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Abstract  9 

Seismic reflection interpretation at magma-poor rifted margins shows that crustal thinning 10 

within the hyper-extended domain occurs by in-sequence oceanward extensional faulting 11 

which terminates in a sub-horizontal reflector in the top-most mantle immediately beneath 12 

tilted crustal fault blocks. This sub-horizontal reflector is interpreted to be a detachment surface 13 

which develops sequentially with oceanward in-sequence crustal faulting. We investigate the 14 

geometry and evolution of active and inactive extensional faulting due to flexural isostatic 15 

rotation during magma-poor margin hyper-extension using a recursive adaptation of the rolling 16 

hinge model of Buck (1988) and compare modelling results with published seismic 17 

interpretation. In the case of progressive in-sequence faulting, we show that sub-horizontal 18 

reflectors imaged on seismic reflection data can be generated by the flexural isostatic rotation 19 

of faults with initially high-angle geometry. Our modelling supports the hypothesis of Lymer 20 

et al. (2019) that the S reflector on the Galician margin is a sub-horizontal detachment generated 21 

by the in-sequence incremental addition of the isostatically rotated soles of block bounding 22 

extensional faults. Flexural isostatic rotation produces shallowing of emergent fault angles, 23 

fault locking and the development of new high-angle short-cut fault segments within the 24 

hanging-wall. This results in the transfer and isostatic rotation of triangular pieces of 25 

hangingwall onto exhumed fault footwall, forming extensional allochthons which our 26 

modelling predicts are typically limited to a few km in lateral extent and thickness. The initial 27 

geometry of basement extensional faults is a long-standing question. Our modelling results 28 

show that a sequence of extensional listric or planar faults with otherwise identical tectonic 29 

parameters produce very similar sea-bed bathymetric relief but distinct Moho and allochthon 30 
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shapes. Our preferred interpretation of our modelling results and seismic data is that faults are 31 

initially planar in geometry but are isostatically rotated and coalesce at depth to form the 32 

seismically observed sub-horizontal detachment in the top-most mantle. In-sequence 33 

extensional faulting of hyper-extended continental crust results in a smooth bathymetric 34 

transition from thinned continental crust to exhumed mantle; in contrast out-of- sequence 35 

faulting results in a transition to exhumed mantle with bathymetric relief.  36 

 37 

1. Introduction  38 

The formation of a rifted continental margin during continental breakup requires continental 39 

crust and lithosphere to be stretched and thinned. In the case of a magma-poor rifted margins, 40 

5 progressive stages of margin formation resulting in 5 distinct margin domains have been 41 

identified: proximal, necking, hyper-extended, exhumed mantle and oceanic crust (Mohn et al. 42 

2012, Tugend et al. 2014). The hyper-extended domain of a magma-poor rifted margin forms 43 

when the crust is thinned to approximately 10 km thickness or less and the crust becomes fully 44 

brittle allowing faults to penetrate through the entire crust into the mantle (Pérez-Gussinyé et 45 

al., 2001; Manatschal, 2004). The hyper-extended domain has a crustal architecture 46 

characterised by tilted crustal fault blocks separated by oceanward dipping basement 47 

extensional faults and often underlain by a strong sub-horizontal seismic reflector. This is 48 

illustrated on figure 1(a) which shows a seismic reflection dip section (Lymer et al. 2019) 49 

within the hyper-extended domain of the distal Galicia Bank margin west of Iberia. The sub-50 

horizontal reflector, known as the S reflector, has been interpreted to be a sub-horizontal 51 

detachment within the top-most mantle (Krawczyk et al., 1996; Reston et al., 1996, Lymer et 52 

al. 2019) into which basement extensional faults sole. 53 

The geometry and evolution of extensional faults and their relationship to the S reflector within 54 

the hyper-extended domain have been a long-standing question. Interpretation of 2D seismic 55 

reflection data (Ranero and Pérez-Gussinyé, 2010) has revealed that basement extensional 56 

faulting within the hyper-extended domain develops oceanward in-sequence with new faults 57 

developing in the oceanward direction at the same time as abandonment of earlier faults.  58 

Recent high-quality 3D seismic reflection seismic on the SW of Galicia Bank west of Iberia 59 

(Lymer at al 2019) confirms this oceanward in-sequence fault development and additionally 60 

provides observations that determine the relationship between the in-sequence basement 61 
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extensional faulting and the underlying S sub-horizontal reflector. Basement extensional faults 81 

are observed to sole out into the sub-horizontal detachment within the top-most mantle imaged 82 

as the S seismic reflector. In 3D the S reflector shows corrugations that indicate the direction 83 

of slip and correlate with corrugations within the extensional block-bounding faults. Further 84 

analysis by Lymer at al. (2019) reveals that the S reflector is a composite surface made by the 85 

progressive ocean-ward in-sequence development of a sub-horizontal detachment into which 86 

the higher angle basement faults sole. Their analysis also reveals that as extension migrates 87 

oceanward in-sequence, several faults may be active simultaneously. A similar relationship has 88 

been observed between basement extensional faulting and sub-horizontal S type seismic 89 

reflectors in other rift basins using 3 D seismic reflection data. Figure 1(b) shows corrugations 90 

on the sub-horizontal reflector interpreted as a detachment surface and its relationship to 91 

basement extensional faulting above for the Porcupine Basin west of Ireland (Lymer at al. 92 

2022). Lymer et al. (2019) present a schematic summary (Figure 1(c)) of extensional basement 93 

faulting in the hyper-extended domain and its relationship to the sub-horizontal detachment 94 

within the top-most mantle, most probably controlled by serpentinization, into which they sole. 95 

Lymer et al. (2019) propose that their observations strongly support the development of the S 96 

seismic reflector by a rolling-hinge process (Buck 1988) in which a sub-horizonal detachment 97 

is created by the incremental addition of the soles of basement extensional faults. In this paper, 98 

we use a recursive adaptation of the rolling hinge model of Buck (1988) to examine how both 99 

active and inactive fault geometries are modified by flexural isostatic rotation during sequential 100 

faulting to form the sub-horizonal structure imaged on seismic reflection data.  101 

A long-standing question is whether the initial geometry of crustal extension faults is planar or 102 

listric; earthquake seismology and geodetic observations favour a planar geometry (Jackson 103 

1987; Stein & Barrientos 1985). Using the flexural isostatic rotation model, we also investigate 104 

whether an initial listric or planar fault geometry better fits seismic observations of the sub-105 

horizontal reflector and the geometry of extensional allochthons.  In addition, we examine the 106 

transition from hyper-extended continental crust to exhumed mantle and how it depends on the 107 

sequence of extensional faulting.   108 

2. Model formulation   109 

We use a numerical model (RIFTER) to replicate faulting and fault block geometry within the 110 

hyper-extended domain, and to investigate fault rotation, fault geometry interaction, the 111 
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formation of crustal allochthon blocks and the transition between hyper-extended and exhumed 157 

mantle domains. RIFTER is a kinematic forward lithosphere deformation model that allows 158 

the production of flexural isostatically compensated as well as balanced cross-sections. Within 159 

RIFTER, lithosphere is deformed by faulting in the upper crust with underlying distributed 160 

pure-shear deformation in the lower crust and mantle. A key attribute of RIFTER is that it 161 

incorporates the flexural isostatic response to extensional faulting and crustal thinning. 162 

Therefore, RIFTER can be used to model and predict the structural development of extensional 163 

tectonic settings (Figure 2). The model is kinematically controlled with fault geometry and 164 

displacement and pure-shear distribution given as model inputs as a function of time. 165 

Lithosphere flexural strength, parameterised as lithosphere effective elastic thickness, is also 166 

defined. Model outputs are geological cross-sections which are flexural isostatically 167 

compensated as well as structurally balanced (Figure 2). The kinematic formulation of RIFTER 168 

represents an advantage over dynamic modelling because the input data given to RIFTER can 169 

be constrained by observed geology. In addition, RIFTER provides for the isostatic testing of 170 

palinspastic cross-sections and can also be used to explore different kinematic scenarios. A 171 

more detailed description of the model formulation (originally called OROGENY) is given by 172 

Toth et al., (1996), Ford et al., (1999) and Jácome et al., (2003). These studies show the model 173 

formulation applied to compressional tectonics however similar physical principles apply for 174 

an extensional tectonics scenario. Gómez-Romeu et al., (2019) show how RIFTER can be used 175 

to reproduce both extensional and compressional tectonics using the Western Pyrenees as a 176 

case-study.   177 

Within RIFTER, loads resulting from extensional lithosphere deformation are assumed to be 178 

compensated by flexural isostasy. The lithosphere flexural strength must be considered to 179 

determine the isostatic rotation of faults during extension and therefore to investigate their 180 

geometric evolution. These loads are generated by faulting, crustal thinning, sedimentation, 181 

erosion and lithosphere thermal perturbation and re-equilibration (Kusznir et al., 1991). For the 182 

purposes of calculating the flexural isostatic response, the lithosphere is represented as an 183 

elastic plate of effective elastic thickness (Te) floating on a fluid substratum. The lithosphere 184 

effective elastic thickness (Te) is defined as the equivalent thickness of a perfectly elastic plate 185 

which has the same flexural strength as the lithosphere. Extension on basement faults produces 186 

flexure which, as well as generating footwall uplift and hangingwall subsidence, gives rise to 187 

substantial bending stresses (Magnavita et al., 1994) in the cooler upper lithosphere; these large 188 

bending stresses are reduced by combined brittle and plastic failure. The flexural strength of 189 
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the lithosphere, and therefore Te, are reduced by this brittle and plastic failure and this reduction 190 

becomes greater with increase in extension (Magnavita et al., 1994). Therefore, in extensional 191 

tectonic settings, a low effective elastic thickness (Te) is expected and required to reproduce 192 

the consequences of lithosphere deformation due to extensional faulting.   193 

We use a Te value of 0.5 km associated to each fault for the development of the transition 194 

between the hyper-extended domain and the initiation of exhumed mantle domain (Figure 3). 195 

This value is consistent with those determined at slow-spreading ocean ridges ranging between 196 

0.5 and 1 km (e.g. Smith et al., 2008; Schouten et al., 2010; Buck, 1988) where a similar 197 

lithosphere flexural strength to that of the distal rifted margins is expected.  198 

The initial crustal geometry for our modelling of extensional faulting within the hyperextended 199 

domain leading to mantle exhumation and allochthon formation is when the continental crust 200 

has been thinned down to 10 km (Tugend et al., 2014) corresponding to the point when faults 201 

within the seismogenic layer couple into the mantle (Pérez-Gussinyé et al., 2001). Prior to that, 202 

during the necking zone stage of margin formation (Mohn et al., 2012), faults are expected to 203 

be decoupled from the mantle by ductile deformation within the lower continental crust. The 204 

width of the necking zone with crust 10 km thick at the start of hyperextension is set to 100 km 205 

although this width value is not critical to this study. The starting bathymetry is set to 2 km 206 

corresponding to the isostatic equilibrium of continental crust thinned to 10 km with an highly 207 

elevated lithosphere geotherm (Figure 3b). For simplicity we only model faulting during hyper-208 

extension on one distal rifted margin and do not include faulting within its distal conjugate. 209 

This simplified initial model template allows us to focus on extensional faulting during the  210 

hyper-extension stage of magma-poor rifted margin formation avoiding the complexity 211 

occurring during the earlier rifting and necking phases. Figure 3c shows the resultant model of 212 

a hyper-extended distal rifted margin.  The detailed numerical model stages to produce this are 213 

shown in Figures 3d-e and described below for the formation of the hyperextended domain, the 214 

initiation of the exhumed mantle domain and the formation of extensional allochthons.   215 

3. Model application to sequential faulting within the hyper-extended 216 

margin domain    217 

The interpretation of sub-horizontal seismic reflectors below fault blocks within the 218 

hyperextended domain has been intensively debated (e.g. Reston et al., 1996). Interpretations 219 

suggested for the S-type reflectors on the Iberian margin (de Charpal et al., 1978; Krawczyk et 220 
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al., 1996) are  many and are reviewed later in the discussion. Despite this wide range of possible 227 

interpretations, after the work by Reston et al. (1996) and Krawczyk et al. (1996), it has been 228 

generally accepted that the  S-type reflectors are detachment faults (Manatschal et al., 2001). 229 

Ranero & Pérez-Gussinyé (2010) show that extensional faulting within the hyper-extended 230 

domain develops oceanward insequence with initially steeply dipping faults. As in-sequence 231 

faulting propagates oceanward, active fault rotation modifies the deeper geometry of previously 232 

active faults leading to their deeper segments being passively rotated to a lower angle producing 233 

an apparent listric fault geometry or even a sub-horizontal appearance. Lymer et al., (2019) 234 

confirmed observationally that extensional faulting develops oceanward in-sequence, and that 235 

extensional faulting soles out into the sub-horizontal detachment imaged as the  S-type-236 

reflectors.      237 

Figure 3d shows the modelling results of progressive deformation within the hyper-extended 238 

domain resulting from a set of in-sequence extensional faults. The initial pre-movement dip of 239 

each extensional fault at the surface is 60o. This value is consistent with Andersonian 240 

extensional fault mechanics (Anderson 1905) and also the value of 55o – 60o determined for 241 

initial surface fault dip by Lymer et al. (2019) from their analysis of 3D seismic reflection data 242 

on the SW Galicia Bank margin. Note that our RIFTER modelling results shown in this paper, 243 

using high initial faults angles, do not apply to low angle extensionally reactivated thrusts 244 

(Morley, 2009; Deng et al. 2022). 245 

In the model results shown in Figure 3d-e the faults detach at 15 km depth corresponding to an 246 

assumed brittle-plastic transition within the topmost mantle (results obtained from an initial 247 

planar fault geometry are examined later). Flexural isostatic response to faulting leads to an 248 

uplift of the footwall block, subsidence of the hanging-wall block and a rotation of the active 249 

fault plane reducing its dip (Figure 3d1). The reduction of fault dip due to flexural isostatic 250 

rotation is expected to lead to the locking of that fault and the initiation of new faults with 251 

steeper dip. This is shown in Figure 3d2 and subsequent Figures 3d3-6.   252 

Extension on each new fault not only reduces its own fault dip by flexural isostatic rotation but 253 

also further reduces the fault dip of earlier active faults within its footwall. The cumulative 254 

result of this process is that faults originally steeply dipping when active become sub-horizontal 255 

in their lower parts as illustrated in Figures 3d5 for fault number 1. In this case the sub-256 

horizontal inactive fault is almost coincident with the Moho beneath the hyper-extended 257 

continental crustal fault-blocks (Figure 3d5). If fault extension is sufficiently large and the 258 
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hyper-extended continental crust is sufficiently thin, footwall exhumation leads to mantle 265 

exhumation (Figure 3d6) (Manatschal et al., 2001).  266 

Table 1 summarizes the fault parameters and sequential fault displacement required to 267 

reproduce the structural architecture of the hyper-extended domain shown in Figure 3d.  268 

4. Model application to mantle exhumation and extensional allochthon 269 

formation   270 

For even greater extension on the exhumation fault, the exhumed mantle footwall becomes sub-271 

horizontal at the sea-bed due to flexural isostatic rotation as predicted by the rolling-hinge 272 

model of Buck (1988). Extensional allochthon blocks sitting above sub-horizontal exhumed 273 

footwall are observed at magma-poor margins by seismic reflection imaging and field studies 274 

(Epin and Manatschal and references therein, 2018).   275 

We use RIFTER to investigate the formation of extensional allochthon blocks by the 276 

rollinghinge model as suggested by Manatschal et al., (2001) and shown in Figure 3e. 277 

Allochthon blocks are produced by new steeply dipping extensional faults cutting through the 278 

hangingwall block of a master fault (fault 6 in our case in Figure 3e1) and pulling off triangular 279 

pieces of continental crust from the hanging-wall (i.e. the rolling hinge model of Buck, 1988). 280 

These new faults, created when the emergence angle of the master fault becomes too low (~30° 281 

dip), are short-cuts of the master fault and connect with it at depth. Depending on what depth 282 

they initiate at and their break-away position, the size of the crustal allochthon block generated 283 

will vary (Figure 3e). The intersection depth between the master fault and the new extensional 284 

faults is different in each model stage shown in Figure 3e but it ranges between 5 and 10 km 285 

depth consistent with deMartin et al., (2007). Another parameter that differs in each model 286 

stage is the distance between two consecutive allochthon blocks. This depends on how much 287 

the new extensional fault moved before it locked. A small fault offset will not generate exhumed 288 

mantle between two allochthon blocks as shown in Figures 3e3-4 whereas a large fault offset 289 

will generate exhumed mantle and a sub-horizontal sea-bed geometry between two allochthon 290 

blocks (Figures 3e4-5). Note that each allochthon block overlies sub-horizontal exhumed 291 

footwall generated by flexural isostatic rotation.   292 

The RIFTER model results shown in Figure 3 do not include sediment deposition during hyper-293 

extension, mantle exhumation and allochthon formation. In Figure 4, incremental sediment 294 

deposition and its isostatic loading is included in the model; the tectonics remains the same as 295 
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in Figure 3. Because of the diachronous tectonics of oceanward in-sequence extensional 296 

faulting during the formation of the distal magma-poor margin, sediments of the same age may 297 

be syn-tectonic if they are deposited where active faulting is occurring, or they may be pre- or 298 

post-tectonic. The important distinction between syn- and post-tectonic sedimentation due to 299 

diachronous tectonics during rifted margin formation is described in greater detail in Ribes et 300 

al. (2019) and Manatschal et al (2022). 301 

Table 2 summarizes the initial fault parameters and the chronological fault displacement 302 

required to reproduce the structural architecture of the exhumed mantle domain shown in 303 

Figure 3e.   304 

5. Sensitivity to listric or planar fault geometry?   305 

Lithosphere deformation is achieved by localised deformation on faults and shear zones within 306 

the upper lithosphere with distributed deformation below at depth. A long-standing question is 307 

how deformation by faulting connects to deep distributed lithosphere deformation. This 308 

question also has implications for fault geometry. Our numerical experiments described above 309 

in sections 3 and 4 assume a listric fault geometry in which faults sole out into a sub-horizontal 310 

shear zone at 15 km depth below which deformation becomes distributed. In contrast 311 

earthquake seismology and geodetic analysis (Stein and Barrientos, 1985; Jackson, 1987) 312 

suggests that large extensional earthquakes involve faults whose geometry is planar.  313 

We explore the differences between using listric and planar fault in modelling the formation of 314 

the hyper-extended and exhumed mantle domains. The results are compared in Figure 5. The 315 

initial faults geometries for listric and planar faults are shown in Figures 5a and d respectively. 316 

Both have an initial surface dip of 60o. The initial listric fault geometry soles out at 15 km while 317 

the initial planar fault geometry continues downwards with a dip of 60o. We assume that the 318 

deformation transition from faulting to distributed deformation for the planar fault occurs 319 

within the mantle below the crust-mantle density interface and so does not affect the isostatic 320 

response to faulting.   321 

Listric and planar fault geometry model predictions are shown in Figures 4c and f and use the 322 

same fault locations, fault extension and sequence. Comparison shows that listric and planar 323 

fault geometries produces very similar sea-bed structural topography, and which cannot be used 324 

to distinguish whether fault geometry is listric or planar. In contrast, the listric and planar fault 325 

models produce different sub-surface structure. The Moho geometries predicted by the listric 326 
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and planar fault geometry models are also different, however whether these different predicted 334 

Moho geometries can be distinguished using seismic reflection data is uncertain.  335 

In section 4 we used listric fault geometries to model allochthon formation. We now examine 336 

allochthon formation using planar faults and compare these predictions with those using listric 337 

faults (Figure 6). For both listric and planar fault geometries, Figure 6 shows the formation of 338 

allochthons for different separations of the hanging-wall short-cut fault from the primary 339 

extensional fault which has exhumed mantle footwall. Separations of 1 km (Figures 6a-b and 340 

g-h), 2 km (Figures 6c-d and i-j) and 5 km (Figures 6 e-f and k-l) are used. For the 1 km 341 

separation, a small allochthon is produced with similar triangular geometry for both listric 342 

(Figure 6b) and planar (Figure 6h) fault geometries. Increasing the separation to 2 km increases 343 

the allochthon size; however while the listric fault (Figure 6d) produces a triangular allochthon,  344 

the planar fault (Figure 6j) geometry produces a 4-sided body. For a 5 km separation, the 345 

allochthon size increases further and both listric (Figure 6f) and planar (Figure 6l) fault 346 

geometries produce a 4- sided body. For the larger separations of the short-cut fault from the 347 

primary fault, the detached fragment transferred to the exhumed mantle consists of continental 348 

basement with some autochthonous mantle beneath it (Figure 6j-l). Whether extensional 349 

allochthons can provide insight into answering the question are extensional faults listric or 350 

planar poses an interesting challenge.   351 

6. The transition from hyper-extended crust to exhumed mantle and its 352 

sensitivity to in-sequence vs out-of-sequence faulting   353 

Stretching and thinning of the continental crust can eventually lead to mantle exhumation as 354 

observed by drilling on the distal Iberian margin (Figures 7a-b). Seismic reflection data (Figure 355 

7c) provides insight into how mantle exhumation was achieved by extensional faulting. Based 356 

on drill and seismic reflection data, Manatschal et al., (2001, 2004) proposed that an in-357 

sequence ocean-ward propagating set of extensional faulting progressively thins the continental 358 

crust in the hyper-extended domain until eventually a large extensional fault exhumes mantle 359 

in its footwall. Our modelling of mantle exhumation using a set of in-sequence extensional 360 

faults as proposed by Manatschal et al., (2001, 2004) is shown in Figure 3 and 8a and produces 361 

a smooth bathymetric transition from continental crust to exhumed mantle.  362 

While the in-sequence fault extension process provides a very good generalised model for the 363 

formation of the hyper-extended margin domain, mantle exhumation and their transition, it is 364 
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unlikely that all faults propagate in-sequence oceanward. Some out-of-sequence faulting is to 385 

be expected when the 3D nature and along strike complexity of rifting and breakup is 386 

considered and can be seen seismically in Figure 7e. In Figure 8b we show the result of 387 

introducing an out-of-sequence fault, with the same dip sense as other faults, into the 388 

hyperextension and mantle exhumation model. All other faults have similar locations and 389 

extensions to those used to produce Figure 8a. The effect of introducing an out-of-sequence 390 

fault to exhume mantle is to produce a transition from thinned continental crust to mantle which 391 

is no longer smooth at the seabed but shows bathymetric relief. An out-of-sequence fault might 392 

also have an opposite dip-sense as shown in Figure 8c. This fault does not exhume mantle but 393 

does generate a horst containing exhumed mantle capped by thinned continental crust as 394 

observed in Figure 7e.  395 

7. Discussion   396 

To better understand extensional fault geometry and its evolution during hyper-extension at 397 

magma-poor rifted margins, several important questions need to be answered: (i) are faults 398 

active at low angle, (ii) what is the relationship between the sub-horizontal reflector and block 399 

bounding faults , (iii) do faults have a listric or planar geometry and (iv) is faulting always in-400 

sequence.    401 

In section 4 (Figure 3) we show for a listric fault geometry that flexural isostatic rotation 402 

progressively reduces the fault dip of inactive faults within the footwall of oceanward in-403 

sequence faulting. From this we can deduce that the present-day sub-horizontal orientation of 404 

a fault at depth does not indicate that the fault was active at a sub-horizontal orientation. This 405 

conclusion is consistent with the modelling results of Ranero & Pérez-Gussinyé, (2010) and 406 

the 3D seismic observations of Lymer et al. (2019).  407 

The nature of the seismically Imaged sub-horizontal reflectors beneath rotated fault blocks in 408 

the hyper-extended domain has been extensively debated (e.g. Reston et al. 1996; Lymer et al. 409 

2019 and references therein). Proposed origins of the sub-horizontal reflector have included a 410 

lithosphere scale extensional detachment fault (Wernicke et al., 1981), the top of a mafic 411 

underplate (Horsefield, 1992), a thin igneous intrusion (Reston, 1996), a serpentinization front 412 

(Boillot et al., 1987), and the brittle-plastic transition (de Charpal et al., 1978; Sibuet, 1992). 413 

Detailed seismology by Reston et al., (1996) was able to eliminate an igneous origin, leaving a 414 
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sub-horizontal detachment  in the top-most mantle as the most likely interpretation, probably 426 

assisted by mantle serpentinization (Pérez Gussinyé et al., (2001).  427 

Seismic reflection interpretation shows that extensional faults thinning the continental crust 428 

within the hyper-extended domain sole out into the sub-horizontal reflector (Reston et al. 1996; 429 

Manatschal et al., 2001).  If extensional faults within the hyper-extended zone penetrate into 430 

the mantle, as suggested by Pérez Gussinyé et al., (2001), then the interpretation of seismically 431 

observed sub-horizontal reflectors being a sub-horizontal detachment  requires it to be within 432 

the mantle rather than at the base of the thinned continental crust. Analysis of the recently 433 

acquired 3D seismic reflection data in the hyper-extended southern Galicia margin by Lymer 434 

et al. (2019) shows that oceanward in-sequence extensional crustal faulting detaches into a sub-435 

horizontal detachment imaged as the sub-horizontal reflector (confirming the interpretations of 436 

Manatschal et al.; 2001 and Ranero & Pérez-Gussinyé: 2010). Their 3D analysis of the 437 

correlation between corrugations within the S reflector surface and those within block 438 

bounding faults demonstrates that the sub-horizontal detachment imaged as the S reflector 439 

develops synchronously with the oceanward in-sequence crustal faulting.  440 

Our listric fault model (Figure 4a-c) assumes that faults sole out into a horizontal detachment 441 

within the top-most mantle  consistent with the seismically observed sub-horizontal S reflector 442 

being interpreted as a horizontal detachment into which the block bounding extensional faults 443 

above sole into. Our model is also consistent with the interpretation of Lymer et al., (2019) that 444 

the sub-horizontal reflector is the relict of an oceanward propagating detachment at the base of 445 

the in-sequence crustal faulting and is not simultaneously active from distal to proximal. Our 446 

modelling supports the hypothesis of Lymer et al. (2019) that the S reflector on the Galicia 447 

margin is a sub-horizontal detachment generated by the in-sequence incremental addition of 448 

the isosatically rotated soles of block bounding extensional faults.  449 

In section 5 (Figure 5) we compare the response of listric and planar fault geometries for 450 

oceanward in-sequence hyper-extension. Significant flexural isostatic rotation leading to 451 

greatly reduced dip of planar faults at depth is also seen, especially for planar faults in the 452 

footwall of later faults with large extension. However, Figure 5 shows a clear difference 453 

between planar (Figures 5d-f) and listric (Figures 5a-c) fault geometries at depth; planar fault 454 

geometries do not result in a continuous sub-horizontal structure at depth. In contrast because 455 

all listric faults sole out at the same brittle-plastic transition depth, all listric faults form a single 456 
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continuous sub-horizontal structure at depth resembling that observed on seismic reflection 481 

data in the hyper-extended domain.  482 

Earthquake seismology, however, favours a planar fault geometry for extension within the 483 

seismogenic layer (Stein and Barrientos, 1985; Jackson, 1987). How might extensional 484 

deformation on a planar fault in the brittle seismogenic layer terminate at depth? In the case of 485 

rifted margin hyper-extension,  faults penetrate the crust and  permit water to penetrate down 486 

into the top-most mantle (e.g. Pérez-Gussinyé et al., 2001) enabling mantle serpentinization to 487 

occur. . Serpentinized top-most  mantle at the base of extensional faults would produce  a weak 488 

layer enabling the formation of a horizontal detachment. Planar faulting in the seismogenic 489 

layer, isostatically rotated to low angles, would  then sole out into this horizontal detachment 490 

in the top-most serpentinised mantle immediately beneath thinned continental crust. The 491 

resulting fault geometry would not be dissimilar to that of the listric fault used in the modelling 492 

of sections 3 and 4 but with a more planar geometry in the upper brittle seismogenic layer as 493 

observed on the 3D seismic of Lymer et al. (2019).  494 

The rolling hinge model of Buck (1988) provides an explanation for the formation of triangular 495 

allochthons of continental crust emplaced on exhumed mantle (Buck 1988; Manatchal et al. 496 

2001; Epin & Manatschal, 2019). In Figures 3 and 6 we show slivers of hanging wall 497 

continental crust transferred onto exhumed mantle footwall by short-cut faults. Flexural 498 

isostatic rotation produces the observed geometry of triangular allochthons emplaced on sub-499 

horizontal exhumed mantle. While listric and planar fault geometries produce nearly identical 500 

small allochthons, their difference becomes pronounced for large allochthons (Figure 6). Listric 501 

faults always produce a triangular allochthon fragment of hanging-wall continental crust while 502 

planar faults produce a rectangular shape for large allochthons (semantically these large 503 

rectangular fragments produced by planar faults should perhaps be called autochthons). 504 

Whether reflection seismology observations of large allochthon shapes can be used to 505 

distinguish listric or planar fault geometry during hyper-extension remains to be investigated.  506 

Oceanward in-sequence faulting shown in Figure 3 and as proposed by Manatschal et al. (2001) 507 

and Manatschal (2004) provides a good generalised model for the formation of hyper-extended 508 

magma-poor margins. However, it should be recognised that out-of-sequence faulting does 509 

occur during margin formation and is the inevitable consequence of the 3D nature of 510 

continental breakup at the regional scale where upper-plate/lower-plate polarity varies along 511 

margin strike. Lymer et al., (2019) also show that, at the more local scale, 3D fault system 512 
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overlap must occur and would also break a simple oceanward in-sequence fault pattern. The 529 

transition from hyper-extended continental crust to exhumed mantle is particularly sensitive to 530 

the sequence of faulting; oceanward in-sequence faulting produces a smooth bathymetric 531 

transition onto exhumed mantle while out of sequence produces a transition with bathymetric 532 

relief as shown in Figure 8.  533 

8. Summary  534 

a) Flexural isostatic rotation of extensional faulting (the rolling hinge model) applied to 535 

the formation of the hyper-extended domain of magma-poor rifted margins predicts 536 

fault geometry evolution consistent with the published interpretations of 3D seismic 537 

reflection data.  538 

b) The same modelling shows that seismically observed low-angle extensional faults were 539 

not necessarily active at low angle and have been flexurally rotated to their present low 540 

angle geometry.  541 

c) Modelling supports the hypothesis of Lymer et al. (2019) that the S reflector on the 542 

Galicia margin is a sub-horizontal detachment generated by the in-sequence 543 

incremental addition of the isostatically rotated soles of block bounding extensional 544 

faults.  545 

d) Extensional faults may initially have a planar geometry in the upper seismogenic layer 546 

but this initial planar geometry is modified by flexural isostatic rotation.  547 

e) The predicted geometry of extensional allochthons emplaced on exhumed mantle is 548 

sensitive to the initial geometry of block bounding faults. This may provide a means of 549 

distinguishing listric and planar faults using seismic reflection data. 550 

 551 

f) Sequential in-sequence oceanward extensional faulting is the dominant process during 552 

the extensional thinning of the hyper-extended domain at magma-poor rifted margins. 553 

Some out-of-sequence faulting does occur and generates a recognisably distinct transition 554 

onto exhumed mantle.  555 
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