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Abstract. 10 
Recent advancements in numerical weather predictions have improved forecasting performance at longer lead 11 
times. Seasonal weather forecasts, providing predictions of weather variables for the next several months, have 12 
gained significant attention from researchers due to their potential benefits for water resources management. 13 
Many efforts have been made to generate Seasonal Flow Forecasts (SFFs) by combining seasonal weather 14 
forecasts and hydrological models. However, producing SFFs with good skill at a finer catchment scale remains 15 
challenging, hindering their practical application and adoption by water managers. Consequently, water 16 
management decisions, both in South Korea and numerous other countries, continue to rely on worst-case 17 
scenarios and the conventional Ensemble Streamflow Prediction (ESP) method. 18 
This study investigates the potential of SFFs in South Korea at the catchment scale, examining 12 reservoir 19 
catchments of varying sizes (ranging from 59 to 6648 km2) over the last decade (2011-2020). Seasonal weather 20 
forecasts data (including precipitation, temperature and evapotranspiration) from the European Centre for 21 
Medium-Range Weather Forecasts (ECMWF system5) is used to drive the Tank model (conceptual hydrological 22 
model) for generating the flow ensemble forecasts. We assess the contribution of each weather variable to the 23 
performance of flow forecasting by isolating individual variables. In addition, we quantitatively evaluate the 24 
overall skill of SFFs, representing the probability of outperforming the benchmark (ESP), using the Continuous 25 
Ranked Probability Skill Score (CRPSS). Our results highlight that precipitation is the most important variable 26 
in determining the performance of SFFs, and temperature also plays a key role during the dry season in snow-27 
affected catchments. Given the coarse resolution of seasonal weather forecasts, a linear scaling method to adjust 28 
the forecasts is applied, and it is found that bias correction is highly effective in enhancing the overall skill. 29 
Furthermore, bias corrected SFFs have skill with respect to ESP up to 3 months ahead, this being particularly 30 
evident during abnormally dry years. To facilitate future applications in other regions, the code developed for 31 
this analysis has been made available as an open-source Python package. 32 
 33 
Keywords: Seasonal weather forecasts, Seasonal flow forecasts, Skill assessment, Ensemble Streamflow 34 
Prediction, CRPSS, Linear scaling 35 

1. Introduction  36 

Over the last decade, numerical weather prediction systems have improved their forecasting performance at longer 37 
lead times, ranging from 1 to several months ahead (Alley et al., 2019; Bauer et al., 2015). The water management 38 
sector may benefit considerably from these advances. In particular, predictions of weather variables such as 39 
precipitation and temperature several months ahead (‘seasonal weather forecasts’ from now on) might be exploited 40 
to anticipate upcoming dry periods and implement management strategies for mitigating future water supply 41 
deficits (Soares and Dessai, 2016). 42 

To increase relevance for water resource management, seasonal weather forecasts can be translated into Seasonal 43 
Flow Forecasts (SFFs) via a hydrological model. SFFs can be provided and evaluated at different temporal and 44 
spatial resolutions: a coarser resolution, e.g., magnitude of total next-month runoff over a certain region (Arnal et 45 
al., 2018; Prudhomme et al., 2017) or a finer resolution, e.g., daily/weekly flow at a particular river section over 46 
the next month (Crochemore et al., 2016; Lucatero et al., 2018). This distinction is important here because coarser 47 
resolution SFFs can only be applied to inform water management in a qualitative way, whereas finer resolution 48 
SFFs can also be used to force a water resource system model for a quantitative appraisal of different management 49 
strategies. Proof-of-principle examples of the latter approach are provided by Boucher et al. (2012), Chiew et al. 50 
(2003), and Peñuela et al. (2020). These papers have demonstrated, through model simulations, the potential of 51 
using SFFs to improve the operation of supply reservoirs (Peñuela et al., 2020), irrigation systems (Chiew et al., 52 
2003) and hydropower systems (Boucher et al., 2012).  53 
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Obviously, generating SFFs with good skill at finer scales is challenging and the lack of forecast performance is 54 
often cited as a key barrier to real-world applications of SFFs by water managers (Jackson-Blake et al., 2022; 55 
Soares and Dessai, 2016; Whateley et al., 2015). In practice, if a Water Resource System (WRS) model is used to 56 
simulate and compare different operational decisions, this is done by forcing the WRS model against a repeat of 57 
a historical low flow event (“worst-case” scenario) (Yoe, 2019) or against the Ensemble Streamflow Prediction 58 
(ESP). ESP is a widely used operational forecasting method whereby an ensemble of flow forecasts is generated 59 
by forcing a hydrological model with historical meteorological observations (Baker et al., 2021; Day, 1985). Since 60 
the hydrological model is initialised at current hydrological conditions, ESP is expected to have a certain level of 61 
performance, particularly in ‘long-memory’ systems where the impact of initial conditions last over long time 62 
periods (Li et al., 2009). Previous simulation studies that examined the use of SFFs to enhance the operation of 63 
water resources systems (e.g., Peñuela et al., 2020, as cited above) did indeed show that ESP serves as a ‘hard-to-64 
beat’ benchmark. Similar to other countries, in South Korea, the worst-case scenario and ESP are used for 65 
informing water management activities, whereas SFFs are not currently applied. Before the use of SFFs can be 66 
proposed to practitioners, it is thus crucial to understand the skill of such products with respect to ESP. 67 

Numerous studies have been conducted on the skill of SFFs in different regions of the world. Some of these studies 68 
focused on the ‘theoretical skill’, which is determined by comparing SFFs with pseudo-observations produced by 69 
the same hydrological model when forced with observed temperature and precipitation. This experimental set-up 70 
enables to isolate the contribution of the weather forecast skill to the flow forecast skill, regardless of structural 71 
errors that may be present in the hydrological model. In general, most studies have found that the theoretical skill 72 
of SFFs may be only marginally better than that of ESP in specific regions and lead time. For example, Yoseff et 73 
al. (2013) analysed multiple large river basins worldwide and found that SFFs generally perform worse than ESP. 74 
Likewise, the findings of Greuell et al. (2019) indicated that SFFs are more skillful than ESP for the first lead 75 
month only.  Across Europe, the theoretical skill of SFFs was found to be higher than ESP in coastal and 76 
mountainous regions (Greuell et al., 2018).  77 
Although important to how the information content of seasonal weather forecasts vary across regions with 78 
different climatic characteristics, from a water management perspective, the theoretical skill may not be the most 79 
appropriate metric, as it reflects the performance within the modelled environment (Pechlivanidis et al., 2020) 80 
rather than the real-world.  The ‘actual skill’, which is determined by comparing SFFs to flow observations, would 81 
be more informative for water managers to decide on whether to use SFFs, and when. Previous studies that 82 
investigated the actual skill showed that, as expected, the actual skill is lower than the theoretical skill due to 83 
errors in the hydrological model and in the weather input observations (Greuell et al., 2018; van Dijk et al., 2013).  84 
In addition, due to the coarse horizontal resolution of seasonal weather forecasts, the forecast skill can be 85 
significantly improved through bias correction, particularly of precipitation forecasts (e.g., Crochemore et al., 86 
2016; Lucatero et al., 2018; Tian et al., 2018). However, even after bias correction, SFFs were found unable to 87 
surpass ESP in many previous applications (e.g., Crochemore et al., 2016; Greuell et al., 2019; Lucatero et al., 88 
2018). 89 
Previous studies reviewed above have mainly used the seasonal weather forecasts provided by the European 90 
Centre for Medium-Range Weather Forecasts (ECMWF). Here, it is important to note that the majority of these 91 
studies have utilized ECMWF’s system 3 (e.g., Yossef et al., 2013) or 4 (e.g., Crochemore et al., 2016; Greuell et 92 
al., 2019; Lucatero et al., 2018; Tian et al., 2018). A few studies comparing the performance of SFFs and ESP 93 
have been conducted based on ECMWF's cutting-edge forecasting system 5, which became operational in 94 
November 2017. These include Peñuela et al., 2020 and Ratri et al., 2023, which however did not analyse the skill 95 
of SFFs in much detail but rather focused on their operational implementation. Given that the upgrade of 96 
forecasting system can lead to substantial enhancement in the performance (e.g., Johnson et al., 2019; Köhn-Reich 97 
and Bürger, 2019), it is interesting to assess whether improved skill of weather forecasts delivered by the System 98 
5 translates into improved skill of flow forecasts. 99 

Our previous research (Lee at al., 2023) on the skill of seasonal precipitation forecasts across South Korea showed 100 
that, among various forecasting centres, ECMWF provides the most skilful seasonal precipitation forecasts, 101 
outperforming the climatology (based on historical precipitation observations). This is particularly evident during 102 
the wet season (June to September) and in dry years, where skill can also be high at longer lead times beyond the 103 
first month. 104 
Building on these previous findings, this study aims to investigate the performance of SFFs compared to ESP in 105 
predicting flow. Specifically, we focus on 12 catchments of various sizes (from 59 to 6648 km2) which include 106 
the most important multipurpose reservoirs across South Korea, and where the use of SFFs may be considered for 107 
assisting operational decisions and mitigating impacts of droughts. Given this practical long-term goal, our study 108 
focuses on assessing the ‘overall skill’, which represents the long-term probability that SFFs outperform the 109 
benchmark (ESP) when comparing the flow forecasts with historical flow observations. As a hydrological model, 110 
we use the lumped Tank model (Sugawara et al., 1986) which is the rainfall-runoff model currently in use for the 111 
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national water management and planning. For all catchments, we briefly analyse the hydrological model 112 
performance, and also investigate which weather forcing input (precipitation, temperature, and potential 113 
evapotranspiration) contributes most to the performance of SFFs across different catchments, before and after bias 114 
correction. Finally, we look at how the overall skill varies across seasons, years, and catchment, to draw 115 
conclusions on when and where SFFs may be more informative than ESP for practical water resources 116 
management. In doing so, we develop a workflow for SFFs analysis implemented in a Python Jupyter Notebook, 117 
which can be utilized by other researchers for evaluating and testing SFFs in various regions. 118 

2. Material and methodology 119 

2.1 Study site and data 120 

2.1.1 Study site 121 

The spatial scope of this study is defined as the catchments upstream of 12 multi-purpose reservoirs across South 122 
Korea. While there are 20 multi-purpose reservoirs nationwide (K-water, 2022), we have specifically selected 12 123 
reservoirs with at least 10 years of flow observation and no external flows from other rivers or reservoirs. The 124 
locations of the catchments and the mean annual precipitation, temperature, and potential evapotranspiration 125 
(PET) are shown in Figure 1(a-c). The weather data for the selected reservoir catchments is reported in Table 1. 126 

 127 

Figure 1: Top row: mean annual (a) precipitation, (b) temperature and (c) PET across South Korea over the period 128 
1967-2020. Black lines are the boundaries of the 12 reservoir catchments analysed in this study (all maps obtained by 129 
interpolating point measurements using the inverse distance weighting method). Bottom row: (d) cumulative monthly 130 
precipitation and PET, (e) mean monthly temperature and (f) cumulative monthly flow. These three variables are 131 
averaged over the 12 reservoir catchments from 2001 to 2020. Box plots show the inter-catchment variability. 132 

Table 1. Characteristics of the 12 multipurpose reservoirs (from North to South) and the catchments they drain (K-133 
water, 2022). Tmin and Tmax represent mean monthly minimum and maximum temperature averaged over 2001-134 
2020, all other meteorological variables (P: precipitation, T: temperature, PET: potential evapotranspiration) are 135 
annual averages over the same period. 136 
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Catchment Soyanggang Hoengseong Chungju Andong Imha Yongdam Buan Sumjingang Hapcheon Milyang Namgang Jangheung 

Area (km
2
) 2703 209 6648 1584 1361 930 59 763 925 95 2285 193 

Mean 

annual 

P (mm) 1220 1336 1197 1079 956 1317 1292 1343 1279 1375 1477 1439 

T (℃) 10.8 10.9 11.1 11.1 12.2 11.8 13.5 12.6 12.8 14.2 13.5 13.8 

  T min -4.2 (Jan.) -4.0 (Jan.) -3.2 (Jan.) -3.5 (Jan.) -1.6 (Jan.) -2.3 (Jan.) -0.1 (Jan.) -1.5 (Jan.) -0.8 (Jan.) 1.0 (Jan.) 0.4 (Jan.) 1.3 (Jan.) 

  T max 24.0 (Aug.) 24.1 (Aug.) 25.9 (Aug.) 23.8 (Aug.) 25.1 (Aug.) 24.8 (Aug.) 26.7 (Aug.) 25.8 (Aug.) 25.5 (Aug.) 26.8 (Aug.) 26.0 (Aug.) 26.2 (Aug.) 

PET (mm) 874 870 881 896 947 884 960 919 933 993 952 896 

Figure 1(d-f) shows the monthly precipitation and PET (d), temperature (e) and flow (e) averaged over the 12 137 
selected catchments from 2001 to 2020. Generally, the catchments located in the Southern region exhibit higher 138 
mean annual precipitation, temperature, and PET. In order to examine how the skill of seasonal weather and flow 139 
forecasts vary across a year, we divide the year into four seasons based on monthly precipitation (Lee et al., 2023): 140 
dry (December to February), dry-to-wet transition (March to May), wet (June to September), wet-to-dry transition 141 
(October to November). As shown in this figure, most of the total annual precipitation (and the corresponding 142 
flow) occurs during the hot and humid wet season, while the dry season is characterized by cold and dry 143 
conditions. Figure 1(d-f) also shows high inter-catchment variability during the wet season in both precipitation 144 
(d) and flow (f), whereas the inter-catchment variability in temperature (e) is more obvious during the dry season. 145 
Additionally, there is a high inter-annual variability of precipitation and flow in South Korea, attributed to the 146 
impacts of typhoons and monsoons (Lee et al., 2023). 147 

2.1.2 Hydrologic data and seasonal weather forecasts  148 

Precipitation, temperature, and potential evapotranspiration are the key variables required to simulate flow using 149 
a hydrological model. To this end, daily precipitation data from 1318 in-situ stations from the Ministry of 150 
Environment, the Korea Meteorologic Administration (KMA), and the national water resources agency (K-water) 151 
(Ministry of Environment, 2021), and daily temperature data from 683 in-situ stations from the KMA were 152 
obtained. Both precipitation and temperature data cover the period from 1967 to 2020 (see Figure 1). Potential 153 
evapotranspiration (PET) data was computed using the standardized Penman-Monteith method suggested by UN 154 
Food and Agriculture Organization (Allen et al., 1998). The precipitation and temperature measurements have 155 
been quality-controlled by the Ministry of Environment. We used the Thiessen polygon method to calculate the 156 
catchment average precipitation and temperature. 157 
The flow data used in this study refers to the flow into the reservoir from their upstream catchment (see Table1 158 
and Figure 1). K-water generates daily inflow data through a water balance equation, which takes into account the 159 
daily changes in reservoir volume (from storage-elevation curve) caused by the water level fluctuations and 160 
releases from the reservoir. However, to date, reservoir evaporation has not been considered in the flow estimation 161 
process. In this study, quality-controlled daily flow data for each reservoir produced by K-water is used. 162 

Several weather forecasting centres, including ECMWF, the UK Met Office and the German Weather Service, 163 
provide seasonal weather forecasts datasets through the Copernicus Climate Data Store (CCDS). According to 164 
our previous study (Lee et al., 2023), ECMWF was found to be the most skilful provider of seasonal precipitation 165 
forecasts for South Korea. Since the precipitation is one of the most important weather forcings in hydrological 166 
forecasting (Kolachian and Saghafian, 2019), we have utilized the seasonal weather forecasts datasets from 167 
ECMWF System 5 (Johnson et al., 2019) in this study. Since 1993, ECMWF has been providing 51 ensemble 168 
forecasts (a set of multiple forecasts equally likely) on a monthly basis (25 ensembles prior to 2017) with a 169 
horizontal resolution of 1° × 1° and daily temporal resolution up to 7 months ahead. In this study, the time period 170 
from 1993 to 2020 was selected and the ensemble forecasts for the selected catchments have been downloaded 171 
from the CCDS. Here, we utilized data from 1993 to 2010 to generate bias correction factors, and data from 2011 172 
to 2020 to assess the skill (see Figure S1 in the supplementary material). 173 

2.2 Methodology 174 

The methodology of our analysis is summarized in the schematic diagram shown in Figure 2. Firstly, we compiled 175 
seasonal weather forecasts ensemble from ECMWF for precipitation (P), temperature (T), and PET over the 12 176 
reservoirs for 10 years from 2011 to 2020. To downscale the datasets, a linear scaling method was applied to each 177 
weather forcing (Sec. 2.2.1). Secondly, we estimated the parameters of the hydrological model and validated its 178 
performance (Sec. 2.2.2). Utilizing the seasonal weather forecasts dataset as input data to the hydrological model, 179 
we generated an ensemble of SFFs, and using historical weather observations as input, we produced ESP. 180 
Specifically, to calculate ESP, 45 ensemble members of each weather variable were also selected from historical 181 

https://www.sciencedirect.com/science/article/pii/S037837740500154X#bib6
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observations (1966-2010, see Figure S1). Each ensemble member represents the simulated flow using a 182 
hydrological model initialized with observed meteorological data to simulate current conditions and forced by 183 
historical meteorological observations for the forecasting period. The Continuous Ranked Probability Score 184 
(CRPS) and the Continuous Ranked Probability Skill Score (CRPSS) were applied (Sec. 2.2.3) to calculate the 185 
absolute performance (score) of each forecast product (Sec. 3.1 and 3.2) and the relative performance (overall 186 
skill) of SFFs with respect to ESP (Sec. 3.3, 3.4). 187 

 188 

Figure 2: Schematic diagram illustrating analysis method of the study. 189 

Specifically, in Section 3.1, we analyse the contribution of hydrological modelling uncertainty to the performance 190 
of SFFs by comparing the actual score calculated using flow observations, to the theoretical score, calculated 191 
using pseudo flow observations. Here, pseudo-observation refers to the flow time-series obtained by feeding the 192 
hydrological model with weather observations, i.e. where errors due to hydrological model are removed. In 193 
Section 3.2 we investigated which weather variable mostly influences the performance of SFFs. For doing so, we 194 
first calculated the ‘isolated score’ of the flow forecasts generated by forcing the hydrological model with seasonal 195 
weather forecasts for one meteorological variable while using observational data for the other two variables. For 196 
instance, to assess the contribution of precipitation, we calculated the isolated score-P using seasonal precipitation 197 
forecasts, and observations for temperature and PET. Then, we computed the ‘integrated score’ using seasonal 198 
weather forecasts for all three variables and determined the ‘relative scores’ for each variable as the ratio of the 199 
isolated score over the integrated score. This workflow is illustrated in Figure S2 (supplementary material). In 200 
Sections 3.3 to 3.5, we examined the regional and seasonal variations and the characteristics of overall skill under 201 
extreme climate conditions. 202 

2.2.1 Bias correction (Statistical downscaling) 203 

The seasonal weather forecasts datasets from CCDS have a spatial resolution of 1°×1°, which is too coarse for the 204 
catchment-scale analysis. Previous studies also have reported that seasonal weather forecasts generated from 205 
General Circulation Models contain systematic biases and this can cause forecast uncertainty (Manzanas et al., 206 
2017; Maraun, 2016; Tian et al., 2018). Moreover, the usefulness of bias correction in enhancing the forecast skill 207 
has been shown in many previous studies (Crochemore et al., 2016; Ferreira et al., 2022, Pechlivanidis et al., 208 
2020; Tian et al., 2018). Hence, it is imperative to investigate the potential enhancement in the skill of hydrological 209 
forecasts resulting from the bias correction of weather forcings. 210 
Numerous bias correction methods have been developed including linear scaling method, local intensity scaling 211 
and quantile mapping (Fang et al., 2015; Shrestha et al., 2017). Thanks to its simplicity and low computation cost 212 
(Melesse et al., 2019), the linear scaling method is widely adopted. Despite its simplicity, this method has 213 
demonstrated practical usefulness in various studies (Azman et al., 2022; Crochemore et al., 2016; Shrestha et al., 214 
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2017), including our previous study on seasonal precipitation forecasts across South Korea (Lee et al., 2023). 215 
Therefore, the linear scaling method was utilized in this study. 216 
Previous studies found that additive correction is preferable for temperature whereas multiplicative correction is 217 
preferable for variables such as precipitation, evapotranspiration, and solar radiation (Shrestha et al., 2016). 218 
Consequently, the equations for linear scaling method for each variable can be expressed as:  219 

𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑
∗ = 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 · (𝑏𝑃)𝑚 = 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 · [ 

𝜇𝑚(𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝜇𝑚(𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑)
 ]     (1) 220 

𝑃𝐸𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑
∗ = 𝑃𝐸𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 · (𝑏𝑃𝐸𝑇)𝑚 = 𝑃𝐸𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 · [ 

𝜇𝑚(𝑝𝐸𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑)

𝜇𝑚(𝑝𝐸𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑)
 ]    (2) 221 

𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑
∗ = 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 + (𝑏𝑇)𝑚 = 𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑 + [ 𝜇𝑚(𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑) − 𝜇𝑚(𝑇𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑) ]   (3) 222 

where 𝑋𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑
∗  is the bias corrected forecast variable (X) at daily time scale, 𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑒𝑑  is the original forecast 223 

variable (Y) before bias correction, (𝑏𝑌)𝑚 is the bias correction factors for each variable at month m. 𝜇𝑚 represents 224 
monthly mean, and 𝑌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  is the observed daily data for the variable (Y). In this study, daily precipitation 225 
forecasts were bias corrected using the monthly bias correction factor (𝑏𝑚) for each month (m = 1 to 12). The bias 226 
correction factor was computed using the observations and original forecast datasets from 1993 to 2010, and these 227 
were then applied to adjust each seasonal weather forecast for later years (2011 to 2020). 228 

2.2.2 Hydrologic modelling 229 

The Tank model was first developed by Sugawara of Japan in 1961 (Sugawara et al., 1986; Sugawara, 1995) and 230 
has become a widely used conceptual hydrologic model in many countries (Goodarzi et al., 2020; Ou et al. 2017). 231 
A modified version of the Tank model, incorporating soil moisture structures and snowmelt modules, is commonly 232 
used in South Korea for long-term water resources planning and management purposes due to its good 233 
performance (Kang et al., 2004; Lee et al., 2020). As shown in Figure 3, the modified Tank model used in this 234 
study comprises four storage tanks representing the runoff and baseflow in the target catchment (Phuong et al., 235 
2018; Shin et al., 2010) and incorporates a water-balance module suggested by the United States Geological 236 
Survey (McCabe and Markstrom, 2007). 237 

 238 

Figure 3: The structure of modified Tank model (Left) and its water -balance module (Right) 239 

This model has 21 parameters (see Table S1 in the supplementary material), which were calibrated based on 240 
historical observations. We calibrated the model using observations for the period from 2001 to 2010, and the 241 
validation was done using the time period 2011 to 2020. To estimate the model parameters, the Shuffled Complex 242 
Evolution global optimization algorithm (SCE-UA), developed at the University of Arizona (Duan et al., 1992, 243 
1994), is utilized. This algorithm has widely been used for the calibration of hydrologic models and has shown 244 
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more robust and efficient performance compared to many traditional optimization methods such as Genetic 245 
Algorithm, Differential Evolution, and Simulated Annealing (Rahnamay-Naeini et al., 2019; Yapo et al., 1996). 246 
The following Objective Function (OF) proposed by Sugawara (Sugawara et al., 1986), is applied for the SCE-247 
UA algorithm, because a previous study demonstrated that this objective function generally shows superior results 248 
in calibrating the Tank model in South Korean catchments with calibration periods longer than 5 years (Kang et 249 
al., 2004).  250 

𝑂𝐹 =  ∑  |𝑞𝑡
𝑜𝑏𝑠 − 𝑞𝑡

𝑠𝑖𝑚|  /  𝑞𝑡
𝑜𝑏𝑠𝑁

𝑡=1          (4) 251 

where t, N represent time (in days) and total number of time steps, 𝑞𝑡
𝑜𝑏𝑠 and 𝑞𝑡

𝑠𝑖𝑚 represent the observed and 252 
simulated flow at time t, respectively. The optimal parameter set is the one that produces the lowest value from 253 
the objective function. 254 

In order to evaluate the model performance in diverse perspectives, we used three different evaluation indicators: 255 
Nash-Sutcliffe model Efficiency coefficient (NSE), Percentage Bias (PBIAS), and Ratio of Volume (ROV). The 256 
calculation of each indicator was carried out as described by the following equations. 257 

𝑁𝑆𝐸 = 1 −  ∑ (𝑞𝑡
𝑜𝑏𝑠 −  𝑞𝑡

𝑠𝑖𝑚)2 /  ∑ (𝑞𝑡
𝑜𝑏𝑠 − 𝑞𝑚𝑒𝑎𝑛

𝑜𝑏𝑠 )2 𝑁
𝑡=1

𝑁
𝑡=1       (5) 258 

𝑃𝐵𝐼𝐴𝑆 = ∑ (𝑞𝑡
𝑜𝑏𝑠 −  𝑞𝑡

𝑠𝑖𝑚)2 /  ∑ 𝑞𝑡
𝑜𝑏𝑠 × 100 𝑁

𝑡=1
𝑁
𝑡=1        (6) 259 

𝑅𝑂𝑉 = ∑ 𝑞𝑡
𝑠𝑖𝑚 /  ∑ 𝑞𝑡

𝑜𝑏𝑠 𝑁
𝑡=1

𝑁
𝑡=1          (7) 260 

where t, N, 𝑞𝑡
𝑜𝑏𝑠  and 𝑞𝑡

𝑠𝑖𝑚  are as defined in Eq.4, and 𝑞𝑚𝑒𝑎𝑛
𝑜𝑏𝑠  represents observed mean flow across the total 261 

number of time steps (N).  262 

The NSE can range from negative infinity to 1. A value of 1 indicates a perfect correspondence between the 263 
simulated and the observed flow. NSE values between zero and 1 are generally considered acceptable levels of 264 
performance (Moriasi et al., 2007). PBIAS is a metric used to measure the average deviation of the simulated 265 
values from the observation data. The optimal value of PBIAS is 0, and low-magnitude values indicate accurate 266 
simulation. Positive (negative) values of PBIAS indicate a tendency for overestimation (underestimation) in the 267 
hydrologic modelling (Gupta et al., 1999). ROV represents the ratio of total volume between the simulated and 268 
observed flow. An optimal ROV value is 1, and a value greater (less) than 1 suggests overestimation 269 
(underestimation) of total flow volume (Kang et al., 2004). 270 

2.2.3 Score and skill assessment 271 

As a score metric, we adopted the CRPS developed by Matheson and Winkler (1976) which measures the 272 
difference between the cumulative distribution function of the forecast ensemble and the observations. The CRPS 273 
has the advantage of being sensitive to the entire range of the forecast and being clearly interpretable, as it is equal 274 
to the Mean Absolute Error for a deterministic forecast (Hersbach, 2000). For these reasons, it is a widely used 275 
metric to assess the performance of ensemble forecasts (Leutbecher and Haiden, 2020). The CRPS can be 276 
calculated as: 277 

CRPS =  ∫[𝐹(𝑥) –  𝐻(𝑥 ≥  𝑦)]2 𝑑𝑥        (8) 278 

where F(x) represents the cumulative distribution of SFFs ensemble, x and y are respectively the forecasted and 279 
observed flow, H is called the ‘Heaviside function’ and is equal to 1 when x ≥ y and 0 when x < y. If SFFs were 280 
perfect, i.e., all the ensemble members would exactly match the observations, and CRPS would equal to 0. 281 
Conversely, a higher CRPS indicates a lower performance, as it implies that the forecast distribution is further 282 
from the observation. Note that the CRPS measures the absolute performance (score) of forecast without 283 
comparing it to a benchmark. 284 

Along with the CRPS, we also employed the CRPSS, which presents the forecast performance in a relative manner 285 
by comparing it to a benchmark forecast. It is defined as the ratio of the forecast and benchmark score and is 286 
expressed as follows: 287 

CRPSS =  1 – 
CRPS𝑆𝑦𝑠

CRPS𝐵𝑒𝑛          (9) 288 
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where CRPS𝑆𝑦𝑠  is the CRPS of the forecasting system (SFFs in our case) and CRPS𝐵𝑒𝑛  is the CRPS of the 289 
benchmark. The values of CRPSS can range from -∞ to 1. A CRPSS value between 0 to 1 indicates that the 290 
forecasting system has skill with respect to the benchmark. Conversely, when the CRPSS is negative, i.e., from -291 
∞ to 0, the system has a lower performance than the benchmark. Here, we utilized ESP as a benchmark due to its 292 
extensive application in flow forecasting (Pappenberger et al., 2015; Peñuela et al., 2020) and its computational 293 
efficiency (Baker et al., 2021; Harrigan et al., 2018). ESP is generated using the Tank model fed with historical 294 
daily meteorological records from 1966 to 2010. As this period covers 45 years, ESP is composed of 45 members 295 
for each catchment. 296 

Since the CRPSS ranges from -∞ to 1, simply averaging the CRPSS values over a period can result in low or no 297 
skill due to the presence of few extremely negative values. To address this issue, here we employed the ‘overall 298 
skill’ metric introduced by Lee et al. (2023). The overall skill represents the probability with which a forecasting 299 
system (in our case, the SFFs) outperforms the benchmark (i.e., has CRPSS greater than 0) over a specific period. 300 
It is calculated as: 301 

Overall skill (%)  =  
 ∑  [ 

𝑁𝑦
𝑦=1 𝐻 (CRPSS) (y) ]

𝑁𝑦
 ×  100 (%)       (10) 302 

where 𝑁𝑦 is the total number of years, the Heaviside function H is equal to 1 when CRPSS (y) > 0 (SFFs have 303 
skill with respect to ESP in year y) and 0 when CRPSS (y) ≤ 0 (ESP outperforms SFFs). If the overall skill is 304 
greater than 50%, we can conclude that SFFs generally have skill over ESP across the period. 305 

3. Results 306 

3.1 Contribution of hydrological model to the performance of SFFs 307 

 308 

Figure 4.  (a) Nash-Sutcliffe Efficiency (NSE) of the hydrological models for the 12 catchments analysed in this study; 309 
(b) actual score and (c) theoretical score of SFFs, (d) score ratio (theoretical / actual) in terms of mean CRPS at different 310 
lead times (x-axis) (the scores are calculated before the bias correction of weather forcings). The actual score is 311 
determined by comparing SFFs to flow observations. The theoretical score is determined by comparing SFFs to pseudo-312 
observations produced by the same hydrological model forced with observed precipitation, temperature and PET.  313 

Figure 4(a) shows the NSE of the modified Tank model for each catchment during the calibration period 2001-314 
2010 (blue bars) and the validation period 2011-2020 (orange bars). As seen in this figure, the NSE values for the 315 
12 catchments are generally high (within the range of 0.7 to 0.9) during both the calibration and validation periods, 316 
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and the relative difference in performance between the two periods is small for all catchments. Specifically, the 317 
NSE results indicate a ‘good’ performance through comparative analysis (Chiew and Mcmahon, 1993; Moriasi et 318 
al., 2015). However, the last three catchments (Namgang, Buan and Imha) exhibit a relatively greater gap between 319 
calibration and validation periods. Among all 12 catchments, these three exhibit the most distinctive hydrological 320 
characteristics: Imha is the driest, while Namgang is the wettest catchment, and Buan is located along the coast, 321 
with the smallest catchment area. A detailed model performance evaluation, including other metrics such as 322 
PBIAS and ROV (refer to Figure S3 in the supplementary material), also supports this result. Overall, Figure 4 323 
demonstrates that the Tank model utilized in this study shows an excellent performance in simulating flow, with 324 
relatively higher modelling challenges observed in those three catchments. 325 
Figures 4(b-c) represent the actual and theoretical scores (mean CRPS) over the period 2011-2020. Again, these 326 
are calculated by comparing the simulated flows with the observed flows (actual score), and with pseudo-327 
observations (theoretical score), respectively. Since the CRPS is computed based on accumulated monthly flow 328 
at a given lead time, forecast errors also accumulate over time. Therefore, both scores deteriorate considerably as 329 
the lead time increases. Generally, the theoretical scores are slightly smaller than the actual scores, but the 330 
difference is marginal. 331 

To facilitate comparison, the ratio between the actual score and theoretical score is shown in Figure 4(d). For most 332 
catchments, the ratio values are close to 1, confirming the small gap between actual and theoretical score. The 333 
noticeable exception is only seen in Imha catchment, characterised by being the driest among the catchments and 334 
exhibiting the lowest modelling performance (Figure 4(a)). 335 

3.2 Contribution of weather forcings to the performance of SFFs 336 

In this section, we quantify the contribution of each weather forcing forecast to the performance of SFFs, as 337 
measured by the CRPS (see Section 2.2 and Figure S2 in the supplement material for details on the underpinning 338 
methodology). Figure 5 shows the relative scores for each non-bias corrected weather forcing across all seasons 339 
(a), dry season (b) and wet season (c) at different lead times (1, 3, and 6 months). The relative score is calculated 340 
as the ratio of the integrated score (computed using seasonal weather forecasts for all weather forcings), to the 341 
isolated score (when SFFs are computed using seasonal forecasts for one weather forcing, and observations for 342 
the other two). The closer the isolated score to the integrated score, the larger the contribution of that weather 343 
forcing to the overall performance (or lack of performance) of the SFFs. 344 

As shown in Figure 5(a), the contribution of each weather forcing to the performance of SFFs varies with 345 
catchment and lead time, but overall precipitation forecast plays a dominant role. Specifically, the contribution of 346 
precipitation forecast (red) accounts for almost 90% of the integrated score, which is forced by seasonal weather 347 
forecasts for all weather forcings. Meanwhile, PET (orange) and temperature (blue) contribute a similar level, 348 
ranging between 30% and 40%.  349 
During the dry season (Figure 5(b)) however, PET and temperature show comparable levels of contribution to 350 
precipitation. This is more evident in the Soyanggang and Hoengseong catchments, which are both located in the 351 
northernmost region of South Korea (see Figure 1). These catchments are characterized by low temperatures and 352 
heavy snowfall in the dry (winter) season. Correct prediction of temperature is thus crucial here as temperature 353 
controls the partitioning of precipitation into rain and snow, and hence the generation of a fast or delayed flow 354 
response. Further analysis (shown in the supplementary material, Figure S4), reveals that temperature forecasts in 355 
these two catchments are consistently lower than observation, which means that the hydrological model classifies 356 
rain as snow for several events, and hence retains that ‘snow’ in the simulated snowpack which in reality should 357 
produce a flow response. This explains the significant increase in performance when forcing the model with bias 358 
corrected temperature instead (Figure S4(b)). 359 
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 360 

Figure 5. Relative score (%) of each weather forcings (Precipitation: red, PET: orange, Temperature: blue) before bias 361 
correction to the score of SFFs averaged over 10 years (2011-2020) during (a) all seasons, (b) dry and (c) wet season at 362 
1, 3 and 6 lead months from the top to bottom (Catchments are ordered by their location from the northernmost 363 
(Soyanggang) to the southernmost (Jangheung) in right-angle direction, see Figure 1). 364 

In order to enhance the forecasting performance, we applied bias correction to each weather forcing and re-365 
generated SFFs with bias-corrected weather forcings. In most catchments and lead times, the overall skill is 366 
improved after correcting biases. The overall skill increases by 46% to 54% on average across all seasons, and 367 
more specifically from 31% to 50% in the dry season and from 54% to 55% in the wet season. The largest increase 368 
in overall skill is found in the Imha catchment, which had the lowest skill before correcting biases. For a detailed 369 
account of overall skill before and after bias correction, see Figure S5 and S6 in the supplementary material. 370 

Figure 6 illustrates the change in the relative score of each weather forcing after bias correction, focusing on the 371 
dry season and the first forecasting lead month. One notable finding is that, in the snow-affected catchments 372 
(Soyanggang and Hoengseong), there is a significant decrease in the relative score of temperature after applying 373 
bias correction. As shown in detail in Figure S4 in the supplementary material, this is due to the correction of 374 
systematic underestimation biases in temperature forecasts, which leads to a more correct partitioning of 375 
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precipitation into snow and rain, and thus better flow predictions. The relative score of the forecasts for all seasons 376 
and lead times after bias correction is reported in Figure S7 in the supplementary material. 377 

 378 

Figure 6. Relative score (%) of each weather forcings ((a) Precipitation, (b) PET, (c) Temperature), before (solid line) 379 
and after (dashed line) bias correction, to the score of SFFs averaged over 10 years (2011-2020) during the dry season 380 
and first lead month. 381 

3.3 Comparison between SFFs and ESP across seasons and catchments 382 

In order to comprehensively compare the performance of SFFs and ESP, we employed the overall skill, which 383 
quantifies the frequency with which SFFs outperform ESP, as outlined in section 2.2.3 (Eq.10). Figure 7 shows 384 
the seasonal and regional variations of overall skill (after bias correction) for all seasons (a), for the dry season (b) 385 
and the wet season (c). For each catchment, the results are visualised through a table showing the overall skill at 386 
lead times of 1 to 6 months. The table cells are coloured in green (pink) when SFFs outperform ESP (ESP 387 
outperforms SFFs). Yellow colour indicates that the system and benchmark have equivalent performance. In 388 
principle, this happens when the overall skill is equal to 50%, however in order to avoid misinterpreting small 389 
differences in overall skill, we classified all cases as equivalent when it is between 45% and 55%. While the choice 390 
of the range (±5%) is subjective, we find it helpful to assist analysis in avoiding spurious precision in a simple 391 
and intuitive manner. 392 

 393 

Figure 7. Map of the overall skill of bias corrected SFFs for 10 years (2011-2020) over (a) all seasons, (b) dry season 394 
and (c) wet season. The colors represent whether SFFs outperform EPS or not for each catchment and lead time (1 to 395 
6 months). 396 
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As shown in Figure 7(a), the overall skill of SFFs varies according to the lead time, season and catchment. SFFs 397 
generally outperform ESP, particularly up to 3 months ahead. At longer lead times, the results vary from catchment 398 
to catchment. For instance, in some catchments generally located in the Southern region, such as Janheung, 399 
Namgang, and Hapcheon, SFFs outperform ESP for longer lead times. On the other hand, in some catchments, 400 
such as Imha and Buan, ESP generally exhibits higher performance than SFFs. In specific, two catchments, Buan, 401 
which is located in the Western coastal region and has the smallest catchment area, and Imha, which is the driest 402 
catchment, show the lowest skill. Nevertheless, we could not identify a conclusive correlation between catchment 403 
characteristics such as size or mean annual precipitation and overall skill. 404 
Comparing the results for the dry and wet seasons, Figure 7(b-c) shows that SFFs are much more likely to 405 
outperform ESP in the wet season, and particularly in the catchments in northernmost region. During the dry 406 
season, overall skill of SFFs is lower, and particularly in the Buan, Imha and Sumjingang catchments SFFs 407 
outperform ESP only for the first lead month. 408 

3.4 Comparison between SFFs and ESP in dry and wet years 409 

We now assess the influence of exceptionally dry and wet conditions on the overall skill of SFFs. Based on the 410 
mean annual precipitation across 12 catchments within the period 2011-2020, we classified the years 2015 and 411 
2017 as dry (P < 900 mm), and the years 2011 and 2020 as wet (P > 1500 mm). Figure 8 shows the overall skill 412 
of SFFs averaged over 12 catchments for the entire period (a), dry years (b), and wet years (c), during all seasons 413 
(black solid line), dry (red dashed line) and wet (blue dashed line) seasons, respectively.  414 

 415 

Figure 8. Overall skill of bias corrected SFFs over 12 catchments averaged over (a) all years (2011 to 2020), (b) dry 416 
years (mean annual P < 900mm) and (c) wet years (mean annual P > 1500mm) during all seasons (black lines), dry 417 
seasons (red dashed lines) and wet seasons (blue dashed lines). The pale black points represent the overall skill in each 418 
catchment. Here, mean annual precipitation is averaged across the catchments and years.  419 

Figure 8(a) shows that SFFs generally outperform ESP for lead times of up to 3 months, while maintaining 420 
equivalent performance levels thereafter. In addition, it is evident that SFFs are more skilful during the wet season 421 
than during the dry season. In dry years (Figure 8(b)), in contrast to the typical decrease in the overall skill with 422 
lead time, we find that SFFs maintain a significantly higher skill at all lead times, and particularly during the wet 423 
season (blue line). On the other hand, in wet years (Figure 8(c)), the overall skill is generally poor, and ESP 424 
generally has higher performance than SFFs, especially during the wet season.  425 
Last, we analyse the spatial variability of the overall skill by looking at the spread of individual catchments (grey 426 
dots). We see that the spread in dry and wet years (Figure 8(b-c)) is larger than in all years (Figure 8(a)). This 427 
confirms that under extreme weather conditions, the uncertainty and variability in the forecasting performance 428 
increase depending on the catchment. A more detailed analysis of the overall skill for each catchment (described 429 
in Figure S8 in the supplementary material) shows that the catchments located in the Southern region consistently 430 
exhibit higher skill, regardless of lead times and dry/wet years. 431 

3.5 Example of flow forecasts time-series 432 

Figure 9 shows an example of the flow into the Chungju reservoir, which holds the largest storage capacity in 433 
South Korea. The overall skill of this catchment is the highest for a 1-month lead time; however, from the second 434 
lead month onward, it shows a moderate level of overall skill compared to other catchments (see Figure S8 in the 435 
supplementary material). In this section, we compare the observed and forecasted cumulative flow forced by 436 
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seasonal weather forecasts (SFFs, green lines) and historical weather records (ESP, pink lines) for lead times of 437 
1, 3, and 6 months from April during the wettest (2011) and the driest year (2015), respectively. 438 

 439 

Figure 9. Observed cumulative flow (black lines) and forecasted cumulative flow representing SFFs after 440 
bias correction (left, green lines) and ESP (right, pink lines) in the Chungju reservoir for 1, 3, and 6 months 441 
of lead times over (a) the wettest year (2011, 1884mm/year), and (b) the driest year (2015, 742mm/year). 442 

In this specific catchment and years, SFFs show equivalent or slightly higher performance than ESP at a 1-month 443 
lead time. However, as the lead time increases, the performance of both methods tends to deteriorate. Essentially, 444 
there is an underestimation in the wettest year (2011), and an overestimation in the driest year (2015), at the scale 445 
of the season. In particular, considerably higher performance was found in SFFs compared to ESP in the driest 446 
year (Figure 9(b)). On the other hand, it is obvious that both methods have insufficient performance in forecasting 447 
flow in the wettest year for lead times of 3 and 6 months. 448 
Examining each ensemble member of both SFFs and ESP, we found higher variability in ESP. Furthermore, since 449 
ESP utilizes the same weather forcings, the forecasted flows are generally similar in terms of its quantity and 450 
patterns, regardless of the wettest and driest years. Conversely, the forecasted flow ensemble members of SFFs 451 
show distinctive patterns for each year. 452 
Although, these results are confined to a single catchment and specific years, this analysis is valuable in 453 
quantitatively illustrating the forecasted flow results under dry and wet conditions and different lead times. 454 
Furthermore, these features are generally shown in other catchments, and align with our previous findings in 455 
section 3.4. 456 

4. Discussion 457 

4.1 The skill of seasonal flow forecasts 458 
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This study offers a comprehensive view of overall skill of SFFs, benchmarked to the conventional – and easier to 459 
implement - ESP method. In contrast to the majority of previous studies, which assessed the skill of SFFs at 460 
continental or national level or over large river basins, our study focuses on 12 relatively small catchments (59 - 461 
6648 km2) across South Korea. 462 

 463 

Figure 10. Summary of key findings regarding the overall skill at different lead times, seasons, and years. 464 

Figure 10 summarizes the key findings of this study regarding the overall skill of SFFs across different seasons 465 
and years. It demonstrates that SFFs outperform ESP in almost all the cases for forecasting lead times of one 466 
month. This result is consistent with previous literature (e.g., Lucatero et al., 2018; Yossef et al., 2013). In 467 
addition, the higher skill of SFFs is also shown at lead times of 2 and 3 months in several situations as shown in 468 
Figure 10, and at even longer lead times in dry years. This is more surprising as this considerable performance of 469 
SFFs was not found in previous studies. 470 
Similar to our study, earlier studies (Crochemore et al., 2016; Lucatero et al., 2018) have explored the skill 471 
compared with real flow observations at a catchment scale. Therefore, the comparison of their results with our 472 
findings holds interest. In brief, their results suggest that ESP remains a ‘hard-to-beat’ method compared to SFFs 473 
even after bias correction. Crochemore et al. (2016) showed that SFFs using bias corrected precipitation has an 474 
equivalent level of performance with ESP up to 3 months ahead. Lucatero et al. (2018) concluded that SFFs still 475 
face difficulties in outperforming ESP, particularly at lead times longer than 1 month. 476 

The difference of our results compared to the literature stems from a combination of several important factors. 477 
First, it is worth noting that these two previous studies were conducted at the catchment-scale, with a specific 478 
focus on Europe, namely France (Crochemore et al., 2016) and Denmark (Lucatero et al., 2018). The skill of SFFs 479 
varies according to the geographic locations, meteorological conditions of given study area, as confirmed by 480 
numerous studies (e.g., Greuell et al., 2018; Pechlivanidis et al., 2020; Yossef et al., 2013). Therefore, the skill of 481 
SFFs could also be influenced by distinct spatial and meteorological conditions between Europe and South Korea. 482 
Second, we can attribute the difference to the utilization of a more advanced seasonal weather forecasting system. 483 
Unlike previous studies which applied ECMWF system 4, our study is conducted based on ECMWF’s cutting-484 
edge forecasting system version 5. It is reported that ECMWF system 5 has many improvements compared to the 485 
previous version including the predictive skill of the El Niño Southern Oscillation (ENSO) (Johnson et al., 2019) 486 
and rainfall inter-annual variability (Köhn-Reich and Bürger, 2019). Specifically, ENSO is known to be a key 487 
driver affecting the skill of seasonal weather forecasts (Ferreira et al., 2022; Shirvani and Landman, 2015; 488 
Weisheimer & Palmer, 2014); therefore, its improvement can result in notable changes in forecasting skill. 489 
Although the relationship between seasonal weather patterns in South Korea and ENSO is not fully understood, 490 
some previous research has shown good correlations for certain regions and seasons (Lee and Julien, 2016; Noh 491 
and Ahn, 2022). In this study, it is challenging to quantitatively evaluate the impact of system advancements. 492 
However, given the significance of meteorological forecast in hydrological forecasts, it is highly probable that the 493 
development of the system has had a positive influence on the results. Although a few studies have analysed the 494 
skill of SFFs based on ECMWF system 5 (e.g., Peñuela et al., 2020; Ratri et al., 2023), direct comparisons with 495 
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our research were deemed difficult due to differences in spatial scale and analysis methods, such as the absence 496 
of a comparison with ESP. 497 
Last, the performance of the hydrological model also contributes to differences in the results. To evaluate the 498 
impact of hydrological model to SFFs, we compared the actual score (forecast performance compared to observed 499 
flow data) with the theoretical score (forecast performance compared to pseudo flow observation) and found that 500 
the actual scores are slightly higher than theoretical scores (i.e., theoretical score shows higher performance). This 501 
finding is consistent with previous studies, and the gap between the actual and theoretical score is highly linked 502 
to the performance of hydrological model (Greuell et al., 2018; van Dijk, 2013). When a model’s actual score 503 
closely approximates its theoretical score, it may suggest that the model is operating at a best possible level, given 504 
the inherent uncertainties and limitations associated with the available data and methods. Although our results 505 
demonstrated that the theoretical score shows higher performance than actual score, their difference was generally 506 
marginal. This close agreement between the two scores indicates that the model is well-calibrated and capable of 507 
effectively capturing the underlying hydrological processes in those catchments. 508 

Our findings on the impact of bias correction quantitatively showed that generally precipitation controls the 509 
performance of SFFs, however, we also found that temperature plays a substantial role in specific seasons and 510 
catchments. Specifically, the Hoengseong and Soyanggang catchments, located in the northernmost part of South 511 
Korea and affected by snowfall in the Dry (winter) season (December to February), exhibit a higher temperature 512 
contribution than precipitation for a forecasting lead time of one month during the dry season. The main reason 513 
for this is the underestimation of temperature forecasts. Our supplementary experiments provide evidence that 514 
using bias-corrected temperature forecasts significantly improves the performance of flow forecasts (see Figure 515 
S4 in the supplementary material). Although the positive impact of bias correction of precipitation forecasts in 516 
enhancing the performance of SFFs has been well-documented in numerous previous studies (Crochemore et al., 517 
2016; Lucatero et al., 2018; Pechlivanidis et al., 2020; Tian et al., 2018), our result demonstrates the importance 518 
of bias correction of temperature too, at least in snow-affected catchments.  519 
An alternative approach to bias correction has been proposed by (Lucatero et al., 2018; Yuan and Wood, 2012), 520 
who argue that directly correcting the biases in the flow forecasts may result in better performance at a lower 521 
computational cost. However, we tested this approach and found conflicting outcomes (Figure S9 in the 522 
supplementary material). Therefore, caution should be exercised when directly correcting biases for flow, as this 523 
approach may exclude the contribution of initial conditions, which is one of the most crucial factors in 524 
hydrological modelling. In cases where the performance of hydrological model is the major source of error, bias 525 
correction of the flow might be useful; however, if the model shows an acceptable performance, as demonstrated 526 
in this study, incorporating bias correction for the simulated flow could add more errors. 527 

Due to limited data availability, conducting additional validation across a larger number of extreme events is not 528 
possible. Nevertheless, our research findings suggest a potential correlation between the overall skill and dry/wet 529 
conditions, that should be further validated if new data become available. Specifically, in the period analysed here, 530 
SFFs considerably outperform ESP for all lead times during the wet season in dry years. Conversely, the overall 531 
skill during the wet season in wet years was not satisfactory. This is because the overall skill is commonly 532 
dominated by precipitation forecasting skill, and we previously found that the skill of precipitation forecasts is the 533 
lowest in wet years (Lee et al 2023). The systematic biases of seasonal precipitation forecasts, which tend to 534 
underestimate (overestimate) the precipitation during the wet (dry) season, led to the consistent results in flow 535 
forecasts. This finding also hints that SFFs hold the potential to provide valuable information for effective water 536 
resources management during dry conditions, which is crucial for drought management. 537 

4.2 Limitations and directions for future research 538 

In this paper, we investigated the overall skill of SFFs at the catchment scale using ECMWF’s seasonal weather 539 
forecasts (system 5) with a spatial resolution of 1×1°. Based on our previous research, it has been demonstrated 540 
that among four forecasting centres, ECMWF provides the most skilful seasonal precipitation forecasts (Lee et 541 
al., 2023), thus we utilized seasonal weather forecasts datasets from ECMWF in this study. However, the skill for 542 
other weather forcings such as temperature and PET, have not been tested across South Korea. Additionally, while 543 
ECMWF originally generates seasonal weather forecasts with high resolution (36×36km, approximately 544 
0.3×0.3°), we utilized publicly available low resolution data (1×1°), publicly provided through CCDS, to maintain 545 
consistency with our previous work (Lee et al., 2023). Our additional investigation indicates that the difference in 546 
weather data between high and low resolution is not substantial (see Figure S10 in the supplementary material). 547 
Nevertheless, prior studies suggest that the skill of seasonal weather forecasts may vary according to factors such 548 
as region, season, and spatial resolution. Therefore, broader research is required to determine the seasonal weather 549 
forecasts provider as well as spatial resolution that can lead to skilful hydrological forecasts in the regions or 550 
seasons of interest. 551 
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Given the distinct climatic conditions in South Korea, it is important to acknowledge that our results may not be 552 
applicable to other regions or countries. Therefore, further work needs to be carried out to reproduce this analysis 553 
in different regions. To facilitate this process, two Python-based toolboxes can be useful: SEAFORM (SEAsonal 554 
FORecasts Management) and SEAFLOW (SEAsonal FLOW forecasts). The SEAFORM toolbox, developed in 555 
our previous study (Lee et al., 2023), offers multiple functions for manipulating seasonal weather forecast datasets 556 
(e.g., download the datasets, time-series generation, bias correction). On the other hand, the SEAFLOW toolbox, 557 
developed in this study, is specifically designed for the analysis of SFFs based on the modified Tank model (but 558 
it could be useful to apply to other hydrologic models).  559 
In terms of forecast skill, our study highlights the potential of SFFs at the catchment scale for real water resources 560 
management. Nevertheless, it is crucial to recognize the difference between ‘skill’, indicating how well 561 
hydrological forecasts mimic observed data, and ‘value’, referring to the practical benefits obtained from utilizing 562 
those forecasts in the real world. Previous studies have addressed this issue, showing that better skill does not 563 
always result in higher value (Boucher et al., 2012; Chiew et al., 2003). While earlier findings suggest that the 564 
conventional method (ESP) generally outperforms SFFs in terms of ‘skill’ (e.g., Lucatero et al., 2018; Yossef et 565 
al., 2013), recent research demonstrates that, in terms of ‘value,’ the use of seasonal forecasts in semi-arid regions 566 
offers significant economic benefits by mitigating hydro-energy losses in a dry year (Portele et al., 2021). 567 
Therefore, our future research efforts should concentrate on a quantitative evaluation of the value of SFFs for 568 
practical reservoir operations, informing decision-making in water resources management. This evaluation is of 569 
significant importance as it directly relates to assessing the potential utilization of SFFs in practical water 570 
management. 571 

5. Conclusions 572 

This study assessed the overall skill of SFFs across 12 catchments in South Korea using a hydrological model 573 
forced by seasonal weather forecasts from the ECMWF (system 5). By focusing on operational reservoir 574 
catchments with relatively small sizes, our findings showed the potential of SFFs for practical water resources 575 
management. 576 
The results first demonstrate that the performance of the hydrological model is crucial in flow forecasting with 577 
the Tank model used in this study exhibiting reliable performance. Secondly, precipitation emerges as a dominant 578 
factor influencing the performance of SFFs compared to other weather forcings, and this is more evident during 579 
the wet season. However, temperature can also be highly important in specific seasons and catchments, and this 580 
result highlights the significance of temperature bias correction as the flow simulation with the bias-corrected 581 
temperature provides higher performance. Third, at catchment scale, which is more suitable for water resources 582 
management, bias corrected SFFs have skill with respect to ESP up to 3 months ahead. Notably, the highest overall 583 
skill during the wet season in dry years highlights the potential of SFFs to add value in drought management. 584 
Lastly, while our research emphasizes the superior performance of SFFs at the catchment scale in South Korea, it 585 
is important to note that outcomes may vary depending on factors such as the type of seasonal weather forecasts 586 
system used, the study area, and the performance of the hydrological model. 587 
As seasonal weather forecasting technologies continue to progress, it is also crucial to concurrently pursue their 588 
application and validation in flow forecasting. We hope that our findings contribute to the ongoing validation 589 
efforts of the skill of SFFs across various regions and, furthermore, serve as a catalyst for their practical application 590 
in real-world water management. At the same time, our proposed workflow and the analysis package we have 591 
developed using Python Jupyter Notebook, can offer valuable support to water managers in gaining practical 592 
experience to utilize SFFs more effectively. 593 
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