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Abstract. Estuarine salt intrusion causes problems with freshwater availability in many deltas. Water managers require timely

and accurate forecasts to be able to mitigate and adapt to salt intrusion. Data-driven models derived with machine learning

are ideally suited for this, as they can mimic complex non-linear systems and are computationally efficient. We set up a Long

Short Term Memory (LSTM) model to forecast salt intrusion in the Rhine-Meuse delta. It forecasts chloride concentrations

up to 7 days ahead at Krimpen aan den IJssel, an important location for freshwater provision. The model forecasts baseline5

concentrations and peak timing well, but peak height is underestimated, a problem that becomes worse with increasing lead

time. Between lead times of 1 and 7 days, forecast precision declines from 0.9 to 0.7 and forecast recall declines from 0.7 to

0.5 on average. Given these results, we aim to extend the model to other locations in the delta. We expect that a similar setup

can work in other deltas, especially those with a similar or simpler channel network.

1 Introduction10

Salt intrusion occurs in estuaries around the world (Apel et al., 2020; Augustijn et al., 2011; Qiu and Wan, 2013; Rohmer and

Brisset, 2017; Shaha et al., 2013; Xue et al., 2009). In an estuary, high-density seawater protrudes underneath fresh water from

the river. Daily tidal motions, wind-driven dispersion and variations in coastal swell and river discharge change the position and

shape of the salt-fresh interface (Savenije, 2012). During periods of prolonged drought and storm, salt water intrudes further

inland than under ordinary conditions. This can hamper freshwater availability, especially in densely populated deltas (Lerczak15

et al., 2009; Van den Brink et al., 2019; Xue et al., 2009).

Rising sea levels due to climate change are expected to increase salt intrusion and put a strain on fresh water supply,

especially in areas that will experience drier summers and heavier storms (Van den Brink et al., 2019; Huismans et al., 2019;

Beijk et al., 2017). While storms only last hours, they can cause elevated salt concentrations for weeks (Huismans et al., 2018).

As a recent example, in the summer of 2022, a prolonged drought hit Europe. As a result, the discharge of the river Rhine20

was severely reduced for months and salt concentrations in the tidally influenced part of the river (near Lekhaven, see Fig. 1)
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exceeded 8000 mg l-1 (Rijkswaterstaat, 2022). The mean tidal maximum salt concentration over 2022 was above 3500 mg l-1,

which occurs on average once in 24 years based on data of the 20th century (Beersma et al., 2005).

In some intensively managed delta areas, surface water is transferred from the larger tidally influenced rivers to smaller

waterways through inlets, so it can be used to ensure suitable groundwater levels, flow velocity and water quality for the local25

land use (Brauer, 2014). This gives water managers tools to limit the consequences of salt intrusion for fresh water availability

(Prinsen and Becker, 2011). Inlets from the larger waterways to smaller channels can be closed to prevent the salt water from

reaching agricultural areas. Alternatively, fresh water can be diverted from areas with a surplus to areas with salt intrusion.

There, it can either be used to supplement the freshwater intake, or to push the fresh-salt interface back seawards (Augustijn

et al., 2011). These decisions are usually made based on observations and operational rules (Pezij et al., 2019).30

While operational rules are suitable for mitigation of freshwater availability problems on a short timescale, some of the

larger-scale measures take several days to implement. To use these mitigation tools in a timely fashion, it would be useful

to have a multi-day forecast of salt concentrations at some critical locations (Hauswirth et al., 2021). This would give wa-

ter managers more time to implement measures. A physical or conceptual model can be used for that, but one-dimensional

hydraulic models struggle to represent the three-dimensional nature of the salt intrusion processes, while three-dimensional35

models are too computationally demanding to run on operational timescales (Warmink et al., 2011; Buschman, 2018; Huis-

mans et al., 2016). Generalized conceptual models can capture some of the estuarine dynamics and are especially valuable

when data availability is limited, but are difficult to apply in multi-branched estuaries (Savenije, 1986; Gisen et al., 2015; Sun

et al., 2020).

A data-driven model, derived using machine learning, might be used as an alternative approach to this forecasting problem.40

Once trained, data-driven models have been reported to be successful in capturing non-linear systems (Kratzert et al., 2018), and

have a runtime of milliseconds to seconds per timestep once trained (Haasnoot et al., 2014; Hauswirth et al., 2021; Zounemat-

Kermani et al., 2020). Machine learning approaches have successfully been applied to describe hydrological extremes (e.g.

Hauswirth et al., 2021), shoreline evolution (e.g. Calkoen et al., 2021) and rainfall-runoff processes (e.g. Kratzert et al., 2018).

There have also been some successes in salt intrusion forecasting (Hu et al., 2019; Rohmer and Brisset, 2017; Zhou et al.,45

2020), but the complexity of the multi-branched and strongly managed Rhine-Meuse delta has proven difficult to model with

this approach, at least on hourly timescales (Korving and Visser, 2021).

As a starting point for such a data-driven model, we create a model to forecast salt concentrations at one location on a daily

basis. This model should be able to predict the occurrence of salt intrusion peaks several days to a week in advance. From

there, further improvements can be made by extending the model to other locations and making it suitable for higher temporal50

resolutions. If we are able to create useful forecasts for this delta, a similar approach could be applied to other complex deltas.

Furthermore, if this approach is successful for a multi-branched and intensively managed estuary, we expect it to work for a

single-channel, more natural estuary as well.

In this paper we show a method to forecast salt intrusion in the surface waters of the Rhine-Meuse delta using a machine

learning approach. We will (1) identify a location for which a forecast would be especially helpful, (2) select the observations55

required to make the prediction and (3) design a suitable model architecture. We will then (4) optimize the model using suitable
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criteria and (5) test the model on a separate dataset. Finally, we will (6) assess the importance of each input observation for the

predicted output and relate this to estuarine processes.

2 Study area

The Rhine-Meuse delta is located in the Netherlands and comprises roughly half the country (Fig. 1). Near the cities of Arnhem60

and Nijmegen, the river Rhine splits into three branches: the IJssel, Waal and Lek/Nederrijn. While the IJssel flows north

and discharges into the IJsselmeer, the Lek and Waal flow west and flow into the Hollandsch Diep, Haringvliet and Nieuwe

Waterweg, around the cities of Dordrecht and Rotterdam. The Meuse enters the country near Maastricht and flows parallel

to the Waal before discharging into the Hollandsch Diep. In the eastern part of the country, weirs are often used to regulate

water levels and discharges. This includes some large weirs in the Nederrijn/Lek, at Driel (near Arnhem) and Hagestein. In65

the lower-lying, flatter western part of the country, the larger waterways cannot be managed in such a way. Water levels in

the smaller channels and ditches between fields are intensively managed with weirs and are supplied with river water through

inlets.

The Nieuwe Waterweg forms an open connection of the river system to the North Sea. While many other estuaries in the

delta have been (partially) closed off, this waterway was kept open to ensure easy access for ships to the port of Rotterdam. It70

connects to the lower reaches of the Rhine-Meuse system, called the Nieuwe Maas and Oude Maas, in which the tide causes

daily variations in chloride concentrations. Occasionally, the salt water intrudes further upstream and reaches the Hollandsche

IJssel, a small branch within the delta that is important for freshwater provision to agricultural channels and drinking water

companies in the west of the country (Prinsen and Becker, 2011; Van den Brink et al., 2019). In order to keep this branch fresh,

water managers can divert water from the river Waal or from the IJsselmeer towards this area (Haasnoot et al., 2014; Prinsen75

and Becker, 2011). However, to do this effectively, they require predictions of salt concentrations several days ahead. A timely

forecast would provide them with support for decision-making in a complex area with many stakeholders.

3 Methods

We designed a machine learning model to forecast chloride concentrations at Krimpen aan den IJssel. We retrieved observations

of possibly relevant variables (Sect. 3.1). After an exploratory timeseries analysis (Sect. 3.2), we selected the most relevant80

variables, using results of the timeseries analysis and a feature selection algorithm (Sect. 3.3). We set up a machine learning

model to predict concentrations one day ahead (Sect. 3.4), and optimized it using suitable performance metrics (Sect. 3.5). We

then ran it to predict concentrations up to seven days ahead and used a separate dataset for testing (Sect. 3.6) . Finally, we

performed a sensitivity analysis (Sect. 3.7).
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Figure 1. Map of the study area, indicating measurement locations that were considered for this study. Only measurement locations that were

used in the model are labeled. Map created with QGIS (2022) using data from PDOK (2022), Rijkswaterstaat (2022) and KNMI (2022).
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3.1 Data collection85

We obtained data for this research from Rijkswaterstaat (2022) and KNMI (2022). These data are published daily, which makes

them suitable for operational forecasting. We selected the following variables from the years 2011–2020: discharge (m3 s-1),

water level (cm above mean sea level), wind speed (m s-1) and chloride concentration (mg l-1). Chloride is measured at one, two

or three depths, depending on the location. We used discharge observations from Lobith and Tiel, for which stage-discharge

relationships are avaialable, and Hagestein, where a weir is present. For the western part of the study area, we obtained water90

levels in the large waterways to approximate discharges and pressure differences between branches. For the wind speed, we

used measurements at Rotterdam, in the middle of our study area. The daily mean wind speed was decomposed into an east-

west and a north-south component, using the wind direction. We used the years 2011–2017 to train the model and the years

2018–2020 to test its performance.

3.2 Timeseries exploration95

We explored a large number of timeseries. This section summarizes the main findings of that exploration, with some examples

shown in Fig. 2.

Salt intrusion events are quite rare. In the total 10-year period considered, there have been 127 days where chloride concen-

trations at Krimpen aan den IJssel exceeded 300 mg l-1, which is twice the drinking water limit. Of these 127 days, 75 occurred

in 2018.100

Chloride peaks propagate upstream. Steady rises in chloride concentration at downstream locations sometimes precede

upstream rising concentrations (e.g. Fig. 2(a,b), Sep 2017). However, downstream rising concentrations most often coincide

with only minor concentration increases upstream (e.g. Fig. 2(a,b), May 2017, Jun 2017). Instead, the biggest peaks show

very pronounced spikes that are much steeper than the steady background concentration increase. These spikes coincide with

increased water levels during storms (e.g. Fig. 2(c, e), Jan 2017).105

The water levels in the Nieuwe Waterweg and Nieuwe Maas branches are strongly linearly correlated. Water levels at

Krimpen aan den IJssel are correlated with those at Hoek van Holland with a Pearson coefficient of 0.72. For points between

these two locations, correlations are between 0.76 and 1. Water levels at Dordrecht, which is located on the Oude Maas, deviate

more from the other locations. A more complete overview of water level correlations can be found in appendix A.

Some of the larger peaks in chloride concentration coincided with high water levels at Hoek van Holland (e.g. Fig. 2(a,c),110

Jan 2017). This could be caused by a storm surge, possibly coupled to a spring tide. However, there are also many examples

where water levels at Hoek van Holland and wind speeds at Rotterdam are high, but no increase in chloride is observed (e.g.

Fig. 2(a,c,e), Nov 2017, Dec 2017).

Salt intrusion events are often coupled to low river discharges (Fig. 2(a,d), Jan 2017), but this is not always the case.
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(a) Daily mean chloride concentration at Krimpen aan den IJssel
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(b) Daily mean chloride concentration at Lekhaven
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(c) Daily mean water level at Hoek van Holland
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(d) Discharge at Lobith
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(e) Daily mean wind speed at Rotterdam

Figure 2. Example timeseries for the year 2017.
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Table 1. Overview of features used for chloride prediction at Krimpen aan den IJssel. A checkmark (✓) indicates whether a feature has been

retained after Boruta analysis.

Variable Location Statistic Feature Name t−7...t−5 t−4...t0 t−4...t+1

Chloride (mg l-1) Krimpen aan den IJssel -4.0 m min ClKr400Min ✓
mean ClKr400Mean ✓
max ClKr400Max ✓

Krimpen aan den IJssel -5.5 m min ClKr550Min ✓
mean ClKr550Mean ✓
max ClKr550Max ✓

Lekhaven -2.5 m min ClLkh250Min ✓
mean ClLkh250Mean ✓
max ClLkh250Max ✓

Lekhaven -5.0 m min ClLkh500Min

mean ClLkh500Mean

max ClLkh500Max

Lekhaven -7.0 m min ClLkh700Min ✓
mean ClLkh700Mean ✓
max ClLkh700Max ✓

Water level (cm a.m.s.l.) Krimpen aan den IJssel min HKrMin ✓
mean HKrMean ✓
max HKrMax ✓

Hoek van Holland min HHvhMin

mean HHvhMean ✓
max HHvhMax

Dordrecht min HDrdMin

mean HDrdMean ✓
max HDrdMax

Vlaardingen min HVlaMin

mean HVlaMean ✓
max HVlaMax

Discharge (m3 s-1) Lobith mean QLobMean ✓
Hagestein mean QHagMean ✓
Tiel mean QTielMean ✓

Wind speed (east-west) (m s-1) Rotterdam mean WindEW ✓
Wind speed (north-south) (m s-1) Rotterdam mean WindNS ✓
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3.3 Feature selection115

We selected a subset of the available features to set up the machine learning model. Reducing the number of features in a

machine learning model helps to speed up its training and prevent overfitting. A first selection of features was made based on

the observations in Sect. 3.2. A second selection was made with a feature selection algorithm. The full set of features and the

subset used for model building are listed in Table 1.

Since a number of cases showed increasing trends in chloride concentration over a week-long period, we used chloride ob-120

servations up to 7 days back to predict concentrations on a given day. For Krimpen aan den IJssel, this concerns measurements

at the location itself and the downstream location of Lekhaven. All measurements depths (two for Krimpen aan den IJssel;

three for Lekhaven) were retained in this part of the selection procedure. The same 7-day window was used for the other vari-

ables. The strong correlation between water levels at different locations suggests that it is safe to exclude most stations without

losing unique information. Therefore, we used water levels from four locations: Krimpen aan den IJssel, the two downstream125

locations Hoek van Holland and Vlaardingen, and Dordrecht, to account for pressure differences between the northern and

southern parts of the estuary which drive flow between the branches. Discharges from three upstream locations are included:

Lobith, where the Rhine enters the Netherlands and for which forecasts are derived; Tiel, representative for the Waal branch;

Hagestein, representative for the Lek branch. We used observations of wind speed at a single station, Rotterdam, which is

located in the middle of our study area. For chloride and water level, daily minima, means and maxima are included, to account130

for the rapid subdaily fluctuation. For discharge, we only use the daily mean, as subdaily fluctuations are small.

We performed a second feature selection using the Boruta algorithm (Kursa and Rudnicki, 2010; Homola et al., 2022). With

this algorithm, a linear regression model is fitted using decision trees. The fitting process consists of several iterations. At each

iteration some of the features are replaced by shadow features, which are randomized copies of the original features, effectively

replacing information for that feature by noise. The algorithm then tests if removing this information made the model perform135

any worse. A feature is supposed to be more important when the prediction quality deteriorates more when that feature is

replaced. This way, the features are ranked by relevance. We did this three times, with daily minimum, mean and maximum

chloride concentration at Krimpen aan den IJssel at a depth of -4.00 m a.m.s.l. as target variables. Based on the Boruta output,

we decided to retain only timesteps ranging from t−4 to t+1. The timestep t+1 is only used for discharge, water level and wind,

mimics a situation where these variables have already been forecast using another model which does not include salt intrusion140

forecasting. In addition, some features were omitted, such as chloride at Lekhaven at -5.00 m a.m.s.l. Finally, we only used

mean water levels for all locations except Krimpen aan den IJssel. The final selection of variables is given in Table 1.

3.4 Model architecture

We set up a Long Short Term Memory model (LSTM) to predict future chloride concentrations using the variables in Table 1.

An LSTM is a specific type of neural network model designed by Hochreiter and Schmidhuber (1997). While in an ordinary145

neural network model variables are being fed into nodes and given weights, an LSTM cell takes a sequence as input and can

learn not only the weight to be given to such a sequence, but also the timesteps which are useful to remember for the prediction
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Salt data
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Quantity data
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Figure 3. Schematic overview of the machine learning model.

of a new value. This makes LSTMs especially suitable for applications with a sequential nature, such as language processing

and timeseries analysis.

We set up the model using the tensorflow and keras packages in python (for documentation, see (for documentation, see150

Abadi et al., 2015; Chollet, 2015). We used scikit-learn (Pedregosa et al., 2011) for preprocessing. Measurements of chloride

concentration for t−4 up to t0 are used as input, and measurements of discharge, water level and wind for t−4 up to t+1 are

added to the input. For each variable in the training dataset, we calculated mean µ and standard deviation σ and then converted

each value x to its normalized value z using

z =
x−µ

σ
. (1)155

The same scaling, with µ and σ derived from the training dataset, was applied to the test dataset.

The structure of the LSTM model is shown in Fig. 3. Because the chloride input timeseries are five steps long and the water

level, discharge and wind timeseries are six steps long, we split the data into two groups. The first group contains all chloride

concentrations and the second group contains the other three variables (i.e. water level, discharge and wind speed), that are

hereafter also referred to as ’quantity variables’. The salt timeseries and the quantity timeseries are fed to separate LSTM160

layers, which are used to recognize developments in the variables over time. The LSTM layer contains many parameters, such

as the weight given to each input feature and the timesteps for which this feature must be retained. Each of these parameters is

optimized in the machine learning algorithm (Sect. 3.6). The outputs of these LSTM layers are then concatenated and fed into

a dense layer, which applies weights to these intermediary outputs to end up with the chloride concentration at Krimpen aan

den IJssel at t+1. As a protection against overfitting, a dropout layer is added between the LSTM layers and the concatenation165

layer. A dropout layer randomly sets some inputs to zero at each iteration of the training procedure, thereby making it less
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likely for the model to obtain a perfect fit for the training dataset and forcing it to account for some noise. This makes the

model more likely to perform well in a new situation.

The model is trained to predict chloride concentrations on t+1, which is the first forecast. The forecast is then added to

the record of chloride concentrations and used to forecast the next timestep. The length of timeseries used to make a forecast170

remains the same, so to make a forecast for t+2, chloride concentrations from t−3 to t+1 are used. This procedure is repeated

to forecast chloride concentrations up to t+7.

3.5 Performance metrics

The Root Mean Square Error is a measure for the deviations between the predicted and observed value of a variable. It is

calculated as175

RMSE =

√√√√ 1
n

n∑

i=1

(ŷi− yi)2 (2)

in which yi is the ith observation of the target variable, ŷi is the model estimate of the target variable and n is the number of

observations.

Forecast quality can be expressed in the metrics precision and recall. For this, an event threshold is defined at a daily mean

chloride concentration of 300 mg l-1, which is twice the drinking water limit (Van den Brink et al., 2019), as an indicator for180

severe salt intrusion. When the model predicts [Cl] above 300 mg l-1 for a certain day, this is defined as a warning. Each day

on which the observed value for [Cl] exceeds 300 mg l-1 is defined as an event. Consecutive days with chloride concentrations

above the threshold are considered multiple events. Precision and recall can then be calculated as

Precision =
|Events∩Warnings|

|Warnings| (3)

and185

Recall =
|Events∩Warnings|

|Events| (4)

where |Events| indicates the number of events, |Warnings| the number of warnings and |Events ∩ Warnings | the number of

events for which a warning was issued. A high precision indicates that the warnings issued by a model are often justified. High

recall indicates that events are often captured by the model.

The performance of the LSTM in terms of these metrics is compared to a persistence forecast, which functions as a baseline.190

The assumption of a persistence forecast is that future chloride concentrations are the same as on the current day, i.e. [Cl]t0 =

[Cl]t+1 ... = [Cl]t+7 .
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Table 2. Tuned hyperparameters for the LSTM model

Size LSTM 1 32

Size LSTM 2 32

Batch size 64

Extra hidden layer size 0

Dropout (after LSTM) 0.3

Dropout (after extra hidden layer) N/A

Weights of output variables:

-ClKr400Min 2

-ClKr400Mean 3

-ClKr400Max 3

-ClKr550Min 1

-ClKr550Mean 1

-ClKr550Max 1

-ClLkh250Min 1

-ClLkh250Mean 1

-ClLkh250Max 1

-ClLkh700Min 1

-ClLkh700Mean 1

-ClLkh700Max 1

3.6 Model tuning and testing

We further optimized the general model architecture described in Sect. 3.4 by tuning several hyperparameters (Table 2). The

size of both LSTM layers was adjusted in steps and model performance in terms of RMSE, precision and recall was recorded.195

The same was done for the presence and size of an extra hidden layer, and for the dropout parameter. Finally, weights were

given to the twelve output variables of the model. When a variable’s weight is larger, the learning algorithm penalizes errors in

the prediction of that variable more than that of other variables.

For each set of hyperparameters, we trained three models. Each model starts with different initial parameter weights, which

are random. These weights are then applied to the input variables to calculate the output variables. The quality of the model200

is calculated as a mean squared error. The parameter weights are then adjusted and the calculations are redone. For this

adjustment, we used the adam optimizer (Kingma and Ba, 2017), which is able to determine the optimal size of an adjustment

step. The models were trained to predict chloride concentrations one day ahead. We then used them to create a forecast up to

7 days ahead, as described in Sect. 3.4. RMSE, precision and recall at t+1, t+4 and t+7 were recorded for each model training

run, yielding 9 values for each metric per set of hyperparameters. By comparing these metrics, we determined the optimal205

values for the hyperparameters (Table 2). A full overview of tuned hyperparameters and metrics can be found in Appendix B
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The hyperparameter setup in Table 2 was then re-used for training an ensemble of 15 models, as the ensemble mean RMSE

was shown not to change markedly anymore when ensemble size was increased further. The ensemble is created by fitting the

model multiple times, with slightly different initial parameter weights each time. Each model from the ensemble was then used

to forecast chloride concentrations in the testing period.210

3.7 Sensitivity analysis

We performed a sensitivity analysis on the ensemble of models to investigate how variations in the input variables impact

the predicted value of mean daily chloride concentration. To do this, we perturbed each input variable in the test dataset by

adding 0.2 (in normalized units) to all values of that variable. We then ran the models with this perturbed input dataset and

calculated the average difference in chloride concentration between the original dataset and the perturbed dataset. This gives215

an indication of the sensitivity of mean daily chloride concentration to changes in each of the other variables. We want to stress

that many of these changes are not physically realistic, as most variables we consider would not change independently of the

others. However, it gives an indication of the weight the model gives to each variable. In a linear regression model, we would

simply use weight parameters to show this, but the complex structure of the LSTM model makes weights difficult to interpret.

Therefore, we chose this method to show a general relation between model input and output.220

4 Results

4.1 Model performance on training dataset

Figures 4(a,c,e) show the forecasts made for the year 2011, during which a number of high chloride concentration peaks

occurred in autumn. The forecast values follow the observations closely and continue to do so for lead times over 3 days, which

indicates that the model architecture is complex enough to capture complexities in the dataset. The largest peaks, however,225

are still often underpredicted. Predictions of the full training dataset (2011–2017) match the observations well and have no

systematic bias (Fig. 4(b,d,f). As expected, RMSE increases with lead time, but precision and recall remain roughly the same

(Fig. 5). The curves of precision and recall show some irregularities, because the total number of events is quite small – only 40

days in a 7-year dataset. This model is able to create a 7-day forecast in 13 seconds. For camparison, the 1D hydraulic model

set up for this area, SOBEK 3 (Deltares, 2019) takes 8 minutes to make a 7-day forecast of the Rhine-Meuse estuary.230

4.2 Model performance on test dataset

Figures 6(a,c,e) show forecasts made for the year 2018, the first year of the test dataset (2018–2020). Forecast values resemble

observed concentrations closely for background concentrations (<150 mg l-1), with RMSE below 20 mg l-1. However, the

highest peaks ([Cl] >1000 mg l-1) are often underpredicted and the lower peaks are often overpredicted, which accounts for the

higher RMSE for the whole dataset (Fig. 7). This is confirmed by Fig. 6(b,d,f). RMSE increases with lead time, while precision235

and recall decrease (Fig. 7). Forecast quality decreases fast as lead time increases from 1 to 3 days, but decreases more slowly
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Figure 4. Model performance for the training period (2011–2017). Panels (a), (c) and (e) show a collection of forecasts of ClKr400Mean

made with lead times of (a) 1 day, (c) 4 days and (e) 7 days for the year 2011, along with observed values. The predicted value is given as an

ensemble prediction for each day of the year, created with the lead time indicated in the top of the panel. Median and range of the ensemble

prediction are shown. Panels (b), (d) and (f) show predicted vs. observed values for the full training dataset with lead times of 1, 4 and 7

days, respectively. For each day in the training dataset, 15 points are plotted, one for each LSTM model.
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Figure 5. Performance metrics vs. lead time for the training period. Panels show (a) Root mean squared error, (b) precision and (c) recall.

Performance of each model in the ensemble is plotted as a single line. Performance of the persistence forecast is shown for reference.

after that. (Compare Figs. 6 and 7.) The general tendency of the LSTM models to underpredict peaks leads to higher precision,

but sometimes lower recall than the persistence forecast. In terms of RMSE, the LSTM outperforms the persistence forecast

from t+2 onwards. The RMSE is a factor 4–6 higher for the test dataset than for the training dataset; precision is lower from

t+3 onwards and recall is significantly lower.240

4.3 Sensitivity analysis

The sensitivity analysis yields a positive correlation between past and predicted chloride concentrations (Fig. 8). Furthermore,

chloride concentration has a strong negative correlation with discharge at Lobith and Tiel and a strong positive correlation with

water level at Hoek van Holland. There is also a less strong negative correlation with water level at Dordrecht and a less strong

positive correlation with discharge at Hagestein. Only a slight positive correlation is found with southerly and westerly wind245

speed.

5 Discussion

5.1 Interpretation of results

As can be seen from the results in Sect. 4.2, (Fig. 6), most LSTM models tend to underpredict especially the largest peaks

in mean daily chloride concentration. Adjustment of the hyperparameters did not enable us to capture these peaks better. In250

addition, peaks of intermediate height are frequently overpredicted, although the error in that case is smaller than for the very

high peaks. For operational water management, the error in the intermediate peaks is likely to have more consequences than

the error in the largest peaks, since these intermediate chloride concentrations make up the transition from a normal situation

to a situation where water managers might need to intervene on a larger scale than just closing an inlet for a brief period of

time. The threshold value of 300 mg l-1 has been chosen to reflect such situations. We see indeed that values of precision and255
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Figure 6. Model performance for the test period (2018–2020). Panels (a), (c) and (e) show a collection of forecasts of ClKr400Mean made

with lead times of (a) 1 day, (c) 4 days and (e) 7 days for the year 2018, along with observed values. The predicted value is given as an

ensemble prediction for each day of the year, created with the lead time indicated in the top of the panel. Median and range of the ensemble

prediction are shown. Panels (b), (d) and (f) show predicted vs. observed values for the full test dataset with lead times of 1, 4 and 7 days,

respectively. For each day in the test dataset, 15 points are plotted, one for each LSTM model.

15

https://doi.org/10.5194/egusphere-2023-217
Preprint. Discussion started: 1 March 2023
c© Author(s) 2023. CC BY 4.0 License.



1 2 3 4 5 6 7

80

100

120

140

160

180

RM
SE

 [(
m

g
l

1 ]

(a)

1 2 3 4 5 6 7
lead time

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

(b)

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(c)

LSTM
Reference (persistence)

Figure 7. Performance metrics for the test period. Panels show (a) Root mean squared error, (b) precision and (c) recall. Performance of each

model in the ensemble is plotted as a single line. Performance of the persistence forecast is shown for reference.
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Figure 8. Results of the sensitivity analysis. The bars indicate how much higher mean chloride concentration at Krimpen aan den IJssel

-4.00 m a.m.s.l. becomes on average when the input parameter indicated in the graph is increased by 0.2 normalized units. Input variables

are chloride concentration (Cl), water level (H), discharge (Q) and wind speed (Wind). Subscripts indicate the location (with Krimpen.a.d.IJ

= Krimpen aan den IJssel and Hoek.v.H. = Hoek van Holland), daily statistic, depth below NAP (chloride only) and direction (wind only,

EW = east-west, NS = north-south). Variables are explained in Table 1. All values are expressed in normalized units.
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recall are both affected by the errors in peak prediction (Fig. 7). Recall is affected more than precision, which is in line with

the general tendency for underprediction. This means that by relying completely on this model, water managers would be more

likely to miss a problematic situation than to take unnecessary action. This is probably not desirable, as water managers usually

prefer to err on the side of caution (Warmink et al., 2017).

Most results of the sensitivity analysis (Sect. 4.3, Fig. 8) are in line with general expectations of this river system. Higher260

river discharge dilutes the salt water present at Krimpen aan den IJssel, whereas higher sea levels increase the potential for

salt water to intrude landward (Savenije, 2012; Sun et al., 2020). The negative correlation between chloride concentration at

Krimpen aan den IJssel and water level at Dordrecht seems to indicate that high water levels at Dordrecht are associated with

increasing flow from the Beneden-Merwede through the Noord towards the Nieuwe Maas (Fig. 1). The positive correlation of

chloride concentration and discharge at Hagestein is somewhat surprising, as it is mostly a component of discharge at Lobith.265

Indeed, most chloride peaks coincide with periods of low discharge at Hagestein. However, Hagestein is a managed location

with a weir that plays a role in dividing discharge over the Rhine branches. In periods of drought, when chloride concentrations

have already started rising, water is sometimes diverted through the Nederrijn/Lek branch, causing discharge at Hagestein to be

relatively high with respect to discharge at Lobith (Hydrologic et al., 2015). We therefore suggest that the models have captured

a positive correlation between chloride concentrations and the fraction of Rhine water that flows through the Lek/Nederrijn270

branch. The very small positive correlation between chloride and southerly and westerly wind speed confirms the observations

in Sect. 3.2 and Fig. 2, where we also found no consistent relation between wind speed and chloride concentration. This shows

that wind speed on its own does not make a difference, but may still influence chloride concentrations through its interactions

with other variables.

5.2 Limitations and outlook275

The shorter runtime of the machine learning model allows users to run simulations as an ensemble well ahead of time. The

current version of the model only works for one location, but if we can capture multiple locations in the delta while keeping

runtime in the same order of magnitude, we can do many more predictions, including simulations. The larger number of

scenarios that can be investigated gives water managers more opportunities to take mitigating measures and ensure freshwater

availability.280

Machine learning models are known to have their limits when it comes to forecasting extreme events: since these events are

rare by nature, a model that is trained on a long timeseries will have far more examples of regular than of extreme conditions

(Carbajal and Bellos, 2018). The model is therefore likely more skillful in forecasting baselines than in forecasting (extreme)

peaks. We observe this phenomenon in our results for the test dataset (Sect. 4.2). As 2018 was a very dry year (Buitink et al.,

2020), the chloride concentrations reached levels that had not been observed in our training dataset. Our model was therefore285

less skillful than desired at predicting especially the highest peaks (>1000 mg l-1). This is a problematic situation, since climate

change is expected to increase sea level and decrease river discharge in spring, summer and fall for our study area, which

makes the occurrence of such peaks more likely (Lenderink and Beersma, 2015; Van den Brink et al., 2019). If used for

operational forecasting, this model is therefore likely to deal with unprecedented situations more frequently in the future. To
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tackle this issue, we would propose to update the training dataset and retrain the model yearly, adding new, possibly more290

extreme, observations to the record and make the model better suited to forecast extreme situations in the future. Alternatively,

extreme situations could be simulated with other models and the machine learning model could be trained on the results of

those models.

Our results show that a reasonable prediction of chloride concentrations up to seven days ahead can be achieved at one

location using this model: although the error in peak height is quite large, timing and occurrence of peaks are well-captured.295

We therefore expect that a similar model setup can be successful for other locations in the delta for which salt intrusion is a

similar threat to freshwater availabiltiy, such as the junction of the Oude Maas and Spui and the confluence of the Noord and

Lek (Fig. 1) (Van den Brink et al., 2019). Extending the analysis is likely to teach us more about the dependencies in this

system, which can in turn help to improve the existing model.

In Sect. 4.1 we show that this model is much faster than the 1D physical model SOBEK. On the other hand, SOBEK is300

run for the entire delta area, whereas the machine learning model focusses on a single output location. When the model is a

extended to comprise multiple locations within the study area, runtime will increase. However, if we focus on a limited number

of stations, we still expect the machine learning model to be significantly faster than the physical model, since the machine

learning model performs forward calculations rather than solving differential equations.

In the current model setup, water levels, discharges and wind speeds at t+1 are used to forecast chloride concentrations at305

t+1. In an actual operational setting, these values would be retrieved from other models, with their own uncertainties. These

uncertainties then propagate to the chloride concentration forecast. In our analysis, we used a historical dataset to fit and test

the model, using the actual observations at t+1. This way we have uniform data of a constant uncertainty with which we can

derive and evaluate a model. However, this also means that the model’s performance as described in Section 4 is higher than it

would be in an actual operational context. Setting the model up to function in a forecasting system, using the outputs of other310

models as inputs, is a follow-up step in our research.

In the current model setup, we have made forecasts of daily mean, minimum and maximum chloride concentrations. We

have chosen daily values to limit error accumulation when creating a 7-day forecast. However, there are many regions where

operational water managers need predictions with a higher temporal resolution, e.g. to determine at what time of day certain

inlets should be opened or closed (Pezij et al., 2019; Tian, 2015). We will therefore attempt to train the model to make315

predictions on shorter timescales, for which other variables might be needed than the ones we used in this analysis.

This model was developed for a delta with a complex geography. Nevertheless, we could develop a data-driven model with a

total of 12 input variables (counting the minimum, mean and maximum as features of a single variable, and doing the same for

the east-west and north-south component of the wind speed). We could have added more variables, but timeseries exploration

and Boruta analysis showed that these would be redundant. We can therefore conclude that the number of measurement stations320

needed to train a model like this is not very high. A sufficiently long record with few gaps remains needed, however. With a

training period of seven years, satisfactory results can be achieved. We therefore suggest that this approach can be extended

to other deltas where an adequate measurement setup exists or where it is being developed. Especially in deltas with a single

branch, a smaller number of stations would probably suffice, although it is important that the location of the stations does
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not change. Since a machine learning approach does not require a full understanding of the system’s internal mechanics but325

relies on patterns in the data, it should not be a problem if the system functions somewhat differently than the one we studied.

However, it is possible that other quantities, such as precipitation sums or offshore water levels, need to be added to obtain a

satisfactory solution.

Another application of machine learning, which we did not address so far, is to use a machine learning model as a model

emulator (Carbajal and Bellos, 2018). In this application, another model, often a physical model, is run with a large range330

of conditions, and its results are then supplied to a machine learning algorithm. The algorithm learns the original model’s

behaviour in terms of inputs and outputs, without considering its internal mechanics. This yields a simplified model, which

may not be as accurate as the original, especially in unprecedented situations, but which tends to be much faster (Silva et al.,

2021; Gettelman et al., 2021). Having identified the input and output variables needed to set up a salt intrusion model, we

could train a similar model with the input and output variables of a three-dimensional model of the Rhine-Meuse delta, which335

is currently under development. This would allow us to mimic a wide range of possible conditions with the machine learning

model, without having to resort to extrapolation. If successful, the result would be an approximation of a physical model that

can run fast enough for operational use, making it suitable for interactive simulations in, for instance, a serious game or digital

twin.

6 Conclusions340

We used a machine learning approach with a Long Short-Term Memory network to set up a data-driven model for fore-

casting chloride concentrations at Krimpen aan den IJssel, located in the Rhine-Meuse delta. Using observations of chloride

concentration, water level, discharge and wind at a total of 9 locations, we were able to forecast daily minimum, mean and max-

imum chloride concentrations up to 7 days ahead. The baseline concentrations (<150 mg l-1) are predicted well by this model

(RMSE < 20 mg l-1). Timing of chloride peaks is also predicted well, but their magnitude is underestimated. This deviation345

increases quite fast between lead times of 1 and 4 days, and more slowly at even longer lead times. A sensitivity analysis shows

a positive correlation with antecedent salt concentrations and seawater level and a negative correlation with discharge through

the main river branches. We expect that the quality of this model can be improved with lessons learned at other locations, which

will allow us to construct a more comprehensive forecasting tool for the Rhine-Meuse delta. A similar approach is likely to be

successful for other deltas, especially those that have a comparable or simpler geography than our study area.350

Code and data availability. Data and software will be made available on the 4TU repository at the same time the article is published. Review-

ers can access data on https://figshare.com/s/0d06645e003d9e8f9e7e and software on https://figshare.com/s/a4701fa181b015eb6c69. The

software will undergo further development in future. The most recent version can be found on https://github.com/BasWullems/salt_intrusion_lstm.
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Figure A1. Pearson correlation coefficient for water levels in the study area.

Appendix A: Correlation of water levels

Fig. A1 shows the Pearson correlation values between water levels at several locations in the study area.355

Appendix B: Hyperparameter tuning overview

Table A1 shows the combinations of hyperparameters that were evaluated as described in Sect. 3.6. We also show the results of

testing in terms of RMSE (Table A2), precision (Table A3), recall (Table A4) and F1-score (harmonic mean of precision and

recall) (Table A5). Based on the results of this tuning process, model 21 was chosen as the final setup (Table 2).

Author contributions. AW designed the general goals as part of the SALTI Solutions research project, which were further refined by all360

authors. Data were obtained by BW, using a script designed by FB. BW designed the models and performed the data analysis with frequent

consultation from the other authors. FB contributed to improvements of the models. BW wrote this paper and created the figures. CB, FB

and AW reviewed the paper and figures. AW secured the necessary financial support for this project and handled its administration. CB and

AW supervised BW in his PhD programme.
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Table A1. Hyperparameters that were tried in the model tuning process described in Sect. 3.6. Each model number corresponds to a set of

hyperparameters with which three randomly initialized model were trained. The basic structure of the model is given in Table 3. The column

’output weighted’ indicates the weight given to the following output parameters: ClKr400Min, ClKr400Mean, ClKr400Max, ClKr550Min,

ClKr550Mean, ClKr550Max, ClLkh250Min, ClLkh250Mean, ClLkh250Max, ClLkh700Min, ClLkh700Mean, ClLkh700Max. Definitions

of these variables are found in Table 1. Results of the training run are in Tables A2, A3, A4 & A5. Model 21 was selected as the best

performing model (Table 2).

Model no. Size LSTM 1 Size LSTM 2 Batch size Extra dense layer size Dropout (after LSTM) Dropout (after dense) Output weighted

1 32 32 16 16 0,2 0,2 NO

2 32 32 32 16 0,2 0,2 NO

3 32 32 64 16 0,2 0,2 NO

4 32 32 64 0 0,2 0 NO

5 32 32 64 32 0,2 0,2 NO

6 16 16 64 16 0,2 0,2 NO

7 16 16 64 32 0,2 0,2 NO

8 16 16 64 32 0,2 0,2 2,3,2,1,1,1,1,1,1,1,1,1

9 16 16 64 32 0,2 0,2 1,2,2,1,1,1,1,1,1,1,1,1

10 16 16 32 32 0,2 0,2 1,2,2,1,1,1,1,1,1,1,1,1

11 32 32 32 32 0,2 0,2 1,2,2,1,1,1,1,1,1,1,1,1

12 32 32 64 32 0,2 0,2 1,2,2,1,1,1,1,1,1,1,1,1

13 16 16 32 32 0,2 0,2 2,2,2,1,1,1,1,1,1,1,1,1

14 16 16 32 32 0,2 0,2 2,2,3,1,1,1,1,1,1,1,1,1

15 32 32 32 32 0,2 0,2 2,2,3,1,1,1,1,1,1,1,1,1

16 32 32 32 32 0,2 0,2 2,3,2,1,1,1,1,1,1,1,1,1

17 32 32 32 32 0,2 0,2 2,3,2,1,2,1,1,1,1,1,1,1

18 32 32 32 32 0,2 0,2 2,3,3,1,2,1,1,1,1,1,1,1

19 32 32 32 0 0,2 0 2,3,3,1,2,1,1,1,1,1,1,1

20 32 32 32 0 0,3 0 2,3,3,1,2,1,1,1,1,1,1,1

21 32 32 64 0 0,3 0 2,3,3,1,2,1,1,1,1,1,1,1

22 32 32 16 0 0,3 0 2,3,3,1,2,1,1,1,1,1,1,1

23 32 32 16 32 0,3 0,3 2,3,3,1,2,1,1,1,1,1,1,1

24 32 32 16 32 0,3 0 2,3,3,1,2,1,1,1,1,1,1,1

25 32 32 16 32 0 0,3 2,3,3,1,2,1,1,1,1,1,1,1

26 32 32 16 32 0,5 0,5 2,3,3,1,2,1,1,1,1,1,1,1

27 32 32 32 32 0,5 0,5 2,3,3,1,2,1,1,1,1,1,1,1

28 32 32 32 32 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

29 64 64 32 64 0,5 0,5 2,3,3,1,2,1,1,1,1,1,1,1

30 64 64 32 0 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

31 128 128 32 0 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

32 128 128 32 0 0,2 0 2,3,3,1,2,1,1,1,1,1,1,1

33 32 32 32 0 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

34 32 32 64 0 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

35 32 32 16 0 0,5 0 2,3,3,1,2,1,1,1,1,1,1,1

36 32 32 16 0 0,2 0 2,3,3,1,2,1,1,1,1,1,1,1

37 32 32 64 0 0,2 0 2,3,3,1,2,1,1,1,1,1,1,1
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Table A2. Root Mean Squared Error for three randomly initialized models per hyperparameter setup. Model numbers correspond to the

hyperparameter sets in Table A1. RMSE was calculated for three lead times: t+1, t+4 and t+7.

Model no. RMSE (mg l-1)
Run 1 Run 2 Run 3
t+1 t+4 t+7 t+1 t+4 t+7 t+1 t+4 t+7

1 19 26 27 24 32 34 20 27 28

2 20 28 29 19 25 28 19 26 28

3 19 25 26 20 26 28 20 28 31

4 20 26 28 18 24 27 19 25 28

5 19 23 25 20 26 29 22 28 30

6 23 29 32 24 30 36 23 30 33

7 23 32 35 20 28 31 23 28 30

8 20 26 29 21 31 33 22 28 31

9 20 26 28 22 28 31 19 26 28

10 23 29 30 21 27 29 19 27 29

11 19 25 26 18 27 29 18 23 25

12 19 27 28 18 24 27 21 30 32

13 21 30 32 21 31 32 21 29 30

14 20 28 30 21 29 31 20 27 30

15 18 25 27 18 23 25 17 22 24

16 21 26 28 18 26 28 19 27 30

17 21 28 29 21 28 29 19 25 27

18 20 27 28 18 26 28 19 26 27

19 18 25 27 18 25 27 20 27 29

20 21 28 31 20 27 28 18 25 26

21 19 24 26 19 27 28 18 23 24

22 21 28 30 20 27 29 18 24 25

23 20 27 29 19 26 28 21 28 29

24 18 25 27 17 24 26 19 24 26

25 19 27 29 21 30 32 17 23 25

26 25 32 35 27 36 37 24 32 33

27 22 30 31 22 30 31 22 28 29

28 17 25 27 20 29 31 21 28 29

29 18 26 27 20 26 28 20 26 29

30 19 25 27 20 25 26 18 24 25

31 18 22 24 17 24 25 18 23 25

32 19 25 26 19 25 26 18 22 23

33 21 30 31 21 29 30 20 27 28

34 22 28 30 22 30 32 20 28 29

35 20 30 31 20 26 28 19 26 28

36 19 24 26 21 25 26 18 23 25

37 19 27 29 20 26 28 20 28 29
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Table A3. Precision for three randomly initialized models per hyperparameter setup. Model numbers correspond to the hyperparameter sets

in Table A1. Precision was calculated for three lead times: t+1, t+4 and t+7.

Model no. Precision
Run 1 Run 2 Run 3
t+1 t+4 t+7 t+1 t+4 t+7 t+1 t+4 t+7

1 0,83 0,90 0,88 0,91 0,97 0,97 0,82 0,82 0,82

2 0,87 0,81 0,85 0,83 0,83 0,83 0,84 0,91 0,91

3 0,88 0,81 0,80 0,93 0,97 0,94 0,86 0,88 0,89

4 0,86 0,83 0,76 0,91 0,94 0,89 0,97 0,87 0,89

5 0,89 0,86 0,81 0,81 0,78 0,72 0,94 0,93 0,93

6 0,97 0,85 0,75 0,87 0,72 0,60 0,86 0,86 0,82

7 0,93 0,97 0,96 0,94 0,91 0,91 0,83 0,86 0,83

8 0,85 0,79 0,78 0,94 0,97 0,94 0,94 0,77 0,77

9 0,86 0,89 0,79 0,91 0,89 0,73 0,91 0,88 0,89

10 0,76 0,73 0,70 0,89 0,91 0,88 0,82 0,87 0,81

11 0,89 0,87 0,80 0,85 0,89 0,86 0,92 0,83 0,81

12 0,83 0,83 0,85 0,89 0,89 0,82 0,91 0,91 0,91

13 0,97 1,00 1,00 0,94 0,97 0,96 0,86 0,89 0,85

14 0,85 0,85 0,78 0,93 0,97 1,00 0,81 0,78 0,78

15 0,85 0,92 0,92 0,84 0,84 0,79 0,89 0,80 0,73

16 0,88 0,81 0,83 0,86 0,89 0,91 0,86 0,83 0,81

17 0,82 0,78 0,82 0,94 0,91 0,94 0,89 0,86 0,84

18 0,85 0,89 0,91 0,80 0,87 0,77 0,89 0,85 0,89

19 0,94 0,97 0,94 0,91 0,92 0,94 0,87 0,87 0,87

20 0,94 0,80 0,69 0,86 0,91 0,89 0,94 0,91 0,89

21 0,91 0,89 0,91 0,87 0,82 0,80 0,92 0,92 0,85

22 0,91 0,91 0,91 0,92 0,89 0,89 0,87 0,83 0,79

23 0,97 0,83 0,80 0,80 0,83 0,80 0,97 0,97 0,91

24 0,84 0,89 0,87 0,94 0,97 0,94 0,88 0,86 0,86

25 0,88 0,90 0,87 0,86 0,89 0,82 0,91 0,87 0,87

26 0,83 0,71 0,62 0,94 0,97 0,94 1,00 0,93 0,93

27 0,94 0,94 0,91 0,91 0,91 0,86 0,88 0,89 0,86

28 0,87 0,89 0,85 0,86 0,92 0,82 0,92 0,92 0,91

29 0,89 0,95 0,90 0,90 0,83 0,83 0,87 0,80 0,79

30 0,83 0,86 0,84 0,85 0,85 0,85 0,89 0,91 0,91

31 0,97 0,89 0,88 0,94 0,94 0,91 0,91 0,97 0,91

32 0,86 0,86 0,75 0,92 0,86 0,83 0,97 1,00 1,00

33 0,97 0,96 0,96 0,97 0,97 0,97 0,86 0,88 0,83

34 0,86 0,86 0,86 0,86 0,86 0,83 0,91 0,91 0,88

35 0,87 0,87 0,86 0,82 0,82 0,84 0,89 0,92 0,87

36 0,91 0,97 0,97 0,89 0,83 0,83 0,89 0,92 0,92

37 0,91 0,89 0,87 0,94 0,89 0,74 0,85 0,89 0,89
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Table A4. Recall for three randomly initialized models per hyperparameter setup. Model numbers correspond to the hyperparameter sets in

Table A1. Recall was calculated for three lead times: t+1, t+4 and t+7.

Model no. Recall
Run 1 Run 2 Run 3
t+1 t+4 t+7 t+1 t+4 t+7 t+1 t+4 t+7

1 0,89 0,88 0,85 0,73 0,70 0,70 0,80 0,80 0,80

2 0,83 0,85 0,85 0,75 0,88 0,83 0,78 0,73 0,78

3 0,88 0,88 0,85 0,68 0,75 0,75 0,75 0,75 0,78

4 0,80 0,83 0,85 0,78 0,78 0,83 0,85 0,85 0,83

5 0,80 0,80 0,85 0,88 0,90 0,90 0,73 0,68 0,70

6 0,75 0,73 0,75 0,83 0,83 0,80 0,80 0,78 0,78

7 0,70 0,73 0,65 0,75 0,73 0,73 0,75 0,78 0,83

8 0,83 0,83 0,80 0,83 0,75 0,78 0,80 0,83 0,85

9 0,75 0,83 0,83 0,78 0,83 0,83 0,80 0,73 0,80

10 0,88 0,88 0,88 0,78 0,73 0,75 0,80 0,85 0,83

11 0,80 0,83 0,83 0,83 0,78 0,80 0,88 0,85 0,85

12 0,85 0,85 0,83 0,80 0,78 0,78 0,73 0,75 0,78

13 0,73 0,70 0,65 0,73 0,70 0,68 0,78 0,83 0,83

14 0,83 0,83 0,80 0,70 0,70 0,70 0,88 0,88 0,88

15 0,80 0,85 0,83 0,90 0,95 0,93 0,83 0,88 0,88

16 0,88 0,88 0,88 0,75 0,78 0,73 0,78 0,88 0,85

17 0,78 0,78 0,80 0,75 0,73 0,73 0,78 0,80 0,78

18 0,73 0,80 0,78 0,80 0,83 0,83 0,83 0,83 0,83

19 0,75 0,78 0,75 0,78 0,83 0,80 0,83 0,83 0,83

20 0,80 0,80 0,85 0,80 0,78 0,80 0,80 0,80 0,83

21 0,78 0,78 0,78 0,83 0,90 0,90 0,83 0,83 0,88

22 0,75 0,75 0,75 0,85 0,83 0,80 0,83 0,85 0,93

23 0,85 0,85 0,90 0,83 0,88 0,88 0,75 0,78 0,78

24 0,80 0,83 0,83 0,75 0,70 0,73 0,75 0,80 0,80

25 0,80 0,68 0,68 0,75 0,83 0,80 0,80 0,85 0,85

26 0,88 0,88 0,90 0,78 0,75 0,83 0,70 0,68 0,65

27 0,78 0,73 0,75 0,75 0,78 0,78 0,73 0,80 0,80

28 0,83 0,83 0,83 0,80 0,83 0,90 0,83 0,85 0,80

29 0,83 0,88 0,88 0,88 0,85 0,83 0,85 0,88 0,93

30 0,83 0,80 0,80 0,85 0,85 0,85 0,78 0,80 0,80

31 0,93 0,85 0,88 0,83 0,78 0,78 0,78 0,80 0,75

32 0,93 0,95 0,95 0,83 0,90 0,88 0,85 0,80 0,83

33 0,75 0,63 0,63 0,83 0,83 0,83 0,80 0,88 0,88

34 0,75 0,80 0,75 0,78 0,80 0,83 0,75 0,75 0,75

35 0,83 0,83 0,80 0,80 0,80 0,80 0,78 0,83 0,83

36 0,78 0,73 0,75 0,85 0,88 0,88 0,85 0,88 0,85

37 0,75 0,85 0,85 0,78 0,80 0,80 0,83 0,83 0,78
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Table A5. F1-score for three randomly initialized models per hyperparameter setup. The F1-score is the harmonic mean of precision and

recall. Model numbers correspond to the hyperparameter sets in Table A1. F1-score was calculated for three lead times: t+1, t+4 and t+7.

Model no. F1-score
Run 1 Run 2 Run 3
t+1 t+4 t+7 t+1 t+4 t+7 t+1 t+4 t+7

1 0,86 0,89 0,86 0,81 0,81 0,81 0,81 0,81 0,81

2 0,85 0,83 0,85 0,79 0,85 0,83 0,81 0,81 0,84

3 0,88 0,84 0,82 0,79 0,85 0,83 0,80 0,81 0,83

4 0,83 0,83 0,80 0,84 0,85 0,86 0,91 0,86 0,86

5 0,84 0,83 0,83 0,84 0,84 0,80 0,82 0,79 0,80

6 0,85 0,79 0,75 0,85 0,77 0,69 0,83 0,82 0,80

7 0,80 0,83 0,78 0,83 0,81 0,81 0,79 0,82 0,83

8 0,84 0,81 0,79 0,88 0,85 0,85 0,86 0,80 0,81

9 0,80 0,86 0,81 0,84 0,86 0,78 0,85 0,80 0,84

10 0,82 0,80 0,78 0,83 0,81 0,81 0,81 0,86 0,82

11 0,84 0,85 0,81 0,84 0,83 0,83 0,90 0,84 0,83

12 0,84 0,84 0,84 0,84 0,83 0,80 0,81 0,82 0,84

13 0,83 0,82 0,79 0,82 0,81 0,80 0,82 0,86 0,84

14 0,84 0,84 0,79 0,80 0,81 0,82 0,84 0,83 0,83

15 0,82 0,88 0,87 0,87 0,89 0,85 0,86 0,84 0,80

16 0,88 0,84 0,85 0,80 0,83 0,81 0,82 0,85 0,83

17 0,80 0,78 0,81 0,83 0,81 0,82 0,83 0,83 0,81

18 0,79 0,84 0,84 0,80 0,85 0,80 0,86 0,84 0,86

19 0,83 0,86 0,83 0,84 0,87 0,86 0,85 0,85 0,85

20 0,86 0,80 0,76 0,83 0,84 0,84 0,86 0,85 0,86

21 0,84 0,83 0,84 0,85 0,86 0,85 0,87 0,87 0,86

22 0,82 0,82 0,82 0,88 0,86 0,84 0,85 0,84 0,85

23 0,91 0,84 0,85 0,81 0,85 0,84 0,85 0,86 0,84

24 0,82 0,86 0,85 0,83 0,81 0,82 0,81 0,83 0,83

25 0,84 0,77 0,76 0,80 0,86 0,81 0,85 0,86 0,86

26 0,85 0,79 0,73 0,85 0,85 0,88 0,82 0,79 0,77

27 0,85 0,82 0,82 0,82 0,84 0,82 0,80 0,84 0,83

28 0,85 0,86 0,84 0,83 0,87 0,86 0,87 0,88 0,85

29 0,86 0,91 0,89 0,89 0,84 0,83 0,86 0,84 0,85

30 0,83 0,83 0,82 0,85 0,85 0,85 0,83 0,85 0,85

31 0,95 0,87 0,88 0,88 0,85 0,84 0,84 0,88 0,82

32 0,89 0,90 0,84 0,87 0,88 0,85 0,91 0,89 0,91

33 0,85 0,76 0,76 0,89 0,89 0,89 0,83 0,88 0,85

34 0,80 0,83 0,80 0,82 0,83 0,83 0,82 0,82 0,81

35 0,85 0,85 0,83 0,81 0,81 0,82 0,83 0,87 0,85

36 0,84 0,83 0,85 0,87 0,85 0,85 0,87 0,90 0,88

37 0,82 0,87 0,86 0,85 0,84 0,77 0,84 0,86 0,83
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