| enjoyed reading this fruitful manuscript. I only have several concerns and comments listed
below.

-L186: the readers would except a similar treatment of the models for consistency of the
framework. Except for the objective function (KGE), all other experimental details are different.
Different search algorithms (SCE vs DDS), different max iterations (may be understandable). The
chaotic structure of the paper makes is difficult to enjoy the fruitful outcomes. Currently it reads
like a technical report by the corps engineers doing everything for better KGE. However, the
research design needs a framework. The experiments should focus on effects of one thing one at a
time. Using two different models is important for structural uncertainty; however under the same
P, PET, Tavg input and methodology (calibration algorithm, max iterations etc).

Thank you for your comment. We recognize the importance of clarity in our experimental
framework, especially regarding our choice of different algorithms for the VIC and Noah-MP
models.

Our selection of calibration algorithms was guided by the need to balance computational
efficiency with robustness. In the calibration of the VIC model, we chose the Shuffled Complex
Evolution (SCE-UA) algorithm, a method well-established and widely recognized for its efficacy
with this particular model (and with which we have considerable experience). The SCE-UA has
been a benchmark in calibrating VIC for decades (see Naeini et al., 2019). The computational
efficiency of VIC made SCE-UA a suitable choice, despite its requirement for a higher number of
iterations. In practical terms, iterating a 20-year simulation in VIC takes about 2 minutes for a mid-
sized basin, which we found manageable in terms of the computer resources available to us.

On the other hand, the Noah-MP model is more computationally demanding, and required a
different approach. For this reason, we selected the Dynamically Dimensioned Search (DDS)
algorithm. DDS is also used in the CONUS implementation of the National Water Model, which
uses Noah-MP as its hydrologic core (Gochis et al. 2019). Although we had not used DDS
previously, the fact that we had available to us a computational structure which embedded Noah-
MP, in addition to it computational efficiency, was a deciding factor. We found that the DDS
algorithm achieves optimal calibration with fewer iterations compared to SCE-UA (about 3000
iterations to reach optimal results for SCE-UA vs only about 250 iterations for DDS).

To validate our approach, we compared SCE-UA and DDS in calibrating VIC across 20

randomly selected basins. The results showed similar performance, reinforcing our decision to



employ different algorithms suited to each model's computational needs. We could have run all
our basins with DDS, but given the similarity of results for the selected basins, we didn’t see any
need (we note that we performed calibration on all of the basins for VIC before starting with the
Noah-MP calibration).

While using the same calibration method for both models could simplify comparisons, as
noted above, the two methods produce essentially the same results, the only difference being
computational efficiency. We will include a more detailed explanation (similar to the above) in
our revised manuscript to better explain our methodological choices and their rationale.

Please a conceptual diagram/framework describing your methodology.
To improve clarity and understanding of our research design, we will include a diagram in
our revised manuscript similar to the one below. This diagram illustrates our calibration framework,

delineating the distinct but complementary approaches we took for each model.
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-Metric: Both models are top quality spatially semi or fully distributed models. Using a metric

focusing on average flows may not fit best while NSE focuses more on high flows. There are other



metrics focusing on patterns of simulated flux maps such as SSIM, FSS, EOF, SPAEF and SPEM.
For novelty, it is recommended to elaborate calibration approach for the two models.

Thank you for your suggestion. We acknowledge the importance of using diverse metrics to
comprehensively assess the performance of the VIC and Noah-MP models. In this research, we
opted for the Kling-Gupta Efficiency (KGE) metric for daily streamflow evaluation, as it is a
widely recognized performance measure that effectively considers bias, correlation, and variability
(Gupta et al., 2009; Knoben et al., 2019). While we acknowledge that KGE provides a balanced
assessment, we understand the potential benefits of other metrics like SSIM, FSS, EOF, SPAEF,
and SPEM, especially for analyzing patterns in simulated flux maps. We will consider some of
these additional metrics in our future work. Specifically, we intend to include (in the appendix)
maps of (normalized values of) multiple performance measures, which will allow direct
comparisons of other measures with KGE.

Furthermore, while we used daily KGE as the objective function, which aligns with the
general focus of our study, we evaluated the models' performance in predicting both high and low
flows. This evaluation demonstrated that both VVIC and Noah-MP models are proficient in high
and low flow prediction, showing significant improvements post-calibration and after
regionalization. In the revised paper, we will expand slightly our discussion of high vs low flow

performance.

-Did authors apply a sensitivity analysis before the calibration to select most important
parameters for the streamflow using selected metric, KGE?

Prior to calibration, we conducted a sensitivity analysis to identify the most influential
parameters for streamflow simulation, aligning with our selected metric, KGE. We will incorporate
additional sentences about this analysis in Section 3.1 of our revised manuscript. Drawing on
insights from previous research, we initially identified a comprehensive set of parameters. We then
performed a sensitivity analysis, focusing on how variations in these parameters impacted KGE
outcomes. This analysis allowed us to ascertain the parameters with the most significant impact
on streamflow simulations. Considering the results of this sensitivity analysis and our available
computational resources, we chose to calibrate six parameters for the VIC model and five for the
Noah-MP model. This decision was made to ensure an efficient yet effective calibration process,

balancing the need for accuracy with computational feasibility.



-Figured: For process consistency, different remote sensing products could be used to
evaluate model results. Why did you only focus on streamflows, if the models are capable of
producing AET, SM (at different soil horizons). MODIS, SMAP, SMOS, ESA, ALEXI all are
useful constraints for model calibration making the novelty maximized. Literature review of the
paper misses all those calibration papers focusing not only KGE but also RS products.

https://doi.org/10.1002/2017WR021346

https://doi.org/10.5194/hess-22-1299-2018

Thank you for your suggestion. Our current study primarily focused on streamflow calibration

due to its comprehensive reflection of catchment hydrology. However, we recognize the potential
of remote sensing products like MODIS, SMAP, SMOS, ESA, and ALEXI in providing additional
data for calibration, particularly for variables such as actual evapotranspiration (AET) and soil
moisture (SM). While remote sensing products from MODIS, SMAP, SMOS, ESA, and ALEXI
offer valuable data for calibrating and validating hydrological models, our current study was
limited by the availability of observed soil moisture and evapotranspiration data.

Nonetheless, we understand the importance of these data sources in enhancing model
calibration and validation. In future studies, we aim to incorporate such diverse data sources to
calibrate and validate other hydrological variables, enriching the scope and accuracy of our models.
The references you provided will be a valuable addition to our literature review, guiding us to
include a broader range of calibration variables. We will revise the manuscript to comment on this
broader perspective and acknowledge the importance of integrating remote sensing data in

hydrological modeling.

-Do these models incorporate pedo-transfer functions for parameter regionalization? Some of
the distributed models, like mHM, uses multi-parameter regionalization (MPR) technology.

https://doi.org/10.5194/gmd-15-859-2022

In this study, we did not utilize pedo-transfer functions for parameter regionalization. Our
focus was on direct calibration of model parameters for each basin individually. Our method
involved calibrating parameters specific to each basin, taking into account their unique
hydrological characteristics. Following this, we transferred these calibrated parameters to HUC10

basins based on similarity assessments. This approach ensured that the calibration was closely


https://doi.org/10.1002/2017WR021346
https://doi.org/10.5194/hess-22-1299-2018

aligned with the specific conditions of each catchment area. We acknowledge that alternative
approaches, such as the multi-parameter regionalization (MPR) technology used in models like
mHM (referenced in your citation), provide different perspectives on parameter regionalization.
We appreciate your comment and will consider alternative regionalization methodologies,
including pedo-transfer functions, in our future research to enhance the depth and applicability of

our work.

-Table 1: “VIC4.1.2”

Why this old version of VIC model is used while current version WRF-Hydro 5.2.0 is
preferred.

VIC5 version includes many infrastructure improvements (glaciers etc) as described here:

https://doi.org/10.5194/gmd-11-3481-2018

We selected VIC 4.1.2 for two key reasons: Firstly, our initial parameters were based on

Livneh et al. (2013), who validated model discharges over major CONUS river basins using VIC
4.1.2. To leverage these well-established parameters and maintain consistency with their study, it
was crucial to use the same version of the VIC model. Secondly, in a preliminary assessment of
snow water equivalent (SWE) simulation skills at select SNOTEL sites in the WUS, we found that
VIC 4.1.2 demonstrated superior performance compared to VIC5. This finding, coupled with our
research group's extensive experience and proven results with VIC 4.1.2, informed our decision to
use this version.

For WRF-HYDRO, we utilized the most current version to benefit from the latest
advancements in the model. We will clarify these aspects in our revised manuscript, ensuring a

comprehensive understanding of our model version selection rationale.

-Figures 9-10-11 can be given in appendix.

Thank you, we’ll move them to the appendix in the revised manuscript.

-The paper needs a separate Discussion section and a separate Conclusions (bullets) section.
Summary can be appropriate for “engineering corps” reports not for HESS papers.
Thank you for your suggestions. We agree that a clear distinction between the Discussion and

Conclusion sections would enhance the readability and academic rigor of the paper. In line with


https://doi.org/10.5194/gmd-11-3481-2018

your advice, we will restructure our manuscript to include a distinct discussion section. This
section will be dedicated to examining the significance of our findings, their relevance to the
broader hydrological research community, and their potential limitations. It will also suggest
directions for future research and provide a deeper interpretation of our results. We will also
develop a separate conclusions section, designed to be brief yet informative. This section will
succinctly summarize the main findings, contributions of our work, and its practical implications.
It will be crafted to ensure that the central messages of our study are easily understood and
remembered by our readers. We appreciate your guidance on this matter and are committed to

making the necessary adjustments to improve our manuscript.
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