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Abstract 10 

Streamflow predictions are critical for managing water resources and for 11 

environmental conservation, especially in the water-short Western U.S. Land Surface 12 

Models (LSMs), such as the Variable Infiltration Capacity (VIC) model and the Noah-13 

Multiparameterization (Noah-MP) play an essential role in providing comprehensive 14 

runoff predictions across the region. Virtually all LSMs require parameter estimation 15 

(calibration) to optimize their predictive capabilities. Here, we focus on the 16 

calibration of VIC and Noah-MP models at a 1/16° latitude-longitude resolution 17 

across the Western U.S.  We first performed global optimal calibration of parameters 18 

for both models for 263 river basins in the region. We find that the calibration 19 

significantly improves the models' performance, with the median daily streamflow 20 

Kling-Gupta Efficiency (KGE) increasing from 0.37 to 0.70 for VIC, and from 0.22 to 21 

0.54 for Noah-MP.  In general, post-calibration model performance is higher for 22 

watersheds with relatively high precipitation and runoff ratios, and at lower elevations.  23 

At a second stage, we regionalize the river basin calibrations using the donor-basin 24 

method, which establishes transfer relationships for hydrologically similar basins, via 25 
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which we extend our calibration parameters to 4,816 HUC-10 basins across the region. 26 

Using the regionalized parameters, we show that the models' capabilities to simulate 27 

high and low flow conditions are substantially improved following calibration and 28 

regionalization. The refined parameter sets we developed are intended to support 29 

regional hydrological studies and hydrological assessments of climate change impacts. 30 

 31 

 1. Introduction 32 

Streamflow predictions play a key role in water and environmental management, 33 

especially in the water-stressed Western U.S. (WUS). In the short term, these 34 

predictions provide early warnings for impending flood events, thereby enabling 35 

timely preparation and response to mitigate immediate flood risk and damages (Raff 36 

et al., 2013; Maidment, 2017). They also serve as crucial input for managing 37 

reservoirs effectively for water supply (Raff et al., 2013), hydroelectric power 38 

generation (Boucher & Ramos, 2018), and river navigation (by providing a basis for 39 

predicting water levels) (Federal Institute of Hydrology, 2020).  In the longer term, 40 

streamflow predictions enable water utilities and agencies to plan water distribution 41 

within and across multiple uses—urban, agricultural, and industrial—which is 42 

especially vital during drought conditions when efficient water use becomes a 43 

necessity (Anghileri et al., 2016;). Streamflow predictions also aid in understanding 44 

and foreseeing the impacts of climate change on water systems, thereby informing 45 

adaptive strategies for water resource management. Thus, in both short and longer-46 

term contexts, streamflow predictions are an important tool for promoting sustainable 47 

water practices and resilience to water-related challenges. 48 

Streamflow predictions are derived via a synthesis of hydrometeorological data, 49 

statistical methodologies, and computational modeling. Direct measurement of runoff 50 

is an important element of this process, however it is only possible in river basins with 51 
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well-developed observational infrastructure (Sharma and Machiwal, 2021). This 52 

limitation leaves vast areas, often critical to water resource management and 53 

climatology, without direct runoff observations on which to base streamflow 54 

predictions. As an alternative, Land Surface Models (LSMs) can be used to simulate 55 

streamflow. LSMs typically are forced with air temperature, precipitation and other 56 

surface meteorological variables. By integrating climatic, topographic, and land-use 57 

information, they can fill streamflow observation gaps and provide comprehensive, 58 

spatially distributed runoff predictions (Fisher and Koven, 2020). The capabilities of 59 

LSMs equip us with the necessary tools to produce streamflow predictions that can be 60 

used to prepare for severe weather conditions, form the basis for water resource 61 

management, and inform water management associated with our evolving climate. 62 

These benefits hold true irrespective of the limitations associated with direct 63 

streamflow observations. Through off-line simulations and reconstructions, LSMs 64 

enable us to gain insights into land surface hydrology at various scales - regional, 65 

continental, and global. 66 

One of the key challenges in hydrological modeling is the reliable representation 67 

of the spatiotemporal variability of natural processes (Dembélé et al., 2020). 68 

Enhanced spatial resolution and improved estimates of surface meteorological 69 

variables have empowered LSMs to predict diverse processes with greater detail. 70 

However, a recurrent issue is that the parameters embedded in LSMs often 71 

inadequately capture fine-scale variations in land surface processes, as illustrated in 72 

Figures S7 and S8. Accurate prediction of land surface processes, particularly over 73 

large areas, requires accurate parameter estimation, which remains a significant 74 

bottleneck. Errors in parameter estimates affect LSMs’ ability to forecast runoff at 75 

continental or subcontinental scales. Fisher and Koven (2020) identify LSM 76 

parameter estimation as one of three grand challenges in land surface modeling.  77 
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 78 

Parameterizations of the underlying hydrological processes vary across different 79 

LSMs, but virtually all models require some level of parameter estimation based on 80 

historical observed streamflow data at forecast point, to ensure trustworthy 81 

predictions throughout the region (Beven,1989; Troy et al., 2008; Gong et al., 2015). 82 

In cases where observations don’t exist, parameters can be transferred from river 83 

basins where they do (Arsenault and Brissette, 2014).  In cases where observations do 84 

exist but aren’t current, shorter records of historical streamflow data can be used for 85 

model calibration and subsequently streamflow predictions can be produced using 86 

meteorological forcings for more recent periods when streamflow data aren’t 87 

available.  88 

 89 

To deal with this challenge, we describe methods and resulting high-resolution 90 

parameter data sets for two widely used LSMs across thein WUS.  We base our 91 

estimates on a strategy of minimizing metrics of differences in observed and model-92 

predicted streamflow, following many previous studies (Arsenault and Brissette,  93 

2014; Poissant et al., 2017; Razavi and Coulibaly, 2017; Gochis et al., 2019; Qi et al., 94 

2021 and Bass et al., 2023) We do so Implementation of hydrological models for the 95 

above purposes usually involves calibration of model parameters using because 96 

streamflow observations ,  which are more readily available than other model 97 

prognostic variables like soil moisture or evapotranspiration (Demaria et al., 2007; 98 

Gao et al., 2018; Troy et al., 2008; Yadav et al., 2007), although the methods we use 99 

could be generalized to incorporate other observed and model-predicted fluxes and 100 

state variables.   Calibration has always been a critical and evolving component of 101 

hydrologic model application, and has been improved by advances in model 102 

parameterization, enhanced spatial resolution providing more detailed and accurate 103 
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spatial information, improved soil/vegetation data, meteorological inputs, and training 104 

data. Furthermore, advances in calibration methods and computing power have 105 

facilitated regional approaches to model calibration, and inclusion of multiple 106 

hydrologic models. Although pPrevious studies have mostly focused on a single 107 

hydrologic model due to computational constraints (e.g., Mascaro et al. (2023), 108 

Sofokleous et al. (2023), and Gou et al. (2020)), here . However, we incorporate 109 

utilize two models to address structural model uncertainty and to ensure broader 110 

applicability of the calibration methods we employ. 111 

The Variable Infiltration Capacity (VIC, Liang et al. (1994)) model and Noah-112 

Multiparameterization (Noah-MP, Niu et al. (2011)), which we use here, are widely 113 

used hydrologic models both in the U.S. and globally, as highlighted by Mendoza et al. 114 

(2015) and Tangdamrongsub (2023).  Many previous implementations of VIC for the 115 

Western United States (WUS) have been based on the Livneh et al. (2013) data set, 116 

and its predecessor, Maurer et al. (2002), which performed initial calibrations across 117 

the region. In the case of Noah-MP, Bass et al. (2023) performed manual calibration 118 

across the region. Neither of these implementations, however, employs globally 119 

optimized calibration, as we do here.  120 

The process of calibration can be computationally demanding, and prior research 121 

typically has focused on obtaining parameters appropriate to facilitating model 122 

simulations that match observations as closely as possible at stream gauge locations 123 

(Duan et al,1992; Tolson and Shoemaker, 2007). Most previous studies have 124 

concentrated on a limited number of gauges/river basins and a single model (e.g. 125 

Mascaro et al. (2023); Sofokleous et al. (2023); and Gou et al. (2020)). Here, we aim 126 

to establish parameterizations for two LSMs -- VIC and Noah-MP across the entire 127 

WUS. In doing so, we apply global optimization methods at 263 river basinsthe river 128 

basin level, followed by a second stage regionalization to the whole of WUS. 129 
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Specifically, Tthe work we report here aims to develop calibration parameters for 130 

the VIC and Noah-MP models that can be implemented at the catchment (Hydrologic 131 

Unit Code or HUC) 10 level across the region. We explore and elucidate (i) the choice 132 

of physical parameterizations and calibration of land surface parameters, (ii) 133 

extension of these calibrated parameters to areas without gauges, and (iii) factors that 134 

influence calibration efficiency and LSM performance using regional parameter 135 

estimates. Following this introduction, Section 2 describes our calibration basins, the 136 

hydrologic models used, and the forcing dataset. The framework of our procedures is 137 

illustrated in Figure 1. Section 3 provides an in-depth exploration of the calibration 138 

process. In the case of Noah-MP, which offers multiple runoff generation (physics) 139 

options, our initial step involves choosing the most effective runoff parameterization 140 

option. Following this, we perform the calibration of land surface parameters. In the 141 

case of the VIC model, the runoff parameterization scheme is predetermined, so we 142 

commence immediately with calibration at 263 river basins across our region. Our 143 

second stage regionalization (section 4) extends the calibrated parameters to ungauged 144 

basins using the technique known as the donor basin method, as implemented by Bass 145 

et al. (2023). In Section 5, we evaluate both flood and low flow simulation skills both 146 

pre- and post-calibration, and following regionalization. Finally, following discussion 147 

and interpretation (section 6) section 7 presents conclusions, encapsulating the 148 

insights and implications of our study. 149 

 150 
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 151 

Figure 1 (a) framework of the calibration and regionalization processes adopted 152 

in this study. (b) model simulation inputs and output. 153 

2. Study basins, land surface models and forcing dataset overview 154 

2.1 Study Basins 155 

We selected 263 river basins distributed across the WUS for calibration of the 156 

two models. Most of the basins were from USGS Gages II reference basins (Falcone 157 

2011) which have minimum upstream anthropogenic effects such as dams and 158 

diversions.  Among these basins, our selection criteria included having at least 20 159 

years of record, and a minimum drainage area of 144 square kilometers, which is the 160 

size of four model grid cells. In addition to 250 Gages II reference stations, we 161 

included 13 basins located in California's Sierra Nevada for which naturalized flows 162 

(effects of upstream reservoir storage and/or diversions removed) are available from 163 

the California Department of Water Resources (2021). The locations of the 263 basins 164 

are shown in Figure 2. We used the most recent 20-year period of streamflow 165 

observations for calibration in each of the 263 basins.  166 



 

8 

 

 167 

Figure. 2. 263 river basins for which calibration was performed. The Gages II 168 

reference basins are delineated with red boundaries and the CA Sierra Nevada basins 169 

with green boundaries. 170 

2.2 Land Surface Models 171 

The two models we used (VIC and Noah-MP) were chosen due to their broad 172 

application and proven effectiveness in hydrological simulations. The VIC model is 173 

renowned globally for its success in runoff simulation, as evidenced by studies such 174 

as Adam et al. (2003 & 2006), Livneh et al. (2013), and Schaperow et al. (2021). 175 

Conversely, Noah-MP, though relatively newer, forms the hydrologic core of the U.S. 176 

National Water Model (NWM) and is increasingly used both within the U.S. and 177 

abroad. 178 

Our selection is further reinforced by a study conducted by Cai et al. (2014), 179 

which assessed the hydrologic performance of four LSMs in the United States using 180 

the North American Land Data Assimilation System (NLDAS) test bed. This study 181 
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highlighted Noah-MP's proficiency in soil moisture simulation and its strong 182 

performance in Total Water Storage (TWS) simulations, while recognizing VIC's 183 

capabilities in streamflow simulations. 184 

Our choice of models also was informed by the varying levels of complexity 185 

these two models offer in conceptualizing the effects of vegetation, soil, and seasonal 186 

snowpack on the land surface energy and water balances (refer to Table 1 for more 187 

details). VIC and Noah-MP employ different parameterizations for various 188 

hydrological processes, such as canopy water storage, base flow, and runoff.  Noah-189 

MP features four runoff physics options (see Table 1). It utilizes four soil layers, each 190 

with a fixed depth. In contrast, the VIC model, with its variable infiltration capacity 191 

approach (Liang et al., 1994), uses up to three soil layers per grid cell with variable 192 

depths, providing flexibility in modeling soil moisture dynamics. The unique runoff 193 

generation methodologies of each model are particularly pertinent for capturing the 194 

diverse hydrological characteristics of the WUS.  195 

The calibrated parameters we develop here for both models will provide future 196 

researchers with essential tools for comprehensive hydrological analysis across the 197 

WUS. Utilizing these two distinct models, each with unique strengths and methods, 198 

will facilitate thorough exploration of the WUS's varied hydrological characteristics, 199 

and response of the watersheds in the region to climate change, as well as 200 

implementation of improved streamflow forecast methods. Our results will help to 201 

facilitate a deeper understanding of hydrological processes and spatial variability 202 

across the entire WUS region. 203 

In our implementation of both models, we accumulated runoff over each of the 204 

calibration watersheds. We chose not to implement the channel routing schemes of 205 

either model since their impact on daily streamflow simulations is small given the 206 

relatively small size of most of the basins.  This aligns with earlier research (e.g., Li et 207 
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al. 2019). However, in both the case of VIC and Noah-MP, the output of our 208 

simulations (runoff) could be used as input to routing models, such as those that are 209 

options in the implementation of both models. We describe below the particulars of 210 

the two models. 211 

2.2.1 VIC 212 

VIC is a macroscale, semi-distributed hydrologic model (described in detail by 213 

Liang et al 1994) that determines land surface moisture and energy states and fluxes 214 

by solving the surface water and energy balances. VIC is a research model and in its 215 

various forms it has been employed to study many major river basins worldwide (e.g. 216 

Adam et al 2003 & 2006; Livneh et al 2013; Schaperow et al 2021). This model 217 

enjoys a broad user community — as per the citation index Web of Science, the initial 218 

VIC paper has been referenced more than 2600 times, with contributing authors 219 

spanning at least 56 different countries (Schaperow et al 2021). We obtained initial 220 

VIC model parameters from Livneh et al 2013, who validated model discharges over 221 

major CONUS river basins. The origins of the soil and land cover data are outlined in 222 

Table 1. The version of the VIC model implemented here is 4.1.2, and it operates in 223 

energy balance mode. We selected VIC 4.1.2 for two key reasons: First, our initial 224 

parameters were based on Livneh et al. (2013), who validated model discharges over 225 

major CONUS river basins using this model version. Second, in a preliminary 226 

assessment of snow water equivalent (SWE) simulation skills at select SNOTEL sites 227 

across the WUS, we found that VIC 4.1.2 demonstrated superior performance 228 

compared to VIC 5 (see Figure S1). This finding, coupled with our research group's 229 

extensive experience and proven results with VIC 4.1.2, informed our decision to use 230 

this version. 231 
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2.2.2 Noah-MP 232 

Noah-MP was originally designed as the land surface scheme for numerical 233 

weather prediction (NWP) models like the Weather Research and Forecasting (WRF) 234 

regional atmospheric model. Currently, it's being utilized for physically based, 235 

spatially-distributed hydrological simulations as a component of the National Water 236 

Model (NWM) (NOAA, 2016). It enhances the functionalities of the Noah LSM (as 237 

per Chen et al., 1996 and Chen and Dudhia, 2001) previously used in NOAA’s suite of 238 

numerical weather prediction models by offering multiple options for key processes 239 

that control land-atmosphere transfers of moisture and energy. These include surface 240 

water infiltration, runoff, evapotranspiration, groundwater movement, and channel 241 

routing (see Niu et al., 2007; 2011). The model has been widely used for forecasting 242 

seasonal climate, weather, droughts, and floods not only across the continental United 243 

States (CONUS) but also globally (Zheng et al., 2019). We utilized the most current 244 

version (WRF-HYDRO 5.2.0) 245 

2.3 Forcing Dataset 246 

We ran both models at a 3-hour time step and at 1/16∘ latitude–longitude spatial 247 

resolution. The forcings were the gridded observation dataset developed by Livneh et 248 

al (2013) and extended to 2018 by Su et al (2021) (hereafter referred to as L13). This 249 

data set spans the period from 1915 to 2018. For the VIC model, the L13 dataset 250 

provided daily values of precipitation, maximum and minimum temperatures, and 251 

wind speed (additional variables used by VIC including downward solar and 252 

longwave radiation, and specific humidity, are computed internally using MTCLIM 253 

algorithms as described by Bohn et al. (2013)). The Noah-MP model, on the other 254 

hand, necessitated additional meteorological data such as specific humidity, surface 255 



 

12 

 

pressure, and downward solar and longwave radiation, in addition to precipitation, 256 

wind speed, and air temperature. We used the MTCLIM algorithms, as detailed by 257 

Bohn et al. (2013), to calculate specific humidity and downward solar radiation. We 258 

employed the Prata (1996) algorithm to compute the downward longwave radiation. 259 

Additionally, we deduced surface air pressure by considering the grid cell elevation in 260 

conjunction with standard global pressure lapse rates. Following this, we transitioned 261 

the daily data to hourly metrics using a cubic spline to interpolate between Tmax and 262 

Tmin, and derived other variables using the methods explained by Bohn et al. (2013). 263 

Lastly, we distributed the daily precipitation evenly across three hourly intervals.  264 

We used a 3-hour simulation timestep given numerical considerations with 265 

Noah-MP (which don’t affect VIC, however for consistency we used a 3-hour 266 

timestep for VIC as well. Despite the fact that precipitation in particular was available 267 

daily (and hence apportioned equally to 3-hour timesteps) resolving the diurnal cycle 268 

is sometimes important in the case of snow (accumulation and ablation) processes 269 

which vary diurnally. 270 

Table 1. Overview of hydrologic model components and parameter data sources.  271 

MODEL 

SNOW 

ACCUMU

LATION 

AND 

MELT 

MOISTURE IN THE 

SOIL AND 

COLUMN/SURFACE 

RUNOFF 

BASE FLOW 

 

CANOPY 

STORAGE 
VEGETAT

ION DATA 

SOIL 

DATA 

VIC 

(V4.1.2) 

Two-layer 

energy–

mass 

balance 

model 

Infiltration capacity 

function. Vertical 

movement of moisture 

through soil follows 1D 

Richards equation. 

A function of the 

soil moisture in the 

third layer. Linear 

below a soil 

moisture threshold 

and becomes 

nonlinear above 

that threshold. 

[Liang et al., 1994] 

Mosaic 

representati

on of 

different 

vegetation 

coverages at 

each cell.  

University 

of Maryland 

1-km Global 

Land Cover 

Classificatio

n (Hansen et 

al. 2000) 

1-km 

STAT

SGO 

databa

se 

(Mille

r and 

White 

1998). 

NOAH-

MP 

(WRF-

HYDRO 

5.2.0) 

Three-

layer 

energy–

mass 

balance 

model that 

represents 

percolation

(1) TOPMODEL‐based 

runoff scheme 

Simple 

groundwater 

(hereafter SIMGM) 

[Niu et al., 2007]. 

Semi-tile 

approach for 

computing 

longwave, 

latent heat, 

sensible 

heat and 

ground heat 

MODIS 30-

second 

Modified 

IGBP 20-

category 

land cover 

product 

 

1-km 

STAT

SGO 

databa

se 

(Mille

r and 

White 

(2) Simple 

TOPMODEL‐based 

runoff scheme with 

an equilibrium 

Similar to SIMGM, 

but with a sealed 

bottom of the soil 

column [Niu et al., 
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, retention, 

and 

refreezing 

of 

meltwater 

within the 

snowpack. 

water table 

(hereafter SIMTOP) 

2005] fluxes 1998). 

(3) Infiltration‐excess‐b

ased surface runoff 

scheme 

Gravitational 

free‐drainage 

subsurface runoff 

scheme [Schaake et 

al., 1996] 

(4) BATS runoff 

scheme, which 

parameterized 

surface runoff as a 

4th power function 

of the top 2 m soil 

wetness (degree of 

saturation) 

Gravitational free 

drainage 

[Dickinson et 

al.,1993] 

3. Model calibration 272 

3.1 Calibration methods 273 

The initial step in our calibration effort was to optimize the land surface 274 

parameters of the two models for the 263 WUS basins. These parameters, primarily 275 

soil properties which can exhibit a substantial degree of uncertainty, were iteratively 276 

updated via hundreds of simulations to accurately reflect streamflow conditions in 277 

each basin. 278 

Our focus on calibrating soil-related parameters was based on their critical role 279 

in runoff generation. In this respect, we focused on key processes including 280 

infiltration, soil moisture storage, and groundwater recharge. The calibration of 281 

parameters that control these processes was prioritized to improve the representation 282 

of soil-water interactions, a major driver of runoff variability in the region. Given the 283 

importance of snow processes across much of the region, we conducted snow 284 

simulation verification at 20 Snow Telemetry (SNOTEL) (Natural Resources 285 

Conservation Service, 2023) sites across WUS. Our assessment (see Figure S1) 286 

indicated that the existing parameterizations for snow processes in both models 287 

reproduced observed SWE well across our study region. 288 

Prior to calibration, we conducted a sensitivity analysis to identify the most 289 
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influential parameters for streamflow simulation in both models. We also drew on 290 

insights from previous research in this respect (Mendoza et al. 2015; Hussein 2020; 291 

Shi et al. 2008; Holtzman et al., 2020; Bass et al., 2023; Schaperow et al., 2023). We 292 

then performed a sensitivity analysis, focusing on how variations in the most sensitive 293 

parameters impacted Kling-Gupta Efficiency (KGE; Gupta et al., 2009). Based on 294 

these analyses, we chose to calibrate six parameters for the VIC model and five for 295 

the Noah-MP model (Table 2). For each parameter, we defined a physically viable 296 

range (refer to Table 2), drawing from values utilized in prior studies (Cai et al. 2014; 297 

Mendoza et al. 2015; Hussein 2020; Shi et al. 2008; Gochis et al., 2019; Holtzman et 298 

al., 2020; Lahmers et al. 2021; Bass et al., 2023; Schaperow et al., 2023). 299 

In recent years, the development of hydrologic model calibration has evolved 300 

from manual, trial-and-error approaches to advanced automated techniques. This has 301 

included a shift towards global optimization methods, notably the Shuffled Complex 302 

Evolution algorithm (SCE-UA; Duan et al.,1992). Typically, SCE-UA has been 303 

applied to computationally efficient models (simulation time often on the order of a 304 

few minutes or less; see e.g., Franchini et al. (1998)). However, its application 305 

becomes less practical with more recent distributed hydrologic models such as the 306 

Noah-MP which require longer simulation times. To address these computational 307 

challenges, Tolson and Shoemaker (2007) introduced the Dynamically Dimensioned 308 

Search (DDS) algorithm, tailored for complex, high-dimensional problems. DDS is 309 

more computationally efficiency than SCE-UA, and we therefore used it for our 310 

Noah-MP calibrations. 311 

To assure that the parameter sets we estimated weren’t dependent on the 312 

optimization method, we conducted a comparison between SCE-UA and DDS for 313 

calibrating VIC across 20 randomly chosen basins. We found that the DDS algorithm 314 

achieved optimal calibration with fewer iterations (typically around 3000 iterations vs 315 
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only about 250 for DDS).  The parameter sets identified were nearly identical, 316 

affirming our decision to use distinct algorithms tailored to the computational 317 

demands of each model.    318 

For both models, our objective function was the KGE metric for daily 319 

streamflow. KGE is a widely used performance measure because of its advantages in 320 

orthogonally considering bias, correlation and variability (Knoben et al., 2019). KGE 321 

= 1 indicates perfect agreement between simulations and observations; KGE values 322 

greater than -0.41 indicate that a model improves upon the mean flow benchmark 323 

(Konben et al., 2019). 324 

TABLE 2. Calibration methods, parameters and modifications to their initial 325 

default values evaluated in the calibration. 326 

Model VIC Noah-MP 

Calibration 

Method 
SCE-UA DDS 

Iterations 3000 250 

Calibrated 

Parameter 

Variable 

Infiltration 

Curve 

Parameter 

(INFILT) 

0.001 – 0.4 

(Shi et 

al.,2008) 

Saturated 

Hydraulic 

Conductivity 

(Ksat) 

 

2 ×
10−9𝑡𝑜 0.07(Cai 

et al.,2014) 

 

Baseflow 

parameter (Ds) 

0.001 – 1.0 

(Shi et 

al.,2008) 

Saturation soil 

moisture content 

(MAXSMC) 

 

0.1 to 0.71 (Cai 

et al.,2014) 

Thickness of 

Soil in Layer 1 

(Depth_1) 

0.01 – 0.2 

(Shi et 

al.,2008) 

Pore size 

distribution 

index (Bexp) 

 

1.12 to 22 (Cai 

et al.,2014; 

Gochis et 

al.,2019) 

Total thickness 

of soil column 

(Depth_total) 

0.6 – 3.5 

(Shi et 

al.,2008) 

 

Linear scaling 

of “openness” of 

bottom drainage 

boundary 

(Slope) 

0.1-1 (Lahmers 

et al 2021) 

Max velocity 

parameter of 

baseflow 

(Dsmax) 

 

0.001 – 30 

(Schaperow 

et al.,2023) 

Parameter in 

surface runoff 

(REFKDT) 

0.1-10 (Lahmers 

et al 2021) 

Fraction of max 0.001 – 1   
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soil moisture 

where nonlinear 

baseflow occurs 

(Ws) 

 

(Shi et 

al.,2008) 

3.2 Noah-MP parameterization 327 

As specified in Table 1, Noah-MP has four runoff and groundwater physics 328 

options (rnf). Initially, we adopted the options that are incorporated in the NWM, as 329 

elaborated in Gochis et al. (2020). Before we could proceed with calibrating Noah-330 

MP for all the WUS basins, it was necessary to determine suitable rnfs. To streamline 331 

computational time, we initially selected 50 basins randomly from the total of 263 332 

from which we created four experimental groups. Each group employed a different  333 

rnf option.  We applied the DDS method to these groups and compared the cumulative 334 

distribution functions (CDF) of their baseline and calibrated KGEs (Figure 3). From 335 

this figure, it's apparent that the KGE improved post-calibration for all four rnfs. 336 

Notably, rnf3, also known as free drainage, exhibited the most substantial 337 

performance enhancement after calibration. As a result, we chose to continue using 338 

this option which is incorporated in the NWM. Nonetheless, it's worth noting that the 339 

use of different options for different basins—a feature currently not utilized in Noah-340 

MP or WRF-Hydro—could potentially result in improved overall model performance.  341 
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 342 

Figure 3. Streamflow performance (KGE of daily streamflow simulations) of 343 

different Noah-MP runoff generation options across 50 (of 263) randomly selected 344 

basins. The performances are shown for both baseline and calibrated simulations.   345 

3.3 Calibration of gauged basins 346 

Following the selection of the most effective set of runoff generation options 347 

across the domain, we estimated model parameters for all 263 basins. The 348 

comparative performance of the models, before and after calibration, is shown in 349 

Figure 4. It's apparent from the figure that both Noah-MP and VIC have significantly 350 

enhanced their daily streamflow simulation skills post-calibration. After calibration, 351 

the median KGE of Noah-MP improved from 0.22 to 0.54, and the VIC's median 352 

KGE increased from 0.37 to 0.70. When contrasting the two models, we observed that 353 

VIC outperformed Noah-MP both pre- and post-calibration. One possible explanation 354 

could be that the baseline VIC parameters were taken from Livneh et al. (2013), and 355 

these parameters had already been validated and adjusted for major U.S. basins 356 
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(although not for our 263 basins specifically), while the Noah-MP parameters are 357 

default values from NWM. Another possibility is inherent differences in the physics 358 

of streamflow simulation between the two models (VIC primarily generates runoff via 359 

the saturation excess mechanism), although that isn’t the main focus of our research. 360 

Following the calibration with data from the past 20 years, we performed a test 361 

where we calibrated the streamflow using the first 10 years of data and validated with 362 

the subsequent 10 years of data. This test revealed that the KGE distribution from the 363 

10-year calibration is similar to that from the 20-year data. The median KGE values 364 

for VIC and Noah-MP after calibration with 10 years of observations were 0.52 and 365 

0.69, respectively. Correspondingly, the median KGEs during the validation period 366 

were 0.50 and 0.68, respectively, which are only slightly lower. These comparisons 367 

demonstrate general consistency over time in the performance of the calibrated 368 

parameters. 369 

To validate the robustness of our calibration methodology, we calculated 370 

alternative (to KGE) performance metrics, specifically Nash-Sutcliffe Efficiency 371 

(NSE) and bias. Our analyses, detailed in Figures S2&3, revealed significant 372 

enhancements in model performance as measured by these metrics. The observed 373 

improvements across multiple evaluation criteria affirm the efficacy of our calibration 374 

process, and in particular that the performance of our procedures is not contingent 375 

upon the choice of evaluation metrics. 376 

377 
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 378 

Figure 4. Cumulative Distribution Function (CDF) plot of the daily streamflow 379 

KGE for (a) VIC and (b) Noah-MP, comparing baseline and calibrated runs across all 380 

263 basins. 381 

We examined the spatial variability of daily streamflow KGE for Noah-MP and 382 

VIC, both before and after the calibration (see Figure 5). The highest baseline KGEs 383 

are along the Pacific Coast, in central to northern CA for both models. VIC's baseline 384 

KGE generally is high in the Pacific Northwest. Post-calibration improvements 385 

occurred for both models in most areas, especially in regions where the baseline KGE 386 

was low, such as southern CA and the southeastern part of the study region. Median 387 

improvements after calibration were 0.27 for Noah-MP and 0.30 for VIC. 388 

We observed that basins displaying higher KGE values typically were more 389 

humid than those with lower KGE. To further delve into the relationship between 390 

KGE and basin characteristics, we explored correlations between KGE and 21 391 

different characteristics, including drainage area, elevation, seasonal/annual average 392 

temperature and precipitation, annual maximum precipitation, and seasonal/annual 393 

runoff ratio. Of these, 12 characteristics were statistically significantly correlated with 394 

the VIC KGE, including four seasonal and annual runoff ratios; mean precipitation in 395 

winter, spring, and fall; annual maximum precipitation; and minimum elevation. 396 
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Figure 6 shows scatterplots of eight representative characteristics. Apart from 397 

minimum elevation and mean summer temperature, all other characteristics were 398 

positively correlated with KGE. Typically, spring runoff ratio, annual runoff ratio, 399 

mean annual max precipitation, and mean winter precipitation exhibited the highest 400 

correlations with KGE. This implies that basins with higher runoff ratios (particularly 401 

in spring), higher precipitation (especially maximum precipitation), lower summer 402 

temperature, and lower elevation are more likely to exhibit strong VIC performance. 403 

The same applies to Noah-MP, as indicated in Figure 7, although Noah-MP showed 404 

relatively weaker correlations. Correlations between mean summer temperature and 405 

mean fall precipitation and Noah-MP KGE weren’t statistically significant. 406 

The spatial distribution of the eight characteristics is qualitatively similar with 407 

the KGE spatial distribution, as shown in Figure 8. Generally, basins with higher KGE 408 

have higher characteristic values when the correlation is positive, and lower 409 

characteristic values when the correlation is negative. As noted above, both models 410 

show good baseline performance along the Pacific Coast, and in central to northern 411 

CA (Figure 5). Those areas have high runoff ratios (specifically spring and annual) 412 

and high mean winter precipitation. These features generally lead to runoff physics 413 

that are dominated by the saturation-excess mechanism, which is well represented by 414 

both VIC and Noah-MP. VIC's baseline KGE generally is high in the inland 415 

Northwest which has somewhat lower runoff ratios and (relatively) deeper 416 

groundwater tables.  VIC’s superior performance relative to Noah-MP may also be 417 

because of its variable rather than fixed soil moisture depths (as is the case for Noah-418 

MP). 419 
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 420 

Figure 5. Spatial distribution of daily streamflow KGE for Noah-MP baseline (1); 421 

calibrated Noah-MP (2); difference between calibrated and baseline Noah-MP (3); 422 

VIC baseline (4); calibrated VIC (5); difference between calibrated and baseline VIC 423 

(6). 424 
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 425 

Figure 6. Scatterplots of VIC KGE in relation to significantly correlated 426 

characteristics. Each subplot indicates the corresponding Pearson correlation 427 

coefficients and the P-value. 428 
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 429 

Figure 7. Scatterplot of Noah-MP KGE in relation to significantly correlated 430 

characteristics. Each subplot indicates the corresponding Pearson correlation 431 

coefficients and the P-value. 432 
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 433 

Figure 8. Spatial distribution of characteristics that are statistically significantly 434 

correlated with KGE. Note that all characteristics are significantly correlated with 435 

VIC KGE whereas only (1)-(6) are significantly correlated with Noah-MP KGE. 436 
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4. Regionalization 437 

To distribute parameters from the calibration basins to the entire region, we used 438 

the donor-basin method as implemented in numerous previous studies (e.g., Arsenault 439 

and Brissette (2014); Poissant et al. (2017); Razavi and Coulibaly (2017); Gochis et al. 440 

(2019); Qi et al. (2021) and Bass et al. (2023). Following the calibration process, we 441 

regionalized the parameters from gauged to ungauged basins based on a mathematical 442 

assessment of the spatial and physical proximity between the gauged and ungauged 443 

basins.  We considered two primary methods for implementing the donor basin 444 

approach. The first uses models calibrated to spatially continuous gridded runoff 445 

metrics (Beck et al. 2015; Yang et al. 2019). The second approach, which we 446 

ultimately adopted, calibrates models to individual gauges, then extends these 447 

parameters to ungauged basins, based either on a statistical or mathematical similarity 448 

measures (e.g., Arsenault and Brissette 2014; Razavi and Coulibaly 2017). Our 449 

preference for the second method was guided by a key limitation of the first approach, 450 

specifically it is limited to calibrating against runoff metrics, such as long-term mean 451 

flow and flow percentiles, rather than streamflow time series.  452 

In the donor-basin method, an ungauged basin inherits its land surface 453 

parameters from the most similar gauged basin(s) (or the 'n' most similar gauged 454 

basins). Here, we evaluated the similarity or proximity between gauged and ungauged 455 

basins based on the similarity index SI as defined and used by Burn and Boorman 456 

(1993) and Poissant et al. (2017): 457 

𝑆𝐼 = ∑
|𝑋𝑖

𝐺−𝑋𝑖
𝑈|

𝛥𝑋𝑖

𝑘
𝑖=1                                  (1) 458 

In Eq. 1, k stands for the total number of features considered, 𝑋𝑖
𝐺 represents the ith 459 

feature of the gauged basin G, 𝑋𝑖
𝑈 is the ith feature of a specific ungauged basin, and 460 

𝛥𝑋𝑖 is the range of potential values for the ith feature, grounded in the data from the 461 
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gauged basins. This yields a unique value of SI for each gauged basin, contingent on 462 

the specific ungauged basin it is compared with. Typically, gauged basins that exhibit 463 

greater resemblance to the ungauged basin will have a smaller SI. 464 

We assessed the donor-basin method's efficacy using a cross-validation approach, 465 

where each gauged basin was treated as ungauged one at a time. The pseudo-466 

ungauged basin inherits its hydrological parameters from its three most similar 467 

gauged basins, determined by SI. The parameters inherited are a weighted average 468 

from the three donor basins. After testing one to five donor basins, we found that 469 

using three donors yielded the best results. Thus, every basin inherits parameters from 470 

the three most similar gauged basins in each simulation, offering a concise evaluation 471 

of the donor-basin method's regionalization performance.  472 

We used 18 basin-specific features in the donor basin method, detailed in Table 473 

S1, calculated based on the forcings and parameters used in the study. For feature 474 

selection in the donor-basin method, we adopted an iterative approach, explained in 475 

detail in the following paragraph. Only basins with a KGE exceeding 0.3 were 476 

considered, following previous studies suggesting that inclusion of poorly performing 477 

basins can lower regionalization performance. We found that a KGE threshold of 0.3 478 

resulted in a median performance improvement of 0.08 larger than did a KGE 479 

threshold of 0, hence it was chosen. After screening, 223 basins were utilized in VIC 480 

regionalization and 194 in Noah-MP regionalization. We note that the parameters used 481 

for calibration and the features used to determine the similarity index in the 482 

regionalization process are different. The physics that control the key hydrological 483 

processes of the two models are different, so we explored their best regionalization 484 

features separately.  485 

To determine the most effective regionalization features from the 18 basin 486 

characteristics listed in Table S1, we employed a systematic iterative approach. The 487 
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first iteration includes 18 simulations, each of which incorporates one of the 18 488 

features. The feature that yielded the greatest increase in the median KGE across all 489 

basins, based on leave-one-out cross validation, was then retained. In the second 490 

iteration, we conducted 17 simulations, each combining the retained feature from the 491 

first iteration with one of the remaining 17 features. This process was repeated 492 

iteratively, reducing the number of features considered in each subsequent round, until 493 

the addition of new features no longer resulted in an appreciable increase in median 494 

KGE. The sequence of features shown in Figure 9 (also shown in Table S1) indicated 495 

the importance of the features. This iterative approach ensured that each feature's 496 

individual and combined contribution to model performance was thoroughly assessed. 497 

It allowed us to identify a subset of features that, when used together, optimally 498 

improved model accuracy. We recognize the potential existence of inter-feature 499 

correlations that may exert a discernible influence on their collective efficacy when 500 

utilized in combination.  501 

This procedure resulted in five features generated the best regionalization 502 

performance for VIC (longitude centroid, latitude centroid, maximum elevation, fall 503 

mean precipitation, and fall mean temperature).  Three features were found to be best 504 

for Noah-MP (latitude centroid, longitude centroid, and drainage area) (see Figure 9). 505 

Among them, latitude and longitude are the common features that contribute the most 506 

to regionalization when using the similarity index method. This suggests that 507 

geographical similarities are the most important factor in parameter information 508 

transfer from gauged to ungauged basins.  509 

Upon evaluating the performance of baseline, calibrated, and regionalized 510 

simulations, the respective median daily KGEs for the VIC model were found to be 511 

0.41, 0.71, and 0.49. For the Noah-MP, these values were 0.38, 0.60, and 0.49 (refer 512 

to Figures 9 & S4). These metrics are for basins that have a calibrated KGE greater 513 
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than 0.3 only, resulting in higher median KGEs than for all 263 basins (See Figure 4). 514 

The KGE distribution also improved overall. It's noteworthy that the regionalization 515 

improvement relative to baseline is higher for Noah-MP than for VIC. While VIC's 516 

baseline and calibrated KGE skill distribution outperforms Noah-MP's, the differences 517 

between regionalized skills of Noah-MP and VIC are quite comparabledecreasing. We 518 

will explore more on this in the following section. This observation might be 519 

attributable to the constraints of the regionalization setup and could warrant future 520 

investigation. 521 

After optimizing the features and specific design of the donor-basin method, 522 

parameters were regionalized to 4816 ungauged USGS Hydrologic Unit Code (HUC) 523 

-10 basins across the WUS. HUCs are delineated and quality controlled by USGS 524 

using high-resolution DEMs. For each of the 4816 HUC-10 basins, we calculated a 525 

similarity index with the calibrated basins using the selected features. The three most 526 

similar basins were identified as donor basins, and their weighted average parameters 527 

were then adopted by the target HUC-10 basin. The final hydrologic parameters for 528 

both VIC and Noah-MP for all WUS HUC-10 basins are shown in Figures S5&6.  529 

The baseline HUC-10 parameters are shown in Figures S7&8.  530 

Comparison of Figures S54-65 to Figures S76-87 makes it clear that the baseline 531 

model parameters lack accuracy, and exhibit significant spatial uniformity where large 532 

geographical regions share identical parameter values. For example, parameters such 533 

as Ds and Soil_Depth1 in VIC show this uniformity. Furthermore, certain parameters, 534 

such as SLOPE and REFKDT in Noah-MP, remain invariant across all spatial 535 

domains, and don't reflect real-world conditions. Regionalization, improved the 536 

parameters, leading to increased accuracy and strengthening of region-specific 537 

characteristics. 538 
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 539 

Figure 9. Best regionalization features for (a) VIC and (b) Noah-MP. The final 540 

regionalization to ungauged basins of the WUS incorporated all features up to the 541 

point marked by the red line since the addition of further features doesn't improve 542 

KGE. 543 

5. Evaluation of calibration and regionalization skillshigh and low flow 544 

simulation skill 545 

Our primary calibration objective was to enhance the accuracy of daily 546 

streamflow simulations. However, to ensure the versatility of our parameter sets for 547 

research related to both floods and dry conditions, we also evaluated the models' 548 
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capabilities in reproducing high and low streamflow. To understand the capabilities of 549 

the two models in reconstructing high and low streamflow, we assessed their 550 

performance across baseline, calibrated, and regionalized settings.  551 

(a) Evaluation of high flow performance 552 

We used the peaks-over-threshold (POT) method (Lang et al. 1999) to identify 553 

extreme streamflow events as in Su et al (2023) and Cao et al. (2019, 2020). We first 554 

applied the event independence criteria from USWRC (1982) to daily streamflow data 555 

to identify independent events. We set thresholds at each basin that resulted in 3 556 

extreme events per year on average (denoted as POT3). After selecting the flood 557 

events over the study period based on the observation, we sorted the floods based on 558 

the return period and then calculated the KGE of baseline, calibrated and regionalized 559 

floods. Figure S9 displays the associated CDF plots. The median KGE for baseline 560 

floods in Noah-MP was 0.14, which rose to 0.37 post-calibration, and receded to 0.22 561 

after regionalization. For VIC, the flood KGE started at 0.11, increased to 0.41 after 562 

calibration, and declined to 0.20 post-regionalization. As anticipated, these numbers 563 

are lower than (all) daily streamflow skill due to our calibration target being daily 564 

streamflow. Still, flood competencies experienced considerable enhancement, 565 

surpassing the Noah-MP KGE benchmark of -0.41 found by Knoben et al. (2019). 566 

(b) Evaluation of low flow performance 567 

To assess low flow performance, we utilized the 7q10 metric. This hydrological 568 

statistic, commonly adopted in water resources management and environmental 569 

engineering, is the lowest 7-day average flow that occurs (on average) once every 10 570 

years (EPA,2018). Scatterplots of 7q10 (Figure S10) showed high correlation between 571 

our model's simulated low flows and the observed data. Post-calibration, this 572 

alignment intensified. The VIC model tended to underestimate the low flows. After 573 

calibration, the median bias improved from -23.6% to -9.9%, and with regionalization, 574 
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it was -11.7%. In contrast, Noah-MP began with an 11.20% overestimation in the 575 

baseline, improved to 0.61% post-calibration, and was -9.5% after regionalization. 576 

The outcomes underline the proficiency of both models for low flow prediction, 577 

exhibiting enhanced competencies post-calibration and commendable performance 578 

after regionalization.  579 

(c) Comparison of VIC and Noah-MP simulation skill 580 

In Section 4, we demonstrated that while VIC's baseline and calibrated daily 581 

streamflow KGE skill distribution was better than Noah-MP's, the disparity was 582 

reduced following regionalization. We further explored the skill differences between 583 

the two models for baseline, calibrated, and regionalized parameters for different 584 

hydroclimatic conditions. Figure 10 shows the CDF of the daily streamflow KGE 585 

differences between VIC and Noah-MP across the study basins. The skill gap between 586 

VIC and Noah-MP generally narrows from baseline through calibrated to regionalized 587 

runs, although VIC outperforms Noah-MP in most of the basins for all three runs.  588 

We further divided the study region into four different categories following 589 

Huang et al (2021): coastal snow dominated basins, coastal rain dominated, interior 590 

wet, and interior dry. In the baseline runs (Figure 10 and 11.1), VIC generally 591 

outperforms Noah-MP with a median KGE difference of 0.168, particularly in interior 592 

dry basins, and in some interior wet and coastal basins. Following calibration (Figure 593 

10 and 11.2), the median KGE difference decreases to 0.126. VIC has superior 594 

performance in most of the basins, especially interior wet and coastal basins. In 595 

interior dry basins (mostly in the southeastern part of our domain), VIC's performance 596 

is similar to or worse than Noah-MP’s. This discrepancy is attributable to more 597 

pronounced improvements in VIC after calibration in coastal and northern WUS, 598 

while Noah-MP shows greater improvements in the southeastern WUS (mostly dry 599 

interior). Post-regionalization (Figure 10 and 11.3), the KGE differences further 600 
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narrow to a median of 0.054, with VIC still outperforming Noah-MP in most coastal 601 

and interior wet basins. Nonetheless, VIC is inferior in a few interior dry basins 602 

scattered across WUS, where both models exhibit relatively low skill. This is also 603 

shown in Figure S11 CDFs which indicate that VIC’s performance varies notably 604 

across the spectrum: it falls below Noah-MP at the lower end of the skill distribution. 605 

Conversely, VIC KGEs exceed those of Noah-MP in areas where its skills is strongest. 606 

Across all basins collectively, VIC outperforms Noah-MP post regionalization as 607 

evidenced by higher VIC median skill (Figure 10 inset). 608 

We also evaluated the performance of the two models after regionalization in 609 

simulating annual average flows ,flood flows (POT3), and low flows (measured as 610 

7q10). The results (see Figures S12 and S13) show that VIC outperforms Noah-MP in 611 

simulating annual mean streamflow (Figure S12) and (in most cases) floods (Figure 612 

S13). Conversely, Noah-MP generally performs better in simulating low flows (Figure 613 

S10). 614 

615 

 Figure 10. Cumulative distribution function (CDF) plot of the daily streamflow KGE 616 

differences between VIC and Noah-MP in the study basins for baseline, calibrated and 617 

regionalized runs. The inset figure shows boxplots of KGE differences for four 618 
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different categories: coastal snow dominated basins (54 basins), coastal rain 619 

dominated basins (103 basins), interior wet basins (53 basins), and interior dry basins 620 

(53 basins). We also show all basins collectively (263 total) for reference purposes.  621 

 622 

Figure 11. Map of the daily streamflow KGE differences between VIC and 623 

Noah-MP in the study basins for (1) bbaseline, (2) ccalibrated and (3) rregionalized 624 

runs. 625 

(d) Comparison of post-regionalization and post-calibration performance 626 

We further analyzed the performance differences between the regionalized and 627 

calibrated runs for each model. As depicted in Figure 12, both VIC and Noah-MP 628 

have declining skill for post-regionalization relative to post-calibration runs, with VIC 629 

demonstrating a more pronounced decrease, reflected in a median KGE difference of -630 

0.199, compared to -0.117 for Noah-MP. For both models, coastal basins and interior 631 

wet basins tend to have smaller skill decreases from post-calibration to post-632 

regionalization; and interior dry basins have the largest skill decreases. VIC has 633 

greater decreases than Noah-MP in most basins. The most significant drops in 634 

performance generally occur in basins where baseline skills are low, yet post-635 

calibration skills are relatively high. 636 

  637 
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 638 

Figure 12. CDF of differences of daily streamflow skill between regionalized and 639 

calibrated for VIC and Noah-MP. The inset figure summarizes KGE difference 640 

distributions for the same four categories as the inset in Figure 10. 641 

6. Discussion 642 

We summarize our key accomplishments in calibrating the two hydrological 643 

models, examine our approach to choosing calibration objective functions and metrics, 644 

and we consider lessons learned in model regionalization. 645 

(a) Improved parameter sets 646 

We generated calibrated parameter sets for the VIC and Noah-MP hydrological 647 

models at 1/16° latitude-longitude scale across WUS. These calibrated parameter sets 648 

are intended to facilitate the use of the two models for climate change and water 649 

investigations across the region, among other applications.  Our focus on calibrating 650 

daily streamflow aligns with common practice in hydrology, providing a 651 

comprehensive representation of catchment hydrology dynamics which should 652 

enhance future understanding of hydrological phenomena and their spatial variations 653 

across the region. 654 
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(b) Selection of calibration objective function 655 

We used objective functions based on streamflow observations. We chose this 656 

approach due to its applicability elsewhere, given the widespread accessibility of 657 

streamflow observations as compared to alternative metrics such as soil moisture or 658 

evapotranspiration (Demaria et al., 2007; Gao et al., 2018; Troy et al., 2008; Yadav et 659 

al., 2007). While we acknowledge the potential of remote sensing products like 660 

MODIS, SMAP, SMOS, ESA, and ALEXI to improve calibration efforts, especially 661 

for variables like actual evapotranspiration (AET) and soil moisture (SM), we were 662 

limited by the scarcity of observations for these variables. Future studies could, 663 

nonetheless, leverage from the methods we’ve employed to incorporate additional 664 

variables into the objective functions we used. 665 

(c) Selection of calibration metric 666 

We used the KGE metric applied to daily streamflow, which we chose for its 667 

ability to address bias, correlation, and variability simultaneously (Knoben et al., 668 

2019). We also evaluated NSE and BIAS metrics, and found substantial 669 

improvements in both models' performance after calibration when these metrics were 670 

used in place of KGE (See Figures S2-3). Our assessment of high and low flow 671 

reconstruction in Section 5 further validated our generated parameter sets. While we 672 

used a single objective function due to data and computing constraints, incorporating 673 

multiple objective functions is feasible in principle.  674 

(d) Regionalization possibilities 675 

We calibrated model parameters directly for individual basins, considering their 676 

unique hydrological features, and then transferred these calibrated parameters to 677 

similar basins based on similarity assessments. Alternative parameter transfer 678 

strategies could be used within the same framework we employed (e.g., pedo-transfer 679 

functions, e.g. Imhoff et al.,2020) or multiscale parameter regionalization (e.g. 680 
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Schweppe et al.,2022). We do note that our regionalization approach facilitates the 681 

transfer of calibrated parameters to comparable regions, which could be explored in 682 

future research. 683 

7. Conclusions  684 

Our intent was to develop a regional parameter estimation strategy for the VIC 685 

and Noah-MP land surface schemes, and to apply it across the WUS region at the 686 

HUC-10 catchment scale. We’ve described what we believe is a robust framework 687 

that can be applied in future hydrological and climate change studies across the WUS, 688 

and is applicable to other regions as well. Our key findings and conclusions are: 689 

a) Our catchment scale calibration of the two models to 263 sites across WUS 690 

resulted in major improvements in the performance of both models relative to 691 

a priori parameters, but performance improvement was greatest for Noah-692 

MP – although this may be in part because VIC a priori parameters benefitted 693 

from prior calibration and hence resulted in better baseline performance than 694 

did a priori Noah-MP.  695 

b) Both models performed best in more humid basins, mainly in the Pacific 696 

Northwest and central to northern CA where runoff ratios are high.  This is 697 

consistent with previous results (e.g. Bass et al.,2023). 698 

c) Post-calibration regional model performance improved for both models in 699 

most areas, especially where the baseline KGE was low, such as southern CA 700 

and the southeastern part of the study region. 701 

d) VIC performance across all calibration basins generally was mostly better 702 

than for Noah-MP. However, Noah-MP performance benefitted more from 703 

regionalization than did VIC, and ultimately post-regionalization VIC 704 

performance was only slightly superior to that of Noah-MP.  When 705 

partitioned into hydroclimatic categories, VIC outperforms Noah-MP in all 706 
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but interior dry basins following regionalization, where Noah-MP is better.   707 

e) Post-regionalization, both VIC and Noah-MP performance declines in 708 

comparison with the calibrated run, with declines more pronounced for VIC. 709 

The performance degradation is greatest in interior dry basins for both 710 

models. 711 

f) VIC outperforms Noah-MP in simulating annual mean streamflow and flood 712 

simulations in most cases. Conversely, Noah-MP performs better for low 713 

flows. These results should provide guidance for selecting the most 714 

appropriate model depending on the hydrological condition being analyzed. 715 
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