

1 **Extensional fault geometry and evolution within rifted**
2 **margin hyper-extended continental crust leading to**
3 **mantle exhumation and allochthon formation**

4
5 Júlia Gómez-Romeu^{1,*} & Nick Kusznir¹

6 ¹*Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK*

7 ^{*}*Currently: M&U sasu, Sassenage, France*

8

9 **Abstract**

10 Seismic reflection interpretation at magma-poor rifted margins shows that crustal thinning
11 within the hyper-extended domain occurs by in-sequence oceanward extensional faulting
12 which terminates in a sub-horizontal reflector in the top-most mantle immediately beneath
13 tilted crustal fault blocks. This sub-horizontal reflector is interpreted to be a detachment surface
14 which develops sequentially with oceanward in-sequence crustal faulting. We investigate the
15 geometry and evolution of active and inactive extensional faulting due to flexural isostatic
16 rotation during magma-poor margin hyper-extension using a recursive adaptation of the rolling
17 hinge model of Buck (1988) and compare modelling results with published seismic
18 interpretation. In the case of progressive in-sequence faulting, we show that sub-horizontal
19 reflectors imaged on seismic reflection data can be generated by the flexural isostatic rotation
20 of faults with initially high-angle geometry. Our modelling supports the hypothesis of Lymer
21 et al. (2019) that the S reflector on the Galician margin is a sub-horizontal detachment generated
22 by the in-sequence incremental addition of the isostatically rotated soles of block bounding
23 extensional faults. Flexural isostatic rotation produces shallowing of emergent fault angles,
24 fault locking and the development of new high-angle short-cut fault segments within the
25 hanging-wall. This results in the transfer and isostatic rotation of triangular pieces of
26 hangingwall onto exhumed fault footwall, forming extensional allochthons which our
27 modelling predicts are typically limited to a few km in lateral extent and thickness. The initial
28 geometry of basement extensional faults is a long-standing question. Our modelling results
29 show that a sequence of extensional listric or planar faults with otherwise identical tectonic
30 parameters produce very similar sea-bed bathymetric relief but distinct Moho and allochthon

31 shapes. Our preferred interpretation of our modelling results and seismic data is that faults are
32 initially planar in geometry but are isostatically rotated and coalesce at depth to form the
33 seismically observed sub-horizontal detachment in the top-most mantle. In-sequence
34 extensional faulting of hyper-extended continental crust results in a smooth bathymetric
35 transition from thinned continental crust to exhumed mantle; in contrast out-of-sequence
36 faulting results in a transition to exhumed mantle with bathymetric relief.

37

38 1. Introduction

39 The formation of a rifted continental margin during continental breakup requires continental
40 crust and lithosphere to be stretched and thinned. In the case of a magma-poor rifted margins,
41 5 progressive stages of margin formation resulting in 5 distinct margin domains have been
42 identified: proximal, necking, hyper-extended, exhumed mantle and oceanic crust (Mohn et al.
43 2012, Tugend et al. 2014). The hyper-extended domain of a magma-poor rifted margin forms
44 when the crust is thinned to approximately 10 km thickness or less and the crust becomes fully
45 brittle allowing faults to penetrate through the entire crust into the mantle (Pérez-Gussinyé et
46 al., 2001; Manatschal, 2004). The hyper-extended domain has a crustal architecture
47 characterised by tilted crustal fault blocks separated by oceanward dipping basement
48 extensional faults and often underlain by a strong sub-horizontal seismic reflector. This is
49 illustrated on figure 1(a) which shows a seismic reflection dip section (Lymer et al. 2019)
50 within the hyper-extended domain of the distal Galicia Bank margin west of Iberia. The sub-
51 horizontal reflector, known as the S reflector, has been interpreted to be a sub-horizontal
52 detachment within the top-most mantle (Krawczyk et al., 1996; Reston et al., 1996, Lymer et
53 al. 2019) into which basement extensional faults sole.

54 The geometry and evolution of extensional faults and their relationship to the S reflector within
55 the hyper-extended domain have been a long-standing question. Interpretation of 2D seismic
56 reflection data (Ranero and Pérez-Gussinyé, 2010) has revealed that basement extensional
57 faulting within the hyper-extended domain develops oceanward in-sequence with new faults
58 developing in the oceanward direction at the same time as abandonment of earlier faults.
59 Recent high-quality 3D seismic reflection seismic on the SW of Galicia Bank west of Iberia
60 (Lymer et al 2019) confirms this oceanward in-sequence fault development and additionally
61 provides observations that determine the relationship between the in-sequence basement

Deleted: While earthquake seismology favours a planar fault geometry with in the brittle seismogenic crust, seismic reflection imaging suggests a more listric geometry. Our modelling results show that a sequence of extensional listric or planar faults with identical parameters (i.e. location, heave, surface dip, T_e) produce very similar sea-bed bathymetric relief. Listric and planar fault geometries do however produce distinct Moho and allochthon shapes. We propose that the initial fault geometry, prior to flexural isostatic rotation, is planar in the seismogenic crust becoming listric at depth as the brittle plastic transition is approached. Extensional faulting and thinning of hyper-extended continental crust may eventually lead to mantle exhumation. Where extensional faulting is in-sequence, this results in a smooth bathymetric transition from thinned continental crust to exhumed mantle. In contrast out-of-sequence faulting results in a transition to exhumed mantle with bathymetric relief.

Deleted: 1

Deleted: 1.

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0,61 cm + Indent at: 1,25 cm

81 extensional faulting and the underlying S sub-horizontal reflector. Basement extensional faults
82 are observed to sole out into the sub-horizontal detachment within the top-most mantle imaged
83 as the S seismic reflector. In 3D the S reflector shows corrugations that indicate the direction
84 of slip and correlate with corrugations within the extensional block-bounding faults. Further
85 analysis by Lymer et al. (2019) reveals that the S reflector is a composite surface made by the
86 progressive ocean-ward in-sequence development of a sub-horizontal detachment into which
87 the higher angle basement faults sole. Their analysis also reveals that as extension migrates
88 oceanward in-sequence, several faults may be active simultaneously. A similar relationship has
89 been observed between basement extensional faulting and sub-horizontal S type seismic
90 reflectors in other rift basins using 3 D seismic reflection data. Figure 1(b) shows corrugations
91 on the sub-horizontal reflector interpreted as a detachment surface and its relationship to
92 basement extensional faulting above for the Porcupine Basin west of Ireland (Lymer et al.
93 2022). Lymer et al. (2019) present a schematic summary (Figure 1(c)) of extensional basement
94 faulting in the hyper-extended domain and its relationship to the sub-horizontal detachment
95 within the top-most mantle, most probably controlled by serpentinization, into which they sole.
96 Lymer et al. (2019) propose that their observations strongly support the development of the S
97 seismic reflector by a rolling-hinge process (Buck 1988) in which a sub-horizontal detachment
98 is created by the incremental addition of the soles of basement extensional faults. In this paper,
99 we use a recursive adaptation of the rolling hinge model of Buck (1988) to examine how both
100 active and inactive fault geometries are modified by flexural isostatic rotation during sequential
101 faulting to form the sub-horizontal structure imaged on seismic reflection data.
102 A long-standing question is whether the initial geometry of crustal extension faults is planar or
103 listric; earthquake seismology and geodetic observations favour a planar geometry (Jackson
104 1987; Stein & Barrientos 1985). Using the flexural isostatic rotation model, we also investigate
105 whether an initial listric or planar fault geometry better fits seismic observations of the sub-
106 horizontal reflector and the geometry of extensional allochthons. In addition, we examine the
107 transition from hyper-extended continental crust to exhumed mantle and how it depends on the
108 sequence of extensional faulting. ▼

109 2. Model formulation

110 We use a numerical model (RIFTER) to replicate faulting and fault block geometry within the
111 hyper-extended domain, and to investigate fault rotation, fault geometry interaction, the

Deleted: ¶

The hyper-extended domain of magma-poor rifted margins is formed when continental crust is thinned to approximately 10 km or less and the crust becomes fully brittle allowing faults to penetrate through the entire crust into the mantle (Pérez-Gussinyé et al., 2001; Manatschal, 2004; Tugend et al. 2014). It has a crustal architecture characterised by oceanward tilting crustal fault blocks often underlain by a strong coherent sub-horizontal seismic reflector (Krawczyk et al., 1996; Reston et al., 1996). ¶

The geometry and evolution of extensional faults within the hyper-extended domain has been a long-standing question. Interpretation of past and recently acquired high-quality seismic reflection images (Ranero and Pérez-Gussinyé, 2010; Lymer et al., 2019) has revealed that crustal thinning within the hyper-extended domain occurs by oceanward in-sequence extensional faults (Figure 1). These faults are shown to detach into the sub-horizontal seismic reflector beneath the crustal fault block which is interpreted to be a sub-horizontal detachment within the top-most mantle. This detachment has been shown to develop sequentially as extensional crustal faulting above propagates oceanward in-sequence to form the observed continuous structure as imaged on seismic data (Lymer et al., 2019). ¶

In this paper we investigate the geometry and evolution of extensional faults within the hyperextending brittle crust of a magma-poor margin using a numerical model which determines the flexural isostatic response to crustal thinning by sequential faulting. Using this model, which is an adaptation of the rolling hinge model of Buck (1988), we examine how both active and inactive fault geometries are modified during sequential faulting by flexural isostatic rotation to form the sub-horizontal structure imaged on seismic reflection data. In addition we examine the transition from hyper-extended continental crust to exhumed mantle and how it depends on the sequence of extensional faulting. ¶

A long-standing question is whether the initial geometry of crustal extension faults is planar or listric; earthquake seismology and geodetic observations favour a planar geometry (Jackson 1987; Stein & Barrientos 1985) while seismic reflections imaging suggests a more listric geometry. Using the flexural isostatic rotation model, we also investigate whether an initial listric or planar fault geometry better fits seismic observations of the sub-horizontal reflector and the geometry of extensional allochthons. ¶

157 formation of crustal allochthon blocks and the transition between hyper-extended and exhumed
158 mantle domains. RIFTER is a kinematic forward lithosphere deformation model that allows
159 the production of flexural isostatically compensated as well as balanced cross-sections. Within
160 RIFTER, lithosphere is deformed by faulting in the upper crust with underlying distributed
161 pure-shear deformation in the lower crust and mantle. A key attribute of RIFTER is that it
162 incorporates the flexural isostatic response to extensional faulting and crustal thinning.
163 Therefore, RIFTER can be used to model and predict the structural development of extensional
164 tectonic settings (Figure 2). The model is kinematically controlled with fault geometry and
165 displacement and pure-shear distribution given as model inputs as a function of time.
166 Lithosphere flexural strength, parameterised as lithosphere effective elastic thickness, is also
167 defined. Model outputs are geological cross-sections which are flexurally isostatically
168 compensated as well as structurally balanced (Figure 2). The kinematic formulation of RIFTER
169 represents an advantage over dynamic modelling because the input data given to RIFTER can
170 be constrained by observed geology. In addition, RIFTER provides for the isostatic testing of
171 palinspastic cross-sections and can also be used to explore different kinematic scenarios. A
172 more detailed description of the model formulation (originally called OROGENY) is given by
173 Toth et al., (1996), Ford et al., (1999) and Jácome et al., (2003). These studies show the model
174 formulation applied to compressional tectonics however similar physical principles apply for
175 an extensional tectonics scenario. Gómez-Romeu et al., (2019) show how RIFTER can be used
176 to reproduce both extensional and compressional tectonics using the Western Pyrenees as a
177 case-study.

178 Within RIFTER, loads resulting from extensional lithosphere deformation are assumed to be
179 compensated by flexural isostasy. The lithosphere flexural strength must be considered to
180 determine the isostatic rotation of faults during extension and therefore to investigate their
181 geometric evolution. These loads are generated by faulting, crustal thinning, sedimentation,
182 erosion and lithosphere thermal perturbation and re-equilibration (Kuszni et al., 1991). For the
183 purposes of calculating the flexural isostatic response, the lithosphere is represented as an
184 elastic plate of effective elastic thickness (T_e) floating on a fluid substratum. The lithosphere
185 effective elastic thickness (T_e) is defined as the equivalent thickness of a perfectly elastic plate
186 which has the same flexural strength as the lithosphere. Extension on basement faults produces
187 flexure which, as well as generating footwall uplift and hangingwall subsidence, gives rise to
188 substantial bending stresses (Magnavita et al., 1994) in the cooler upper lithosphere; these large
189 bending stresses are reduced by combined brittle and plastic failure. The flexural strength of

190 the lithosphere, and therefore T_e , are reduced by this brittle and plastic failure and this reduction
191 becomes greater with increase in extension (Magnavita et al., 1994). Therefore, in extensional
192 tectonic settings, a low effective elastic thickness (T_e) is expected and required to reproduce
193 the consequences of lithosphere deformation due to extensional faulting.

194 We use a T_e value of 0.5 km associated to each fault for the development of the transition
195 between the hyper-extended domain and the initiation of exhumed mantle domain (Figure 3).
196 This value is consistent with those determined at slow-spreading ocean ridges ranging between
197 0.5 and 1 km (e.g. Smith et al., 2008; Schouten et al., 2010; Buck, 1988) where a similar
198 lithosphere flexural strength to that of the distal rifted margins is expected.

199 The initial crustal geometry for our modelling of extensional faulting within the hyperextended
200 domain leading to mantle exhumation and allochthon formation is when the continental crust
201 has been thinned down to 10 km (Tugend et al., 2014) corresponding to the point when faults
202 within the seismogenic layer couple into the mantle (Pérez-Gussinyé et al., 2001). Prior to that,
203 during the necking zone stage of margin formation (Mohn et al., 2012), faults are expected to
204 be decoupled from the mantle by ductile deformation within the lower continental crust. The
205 width of the necking zone with crust 10 km thick at the start of hyperextension is set to 100 km
206 although this width value is not critical to this study. The starting bathymetry is set to 2 km
207 corresponding to the isostatic equilibrium of continental crust thinned to 10 km with an highly
208 elevated lithosphere geotherm (Figure 3b). For simplicity we only model faulting during hyper-
209 extension on one distal rifted margin and do not include faulting within its distal conjugate.

210 This simplified initial model template allows us to focus on extensional faulting during the
211 hyper-extension stage of magma-poor rifted margin formation avoiding the complexity
212 occurring during the earlier rifting and necking phases. Figure 3c shows the resultant model of
213 a hyper-extended distal rifted margin. The detailed numerical model stages to produce this are
214 shown in Figures 3d-e and described below for the formation of the hyperextended domain, the
215 initiation of the exhumed mantle domain and the formation of extensional allochthons.

216 **3. Model application to sequential faulting within the hyper-extended 217 margin domain**

218 The interpretation of sub-horizontal seismic reflectors below fault blocks within the
219 hyperextended domain has been intensively debated (e.g. Reston et al., 1996). Interpretations
220 suggested for the S-type reflectors on the Iberian margin (de Charpal et al., 1978; Krawczyk et

Deleted:

Deleted: formation of a distal

Deleted:

Deleted: formation.

Deleted: these structures (H and S type-reflectors in Galicia margin and Iberia Abyssal Plain respectively,

227 al., 1996) are many and are reviewed later in the discussion. Despite this wide range of possible
228 interpretations, after the work by Reston et al. (1996) and Krawczyk et al. (1996), it has been
229 generally accepted that the S-type reflectors are detachment faults (Manatschal et al., 2001).
230 Ranero & Pérez-Gussinyé (2010) show that extensional faulting within the hyper-extended
231 domain develops oceanward insequence with initially steeply dipping faults. As in-sequence
232 faulting propagates oceanward, active fault rotation modifies the deeper geometry of previously
233 active faults leading to their deeper segments being passively rotated to a lower angle producing
234 an apparent listric fault geometry or even a sub-horizontal appearance. Lymer et al., (2019)
235 confirmed observationally that extensional faulting develops oceanward in-sequence, and that
236 extensional faulting soles out into the sub-horizontal detachment imaged as the S-type-
237 reflectors.

Deleted: multiple

Deleted: H and

Deleted:

Deleted: suggested

238 Figure 3d shows the modelling results of progressive deformation within the hyper-extended
239 domain resulting from a set of in-sequence extensional faults. The initial pre-movement dip of
240 each extensional fault at the surface is 60°. This value is consistent with Andersonian
241 extensional fault mechanics (Anderson 1905) and also the value of 55° – 60° determined for
242 initial surface fault dip by Lymer et al. (2019) from their analysis of 3D seismic reflection data
243 on the SW Galicia Bank margin. Note that our RIFTER modelling results shown in this paper,
244 using high initial faults angles, do not apply to low angle extensionally reactivated thrusts
245 (Morley, 2009; Deng et al. 2022).

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

246 In the model results shown in Figure 3d-e the faults detach at 15 km depth corresponding to an
247 assumed brittle-plastic transition within the topmost mantle (results obtained from an initial
248 planar fault geometry are examined later). Flexural isostatic response to faulting leads to an
249 uplift of the footwall block, subsidence of the hanging-wall block and a rotation of the active
250 fault plane reducing its dip (Figure 3d1). The reduction of fault dip due to flexural isostatic
251 rotation is expected to lead to the locking of that fault and the initiation of new faults with
252 steeper dip. This is shown in Figure 3d2 and subsequent Figures 3d3-6.

253 Extension on each new fault not only reduces its own fault dip by flexural isostatic rotation but
254 also further reduces the fault dip of earlier active faults within its footwall. The cumulative
255 result of this process is that faults originally steeply dipping when active become sub-horizontal
256 in their lower parts as illustrated in Figures 3d5 for fault number 1. In this case the sub-
257 horizontal inactive fault is almost coincident with the Moho beneath the hyper-extended
258 continental crustal fault-blocks (Figure 3d5). If fault extension is sufficiently large and the

265 hyper-extended continental crust is sufficiently thin, footwall exhumation leads to mantle
266 exhumation (Figure 3d6) (Manatschal et al., 2001).

267 Table 1 summarizes the fault parameters and sequential fault displacement required to
268 reproduce the structural architecture of the hyper-extended domain shown in Figure 3d.

269 **4. Model application to mantle exhumation and extensional allochthon**
270 **formation**

271 For even greater extension on the exhumation fault, the exhumed mantle footwall becomes sub-
272 horizontal at the sea-bed due to flexural isostatic rotation as predicted by the rolling-hinge
273 model of Buck (1988). Extensional allochthon blocks sitting above sub-horizontal exhumed
274 footwall are observed at magma-poor margins by seismic reflection imaging and field studies
275 (Epin and Manatschal and references therein, 2018).

276 We use RIFTER to investigate the formation of extensional allochthon blocks by the
277 rollinghinge model as suggested by Manatschal et al., (2001) and shown in Figure 3e.
278 Allochthon blocks are produced by new steeply dipping extensional faults cutting through the
279 hangingwall block of a master fault (fault 6 in our case in Figure 3e1) and pulling off triangular
280 pieces of continental crust from the hanging-wall (i.e. the rolling hinge model of Buck, 1988).
281 These new faults, created when the emergence angle of the master fault becomes too low (~30°
282 dip), are short-cuts of the master fault and connect with it at depth. Depending on what depth
283 they initiate at and their break-away position, the size of the crustal allochthon block generated
284 will vary (Figure 3e). The intersection depth between the master fault and the new extensional
285 faults is different in each model stage shown in Figure 3e but it ranges between 5 and 10 km
286 depth consistent with deMartin et al., (2007). Another parameter that differs in each model
287 stage is the distance between two consecutive allochthon blocks. This depends on how much
288 the new extensional fault moved before it locked. A small fault offset will not generate exhumed
289 mantle between two allochthon blocks as shown in Figures 3e3-4 whereas a large fault offset
290 will generate exhumed mantle and a sub-horizontal sea-bed geometry between two allochthon
291 blocks (Figures 3e4-5). Note that each allochthon block overlies sub-horizontal exhumed
292 footwall generated by flexural isostatic rotation.

293 [The RIFTER model results shown in Figure 3 do not include sediment deposition during hyper-](#)
294 [extension, mantle exhumation and allochthon formation. In Figure 4, incremental sediment](#)
295 [deposition and its isostatic loading is included in the model; the tectonics remains the same as](#)

Formatted: Not Highlight

296 in Figure 3. Because of the diachronous tectonics of oceanward in-sequence extensional
297 faulting during the formation of the distal magma-poor margin, sediments of the same age may
298 be syn-tectonic if they are deposited where active faulting is occurring, or they may be pre- or
299 post-tectonic. The important distinction between syn- and post-tectonic sedimentation due to
300 diachronous tectonics during rifted margin formation is described in greater detail in Ribes et
301 al. (2019) and Manatschal et al (2022).

Deleted: if they are passive fill of accommodation space generated by earlier extensional faulting that has ceased at that location

Formatted: Not Highlight

302 Table 2 summarizes the initial fault parameters and the chronological fault displacement
303 required to reproduce the structural architecture of the exhumed mantle domain shown in
304 Figure 3e.

305 5. Sensitivity to listric or planar fault geometry?

306 Lithosphere deformation is achieved by localised deformation on faults and shear zones within
307 the upper lithosphere with distributed deformation below at depth. A long-standing question is
308 how deformation by faulting connects to deep distributed lithosphere deformation. This
309 question also has implications for fault geometry. Our numerical experiments described above
310 in sections 3 and 4 assume a listric fault geometry in which faults sole out into a sub-horizontal
311 shear zone at 15 km depth below which deformation becomes distributed. In contrast
312 earthquake seismology and geodetic analysis (Stein and Barrientos, 1985; Jackson, 1987)
313 suggests that large extensional earthquakes involve faults whose geometry is planar.

Deleted: above an interpreted brittle-ductile transition.

314 We explore the differences between using listric and planar fault in modelling the formation of
315 the hyper-extended and exhumed mantle domains. The results are compared in Figure 5. The
316 initial faults geometries for listric and planar faults are shown in Figures 5a and d respectively.
317 Both have an initial surface dip of 60°. The initial listric fault geometry soles out at 15 km while
318 the initial planar fault geometry continues downwards with a dip of 60°. We assume that the
319 deformation transition from faulting to distributed deformation for the planar fault occurs
320 within the mantle below the crust-mantle density interface and so does not affect the isostatic
321 response to faulting.

Deleted: 4

Deleted: 4a

Deleted:

322 Listric and planar fault geometry model predictions are shown in Figures 4c and f and use the
323 same fault locations, fault extension and sequence. Comparison shows that listric and planar
324 fault geometries produces very similar sea-bed structural topography, and which cannot be used
325 to distinguish whether fault geometry is listric or planar. In contrast, the listric and planar fault
326 models produce different sub-surface structure. The Moho geometries predicted by the listric

334 and planar fault geometry models are also different, however whether these different predicted
335 Moho geometries can be distinguished using seismic reflection data is uncertain.

336 In section 4 we used listric fault geometries to model allochthon formation. We now examine
337 allochthon formation using planar faults and compare these predictions with those using listric
338 faults (Figure 6). For both listric and planar fault geometries, Figure 6 shows the formation of
339 allochthons for different separations of the hanging-wall short-cut fault from the primary
340 extensional fault which has exhumed mantle footwall. Separations of 1 km (Figures 6a-b and
341 g-h), 2 km (Figures 6c-d and i-j) and 5 km (Figures 6 e-f and k-l) are used. For the 1 km
342 separation, a small allochthon is produced with similar triangular geometry for both listric
343 (Figure 6b) and planar (Figure 6h) fault geometries. Increasing the separation to 2 km increases
344 the allochthon size; however while the listric fault (Figure 6d) produces a triangular allochthon,
345 the planar fault (Figure 6i) geometry produces a 4-sided body. For a 5 km separation, the
346 allochthon size increases further and both listric (Figure 6f) and planar (Figure 6l) fault
347 geometries produce a 4- sided body. For the larger separations of the short-cut fault from the
348 primary fault, the detached fragment transferred to the exhumed mantle consists of continental
349 basement with some autochthonous mantle beneath it (Figure 6j-l). Whether extensional
350 allochthons can provide insight into answering the question ~~are~~ extensional faults listric or
351 planar poses an interesting challenge.

352 6. The transition from hyper-extended crust to exhumed mantle and its 353 sensitivity to in-sequence vs out-of-sequence faulting

354 Stretching and thinning of the continental crust can eventually lead to mantle exhumation as
355 observed by drilling on the distal Iberian margin (Figures 7a-b). Seismic reflection data (Figure
356 7c) provides insight into how mantle exhumation was achieved by extensional faulting. Based
357 on drill and seismic reflection data, Manatschal et al., (2001, 2004) proposed that an in-
358 sequence ocean-ward propagating set of extensional faulting progressively thins the continental
359 crust in the hyper-extended domain until eventually a large extensional fault exhumes mantle
360 in its footwall. Our modelling of mantle exhumation using a set of in-sequence extensional
361 faults as proposed by Manatschal et al., (2001, 2004) is shown in Figure 3 and 8a, and produces
362 a smooth bathymetric transition from continental crust to exhumed mantle.

363 While the in-sequence fault extension process provides a very good generalised model for the
364 formation of the hyper-extended margin domain, mantle exhumation and their transition, it is

Deleted: 5

Deleted: 5

Deleted: 5a

Deleted: 5c

Deleted: 5

Deleted: 5b

Deleted: 5h

Deleted: 5d

Deleted: 5j

Deleted: 5f

Deleted: 5l

Deleted: 5j

Deleted:

Deleted: whether

Deleted: are

Deleted:

Deleted: 6a

Deleted: 6c

Deleted: 7a

Deleted: .

385 unlikely that all faults propagate in-sequence oceanward. Some out-of-sequence faulting is to
386 be expected when the 3D nature and along strike complexity of rifting and breakup is
387 considered and can be seen seismically in Figure 7e. In Figure 8b we show the result of
388 introducing an out-of-sequence fault, with the same dip sense as other faults, into the
389 hyperextension and mantle exhumation model. All other faults have similar locations and
390 extensions to those used to produce Figure 8a. The effect of introducing an out-of-sequence
391 fault to exhume mantle is to produce a transition from thinned continental crust to mantle which
392 is no longer smooth at the seabed but shows bathymetric relief. An out-of-sequence fault might
393 also have an opposite dip-sense as shown in Figure 8c. This fault does not exhume mantle but
394 does generate a horst containing exhumed mantle capped by thinned continental crust as
395 observed in Figure 7e.

Deleted: 6e

Deleted: 7b

Deleted: 7a

Deleted: 7c

Deleted: 6e

396 7. Discussion

397 To better understand extensional fault geometry and its evolution during hyper-extension at
398 magma-poor rifted margins, several important questions need to be answered: (i) are faults
399 active at low angle, (ii) what is the relationship between the sub-horizontal reflector and block
400 bounding faults, (iii) do faults have a listric or planar geometry and (iv) is faulting always in-
401 sequence.

Deleted: extensional

Deleted:

Deleted: or out-of-sequence.

402 In section 4 (Figure 3) we show for a listric fault geometry that flexural isostatic rotation
403 progressively reduces the fault dip of inactive faults within the footwall of oceanward in-
404 sequence faulting. From this we can deduce that the present-day sub-horizontal orientation of
405 a fault at depth does not indicate that the fault was active at a sub-horizontal orientation. This
406 conclusion is consistent with the modelling results of Ranero & Pérez-Gussinyé, (2010) and
407 the 3D seismic observations of Lymer et al. (2019).

Deleted:

Deleted: interpretations of

Deleted: i

408 The nature of the seismically imaged sub-horizontal reflectors beneath rotated fault blocks in
409 the hyper-extended domain has been extensively debated (e.g. Reston et al. 1996; Lymer et al.
410 2019 and references therein). Proposed origins of the sub-horizontal reflector have included a
411 lithosphere scale extensional detachment fault (Wernicke et al., 1981), the top of a mafic
412 underplate (Horsefield, 1992), a thin igneous intrusion (Reston, 1996), a serpentization front
413 (Boillot et al., 1987), and the brittle-plastic transition (de Charpal et al., 1978; Sibuet, 1992).
414 Detailed seismology by Reston et al., (1996) was able to eliminate an igneous origin, leaving a

426 sub-horizontal detachment, in the top-most mantle as the most likely interpretation, probably
427 assisted by mantle serpentinization (Pérez Gussinyé et al., (2001)).

Deleted: the brittle-plastic transition

428 Seismic reflection interpretation shows that extensional faults thinning the continental crust
429 within the hyper-extended domain sole out into the sub-horizontal reflector (Reston et al. 1996;
430 Manatschal et al., 2001). If extensional faults within the hyper-extended zone penetrate into
431 the mantle, as suggested by Pérez Gussinyé et al., (2001), then the interpretation of seismically
432 observed sub-horizontal reflectors being a sub-horizontal detachment, requires it to be, within
433 the mantle rather than at the base of the thinned continental crust. Analysis of the recently
434 acquired 3D seismic reflection data in the hyper-extended southern Galicia margin by Lymer
435 et al. (2019) shows that oceanward in-sequence extensional crustal faulting detaches into a sub-
436 horizontal detachment imaged as the sub-horizontal reflector (confirming the interpretations of
437 Manatschal et al.; 2001 and Ranero & Pérez-Gussinyé: 2010). Their 3D analysis of the
438 correlation between corrugations within the S reflector surface and those within block
439 bounding faults demonstrates that the sub-horizontal detachment imaged as the S reflector
440 develops synchronously with the oceanward in-sequence crustal faulting.

Formatted: Indent: Left: 0 cm, First line: 0 cm

Deleted: which is located either at the base of the thinned
continental crust or slightly deeper within the top-most
mantle

Deleted: the brittle-plastic transition

Deleted: that transition to be

Deleted:

Deleted: 1

441 Our listric fault model (Figure 4a-c) assumes that faults sole out into a horizontal detachment
442 within the top-most mantle, consistent with the seismically observed sub-horizontal S reflector
443 being interpreted as a horizontal detachment into which the block bounding extensional faults
444 above sole into. Our model is also consistent with the interpretation of Lymer et al., (2019) that
445 the sub-horizontal reflector is the relict of an oceanward propagating detachment at the base of
446 the in-sequence crustal faulting and is not simultaneously active from distal to proximal. Our
447 modelling supports the hypothesis of Lymer et al. (2019) that the S reflector on the Galicia
448 margin is a sub-horizontal detachment generated by the in-sequence incremental addition of
449 the isosatically rotated soles of block bounding extensional faults.

Deleted: and that the sub-horizontal detachment develops
oceanward synchronously with the insequence crustal faulting

Deleted: .

Formatted: Space After: 14 pt

Deleted: =

Deleted: at 15 km depth

Deleted: s

Deleted: the transition from localised brittle deformation
above to distributed plastic deformation below

Deleted: .

Deleted: predictions are

Deleted:

Deleted: n

450 In section 5 (Figure 5) we compare the response of listric and planar fault geometries for
451 oceanward in-sequence hyper-extension. Significant flexural isostatic rotation leading to
452 greatly reduced dip of planar faults at depth is also seen, especially for planar faults in the
453 footwall of later faults with large extension. However, Figure 5 shows a clear difference
454 between planar (Figures 5d-f) and listric (Figures 5a-c) fault geometries at depth; planar fault
455 geometries do not result in a continuous sub-horizontal structure at depth. In contrast because
456 all listric faults sole out at the same brittle-plastic transition depth, all listric faults form a single

Deleted: 4

Deleted: 4

Deleted: 4d

Deleted: 4a

481 continuous sub-horizontal structure at depth resembling that observed on seismic reflection
482 data in the hyper-extended domain.

Deleted: The fault geometries at depth generated by listric faulting appear to be similar to structures seismically imaged at depth.

483 Earthquake seismology, however, favours a planar fault geometry for extension within the
484 seismogenic layer (Stein and Barrientos, 1985; Jackson, 1987). How might extensional
485 deformation on a planar fault in the brittle seismogenic layer terminate at depth? In the case of
486 rifted margin hyper-extension, faults penetrate the crust and permit water to penetrate down
487 into the top-most mantle (e.g. Pérez-Gussinyé et al., 2001) enabling mantle serpentinization to
488 occur. Serpentinized top-most mantle at the base of extensional faults would produce a weak
489 layer enabling the formation of a horizontal detachment. Planar faulting in the seismogenic
490 layer, isostatically rotated to low angles, would, then sole out into this horizontal detachment
491 in the top-most serpentinised mantle immediately beneath thinned continental crust. The
492 resulting fault geometry would not be dissimilar to that of the listric fault used in the modelling
493 of sections 3 and 4 but with a more planar geometry in the upper brittle seismogenic layer as
494 observed on the 3D seismic of Lymer et al. (2019).

Deleted: evolve into distributed plastic deformation at depth?

Deleted: extensional

Deleted: may

Deleted: If this occurs, s

Deleted: upper

Deleted: provide

Deleted:

Deleted: (Lymer et al. 2019 and references therein).

Deleted: might

Deleted: .

Deleted:

Deleted: 5

Deleted: 5

495 The rolling hinge model of Buck (1988) provides an explanation for the formation of triangular
496 allochthons of continental crust emplaced on exhumed mantle (Buck 1988; Manatschal et al.
497 2001; Epin & Manatschal, 2019). In Figures 3 and 6 we show slivers of hanging wall
498 continental crust transferred onto exhumed mantle footwall by short-cut faults. Flexural
499 isostatic rotation produces the observed geometry of triangular allochthons emplaced on sub-
500 horizontal exhumed mantle. While listric and planar fault geometries produce nearly identical
501 small allochthons, their difference becomes pronounced for large allochthons (Figure 6). Listric
502 faults always produce a triangular allochthon fragment of hanging-wall continental crust while
503 planar faults produce a rectangular shape for large allochthons (semantically these large
504 rectangular fragments produced by planar faults should perhaps be called autochthons).
505 Whether reflection seismology observations of large allochthon shapes can be used to
506 distinguish listric or planar fault geometry during hyper-extension remains to be investigated.
507 Oceanward in-sequence faulting shown in Figure 3 and as proposed by Manatschal et al. (2001)
508 and Manatschal (2004) provides a good generalised model for the formation of hyper-extended
509 magma-poor margins. However, it should be recognised that out-of-sequence faulting does
510 occur during margin formation and is the inevitable consequence of the 3D nature of
511 continental breakup at the regional scale where upper-plate/lower-plate polarity varies along
512 margin strike. Lymer et al., (2019) also show that, at the more local scale, 3D fault system

529 overlap must occur and would also break a simple oceanward in-sequence fault pattern. The
530 transition from hyper-extended continental crust to exhumed mantle is particularly sensitive to
531 the sequence of faulting; oceanward in-sequence faulting produces a smooth bathymetric
532 transition onto exhumed mantle while out of sequence produces a transition with bathymetric
533 relief as shown in Figure 8.

Deleted: 7

534 8. Summary

535 a) Flexural isostatic rotation of extensional faulting (the rolling hinge model) applied to
536 the formation of the hyper-extended domain of magma-poor rifted margins predicts
537 fault geometry evolution consistent with the [published](#) interpretations of [3D](#) seismic
538 reflection data.

539 b) [The same modelling shows that seismically observed low-angle extensional faults were](#)
540 [not necessarily active at low angle and have been flexurally rotated to their present low](#)
541 [angle geometry.](#)

542 c) [Modelling supports the hypothesis of Lymer et al. \(2019\) that the S reflector on the](#)
543 [Galicia margin is a sub-horizontal detachment generated by the in-sequence](#)
544 [incremental addition of the isostatically rotated soles of block bounding extensional](#)
545 [faults.](#)

Formatted: List Paragraph

Deleted: n

546 d) [Extensional faults may initially have a planar geometry in the upper seismogenic layer](#)
547 [but this initial planar geometry is modified by flexural isostatic rotation.](#)

Moved (insertion) [1]

Deleted: ¶

548 e) [The predicted geometry of extensional allochthons emplaced on exhumed mantle is](#)
549 [sensitive to the initial geometry of block bounding faults. This may provide a means of](#)
550 [distinguishing listric and planar faults using seismic reflection data.](#)

Formatted: Not Highlight

Formatted: Indent: Left: 0,64 cm, Hanging: 0,61 cm

Formatted: Not Highlight

Formatted: Not Highlight

551 f) Sequential in-sequence oceanward extensional faulting is the dominant process during
552 the extensional thinning of the hyper-extended domain at magma-poor rifted margins.
553 Some out-of-sequence faulting does occur and generates a recognisably distinct transition
554 onto exhumed mantle.

Moved up [1]: Extensional faults may initially have a planar geometry in the upper seismogenic layer but this initial planar geometry is modified by flexural isostatic rotation. ¶

Deleted: The observed geometry of extensional allochthons are consistent with extensional faults soling out into a horizontal detachment in the topmost mantle probably controlled by mantle serpentinization. Extensional faults may initially have a planar geometry in the upper seismogenic layer but this initial planar geo

Formatted: Indent: Left: 0,64 cm, No bullets or numbering

Formatted: Indent: Left: 0,64 cm, Hanging: 0,11 cm

557 Author contribution

558 **JGR:** Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing
559 – original draft preparation, Writing – review and editing. **NK:** Conceptualization, Formal

573 analysis, Funding acquisition, Investigation, Methodology, Project administration, Software,
574 Supervision, Visualization, Writing – review and editing.

575

576 Competing interests

577 The authors declare that they have no conflict of interest.

578

579 Acknowledgments

580

581 We thank the MM4 (Margin Modelling Phase 4) industry partners (BP, Conoco Phillips, Statoil,
582 Petrobras, Total, Shell, BHP-Billiton, and BG) for financial support. We also thank Tony Dore
&Chris Morley for constructive reviews and Alan Roberts and Gianreto Manatschal for
discussions. We also thanks Gael Lymer for his assistance with seismic images used in Figure
585 1.

586

587 References

588

589 Anderson, E.M., 1905. The dynamics of faulting. Trans. Edinb. Geol. Soc. 8 (3), 387–402. Formatted: Font: (Default) Times New Roman, 12 pt

590 Beslier, M.O., Ask, M., Boillot, G., 1993. Ocean-continent boundary in the Iberia Abyssal Plain
591 from multichannel seismic data. *Tectonophysics* 218, 383–393.
592 [https://doi.org/10.1016/0040-1951\(93\)90327](https://doi.org/10.1016/0040-1951(93)90327).

593 Boillot, G., Recq, M., Winterer, E.L., Meyer, A.W., Applegate, J., Baltuck, M., Bergen, J.A.,
594 Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., Girardeau, J., Goldberg, G.,
595 Haggerty, J., Jansa, L.F., Johnson, J.A., Kasahara, J., Loreau, J.P., Luna-Sierra, E.,
596 Moullade, M., Ogg, J., Sarti, M., Thurow, J., Williamson, M., 1987. Tectonic denudation
597 of the upper mantle along passive margins: a model based on drilling results (ODP leg
598 103, western Galicia margin, Spain). *Tectonophysics* 132, 335–342.
599 [https://doi.org/10.1016/0040-1951\(87\)90352-0](https://doi.org/10.1016/0040-1951(87)90352-0).

600 Buck, W.R., 1988. Flexural Rotation of Normal Faults. *Tectonics* 7, 959–973.

601 De Charpal, O., Guennoc, P., Montadert, L., Roberts, D.G., 1978. Rifting, crustal attenuation
602 and subsidence in the Bay of Biscay. *Nature* 275, 706–711.
603 <https://doi.org/10.1038/275706a0>.

607 deMartin, B.J., Sohn, R.A., Canales, J.P., Humphris, S.E., 2007. Kinematics and geometry of
608 active detachment faulting beneath the Trans-Atlantic geotraverse (TAG) hydrothermal
609 field on the Mid-Atlantic Ridge. *Geology* 35, 711–714.
610 <https://doi.org/10.1130/G23718A.1>.

611 [Deng, C., Zhu, R., Han, J., Shu, Y., Wu, Y., Hou, K. & Long. W., 2021. Impact of basement](#)
612 [thrust faults on low-angle normal faults and rift basin evolution: a case study in the](#)
613 [Enping sag, Pearl River Basin. Solid Earth, doi.org/10.5194/se-12-2327-2021.](#)

Formatted: Font: (Default) Times New Roman, 12 pt

614 Epin, M. E., & Manatschal, G. (2018). Three-dimensional architecture, structural evolution,
615 and role of inheritance controlling detachment faulting at a hyper-extended distal margin:
616 The example of the Err detachment system (SE Switzerland). *Tectonics*, 37(12),
617 44944514.

Formatted: Default Paragraph Font, Font:

Formatted: Default Paragraph Font, Font: (Default) Times New Roman, 12 pt

618 Ford, M., Lickorish, W.H., Kusznir, N.J., 1999. Tertiary foreland sedimentation in the Southern
619 Subalpine Chains, SE France: A geodynamic appraisal. *Basin Res.* 11, 315–336.
620 doi:10.1046/j.1365-2117.1999.00103.x.

Formatted: French

621 Gómez-Romeu, J., Masini, E., Tugend, J., Ducoux, M., & Kusznir, N. (2019). Role of rift
622 structural inheritance in orogeny highlighted by the Western Pyrenees casestudy.
623 *Tectonophysics*, 766, 131-150.

624 Hoffmann, H.J., Reston, T.J., 1992. Nature of the S reflector beneath the Galicia Banks rifted
625 margin: preliminary results from prestack depth migration. *Geology* 20, 1091–1094.
626 [https://doi.org/10.1130/0091-7613\(1992\)020<1091:NOTSRB>2.3.CO;2](https://doi.org/10.1130/0091-7613(1992)020<1091:NOTSRB>2.3.CO;2).

627 Horsefield, S.J., 1992. Crustal structure across the continent-ocean boundary [Ph.D. thesis].
628 Cambridge Univ.

629 Jackson, J. a., 1987. Active normal faulting and crustal extension. *Geol. Soc. London, Spec.*
630 *Publ.* 28, 3–17. <https://doi.org/10.1144/GSL.SP.1987.028.01.02>.

631 Jácome, M.I., Kusznir, N., Audemard, F., Flint, S., 2003. Formation of the Maturín Foreland
632 Basin, eastern Venezuela: Thrust sheet loading or subduction dynamic topography.
633 *Tectonics* 22, n/a-n/a. <https://doi.org/10.1029/2002tc001381>.

634 Krawczyk, C.M., Reston, T.J., Beslier, M.O., Boillot, G., 1996. Evidence for Detachment
635 Tectonics on the Iberia Abyssal Plain Rifted Margin
636 149, 1–13. <https://doi.org/10.2973/odp.proc.sr.149.244.1996>.

637 Kusznir, N.J., Marsden, G., Egan, S.S., 1991. A flexural-cantilever simple-shear/pure-shear
638 model of continental lithosphere extension: applications to the Jeanne d'Arc Basin, Grand
639 Banks and Viking Graben, North Sea. *Geol. Soc. London, Spec. Publ.* 56, 41–60.
640 <https://doi.org/10.1144/gsl.sp.1991.056.01.04>.

641 Lymer, G., Cresswell, D.J.F., Reston, T.J., Bull, J.M., Sawyer, D.S., Morgan, J.K., Stevenson,
642 C., Causer, A., Minshull, T.A., Shillington, D.J., 2019. 3D development of detachment
643 faulting during continental breakup. *Earth Planet. Sci. Lett.* 515, 90–99.
644 <https://doi.org/10.1016/j.epsl.2019.03.018>.

645 [Lymer, G., Childs, C. & Walsh, J., 2022. Punctuated propagation of a corrugated extensional](#)
646 [detachment offshore Ireland. Basin Research, doi: 10.1111/bre.12745.](#)

647 [Magnavita, L.P., Davison, I., Kusznir, N.J., 1994. Rifting, erosion, and uplift history of the](#)
648 [Reconcavo-Tucano-Jatoba Rift, northeast Brazil. Tectonics 13, 367–388.](#)

649 [Manatschal, G., Chenin, P., Ghienne, J-F., Ribes, C., Masini, E., 2021. The syn-rift tectono-](#)
650 [stratigraphic record of rifted margins \(Part I\): Insights from the Alpine Tethys. Basin](#)
651 [Research, doi:10.1111/bre.12627.](#)

652 Manatschal, G., 2004. New models for evolution of magma-poor rifted margins based on a
653 review of data and concepts from West Iberia and the Alps. *Int. J. Earth Sci.* 93, 432–466.
654 <https://doi.org/10.1007/s00531-004-0394-7>.

655 Manatschal, G., Froitzheim, N., Rubenach, M., Turrin, B., 2001. The role of detachment
656 faulting in the formation of an ocean-continent transition: insights from the Iberia Abyssal
657 Plain from: Wilson, R.C.L., Whitmarsh, R.B., Taylor, B. & Froitzheim, N. *Non-Volcanic*
658 *Rifting of Continental Margins: A Comparison of Evid.* *Geol. Soc. London, Spec. Publ.*
659 187, 405–428. <https://doi.org/0305-8719/01/1500>.

660 Mohn, G., Manatschal, G., Beltrando, M., Masini, E., & Kusznir, N. (2012). Necking of
661 continental crust in magma-poor rifted margins: Evidence from the fossil Alpine Tethys
662 margins. *Tectonics*, 31(1).

663 Montadert, L., De Charpal, O., Roberts, D., Guennoc, P., Sibuet, J.-C., 1979. Northeast Atlantic
664 passive continental margins: Rifting and subsidence processes. In: Talwani, M., Hay, W.
665 & Ryan, W. B. F. (eds) *Deep Drilling Results in the Atlantic Ocean: Continental Margins*
666 and Palaeoenvironments

Formatted: English (US)

Formatted: Font: (Default) Times New Roman, 12 pt

Formatted: English (US)

Formatted: French

Formatted: Font: (Default) Times New Roman, 12 pt, French

Formatted: Font: (Default) Times New Roman, 12 pt, English (US)

Formatted: English (US)

Formatted: French

667 Morley, C.K., 2009. Geometry and evolution of low-angle normal faults (LANF) within a
668 Cenozoic high-angle rift system, Thailand: Implications for sedimentology and the
669 mechanisms of LANF development. *Tectonics*, doi:10.1029/2007TC002202.

670 Pérez-Gussinyé, M., 2013. A tectonic model for hyperextension at magma-poor rifted margins:
671 an example from the West Iberia – Newfoundland conjugate margins. *Geol. Soc. London,*
672 *Spec. Publ.* 369, 403–427. <https://doi.org/10.1144/SP369.19>.

673 Pérez-Gussinyé, M., Reston, T.J., Morgan, J., 2001. Serpentization and magmatism during
674 extension at non-volcanic margins: the effect of initial lithospheric structure. *Geol. Soc.*
675 *London, Spec. Publ.* 187, 551–576. <https://doi.org/10.1144/GSL.SP.2001.187.01.27>.

676 Péron-Pinvidic, G., Manatschal, G., Minshull, T.A., Sawyer, D.S., 2007. Tectonosedimentary
677 evolution of the deep Iberia-Newfoundland margins: Evidence for a complex breakup
678 history. *Tectonics* 26, 1–19. <https://doi.org/10.1029/2006TC001970>.

679 Péron-Pinvidic, G., Manatschal, G., Osmundsen, P.T., 2013. Structural comparison of
680 archetypal Atlantic rifted margins: A review of observations and concepts. *Mar. Pet. Geol.*
681 43, 21–47. <https://doi.org/10.1016/j.marpgeo.2013.02.002>.

682 Ranero, C.R., Pérez-Gussinyé, M., 2010. Sequential faulting explains the asymmetry and
683 extension discrepancy of conjugate margins. *Nature* 468, 294–299.
684 <https://doi.org/10.1038/nature09520>.

685 Reston, T.J., 2005. Polyphase faulting during the development of the west Galicia rifted margin.
686 *Earth Planet. Sci. Lett.* 237, 561–576. <https://doi.org/10.1016/j.epsl.2005.06.019>.

687 Reston, T.J., 1996. The S reflector west of Galicia: The seismic signature of a detachment fault.
688 *Geophys. J. Int.* 127, 230–244. <https://doi.org/10.1111/j.1365-246X.1996.tb01547>.

689 Reston, T.J., Krawczyk, C.M., Klaeschen, D., 1996. The S reflector west of Galicia (Spain):
690 Evidence from prestack depth migration for detachment faulting during continental
691 breakup. *J. Geophys. Res. Solid Earth* 101, 8075–8091.
692 <https://doi.org/10.1029/95jb03466>.

693 Reston, T.J., McDermott, K.G., 2011. Successive detachment faults and mantle unroofing at
694 magma-poor rifted margins. *Geology* 39, 1071–1074. <https://doi.org/10.1130/G32428.1>.

Formatted: Font: (Default) Times New Roman, 12 pt, English (US)

Formatted: English (US)

695 Ribes, C., Manatschal, G., Ghienne, J.-F., Karner, G.D., Johnson, C.A., Figueiredo, P.H., Incerpi, [doi.org/10.1007/s00531-019-01750-6](#)

696 N. & Epin, M.-E., 2019. The syn-rift stratigraphic record across a fossil hyper-extended

697 rifted margin: the example of the northwestern Adriatic margin exposed in the Central

698 Alps. *Int. J. Earth Sciences*, [doi.org/10.1007/s00531-019-01750-6](#).

699 Roberts, A.M., Kusznir, N.J., Yielding, G., Beeley, H., 2019. Mapping the bathymetric

700 evolution of the northern North Sea: from Jurassic syn-rift archipelago through

701 Cretaceous-Tertiary post-rift subsidence. *Pet. Geosci.*

702 Roberts, A.M., Kusznir, N.J., Yielding, G., Styles, P., 1998. 2D flexural backstripping of

703 extensional basin: the need for a sideways glance. *Pet. Geosci.* 4, 327–338.

704 <https://doi.org/10.1144/petgeo.4.4.327>.

705 Schouten, H., Smith, D.K., Cann, J.R., Escartín, J., 2010. Tectonic versus magmatic extension

706 in the presence of core complexes at slow-spreading ridges from a visualization of faulted

707 seafloor topography. *Geology* 38, 615–618. [https://doi.org/10.1130/G30803.1](#).

708 Sibuet, J.-C., 1992. Formation of non-volcanic passive margins: a composite model applies to

709 the conjugate Galicia and southeastern Flemish cap margins. *Geophys. Res. Lett.* 19, 769–

710 772.

711 Smith, D.K., Escartín, J., Schouten, H., Cann, J.R., 2008. Fault rotation and core complex

712 formation: Significant processes in seafloor formation at slow-spreading mid-ocean ridges

713 (Mid-Atlantic Ridge, 13°–15°N). *Geochemistry, Geophys. Geosystems* 9.

714 <https://doi.org/10.1029/2007GC001699>.

715 Stein, R.-S., Barrientos, S.-E., 1985. Planar High-Angle Faulting in the Basin and Range:

716 Geodetic Analysis of the 1983 Borah Peak, Idaho, Earthquake. *J. Geophys. Res.* 90,

717 11,355–11,366.

718 Sutra, E., Manatschal, G., 2012. How does the continental crust thin in a hyper-extended rifted

719 margin? Insights from the iberia margin. *Geology* 40, 139–142.

720 <https://doi.org/10.1130/G32786.1>.

721 Sutra, E., Manatschal, G., Mohn, G., Untermeir, P., 2013. Quantification and restoration of

722 extensional deformation along the Western Iberia and Newfoundland rifted margins.

723 *Geochemistry, Geophys. Geosystems* 14, 2575–2597.

Formatted: Font: (Default) Times New Roman, 12 pt

Deleted:

Formatted: Default Paragraph Font, Font:

725 Toth, J., Kusznir, N.J., Flint, S.S., 1996. A flexural isostatic model of lithosphere shortening
726 and foreland basin formation: Application to the Eastern Cordillera and Subandean belt
727 of NW Argentina. *Tectonics* 15, 2–3.

728 Tugend, J., Manatschal, G., Kusznir, N.J., Masini, E., Mohn, G., Thimon, I., 2014. Formation
729 and deformation of hyper-extended rift systems: Insights from rift domain mapping in the
730 Bay of Biscay-Pyrenees. *Tectonics* 33, 1239–1276.

731 Wernicke, B., 1981. Low-angle normal faults in the Basin and Range Province: nappe tectonics
732 in an extending orogen. *Nature* 291, 645–648. <https://doi.org/10.1038/291645a0>.

733 White, R.S., 1999. The lithosphere under stress. *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.*
734 357, 901–915. <https://doi.org/10.1098/rsta.1999.0357>.

735 Whitmarsh, R.B., Manatschal, G., Minshull, T. a, 2001. Evolution of magma-poor continental
736 margins from rifting to seafloor spreading. *Nature* 413, 150–154.
737 <https://doi.org/10.1038/35093085>.

738 Whitmarsh, R.B., Pinheiro, L.M., Miles, P.R., Recq, M., Sibuet, J.-C., 1993. Thin crust at the
739 western Iberia ocean-continent transition and ophiolites. *Tectonics* 12, 5.

740 Deleted:

