure 5b is also small and the flexural isostatic fault rotation is therefore not](#)
293 [significantly different from the model result with no sediments shown in Figure 5a. The increased](#)
294 [isostatic response to increasing sediment supply \(Figures 5c&d\) results in a slight decrease in fault](#)
295 [rotation resulting in slightly steeper faults for the same fault extension. Sediment supply and its](#)
296 [isostatic loading are therefore expected to exert a control on when faults lock and new oceanward in-](#)
297 [sequence faults develop.](#)

Deleted: ¶

298 **5. Sensitivity to listric or planar fault geometry?**

299 Lithosphere deformation is achieved by localised deformation on faults and shear zones within the
300 upper lithosphere with distributed deformation below at depth. A long-standing question is how
301 deformation by faulting connects to deep distributed lithosphere deformation. This question also has
302 implications for fault geometry. Our numerical experiments described above in sections 3 and 4 assume
303 a listric fault geometry in which faults sole out into a sub-horizontal shear zone at 15 km depth below
304 which deformation becomes distributed. In contrast earthquake seismology and geodetic analysis

Deleted: Table 2 summarizes the initial fault parameters and the chronological fault displacement required to reproduce the structural architecture of the exhumed mantle domain shown in Figure 3e. ¶

313 (Stein and Barrientos, 1985; Jackson, 1987) suggests that large extensional earthquakes involve faults
314 whose geometry is planar.

315 We explore the differences between using listric and planar fault in modelling the formation of the
316 hyper-extended and exhumed mantle domains. The results are compared in Figure 6. The initial faults
317 geometries for listric and planar faults are shown in Figures 5a and d respectively. Both have an initial
318 surface dip of 60°. The initial listric fault geometry soles out at 15 km while the initial planar fault
319 geometry continues downwards with a dip of 60°. We assume that the deformation transition from
320 faulting to distributed deformation for the planar fault occurs within the mantle below the crust-mantle
321 density interface and so does not affect the isostatic response to faulting.

322 Listric and planar fault geometry model predictions are shown in Figures 6c and f and use the same
323 fault locations, fault extension and sequence. Comparison shows that listric and planar fault geometries
324 produces very similar sea-bed structural topography, and which cannot be used to distinguish whether
325 fault geometry is listric or planar. In contrast, the listric and planar fault models produce different sub-
326 surface structure. The Moho geometries predicted by the listric and planar fault geometry models are
327 also different, however whether these different predicted Moho geometries can be distinguished using
328 seismic reflection data is uncertain.

329 In section 4 we used listric fault geometries to model allochthon formation. We now examine
330 allochthon formation using planar faults and compare these predictions with those using listric faults
331 (Figure 7). For both listric and planar fault geometries, Figure 7 shows the formation of allochthons
332 for different separations of the hanging-wall short-cut fault from the primary extensional fault which
333 has exhumed mantle footwall. Separations of 1 km (Figures 7a-b and g-h), 2 km (Figures 7c-d and i-
334 j) and 5 km (Figures 7e-f and k-l) are used. For the 1 km separation, a small allochthon is produced
335 with similar triangular geometry for both listric (Figure 7b) and planar (Figure 7h) fault geometries.
336 Increasing the separation to 2 km increases the allochthon size; however while the listric fault (Figure
337 7d) produces a triangular allochthon, the planar fault (Figure 7i) geometry produces a 4-sided body.
338 For a 5 km separation, the allochthon size increases further and both listric (Figure 7f) and planar
339 (Figure 7l) fault geometries produce a 4- sided body. For the larger separations of the short-cut fault
340 from the primary fault, the detached fragment transferred to the exhumed mantle consists of
341 continental basement with some autochthonous mantle beneath it (Figure 7j-l). Whether extensional
342 allochthons can provide insight into answering the question are extensional faults listric or planar poses
343 an interesting challenge.

Deleted: 5

Deleted: 4

Deleted: 6

359 **6. The transition from hyper-extended crust to exhumed mantle and its**
360 **sensitivity to in-sequence vs out-of-sequence faulting**

361 Stretching and thinning of the continental crust can eventually lead to mantle exhumation as observed
362 by drilling on the distal Iberian margin (Figures 8a-b). Seismic reflection data (Figure 8c) provides
363 insight into how mantle exhumation was achieved by extensional faulting. Based on drill and seismic
364 reflection data, Manatschal et al., (2001, 2004) proposed that an in-sequence ocean-ward propagating
365 set of extensional faulting progressively thins the continental crust in the hyper-extended domain until
366 eventually a large extensional fault exhumes mantle in its footwall. Our modelling of mantle
367 exhumation using a set of in-sequence extensional faults as proposed by Manatschal et al., (2001,
368 2004) is shown in Figure 3 and 9a and produces a smooth bathymetric transition from continental crust
369 to exhumed mantle.

Deleted: 7

Deleted: 7

Deleted: 8

370 While the in-sequence fault extension process provides a very good generalised model for the
371 formation of the hyper-extended margin domain, mantle exhumation and their transition, it is unlikely
372 that all faults propagate in-sequence oceanward. Some out-of-sequence faulting is to be expected when
373 the 3D nature and along strike complexity of rifting and breakup is considered and can be seen
374 seismically in Figure 8e. In Figure 9b we show the result of introducing an out-of-sequence fault, with
375 the same dip sense as other faults, into the hyperextension and mantle exhumation model. All other
376 faults have similar locations and extensions to those used to produce Figure 9a. The effect of
377 introducing an out-of-sequence fault to exhume mantle is to produce a transition from thinned
378 continental crust to mantle which is no longer smooth at the seabed but shows bathymetric relief. An
379 out-of-sequence fault might also have an opposite dip-sense as shown in Figure 9c. This fault does not
380 exhume mantle but does generate a horst containing exhumed mantle capped by thinned continental
381 crust as observed in Figure 8e.

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 8

Deleted: 7

382 **7. Discussion**

383 To better understand extensional fault geometry and its evolution during hyper-extension at magma-
384 poor rifted margins, several important questions need to be answered: (i) are faults active at low angle,
385 (ii) what is the relationship between the sub-horizontal reflector and block bounding faults, (iii) do
386 faults have a listric or planar geometry and (iv) is faulting always in-sequence.

Deleted: 8

387 In section 4 (Figure 3) we show for a listric fault geometry that flexural isostatic rotation progressively
388 reduces the fault dip of inactive faults within the footwall of oceanward in-sequence faulting. From

399 this we can deduce that the present-day sub-horizontal orientation of a fault at depth does not indicate
400 that the fault was active at a sub-horizontal orientation. This conclusion is consistent with the
401 modelling results of Ranero & Pérez-Gussinyé, (2010) and the 3D seismic observations of Lymer et
402 al. (2019).

403 The nature of the seismically imaged sub-horizontal reflectors beneath rotated fault blocks in the
404 hyper-extended domain has been extensively debated (e.g. Reston et al. 1996; Lymer et al. 2019 and
405 references therein). Proposed origins of the sub-horizontal reflector have included a lithosphere scale
406 extensional detachment fault (Wernicke et al., 1981), the top of a mafic underplate (Horsefield, 1992),
407 a thin igneous intrusion (Reston, 1996), a serpentinization front (Boillot et al., 1987), and the brittle-
408 plastic transition (de Charpal et al., 1978; Sibuet, 1992). Detailed seismology by Reston et al., (1996)
409 was able to eliminate an igneous origin, leaving a sub-horizontal detachment in the top-most mantle
410 as the most likely interpretation, probably assisted by mantle serpentinization (Pérez Gussinyé et al.,
411 (2001).

412 Seismic reflection interpretation shows that extensional faults thinning the continental crust within the
413 hyper-extended domain sole out into the sub-horizontal reflector (Reston et al. 1996; Manatschal et
414 al., 2001). If extensional faults within the hyper-extended zone penetrate into the mantle, as suggested
415 by Pérez Gussinyé et al., (2001), then the interpretation of seismically observed sub-horizontal
416 reflectors being a sub-horizontal detachment requires it to be within the mantle rather than at the base
417 of the thinned continental crust. Analysis of the recently acquired 3D seismic reflection data in the
418 hyper-extended southern Galicia margin by Lymer et al. (2019) shows that oceanward in-sequence
419 extensional crustal faulting detaches into a sub-horizontal detachment imaged as the sub-horizontal
420 reflector (confirming the interpretations of Manatschal et al.; 2001 and Ranero & Pérez-Gussinyé:
421 2010). Their 3D analysis of the correlation between corrugations within the S reflector surface and
422 those within block bounding faults demonstrates that the sub-horizontal detachment imaged as the S
423 reflector develops synchronously with the oceanward in-sequence crustal faulting.

424 Our listric fault model (Figure 3a-c) assumes that faults sole out into a horizontal detachment within
425 the top-most mantle consistent with the seismically observed sub-horizontal S reflector being
426 interpreted as a horizontal detachment into which the block bounding extensional faults above sole
427 into. Our model is also consistent with the interpretation of Lymer et al., (2019) that the sub-horizontal
428 reflector is the relict of an oceanward propagating detachment at the base of the in-sequence crustal
429 faulting and is not simultaneously active from distal to proximal. Our modelling supports the
430 hypothesis of Lymer et al. (2019) that the S reflector on the Galicia margin is a sub-horizontal

Deleted:

Deleted:

Deleted: 4

Deleted:

435 detachment generated by the in-sequence incremental addition of the isostatically rotated soles of block
436 bounding extensional faults.

437 In section 5 (Figure 6) we compare the response of listric and planar fault geometries for oceanward
438 in-sequence hyper-extension. Significant flexural isostatic rotation leading to greatly reduced dip of
439 planar faults at depth is also seen, especially for planar faults in the footwall of later faults with large
440 extension. However, Figure 6 shows a clear difference between planar (Figures 6d-f) and listric
441 (Figures 6a-c) fault geometries at depth; planar fault geometries do not result in a continuous sub-
442 horizontal structure at depth. In contrast because all listric faults sole out at the same brittle-plastic
443 transition depth, all listric faults form a single continuous sub-horizontal structure at depth resembling
444 that observed on seismic reflection data in the hyper-extended domain.

445 Earthquake seismology, however, favours a planar fault geometry for extension within the seismogenic
446 layer (Stein and Barrientos, 1985; Jackson, 1987). How might extensional deformation on a planar
447 fault in the brittle seismogenic layer terminate at depth? In the case of rifted margin hyper-extension,
448 faults penetrate the crust and permit water to penetrate down into the top-most mantle (e.g. Pérez-
449 Gussinyé et al., 2001) enabling mantle serpentinization to occur. Serpentinized top-most mantle at the
450 base of extensional faults would produce a weak layer enabling the formation of a horizontal
451 detachment. Planar faulting in the seismogenic layer, isostatically rotated to low angles, would then
452 sole out into this horizontal detachment in the top-most serpentinised mantle immediately beneath
453 thinned continental crust. The resulting fault geometry would not be dissimilar to that of the listric
454 fault used in the modelling of sections 3 and 4 but with a more planar geometry in the upper brittle
455 seismogenic layer as observed on the 3D seismic of Lymer et al. (2019).

456 The rolling hinge model of Buck (1988) provides an explanation for the formation of triangular
457 allochthons of continental crust emplaced on exhumed mantle (Buck 1988; Manatschal et al. 2001;
458 Epin & Manatschal, 2019). In Figures 3 and 7 we show slivers of hanging wall continental crust
459 transferred onto exhumed mantle footwall by short-cut faults. Flexural isostatic rotation produces the
460 observed geometry of triangular allochthons emplaced on sub-horizontal exhumed mantle. While
461 listric and planar fault geometries produce nearly identical small allochthons, their difference becomes
462 pronounced for large allochthons (Figure 7). Listric faults always produce a triangular allochthon
463 fragment of hanging-wall continental crust while planar faults produce a rectangular shape for large
464 allochthons (semantically these large rectangular fragments produced by planar faults should perhaps
465 be called autochthons). Whether reflection seismology observations of large allochthon shapes can be
466 used to distinguish listric or planar fault geometry during hyper-extension remains to be investigated.

Deleted: 5

Deleted: 5

Deleted: 5

Deleted:

Deleted:

Deleted: .

Deleted:

Deleted:

Deleted:

Deleted: 6

Deleted: 6

479 Oceanward in-sequence faulting shown in Figure 3 and as proposed by Manatschal et al. (2001) and
480 Manatschal (2004) provides a good generalised model for the formation of hyper-extended magma-
481 poor margins. However, it should be recognised that out-of-sequence faulting does occur during
482 margin formation and is the inevitable consequence of the 3D nature of continental breakup at the
483 regional scale where upper-plate/lower-plate polarity varies along margin strike. Lymer et al., (2019)
484 also show that, at the more local scale, 3D fault system overlap must occur and would also break a
485 simple oceanward in-sequence fault pattern. The transition from hyper-extended continental crust to
486 exhumed mantle is particularly sensitive to the sequence of faulting; oceanward in-sequence faulting
487 produces a smooth bathymetric transition onto exhumed mantle while out of sequence produces a
488 transition with bathymetric relief as shown in Figure 9.

Deleted: 8

489 8. Summary

490 a) Flexural isostatic rotation of extensional faulting (the rolling hinge model) applied to the
491 formation of the hyper-extended domain of magma-poor rifted margins predicts fault geometry
492 evolution consistent with the published interpretations of 3D seismic reflection data.

493 b) The same modelling shows that seismically observed low-angle extensional faults were not
494 necessarily active at low angle and have been flexurally rotated to their present low angle
495 geometry.

496 c) Modelling supports the hypothesis of Lymer et al. (2019) that the S reflector on the Galicia
497 margin is a sub-horizontal detachment generated by the in-sequence incremental addition of
498 the isostatically rotated soles of block bounding extensional faults.

499 d) Extensional faults may initially have a planar geometry in the upper seismogenic layer but this
500 initial planar geometry is modified by flexural isostatic rotation.

501 e) The predicted geometry of extensional allochthons emplaced on exhumed mantle is sensitive
502 to the initial geometry of block bounding faults. This may provide a means of distinguishing
503 listric and planar faults using seismic reflection data.

504

505 f) Sequential in-sequence oceanward extensional faulting is the dominant process during the
506 extensional thinning of the hyper-extended domain at magma-poor rifted margins. Some out-of-
507 sequence faulting does occur and generates a recognisably distinct transition onto exhumed
508 mantle.

509

512 **Author contribution**

513 **JGR**: Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing –
514 original draft preparation, Writing – review and editing. **NK**: Conceptualization, Formal analysis,
515 Funding acquisition, Investigation, Methodology, Project administration, Software, Supervision,
516 Visualization, Writing – review and editing.

517

518 **Competing interests**

519 The authors declare that they have no conflict of interest.

520

521 **Acknowledgments**

522

523 We thank the MM4 (Margin Modelling Phase 4) industry partners (BP, Conoco Phillips, Statoil,
524 Petrobras, Total, Shell, BHP-Billiton, and BG) for financial support. We also thank Tony Dore &Chris
525 Morley for constructive reviews and Alan Roberts and Gianreto Manatschal for discussions. We also
526 thanks Gael Lymer for his assistance with seismic images used in Figure 1.

527

528 **References**

529

530 Anderson, E.M., 1905. The dynamics of faulting. *Trans. Edinb. Geol. Soc.* 8 (3), 387–402.

531 Beslier, M.O., Ask, M., Boillot, G., 1993. Ocean-continent boundary in the Iberia Abyssal Plain from
532 multichannel seismic data. *Tectonophysics* 218, 383–393. [https://doi.org/10.1016/0040-1951\(93\)90327](https://doi.org/10.1016/0040-1951(93)90327).

533

534 Boillot, G., Recq, M., Winterer, E.L., Meyer, A.W., Applegate, J., Baltuck, M., Bergen, J.A.,
535 Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., Girardeau, J., Goldberg, G.,
536 Haggerty, J., Jansa, L.F., Johnson, J.A., Kasahara, J., Loreau, J.P., Luna-Sierra, E., Moullade, M.,
537 Ogg, J., Sarti, M., Thurow, J., Williamson, M., 1987. Tectonic denudation of the upper mantle
538 along passive margins: a model based on drilling results (ODP leg 103, western Galicia margin,
539 Spain). *Tectonophysics* 132, 335–342. [https://doi.org/10.1016/0040-1951\(87\)90352-0](https://doi.org/10.1016/0040-1951(87)90352-0).

540 Buck, W.R., 1988. Flexural Rotation of Normal Faults. *Tectonics* 7, 959–973.

541 De Charpal, O., Guennoc, P., Montadert, L., Roberts, D.G., 1978. Rifting, crustal attenuation and
542 subsidence in the Bay of Biscay. *Nature* 275, 706–711. <https://doi.org/10.1038/275706a0>.

543 deMartin, B.J., Sohn, R.A., Canales, J.P., Humphris, S.E., 2007. Kinematics and geometry of active
544 detachment faulting beneath the Trans-Atlantic geotraverse (TAG) hydrothermal field on
545 the Mid-Atlantic Ridge. *Geology* 35, 711–714.
546 <https://doi.org/10.1130/G23718A.1>.

547 Deng, C., Zhu, R., Han, J., Shu, Y., Wu, Y., Hou, K. & Long, W., 2021. Impact of basement thrust
548 faults on low-angle normal faults and rift basin evolution: a case study in the Enping sag, Pearl
549 River Basin. *Solid Earth*, doi.org/10.5194/se-12-2327-2021.

550 Epin, M. E., & Manatschal, G. (2018). Three-dimensional architecture, structural evolution, and role
551 of inheritance controlling detachment faulting at a hyper-extended distal margin: The example of
552 the Err detachment system (SE Switzerland). *Tectonics*, 37(12), 44944514.

553 Ford, M., Lickerish, W.H., Kusznir, N.J., 1999. Tertiary foreland sedimentation in the Southern
554 Subalpine Chains, SE France: A geodynamic appraisal. *Basin Res.* 11, 315–336.
555 doi:10.1046/j.1365-2117.1999.00103.x.

556 Gómez-Romeu, J., Masini, E., Tugend, J., Ducoux, M., & Kusznir, N. (2019). Role of rift structural
557 inheritance in orogeny highlighted by the Western Pyrenees casestudy. *Tectonophysics*, 766, 131–
558 150.

559 Hoffmann, H.J., Reston, T.J., 1992. Nature of the S reflector beneath the Galicia Banks rifted margin:
560 preliminary results from prestack depth migration. *Geology* 20, 1091–1094.
561 [https://doi.org/10.1130/0091-7613\(1992\)020<1091:NOTSRB>2.3.CO;2](https://doi.org/10.1130/0091-7613(1992)020<1091:NOTSRB>2.3.CO;2).

562 Horsefield, S.J., 1992. Crustal structure across the contiennt-ocean boundary [Ph.D. thesis].
563 Cambridge Univ.

564 Jackson, J. a., 1987. Active normal faulting and crustal extension. *Geol. Soc. London, Spec. Publ.* 28,
565 3–17. <https://doi.org/10.1144/GSL.SP.1987.028.01.02>.

566 Jácome, M.I., Kusznir, N., Audemard, F., Flint, S., 2003. Formation of the Maturín Foreland Basin,
567 eastern Venezuela: Thrust sheet loading or subduction dynamic topography. *Tectonics* 22, n/a-n/a.
568 <https://doi.org/10.1029/2002tc001381>.

569 Krawczyk, C.M., Reston, T.J., Beslier, M.O., Boillot, G., 1996. Evidence for Detachment
570 Tectonics on the Iberia Abyssal Plain Rifted Margin 149, 1–
571 13. <https://doi.org/10.2973/odp.proc.sr.149.244.1996>.

572 Kusznir, N.J., Marsden, G., Egan, S.S., 1991. A flexural-cantilever simple-shear/pure-shear model of
573 continental lithosphere extension: applications to the Jeanne d'Arc Basin, Grand Banks and
574 Viking Graben, North Sea. *Geol. Soc. London, Spec. Publ.* 56, 41–60.
575 <https://doi.org/10.1144/gsl.sp.1991.056.01.04>.

576 Lymer, G., Cresswell, D.J.F., Reston, T.J., Bull, J.M., Sawyer, D.S., Morgan, J.K., Stevenson, C.,
577 Causer, A., Minshull, T.A., Shillington, D.J., 2019. 3D development of detachment faulting
578 during continental breakup. *Earth Planet. Sci. Lett.* 515, 90–99.
579 <https://doi.org/10.1016/j.epsl.2019.03.018>.

580 Lymer, G., Childs, C. & Walsh, J., 2022. Punctuated propagation of a corrugated extensional
581 detachment offshore Ireland. *Basin Research*, doi: 10.1111/bre.12745.

582 Magnavita, L.P., Davison, I., Kusznir, N.J., 1994. Rifting, erosion, and uplift history of the Reconcavo-
583 Tucano-Jatoba Rift, northeast Brazil. *Tectonics* 13, 367–388.

584 Manatschal, G., Chenin, P., Ghienne, J-F., Ribes, C., Masini, E., 2021. The syn-rift tectono-
585 stratigraphic record of rifted margins (Part I): Insights from the Alpine Tethys. *Basin Research*,
586 doi:10.1111/bre.12627.

587 Manatschal, G., 2004. New models for evolution of magma-poor rifted margins based on a review of
588 data and concepts from West Iberia and the Alps. *Int. J. Earth Sci.* 93, 432–466.
589 <https://doi.org/10.1007/s00531-004-0394-7>.

590 Manatschal, G., Froitzheim, N., Rubenach, M., Turrin, B., 2001. The role of detachment faulting in
591 the formation of an ocean-continent transition: insights from the Iberia Abyssal Plain from:
592 Wilson, R.C.L., Whitmarsh, R.B., Taylor, B. & Froitzheim, N. *Non-Volcanic Rifting of
593 Continental Margins: A Comparison of Evid.* *Geol. Soc. London, Spec. Publ.*
594 187, 405–428. <https://doi.org/0305-8719/01/1500>.

595 Mohn, G., Manatschal, G., Beltrando, M., Masini, E., & Kusznir, N. (2012). Necking of continental
596 crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys margins. *Tectonics*,
597 31(1).

598 Montadert, L., De Charpal, O., Roberts, D., Guennoc, P., Sibuet, J.-C., 1979. Northeast Atlantic passive
599 continental margins: Rifting and subsidence processes. In: Talwani, M., Hay, W. & Ryan, W. B.
600 F. (eds) *Deep Drilling Results in the Atlantic Ocean: Continental Margins and
601 Palaeoenvironments*. Am. Geophysical Union, Washington, DC 154–186.

602 Morley, C.K., 2009. Geometry and evolution of low-angle normal faults (LANF) within a Cenozoic
603 high-angle rift system, Thailand: Implications for sedimentology and the mechanisms of LANF
604 development. *Tectonics*, doi:10.1029/2007TC002202.

605 Pérez-Gussinyé, M., 2013. A tectonic model for hyperextension at magma-poor rifted margins:
606 an example from the West Iberia – Newfoundland conjugate margins. *Geol. Soc. London, Spec.*
607 *Publ.* 369, 403–427. <https://doi.org/10.1144/SP369.19>.

608 Pérez-Gussinyé, M., Reston, T.J., Morgan, J., 2001. Serpentinization and magmatism during extension
609 at non-volcanic margins: the effect of initial lithospheric structure. *Geol. Soc. London, Spec. Publ.*
610 187, 551–576. <https://doi.org/10.1144/GSL.SP.2001.187.01.27>.

611 Péron-Pinvidic, G., Manatschal, G., Minshull, T.A., Sawyer, D.S., 2007. Tectonosedimentary
612 evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup history.
613 *Tectonics* 26, 1–19. <https://doi.org/10.1029/2006TC001970>.

614 Péron-Pinvidic, G., Manatschal, G., Osmundsen, P.T., 2013. Structural comparison of archetypal
615 Atlantic rifted margins: A review of observations and concepts. *Mar. Pet. Geol.* 43, 21–47.
616 <https://doi.org/10.1016/j.marpetgeo.2013.02.002>.

617 Ranero, C.R., Pérez-Gussinyé, M., 2010. Sequential faulting explains the asymmetry and extension
618 discrepancy of conjugate margins. *Nature* 468, 294–299. <https://doi.org/10.1038/nature09520>.

619 Reston, T.J., 2005. Polyphase faulting during the development of the west Galicia rifted margin. *Earth*
620 *Planet. Sci. Lett.* 237, 561–576. <https://doi.org/10.1016/j.epsl.2005.06.019>.

621 Reston, T.J., 1996. The S reflector west of Galicia: The seismic signature of a detachment fault.
622 *Geophys. J. Int.* 127, 230–244. <https://doi.org/10.1111/j.1365-246X.1996.tb01547>.

623 Reston, T.J., Krawczyk, C.M., Klaeschen, D., 1996. The S reflector west of Galicia (Spain): Evidence
624 from prestack depth migration for detachment faulting during continental breakup. *J. Geophys.*
625 *Res. Solid Earth* 101, 8075–8091. <https://doi.org/10.1029/95jb03466>.

626 Reston, T.J., McDermott, K.G., 2011. Successive detachment faults and mantle unroofing at magma-
627 poor rifted margins. *Geology* 39, 1071–1074. <https://doi.org/10.1130/G32428.1>.

628 Ribes, C., Manatschal, G., Ghienne, J-F., Karner, G.D., Johnson, C.A., Figueredo, P.H., Incerpi, N. &
629 Epin, M-E., 2019. The syn-rift stratigraphic record across a fossil hyper-extended rifted margin:

630 the example of the northwestern Adriatic margin exposed in the Central Alps. *Int. J. Earth*
631 *Sciences*, doi.org/10.1007/s00531-019-01750-6.

632 Roberts, A.M., Kusznir, N.J., Yielding, G., Beeley, H., 2019. Mapping the bathymetric evolution of
633 the northern North Sea: from Jurassic syn-rift archipelago through Cretaceous-Tertiary post-rift
634 subsidence. *Pet. Geosci.*

635 Roberts, A.M., Kusznir, N.J., Yielding, G., Styles, P., 1998. 2D flexural backstripping of extensional
636 basin: the need for a sideways glance. *Pet. Geosci.* 4, 327–338.
637 <https://doi.org/10.1144/petgeo.4.4.327>.

638 Schouten, H., Smith, D.K., Cann, J.R., Escartín, J., 2010. Tectonic versus magmatic extension in the
639 presence of core complexes at slow-spreading ridges from a visualization of faulted seafloor
640 topography. *Geology* 38, 615–618. <https://doi.org/10.1130/G30803.1>.

641 Sibuet, J.-C., 1992. Formation of non-volcanic passive margins: a composite model applies to the
642 conjugate Galicia and southeastern Flemish cap margins. *Geophys. Res. Lett.* 19, 769–772.

643 Smith, D.K., Escartín, J., Schouten, H., Cann, J.R., 2008. Fault rotation and core complex formation:
644 Significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic
645 Ridge, 13°–15°N). *Geochemistry, Geophys., Geosystems* 9.
646 <https://doi.org/10.1029/2007GC001699>.

647 Stein, R.-S., Barrientos, S.-E., 1985. Planar High-Angle Faulting in the Basin and Range: Geodetic
648 Analysis of the 1983 Borah Peak, Idaho, Earthquake. *J. Geophys. Res.* 90, 11,355–11,366.

649 Sutra, E., Manatschal, G., 2012. How does the continental crust thin in a hyper-extended rifted margin?
650 Insights from the iberia margin. *Geology* 40, 139–142. <https://doi.org/10.1130/G32786.1>.

651 Sutra, E., Manatschal, G., Mohn, G., Unternehr, P., 2013. Quantification and restoration of extensional
652 deformation along the Western Iberia and Newfoundland rifted margins. *Geochemistry, Geophys.,*
653 *Geosystems* 14, 2575–2597.

654 Toth, J., Kusznir, N.J., Flint, S.S., 1996. A flexural isostatic model of lithosphere shortening and
655 foreland basin formation: Application to the Eastern Cordillera and Subandean belt
656 of NW Argentina. *Tectonics* 15, 2–3.

657 Tugend, J., Manatschal, G., Kusznir, N.J., Masini, E., Mohn, G., Thimon, I., 2014. Formation and
658 deformation of hyper-extended rift systems: Insights from rift domain mapping in the Bay of
659 Biscay-Pyrenees. *Tectonics* 33, 1239–1276.

660 Wernicke, B., 1981. Low-angle normal faults in the Basin and Range Province: nappe tectonics in an
661 extending orogen. *Nature* 291, 645–648. <https://doi.org/10.1038/291645a0>.

662 White, R.S., 1999. The lithosphere under stress. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 357,
663 901–915. <https://doi.org/10.1098/rsta.1999.0357>.

664 Whitmarsh, R.B., Manatschal, G., Minshull, T. a., 2001. Evolution of magma-poor continental margins
665 from rifting to seafloor spreading. *Nature* 413, 150–154. <https://doi.org/10.1038/35093085>.

666 Whitmarsh, R.B., Pinheiro, L.M., Miles, P.R., Recq, M., Sibuet, J.-C., 1993. Thin crust at the western
667 Iberia ocean-continent transition and ophiolites. *Tectonics* 12, 5.

668
669