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Abstract 

Streamflow predictions are critical for managing water resources and for 

environmental conservation, especially in the water-short Western U.S. Land Surface 

Models (LSMs), such as the Variable Infiltration Capacity (VIC) model and the Noah-

Multiparameterization (Noah-MP) play an essential role in providing comprehensive 

runoff predictions across the region. Virtually all LSMs require parameter estimation 

(calibration) to optimize their predictive capabilities. Here, we focus on the 

calibration of VIC and Noah-MP models at a 1/16° latitude-longitude resolution 

across the Western U.S.  We first performed global optimal calibration of parameters 

for both models for 263 river basins in the region. We find that the calibration 

significantly improves the models' performance, with the median daily streamflow 

Kling-Gupta Efficiency (KGE) increasing from 0.37 to 0.70 for VIC, and from 0.22 to 

0.54 for Noah-MP.  In general, post-calibration model performance is higher for 

watersheds with relatively high precipitation and runoff ratios, and at lower elevations.  

At a second stage, we regionalize the river basin calibrations using the donor-basin 

method, which establishes transfer relationships for hydrologically similar basins, via 
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which we extend our calibration parameters to 4,816 HUC-10 basins across the region. 

Using the regionalized parameters, we show that the models' capabilities to simulate 

high and low flow conditions are substantially improved following calibration and 

regionalization. The refined parameter sets we developed are intended to support 

regional hydrological studies and hydrological assessments of climate change impacts. 

 

 1. Introduction 

Streamflow predictions play a key role in water and environmental management, 

especially in the water-stressed Western U.S. (WUS). In the short term, these 

predictions provide early warnings for impending flood events, thereby enabling 

timely preparation and response to mitigate immediate flood risk and damages (Raff 

et al., 2013; Maidment, 2017). (In the longer term, streamflow predictions enable 

water utilities and agencies to plan water distribution within and across multiple 

uses—urban, agricultural, and industrial (Anghileri et al., 2016). Streamflow 

predictions also aid in understanding and foreseeing the impacts of climate change on 

water systems, thereby informing adaptive strategies for water resource management.  

Streamflow predictions are derived via a synthesis of hydrometeorological data, 

statistical methodologies, and computational modeling. Direct measurement of runoff 

is an important element of this process, however it is only possible in river basins with 

well-developed observational infrastructure (Sharma and Machiwal, 2021). This 

limitation leaves vast areas, often critical to water resource management and 

climatology, without direct runoff observations on which to base streamflow 

predictions. As an alternative, Land Surface Models (LSMs) can be used to simulate 

streamflow. LSMs typically are forced with air temperature, precipitation and other 

surface meteorological variables. By integrating climatic, topographic, and land-use 

information, they can fill streamflow observation gaps and provide comprehensive, 
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spatially distributed runoff predictions (Fisher and Koven, 2020). The capabilities of 

LSMs equip us with the necessary tools to produce streamflow predictions that can be 

used to prepare for severe weather conditions, form the basis for water resource 

management, and inform water management associated with our evolving climate.  

One of the key challenges in hydrological modeling is the reliable representation 

of the spatiotemporal variability of natural processes (Dembélé et al., 2020). 

Enhanced spatial resolution and improved estimates of surface meteorological 

variables have empowered LSMs to predict diverse processes with greater detail. 

However, a recurrent issue is that the parameters embedded in LSMs often 

inadequately capture fine-scale variations in land surface processes, as illustrated in 

Figures S7 and S8. Accurate prediction of land surface processes, particularly over 

large areas, requires accurate parameter estimation, which remains a significant 

bottleneck. Errors in parameter estimates affect LSMs’ ability to forecast runoff at 

continental or subcontinental scales. Fisher and Koven (2020) identify LSM 

parameter estimation as one of three grand challenges in land surface modeling.  

 To deal with this challenge, we describe methods and resulting high-resolution 

parameter data sets for two widely used LSMs across the WUS. We base our 

estimates on a strategy of minimizing metrics of differences in observed and model-

predicted streamflow, following many previous studies (Arsenault and Brissette,  

2014; Poissant et al., 2017; Razavi and Coulibaly, 2017; Gochis et al., 2019; Qi et al., 

2021 and Bass et al., 2023) We do so because streamflow observations are more 

readily available than other model prognostic variables like soil moisture or 

evapotranspiration (Demaria et al., 2007; Gao et al., 2018; Troy et al., 2008; Yadav et 

al., 2007), although the methods we use could be generalized to incorporate other 

observed and model-predicted fluxes and state variables.  Although previous studies 

have mostly focused on a single hydrologic model (e.g., Mascaro et al. (2023), 
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Sofokleous et al. (2023), and Gou et al. (2020)), here we utilize two models to address 

structural model uncertainty and to ensure broader applicability of the calibration 

methods we employ. 

The Variable Infiltration Capacity (VIC, Liang et al. (1994)) model and Noah-

Multiparameterization (Noah-MP, Niu et al. (2011)), which we use here, are widely 

used hydrologic models both in the U.S. and globally, as highlighted by Mendoza et al. 

(2015) and Tangdamrongsub (2023).  Many previous implementations of VIC for the 

Western United States (WUS) have been based on the Livneh et al. (2013) data set, 

and its predecessor, Maurer et al. (2002), which performed initial calibrations across 

the region. In the case of Noah-MP, Bass et al. (2023) performed manual calibration 

across the region. Neither of these implementations, however, employs globally 

optimized calibration, as we do here.  

The process of calibration can be computationally demanding, and prior research 

typically has focused on obtaining parameters appropriate to facilitating model 

simulations that match observations as closely as possible at stream gauge locations 

(Duan et al,1992; Tolson and Shoemaker, 2007). Most previous studies have 

concentrated on a limited number of gauges/river basins (e.g. Mascaro et al. (2023); 

Sofokleous et al. (2023); and Gou et al. (2020)). Here, we aim to establish 

parameterizations for VIC and Noah-MP across the entire WUS. In doing so, we 

apply global optimization methods at 263 river basins, followed by a second stage 

regionalization to the whole of WUS. 

Specifically, the work we report here aims to develop calibration parameters for 

the VIC and Noah-MP models that can be implemented at the catchment (Hydrologic 

Unit Code or HUC) 10 level across the region. We explore and elucidate (i) the choice 

of physical parameterizations and calibration of land surface parameters, (ii) 

extension of these calibrated parameters to areas without gauges, and (iii) factors that 
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influence calibration efficiency and LSM performance using regional parameter 

estimates. Following this introduction, Section 2 describes our calibration basins, the 

hydrologic models used, and the forcing dataset. The framework of our procedures is 

illustrated in Figure 1. Section 3 provides an in-depth exploration of the calibration 

process. In the case of Noah-MP, which offers multiple runoff generation (physics) 

options, our initial step involves choosing the most effective runoff parameterization 

option. Following this, we perform the calibration of land surface parameters. In the 

case of the VIC model, the runoff parameterization scheme is predetermined, so we 

commence immediately with calibration at 263 river basins across our region. Our 

second stage regionalization (section 4) extends the calibrated parameters to ungauged 

basins using the technique known as the donor basin method, as implemented by Bass 

et al. (2023). In Section 5, we evaluate both flood and low flow simulation skills both 

pre- and post-calibration, and following regionalization. Finally, following discussion 

and interpretation (section 6) section 7 presents conclusions, encapsulating the 

insights and implications of our study. 
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Figure 1 (a) framework of the calibration and regionalization processes adopted 

in this study. (b) model simulation inputs and output. 

2. Study basins, land surface models and forcing dataset overview 

2.1 Study Basins 

We selected 263 river basins distributed across the WUS for calibration of the 

two models. Most of the basins were from USGS Gages II reference basins (Falcone 

2011) which have minimum upstream anthropogenic effects such as dams and 

diversions.  Among these basins, our selection criteria included having at least 20 

years of record, and a minimum drainage area of 144 square kilometers, which is the 

size of four model grid cells. In addition to 250 Gages II reference stations, we 

included 13 basins located in California's Sierra Nevada for which naturalized flows 

(effects of upstream reservoir storage and/or diversions removed) are available from 

the California Department of Water Resources (2021). The locations of the 263 basins 

are shown in Figure 2. We used the most recent 20-year period of streamflow 

observations for calibration in each of the 263 basins.  
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Figure. 2. 263 river basins for which calibration was performed. The Gages II 

reference basins are delineated with red boundaries and the CA Sierra Nevada basins 

with green boundaries. 

2.2 Land Surface Models 

The two models we used (VIC and Noah-MP) were chosen due to their broad 

application and proven effectiveness in hydrological simulations. The VIC model is 

renowned globally for its success in runoff simulation, as evidenced by studies such 

as Adam et al. (2003 & 2006), Livneh et al. (2013), and Schaperow et al. (2021). 

Conversely, Noah-MP, though relatively newer, forms the hydrologic core of the U.S. 

National Water Model (NWM) and is increasingly used both within the U.S. and 

abroad. 

Our selection is further reinforced by a study conducted by Cai et al. (2014), 

which assessed the hydrologic performance of four LSMs in the United States using 

the North American Land Data Assimilation System (NLDAS) test bed. This study 
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highlighted Noah-MP's proficiency in soil moisture simulation and its strong 

performance in Total Water Storage (TWS) simulations, while recognizing VIC's 

capabilities in streamflow simulations. 

Our choice of models also was informed by the varying levels of complexity 

these two models offer in conceptualizing the effects of vegetation, soil, and seasonal 

snowpack on the land surface energy and water balances (refer to Table 1 for more 

details). VIC and Noah-MP employ different parameterizations for various 

hydrological processes, such as canopy water storage, base flow, and runoff.  Noah-

MP features four runoff physics options (see Table 1). It utilizes four soil layers, each 

with a fixed depth. In contrast, the VIC model, with its variable infiltration capacity 

approach (Liang et al., 1994), uses up to three soil layers per grid cell with variable 

depths, providing flexibility in modeling soil moisture dynamics. The unique runoff 

generation methodologies of each model are particularly pertinent for capturing the 

diverse hydrological characteristics of the WUS.  

The calibrated parameters we develop here for both models will provide future 

researchers with essential tools for comprehensive hydrological analysis across the 

WUS. Utilizing these two distinct models, each with unique strengths and methods, 

will facilitate thorough exploration of the WUS's varied hydrological characteristics, 

and response of the watersheds in the region to climate change, as well as 

implementation of improved streamflow forecast methods. Our results will help to 

facilitate a deeper understanding of hydrological processes and spatial variability 

across the entire WUS region. 

In our implementation of both models, we accumulated runoff over each of the 

calibration watersheds. We chose not to implement the channel routing schemes of 

either model since their impact on daily streamflow simulations is small given the 

relatively small size of most of the basins.  This aligns with earlier research (e.g., Li et 
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al. 2019). However, in both the case of VIC and Noah-MP, the output of our 

simulations (runoff) could be used as input to routing models, such as those that are 

options in the implementation of both models. We describe below the particulars of 

the two models. 

2.2.1 VIC 

VIC is a macroscale, semi-distributed hydrologic model (described in detail by 

Liang et al 1994) that determines land surface moisture and energy states and fluxes 

by solving the surface water and energy balances. VIC is a research model and in its 

various forms it has been employed to study many major river basins worldwide (e.g. 

Adam et al 2003 & 2006; Livneh et al 2013; Schaperow et al 2021). This model 

enjoys a broad user community — as per the citation index Web of Science, the initial 

VIC paper has been referenced more than 2600 times, with contributing authors 

spanning at least 56 different countries (Schaperow et al 2021). We obtained initial 

VIC model parameters from Livneh et al 2013, who validated model discharges over 

major CONUS river basins. The origins of the soil and land cover data are outlined in 

Table 1. The version of the VIC model implemented here is 4.1.2, and it operates in 

energy balance mode. We selected VIC 4.1.2 for two key reasons: First, our initial 

parameters were based on Livneh et al. (2013), who validated model discharges over 

major CONUS river basins using this model version. Second, in a preliminary 

assessment of snow water equivalent (SWE) simulation skills at select SNOTEL sites 

across the WUS, we found that VIC 4.1.2 demonstrated superior performance 

compared to VIC 5 (see Figure S1). This finding, coupled with our research group's 

extensive experience and proven results with VIC 4.1.2, informed our decision to use 

this version. 
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2.2.2 Noah-MP 

Noah-MP was originally designed as the land surface scheme for numerical 

weather prediction (NWP) models like the Weather Research and Forecasting (WRF) 

regional atmospheric model. Currently, it's being utilized for physically based, 

spatially-distributed hydrological simulations as a component of the National Water 

Model (NWM) (NOAA, 2016). It enhances the functionalities of the Noah LSM (as 

per Chen et al., 1996 and Chen and Dudhia, 2001) previously used in NOAA’s suite of 

numerical weather prediction models by offering multiple options for key processes 

that control land-atmosphere transfers of moisture and energy. These include surface 

water infiltration, runoff, evapotranspiration, groundwater movement, and channel 

routing (see Niu et al., 2007; 2011). The model has been widely used for forecasting 

seasonal climate, weather, droughts, and floods not only across the continental United 

States (CONUS) but also globally (Zheng et al., 2019). We utilized the most current 

version (WRF-HYDRO 5.2.0) 

2.3 Forcing Dataset 

We ran both models at a 3-hour time step and at 1/16∘ latitude–longitude spatial 

resolution. The forcings were the gridded observation dataset developed by Livneh et 

al (2013) and extended to 2018 by Su et al (2021) (hereafter referred to as L13). This 

data set spans the period from 1915 to 2018. For the VIC model, the L13 dataset 

provided daily values of precipitation, maximum and minimum temperatures, and 

wind speed (additional variables used by VIC including downward solar and 

longwave radiation, and specific humidity, are computed internally using MTCLIM 

algorithms as described by Bohn et al. (2013)). The Noah-MP model, on the other 

hand, necessitated additional meteorological data such as specific humidity, surface 
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pressure, and downward solar and longwave radiation, in addition to precipitation, 

wind speed, and air temperature. We used the MTCLIM algorithms, as detailed by 

Bohn et al. (2013), to calculate specific humidity and downward solar radiation. We 

employed the Prata (1996) algorithm to compute the downward longwave radiation. 

Additionally, we deduced surface air pressure by considering the grid cell elevation in 

conjunction with standard global pressure lapse rates. Following this, we transitioned 

the daily data to hourly metrics using a cubic spline to interpolate between Tmax and 

Tmin, and derived other variables using the methods explained by Bohn et al. (2013). 

Lastly, we distributed the daily precipitation evenly across three hourly intervals.  

We used a 3-hour simulation timestep given numerical considerations with 

Noah-MP (which don’t affect VIC, however for consistency we used a 3-hour 

timestep for VIC as well. Despite the fact that precipitation in particular was available 

daily (and hence apportioned equally to 3-hour timesteps) resolving the diurnal cycle 

is sometimes important in the case of snow (accumulation and ablation) processes 

which vary diurnally. 

Table 1. Overview of hydrologic model components and parameter data sources.  

MODEL 

SNOW 

ACCUMU

LATION 

AND 

MELT 

MOISTURE IN THE 

SOIL AND 

COLUMN/SURFACE 

RUNOFF 

BASE FLOW 

 

CANOPY 

STORAGE 
VEGETAT

ION DATA 

SOIL 

DATA 

VIC 

(V4.1.2) 

Two-layer 

energy–

mass 

balance 

model 

Infiltration capacity 

function. Vertical 

movement of moisture 

through soil follows 1D 

Richards equation. 

A function of the 

soil moisture in the 

third layer. Linear 

below a soil 

moisture threshold 

and becomes 

nonlinear above 

that threshold. 

[Liang et al., 1994] 

Mosaic 

representati

on of 

different 

vegetation 

coverages at 

each cell.  

University 

of Maryland 

1-km Global 

Land Cover 

Classificatio

n (Hansen et 

al. 2000) 

1-km 

STAT

SGO 

databa

se 

(Mille

r and 

White 

1998). 

NOAH-

MP 

(WRF-

HYDRO 

5.2.0) 

Three-

layer 

energy–

mass 

balance 

model that 

represents 

percolation

(1) TOPMODEL‐based 

runoff scheme 

Simple 

groundwater 

(hereafter SIMGM) 

[Niu et al., 2007]. 

Semi-tile 

approach for 

computing 

longwave, 

latent heat, 

sensible 

heat and 

ground heat 

MODIS 30-

second 

Modified 

IGBP 20-

category 

land cover 

product 

 

1-km 

STAT

SGO 

databa

se 

(Mille

r and 

White 

(2) Simple 

TOPMODEL‐based 

runoff scheme with 

an equilibrium 

Similar to SIMGM, 

but with a sealed 

bottom of the soil 

column [Niu et al., 
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, retention, 

and 

refreezing 

of 

meltwater 

within the 

snowpack. 

water table 

(hereafter SIMTOP) 

2005] fluxes 1998). 

(3) Infiltration‐excess‐b

ased surface runoff 

scheme 

Gravitational 

free‐drainage 

subsurface runoff 

scheme [Schaake et 

al., 1996] 

(4) BATS runoff 

scheme, which 

parameterized 

surface runoff as a 

4th power function 

of the top 2 m soil 

wetness (degree of 

saturation) 

Gravitational free 

drainage 

[Dickinson et 

al.,1993] 

3. Model calibration 

3.1 Calibration methods 

The initial step in our calibration effort was to optimize the land surface 

parameters of the two models for the 263 WUS basins. These parameters, primarily 

soil properties which can exhibit a substantial degree of uncertainty, were iteratively 

updated via hundreds of simulations to accurately reflect streamflow conditions in 

each basin. 

Our focus on calibrating soil-related parameters was based on their critical role 

in runoff generation. In this respect, we focused on key processes including 

infiltration, soil moisture storage, and groundwater recharge. The calibration of 

parameters that control these processes was prioritized to improve the representation 

of soil-water interactions, a major driver of runoff variability in the region. Given the 

importance of snow processes across much of the region, we conducted snow 

simulation verification at 20 Snow Telemetry (SNOTEL) (Natural Resources 

Conservation Service, 2023) sites across WUS. Our assessment (see Figure S1) 

indicated that the existing parameterizations for snow processes in both models 

reproduced observed SWE well across our study region. 

Prior to calibration, we conducted a sensitivity analysis to identify the most 
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influential parameters for streamflow simulation in both models. We also drew on 

insights from previous research in this respect (Mendoza et al. 2015; Hussein 2020; 

Shi et al. 2008; Holtzman et al., 2020; Bass et al., 2023; Schaperow et al., 2023). We 

then performed a sensitivity analysis, focusing on how variations in the most sensitive 

parameters impacted Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Based on 

these analyses, we chose to calibrate six parameters for the VIC model and five for 

the Noah-MP model (Table 2). For each parameter, we defined a physically viable 

range (refer to Table 2), drawing from values utilized in prior studies (Cai et al. 2014; 

Mendoza et al. 2015; Hussein 2020; Shi et al. 2008; Gochis et al., 2019; Holtzman et 

al., 2020; Lahmers et al. 2021; Bass et al., 2023; Schaperow et al., 2023). 

In recent years, the development of hydrologic model calibration has evolved 

from manual, trial-and-error approaches to advanced automated techniques. This has 

included a shift towards global optimization methods, notably the Shuffled Complex 

Evolution algorithm (SCE-UA; Duan et al.,1992). Typically, SCE-UA has been 

applied to computationally efficient models (simulation time often on the order of a 

few minutes or less; see e.g., Franchini et al. (1998)). However, its application 

becomes less practical with more recent distributed hydrologic models such as the 

Noah-MP which require longer simulation times. To address these computational 

challenges, Tolson and Shoemaker (2007) introduced the Dynamically Dimensioned 

Search (DDS) algorithm, tailored for complex, high-dimensional problems. DDS is 

more computationally efficiency than SCE-UA, and we therefore used it for our 

Noah-MP calibrations. 

To assure that the parameter sets we estimated weren’t dependent on the 

optimization method, we conducted a comparison between SCE-UA and DDS for 

calibrating VIC across 20 randomly chosen basins. We found that the DDS algorithm 

achieved optimal calibration with fewer iterations (typically around 3000 iterations vs 
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only about 250 for DDS).  The parameter sets identified were nearly identical, 

affirming our decision to use distinct algorithms tailored to the computational 

demands of each model.    

For both models, our objective function was the KGE metric for daily 

streamflow. KGE is a widely used performance measure because of its advantages in 

orthogonally considering bias, correlation and variability (Knoben et al., 2019). KGE 

= 1 indicates perfect agreement between simulations and observations; KGE values 

greater than -0.41 indicate that a model improves upon the mean flow benchmark 

(Konben et al., 2019). 

TABLE 2. Calibration methods, parameters and modifications to their initial 

default values evaluated in the calibration. 

Model VIC Noah-MP 

Calibration 

Method 
SCE-UA DDS 

Iterations 3000 250 

Calibrated 

Parameter 

Variable 

Infiltration 

Curve 

Parameter 

(INFILT) 

0.001 – 0.4 

(Shi et 

al.,2008) 

Saturated 

Hydraulic 

Conductivity 

(Ksat) 

 

2 ×
10−9𝑡𝑜 0.07(Cai 

et al.,2014) 

 

Baseflow 

parameter (Ds) 

0.001 – 1.0 

(Shi et 

al.,2008) 

Saturation soil 

moisture content 

(MAXSMC) 

 

0.1 to 0.71 (Cai 

et al.,2014) 

Thickness of 

Soil in Layer 1 

(Depth_1) 

0.01 – 0.2 

(Shi et 

al.,2008) 

Pore size 

distribution 

index (Bexp) 

 

1.12 to 22 (Cai 

et al.,2014; 

Gochis et 

al.,2019) 

Total thickness 

of soil column 

(Depth_total) 

0.6 – 3.5 

(Shi et 

al.,2008) 

 

Linear scaling 

of “openness” of 

bottom drainage 

boundary 

(Slope) 

0.1-1 (Lahmers 

et al 2021) 

Max velocity 

parameter of 

baseflow 

(Dsmax) 

 

0.001 – 30 

(Schaperow 

et al.,2023) 

Parameter in 

surface runoff 

(REFKDT) 

0.1-10 (Lahmers 

et al 2021) 

Fraction of max 0.001 – 1   
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soil moisture 

where nonlinear 

baseflow occurs 

(Ws) 

 

(Shi et 

al.,2008) 

3.2 Noah-MP parameterization 

As specified in Table 1, Noah-MP has four runoff and groundwater physics 

options (rnf). Initially, we adopted the options that are incorporated in the NWM, as 

elaborated in Gochis et al. (2020). Before we could proceed with calibrating Noah-

MP for all the WUS basins, it was necessary to determine suitable rnfs. To streamline 

computational time, we initially selected 50 basins randomly from the total of 263 

from which we created four experimental groups. Each group employed a different  

rnf option.  We applied the DDS method to these groups and compared the cumulative 

distribution functions (CDF) of their baseline and calibrated KGEs (Figure 3). From 

this figure, it's apparent that the KGE improved post-calibration for all four rnfs. 

Notably, rnf3, also known as free drainage, exhibited the most substantial 

performance enhancement after calibration. As a result, we chose to continue using 

this option which is incorporated in the NWM. Nonetheless, it's worth noting that the 

use of different options for different basins—a feature currently not utilized in Noah-

MP or WRF-Hydro—could potentially result in improved overall model performance.  
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Figure 3. Streamflow performance (KGE of daily streamflow simulations) of 

different Noah-MP runoff generation options across 50 (of 263) randomly selected 

basins. The performances are shown for both baseline and calibrated simulations.   

3.3 Calibration of gauged basins 

Following the selection of the most effective set of runoff generation options 

across the domain, we estimated model parameters for all 263 basins. The 

comparative performance of the models, before and after calibration, is shown in 

Figure 4. It's apparent from the figure that both Noah-MP and VIC have significantly 

enhanced their daily streamflow simulation skills post-calibration. After calibration, 

the median KGE of Noah-MP improved from 0.22 to 0.54, and the VIC's median 

KGE increased from 0.37 to 0.70. When contrasting the two models, we observed that 

VIC outperformed Noah-MP both pre- and post-calibration. One possible explanation 

could be that the baseline VIC parameters were taken from Livneh et al. (2013), and 

these parameters had already been validated and adjusted for major U.S. basins 
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(although not for our 263 basins specifically), while the Noah-MP parameters are 

default values from NWM. Another possibility is inherent differences in the physics 

of streamflow simulation between the two models (VIC primarily generates runoff via 

the saturation excess mechanism), although that isn’t the main focus of our research. 

Following the calibration with data from the past 20 years, we performed a test 

where we calibrated the streamflow using the first 10 years of data and validated with 

the subsequent 10 years of data. This test revealed that the KGE distribution from the 

10-year calibration is similar to that from the 20-year data. The median KGE values 

for VIC and Noah-MP after calibration with 10 years of observations were 0.52 and 

0.69, respectively. Correspondingly, the median KGEs during the validation period 

were 0.50 and 0.68, respectively, which are only slightly lower. These comparisons 

demonstrate general consistency over time in the performance of the calibrated 

parameters. 

To validate the robustness of our calibration methodology, we calculated 

alternative (to KGE) performance metrics, specifically Nash-Sutcliffe Efficiency 

(NSE) and bias. Our analyses, detailed in Figures S2&3, revealed significant 

enhancements in model performance as measured by these metrics. The observed 

improvements across multiple evaluation criteria affirm the efficacy of our calibration 

process, and in particular that the performance of our procedures is not contingent 

upon the choice of evaluation metrics. 
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Figure 4. Cumulative Distribution Function (CDF) plot of the daily streamflow 

KGE for (a) VIC and (b) Noah-MP, comparing baseline and calibrated runs across all 

263 basins. 

We examined the spatial variability of daily streamflow KGE for Noah-MP and 

VIC, both before and after the calibration (see Figure 5). The highest baseline KGEs 

are along the Pacific Coast, in central to northern CA for both models. VIC's baseline 

KGE generally is high in the Pacific Northwest. Post-calibration improvements 

occurred for both models in most areas, especially in regions where the baseline KGE 

was low, such as southern CA and the southeastern part of the study region. Median 

improvements after calibration were 0.27 for Noah-MP and 0.30 for VIC. 

We observed that basins displaying higher KGE values typically were more 

humid than those with lower KGE. To further delve into the relationship between 

KGE and basin characteristics, we explored correlations between KGE and 21 

different characteristics, including drainage area, elevation, seasonal/annual average 

temperature and precipitation, annual maximum precipitation, and seasonal/annual 

runoff ratio. Of these, 12 characteristics were statistically significantly correlated with 

the VIC KGE, including four seasonal and annual runoff ratios; mean precipitation in 

winter, spring, and fall; annual maximum precipitation; and minimum elevation. 
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Figure 6 shows scatterplots of eight representative characteristics. Apart from 

minimum elevation and mean summer temperature, all other characteristics were 

positively correlated with KGE. Typically, spring runoff ratio, annual runoff ratio, 

mean annual max precipitation, and mean winter precipitation exhibited the highest 

correlations with KGE. This implies that basins with higher runoff ratios (particularly 

in spring), higher precipitation (especially maximum precipitation), lower summer 

temperature, and lower elevation are more likely to exhibit strong VIC performance. 

The same applies to Noah-MP, as indicated in Figure 7, although Noah-MP showed 

relatively weaker correlations. Correlations between mean summer temperature and 

mean fall precipitation and Noah-MP KGE weren’t statistically significant. 

The spatial distribution of the eight characteristics is qualitatively similar with 

the KGE spatial distribution, as shown in Figure 8. Generally, basins with higher KGE 

have higher characteristic values when the correlation is positive, and lower 

characteristic values when the correlation is negative. As noted above, both models 

show good baseline performance along the Pacific Coast, and in central to northern 

CA (Figure 5). Those areas have high runoff ratios (specifically spring and annual) 

and high mean winter precipitation. These features generally lead to runoff physics 

that are dominated by the saturation-excess mechanism, which is well represented by 

both VIC and Noah-MP. VIC's baseline KGE generally is high in the inland 

Northwest which has somewhat lower runoff ratios and (relatively) deeper 

groundwater tables.  VIC’s superior performance relative to Noah-MP may also be 

because of its variable rather than fixed soil moisture depths (as is the case for Noah-

MP). 
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Figure 5. Spatial distribution of daily streamflow KGE for Noah-MP baseline (1); 

calibrated Noah-MP (2); difference between calibrated and baseline Noah-MP (3); 

VIC baseline (4); calibrated VIC (5); difference between calibrated and baseline VIC 

(6). 
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Figure 6. Scatterplots of VIC KGE in relation to significantly correlated 

characteristics. Each subplot indicates the corresponding Pearson correlation 

coefficients and the P-value. 
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Figure 7. Scatterplot of Noah-MP KGE in relation to significantly correlated 

characteristics. Each subplot indicates the corresponding Pearson correlation 

coefficients and the P-value. 
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Figure 8. Spatial distribution of characteristics that are statistically significantly 

correlated with KGE. Note that all characteristics are significantly correlated with 

VIC KGE whereas only (1)-(6) are significantly correlated with Noah-MP KGE. 



 

24 

 

4. Regionalization 

To distribute parameters from the calibration basins to the entire region, we used 

the donor-basin method as implemented in numerous previous studies (e.g., Arsenault 

and Brissette (2014); Poissant et al. (2017); Razavi and Coulibaly (2017); Gochis et al. 

(2019); Qi et al. (2021) and Bass et al. (2023). Following the calibration process, we 

regionalized the parameters from gauged to ungauged basins based on a mathematical 

assessment of the spatial and physical proximity between the gauged and ungauged 

basins.  We considered two primary methods for implementing the donor basin 

approach. The first uses models calibrated to spatially continuous gridded runoff 

metrics (Beck et al. 2015; Yang et al. 2019). The second approach, which we 

ultimately adopted, calibrates models to individual gauges, then extends these 

parameters to ungauged basins, based either on a statistical or mathematical similarity 

measures (e.g., Arsenault and Brissette 2014; Razavi and Coulibaly 2017). Our 

preference for the second method was guided by a key limitation of the first approach, 

specifically it is limited to calibrating against runoff metrics, such as long-term mean 

flow and flow percentiles, rather than streamflow time series.  

In the donor-basin method, an ungauged basin inherits its land surface 

parameters from the most similar gauged basin(s) (or the 'n' most similar gauged 

basins). Here, we evaluated the similarity or proximity between gauged and ungauged 

basins based on the similarity index SI as defined and used by Burn and Boorman 

(1993) and Poissant et al. (2017): 

𝑆𝐼 = ∑
|𝑋𝑖

𝐺−𝑋𝑖
𝑈|

𝛥𝑋𝑖

𝑘
𝑖=1                                  (1) 

In Eq. 1, k stands for the total number of features considered, 𝑋𝑖
𝐺  represents the ith 

feature of the gauged basin G, 𝑋𝑖
𝑈 is the ith feature of a specific ungauged basin, and 

𝛥𝑋𝑖 is the range of potential values for the ith feature, grounded in the data from the 
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gauged basins. This yields a unique value of SI for each gauged basin, contingent on 

the specific ungauged basin it is compared with. Typically, gauged basins that exhibit 

greater resemblance to the ungauged basin will have a smaller SI. 

We assessed the donor-basin method's efficacy using a cross-validation approach, 

where each gauged basin was treated as ungauged one at a time. The pseudo-

ungauged basin inherits its hydrological parameters from its three most similar 

gauged basins, determined by SI. The parameters inherited are a weighted average 

from the three donor basins. After testing one to five donor basins, we found that 

using three donors yielded the best results. Thus, every basin inherits parameters from 

the three most similar gauged basins in each simulation, offering a concise evaluation 

of the donor-basin method's regionalization performance.  

We used 18 basin-specific features in the donor basin method, detailed in Table 

S1, calculated based on the forcings and parameters used in the study. For feature 

selection in the donor-basin method, we adopted an iterative approach, explained in 

detail in the following paragraph. Only basins with a KGE exceeding 0.3 were 

considered, following previous studies suggesting that inclusion of poorly performing 

basins can lower regionalization performance. We found that a KGE threshold of 0.3 

resulted in a median performance improvement of 0.08 larger than did a KGE 

threshold of 0, hence it was chosen. After screening, 223 basins were utilized in VIC 

regionalization and 194 in Noah-MP regionalization. We note that the parameters used 

for calibration and the features used to determine the similarity index in the 

regionalization process are different. The physics that control the key hydrological 

processes of the two models are different, so we explored their best regionalization 

features separately.  

To determine the most effective regionalization features from the 18 basin 

characteristics listed in Table S1, we employed a systematic iterative approach. The 
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first iteration includes 18 simulations, each of which incorporates one of the 18 

features. The feature that yielded the greatest increase in the median KGE across all 

basins, based on leave-one-out cross validation, was then retained. In the second 

iteration, we conducted 17 simulations, each combining the retained feature from the 

first iteration with one of the remaining 17 features. This process was repeated 

iteratively, reducing the number of features considered in each subsequent round, until 

the addition of new features no longer resulted in an appreciable increase in median 

KGE. The sequence of features shown in Figure 9 (also shown in Table S1) indicated 

the importance of the features. This iterative approach ensured that each feature's 

individual and combined contribution to model performance was thoroughly assessed. 

It allowed us to identify a subset of features that, when used together, optimally 

improved model accuracy. We recognize the potential existence of inter-feature 

correlations that may exert a discernible influence on their collective efficacy when 

utilized in combination.  

This procedure resulted in five features generated the best regionalization 

performance for VIC (longitude centroid, latitude centroid, maximum elevation, fall 

mean precipitation, and fall mean temperature).  Three features were found to be best 

for Noah-MP (latitude centroid, longitude centroid, and drainage area) (see Figure 9). 

Among them, latitude and longitude are the common features that contribute the most 

to regionalization when using the similarity index method. This suggests that 

geographical similarities are the most important factor in parameter information 

transfer from gauged to ungauged basins.  

Upon evaluating the performance of baseline, calibrated, and regionalized 

simulations, the respective median daily KGEs for the VIC model were found to be 

0.41, 0.71, and 0.49. For the Noah-MP, these values were 0.38, 0.60, and 0.49 (refer 

to Figures 9 & S4). These metrics are for basins that have a calibrated KGE greater 
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than 0.3 only, resulting in higher median KGEs than for all 263 basins (See Figure 4). 

The KGE distribution also improved overall. It's noteworthy that the regionalization 

improvement relative to baseline is higher for Noah-MP than for VIC. While VIC's 

baseline and calibrated KGE skill distribution outperforms Noah-MP's, the differences 

between regionalized skills of Noah-MP and VIC are decreasing. We will explore 

more on this in the following section. 

After optimizing the features and specific design of the donor-basin method, 

parameters were regionalized to 4816 ungauged USGS Hydrologic Unit Code (HUC) 

-10 basins across the WUS. HUCs are delineated and quality controlled by USGS 

using high-resolution DEMs. For each of the 4816 HUC-10 basins, we calculated a 

similarity index with the calibrated basins using the selected features. The three most 

similar basins were identified as donor basins, and their weighted average parameters 

were then adopted by the target HUC-10 basin. The final hydrologic parameters for 

both VIC and Noah-MP for all WUS HUC-10 basins are shown in Figures S5&6.  

The baseline HUC-10 parameters are shown in Figures S7&8.  

Comparison of Figures S5-6 to Figures S7-8 makes it clear that the baseline 

model parameters lack accuracy, and exhibit significant spatial uniformity where large 

geographical regions share identical parameter values. For example, parameters such 

as Ds and Soil_Depth1 in VIC show this uniformity. Furthermore, certain parameters, 

such as SLOPE and REFKDT in Noah-MP, remain invariant across all spatial 

domains, and don't reflect real-world conditions. Regionalization, improved the 

parameters, leading to increased accuracy and strengthening of region-specific 

characteristics. 
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Figure 9. Best regionalization features for (a) VIC and (b) Noah-MP. The final 

regionalization to ungauged basins of the WUS incorporated all features up to the 

point marked by the red line since the addition of further features doesn't improve 

KGE. 

5. Evaluation of calibration and regionalization skills 

Our primary calibration objective was to enhance the accuracy of daily 

streamflow simulations. However, to ensure the versatility of our parameter sets for 

research related to both floods and dry conditions, we also evaluated the models' 

capabilities in reproducing high and low streamflow. To understand the capabilities of 
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the two models in reconstructing high and low streamflow, we assessed their 

performance across baseline, calibrated, and regionalized settings.  

(a) Evaluation of high flow performance 

We used the peaks-over-threshold (POT) method (Lang et al. 1999) to identify 

extreme streamflow events as in Su et al (2023) and Cao et al. (2019, 2020). We first 

applied the event independence criteria from USWRC (1982) to daily streamflow data 

to identify independent events. We set thresholds at each basin that resulted in 3 

extreme events per year on average (denoted as POT3). After selecting the flood 

events over the study period based on the observation, we sorted the floods based on 

the return period and then calculated the KGE of baseline, calibrated and regionalized 

floods. Figure S9 displays the associated CDF plots. The median KGE for baseline 

floods in Noah-MP was 0.14, which rose to 0.37 post-calibration, and receded to 0.22 

after regionalization. For VIC, the flood KGE started at 0.11, increased to 0.41 after 

calibration, and declined to 0.20 post-regionalization. As anticipated, these numbers 

are lower than (all) daily streamflow skill due to our calibration target being daily 

streamflow. Still, flood competencies experienced considerable enhancement, 

surpassing the Noah-MP KGE benchmark of -0.41 found by Knoben et al. (2019). 

(b) Evaluation of low flow performance 

(c) To assess low flow performance, we utilized the 7q10 metric. This 

hydrological statistic, commonly adopted in water resources management 

and environmental engineering, is the lowest 7-day average flow that occurs 

(on average) once every 10 years (EPA,2018). Scatterplots of 7q10 (Figure 

S10) showed high correlation between our model's simulated low flows and 

the observed data. Post-calibration, this alignment intensified. The VIC 

model tended to underestimate the low flows. After calibration, the median 

bias improved from -23.6% to -9.9%, and with regionalization, it was -11.7%. 
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In contrast, Noah-MP began with an 11.20% overestimation in the baseline, 

improved to 0.61% post-calibration, and was -9.5% after regionalization. The 

outcomes underline the proficiency of both models for low flow prediction, 

exhibiting enhanced competencies post-calibration and commendable 

performance after regionalization. Comparison of VIC and Noah-MP 

simulation skill 

In Section 4, we demonstrated that while VIC's baseline and calibrated daily 

streamflow KGE skill distribution was better than Noah-MP's, the disparity was 

reduced following regionalization. We further explored the skill differences between 

the two models for baseline, calibrated, and regionalized parameters for different 

hydroclimatic conditions. Figure 10 shows the CDF of the daily streamflow KGE 

differences between VIC and Noah-MP across the study basins. The skill gap between 

VIC and Noah-MP generally narrows from baseline through calibrated to regionalized 

runs, although VIC outperforms Noah-MP in most of the basins for all three runs.  

We further divided the study region into four different categories following 

Huang et al (2021): coastal snow dominated basins, coastal rain dominated, interior 

wet, and interior dry. In the baseline runs (Figure 10 and 11.1), VIC generally 

outperforms Noah-MP with a median KGE difference of 0.168, particularly in interior 

dry basins, and in some interior wet and coastal basins. Following calibration (Figure 

10 and 11.2), the median KGE difference decreases to 0.126. VIC has superior 

performance in most of the basins, especially interior wet and coastal basins. In 

interior dry basins (mostly in the southeastern part of our domain), VIC's performance 

is similar to or worse than Noah-MP’s. This discrepancy is attributable to more 

pronounced improvements in VIC after calibration in coastal and northern WUS, 

while Noah-MP shows greater improvements in the southeastern WUS (mostly dry 

interior). Post-regionalization (Figure 10 and 11.3), the KGE differences further 
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narrow to a median of 0.054, with VIC still outperforming Noah-MP in most coastal 

and interior wet basins. Nonetheless, VIC is inferior in a few interior dry basins 

scattered across WUS, where both models exhibit relatively low skill. This is also 

shown in Figure S11 CDFs which indicate that VIC’s performance varies notably 

across the spectrum: it falls below Noah-MP at the lower end of the skill distribution. 

Conversely, VIC KGEs exceed those of Noah-MP in areas where its skill is strongest. 

Across all basins collectively, VIC outperforms Noah-MP post regionalization as 

evidenced by higher VIC median skill (Figure 10 inset). 

We also evaluated the performance of the two models after regionalization in 

simulating annual average flows, flood flows (POT3), and low flows (measured as 

7q10). The results (see Figures S12 and S13) show that VIC outperforms Noah-MP in 

simulating annual mean streamflow (Figure S12) and (in most cases) floods (Figure 

S13). Conversely, Noah-MP generally performs better in simulating low flows (Figure 

S10). 

 Figure 10. Cumulative distribution function (CDF) plot of the daily streamflow KGE 

differences between VIC and Noah-MP in the study basins for baseline, calibrated and 

regionalized runs. The inset figure shows boxplots of KGE differences for four 
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different categories: coastal snow dominated basins (54 basins), coastal rain 

dominated basins (103 basins), interior wet basins (53 basins), and interior dry basins 

(53 basins). We also show all basins collectively (263 total) for reference purposes.  

 

Figure 11. Map of the daily streamflow KGE differences between VIC and 

Noah-MP in the study basins for (1) baseline, (2) calibrated and (3) regionalized runs. 

(d) Comparison of post-regionalization and post-calibration performance 

We further analyzed the performance differences between the regionalized and 

calibrated runs for each model. As depicted in Figure 12, both VIC and Noah-MP 

have declining skill for post-regionalization relative to post-calibration runs, with VIC 

demonstrating a more pronounced decrease, reflected in a median KGE difference of -

0.199, compared to -0.117 for Noah-MP. For both models, coastal basins and interior 

wet basins tend to have smaller skill decreases from post-calibration to post-

regionalization; and interior dry basins have the largest skill decreases. VIC has 

greater decreases than Noah-MP in most basins. The most significant drops in 

performance generally occur in basins where baseline skills are low, yet post-

calibration skills are relatively high. 
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Figure 12. CDF of differences of daily streamflow skill between regionalized and 

calibrated for VIC and Noah-MP. The inset figure summarizes KGE difference 

distributions for the same four categories as the inset in Figure 10. 

6. Discussion 

We summarize our key accomplishments in calibrating the two hydrological 

models, examine our approach to choosing calibration objective functions and metrics, 

and we consider lessons learned in model regionalization. 

(a) Improved parameter sets 

We generated calibrated parameter sets for the VIC and Noah-MP hydrological 

models at 1/16° latitude-longitude scale across WUS. These calibrated parameter sets 

are intended to facilitate the use of the two models for climate change and water 

investigations across the region, among other applications.  Our focus on calibrating 

daily streamflow aligns with common practice in hydrology, providing a 

comprehensive representation of catchment hydrology dynamics which should 

enhance future understanding of hydrological phenomena and their spatial variations 

across the region. 
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(b) Selection of calibration objective function 

We used objective functions based on streamflow observations. We chose this 

approach due to its applicability elsewhere, given the widespread accessibility of 

streamflow observations as compared to alternative metrics such as soil moisture or 

evapotranspiration (Demaria et al., 2007; Gao et al., 2018; Troy et al., 2008; Yadav et 

al., 2007). While we acknowledge the potential of remote sensing products like 

MODIS, SMAP, SMOS, ESA, and ALEXI to improve calibration efforts, especially 

for variables like actual evapotranspiration (AET) and soil moisture (SM), we were 

limited by the scarcity of observations for these variables. Future studies could, 

nonetheless, leverage from the methods we’ve employed to incorporate additional 

variables into the objective functions we used. 

(c) Selection of calibration metric 

We used the KGE metric applied to daily streamflow, which we chose for its 

ability to address bias, correlation, and variability simultaneously (Knoben et al., 

2019). We also evaluated NSE and BIAS metrics, and found substantial 

improvements in both models' performance after calibration when these metrics were 

used in place of KGE (See Figures S2-3). Our assessment of high and low flow 

reconstruction in Section 5 further validated our generated parameter sets. While we 

used a single objective function due to data and computing constraints, incorporating 

multiple objective functions is feasible in principle.  

(d) Regionalization possibilities 

We calibrated model parameters directly for individual basins, considering their 

unique hydrological features, and then transferred these calibrated parameters to 

similar basins based on similarity assessments. Alternative parameter transfer 

strategies could be used within the same framework we employed (e.g., pedo-transfer 

functions, e.g. Imhoff et al.,2020) or multiscale parameter regionalization (e.g. 
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Schweppe et al.,2022). We do note that our regionalization approach facilitates the 

transfer of calibrated parameters to comparable regions, which could be explored in 

future research. 

7. Conclusions  

Our intent was to develop a regional parameter estimation strategy for the VIC 

and Noah-MP land surface schemes, and to apply it across the WUS region at the 

HUC-10 catchment scale. We’ve described what we believe is a robust framework 

that can be applied in future hydrological and climate change studies across the WUS, 

and is applicable to other regions as well. Our key findings and conclusions are: 

a) Our catchment scale calibration of the two models to 263 sites across WUS 

resulted in major improvements in the performance of both models relative to 

a priori parameters, but performance improvement was greatest for Noah-

MP – although this may be in part because VIC a priori parameters benefitted 

from prior calibration and hence resulted in better baseline performance than 

did a priori Noah-MP.  

b) Both models performed best in more humid basins, mainly in the Pacific 

Northwest and central to northern CA where runoff ratios are high.  This is 

consistent with previous results (e.g. Bass et al.,2023). 

c) Post-calibration regional model performance improved for both models in 

most areas, especially where the baseline KGE was low, such as southern CA 

and the southeastern part of the study region. 

d) VIC performance across all calibration basins was mostly better than for 

Noah-MP. However, Noah-MP performance benefitted more from 

regionalization than did VIC, and ultimately post-regionalization VIC 

performance was only slightly superior to that of Noah-MP.  When 

partitioned into hydroclimatic categories, VIC outperforms Noah-MP in all 



 

36 

 

but interior dry basins following regionalization, where Noah-MP is better.   

e) Post-regionalization, both VIC and Noah-MP performance declines in 

comparison with the calibrated run, with declines more pronounced for VIC. 

The performance degradation is greatest in interior dry basins for both 

models. 

f) VIC outperforms Noah-MP in simulating annual mean streamflow and flood 

simulations in most cases. Conversely, Noah-MP performs better for low 

flows. These results should provide guidance for selecting the most 

appropriate model depending on the hydrological condition being analyzed. 
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