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Supplement A: WHAM Earth-Observation 
 

1. Introduction 

This supplement to Perkins et al., (in submission) describes the parameterisation of WHAM! using 

Earth Observation data sets rather than outputs from JULES (hereafter: WHAM Earth Observation or 

WHAM-EO). This was done firstly to WHAM! more readily transferrable to other DGVM fire 

modules, but also to assess to what extent errors in WHAM! are inherited from JULES underlying 

representations of ecosystem dynamics. It first describes changes in model structure, before giving a 

brief overview of headline results.  

 

2. Methods 

Table S1 gives the variables that were taken from JULES in WHAM!, and hence were replaced with 

Earth observation data in WHAM-EO. In order to integrate these data fully into the structure of 

WHAM-EO, all AFT distribution, fire use and management sub-models were reparameterised using 

these new data as inputs.  

 

Table S1: Overview of changes to input data in WHAM-EO 

JULES input WHAM-EO replacement Citation 

Potential 

evapotranspiration 

GLEAM potential 

evapotranspiration 

Martens et al., 2017 

Net primary production MUSES NPP Wang et al., 2021 

Bare soil MODIS NDVI Didan et al., 2021  
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In addition, the vegetation constraint, which is parameterised using JULES bare-soil fraction in 

WHAM!, was reparameterised using MODIS-derived normalised difference vegetation index as 

follows. The vegetation constraint and its impact on burned area were calculated as: 

 

𝑉 =
(𝑁𝐷𝑉𝐼𝑡−𝑣1)

𝑣2− 𝑣1
       (S1) 

𝑉𝐶𝑡 = {
1 𝑖𝑓 𝑉 ≥ 𝑣3  
𝑉 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}  (S2) 

𝐵𝐴𝑡 =   𝐵�̂�𝑡 ∗ 𝑉𝐶𝑡         (S3) 

 

where 𝑉 is a static threshold based on the NDVI of a given grid cell and two free parameters, 𝑣1and 

𝑣2; 𝑉𝐶𝑡 is the vegetation constraint at time = 𝑡, dependent on a free parameter threshold 𝑣3; and 𝐵�̂�𝑡 

and 𝐵𝐴𝑡 are raw burned area from bottom-up AFT calculations, and burned area adjusted for the 

vegetation constraint. 

 

3. Results: headline differences  

Presentation of results here focuses on differences with results presented in the main text. Globally, 

the central differences between WHAM_EO and WHAM! using JULES inputs (WHAM_JULES) are 

that WHAM_EO shows a steeper decline in pasture fires, and a more stable use of vegetation fire 

(Figure S1). Cropland fires are very similar, pointing the dominance of economic drivers of this fire 

use type. Spatially, the central difference is in sub-Saharan Africa; in WHAM_EO managed fire is 

more evenly distributed across the Guinean savanna fire belt and Madagascar than in 

WHAM_JULES, which shows a patchier distribution (Figure S2). 
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 Figure S1: Global trends in managed anthropogenic fire between WHAM parameterised with Earth 

observation data (WHAM_EO) and WHAM parameterised with JULES biophysical inputs 

(WHAM_JULES). 

Figure S2: Spatial distribution of fire in WHAM parameterised with Earth observation data 

(WHAM_EO) and WHAM parameterised with JULES biophysical inputs (WHAM_JULES). 
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Supplement B: Sub-model parameterisation 
This supplement to Perkins et al., (in submission) covers the parameterisation of agent functional 

types (AFTs) for five of the seven modes of anthropogenic fire use identified in the database of 

anthropogenic fire impacts (DAFI; Millington et al., 2022). As noted in the main text, there was an 

underlying method for parameterisation of each of these five fire uses (Figure S3); as such the text 

below notes adjustments of this process for the specific data availability of each fire use. An overview 

of the adjustments made for each fire use type is given in Table S2. 

 

1.1 Crop field preparation 

For crop field preparation, fallow length and therefore fire return period (FRP), is an important 

measure of the state and stability of a shifting cultivation system. FRP was much widely reported in 

DAFI (n = 263) than burned area fraction (n = 39) for swidden systems. Therefore, the dependent 

variable used for burned area modelling was FRP, which assumed to approximate the inverse of the 

burned area fraction.  

 

1.2 Crop residue burning 

Crop residue burning is a ubiquitous practice amongst sedentary small-holder farmers (Smith et al., 

2022). This tendency was reflected in DAFI, in which just 29 of 297 crop residue burning records 

(10%) for arable small-holders were documented absences. As no meaningful relationships could be 

found between absence cases and independent variables, these absence cases were included in the 

single burned area model as burned area = 0. As a consequence, the resulting tree models for both 

subsistence-oriented and market-oriented smallholders each contained an output node where burned 

area fraction was < 0.1.  

Conversely, in the case of intensive farming, residue burning was a comparatively sparse practice: 15 

of 75 records were absence cases (20%) and only one case study reported a burned area fraction 

greater than 3%. Therefore, a fire tendency (Boolean) model was combined with a constant of 2.5% 

used to parameterise burned area. 2.5% was chosen as it was the geometric mean of the data (2.47%); 

the geometric mean was used as the arithmetic mean was highly skewed by one case study where 85% 

of the cropland was burned in a sugarcane production system (McCarty et al., 2009).
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Figure S3: Core method of parameterising five of the seven fire use types in WHAM!. Burned 

area for each agent functional type for each fire use type was the product of fire use 

probability and fire use rate subject to both top-down and fire-specific constraints. Top-down 

constraints, which corrected underlying sampling biases in DAFI are detailed in the main 

text, whilst fire use specific constraints are detailed in this supplement.  
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Table S2: Fire-specific amendments to parameterisations of managed fire by fire use type and agent functional type (AFT); the choice 

between tree models and linear models was based on their empirical performance. Where an AFT is not listed under a fire use, it was found 

not to use that mode of fire. The core method used for fire use parameterisation is set out in the main text.  

Fire use AFTs 
Fire use tendency: 
method 

Burned area: 
method 

Burned area:  
target variable 

Fire-specific 
constraint 

Crop field preparation Shifting cultivation Classification tree Regression tree Fire return period 

 
 
None 

Crop residue burning 

Small-holder 
(Subsistence) 
 
Small-holder (Market) 
 
Intensive arable farmer 

None 
 
None 
 
Classification tree  

Regression tree  
 
Regression tree 
 
Constant  

BA fraction 
 
BA fraction 
 
N/A 

 
 
None 
 
None 
 
None 

Hunter gatherer Hunter gatherer Classification tree Linear model BA fraction 

 
 
Section 1.5 

Pasture management 

Pastoralist 
 
Extensive livestock 
farmer 
 
Intensive livestock 
farmer 

Classification tree 
 
 
Classification tree 
 
 
Classification tree 

Regression tree 
 
 
Regression tree  
 
 
Constant  

BA fraction 
 
 
BA fraction 
 
 
N/A 

Section 1.3 
 
 
Section 1.3 
 
 
Section 1.3 

Pyrome management 

Conservationist 
 
Hunter gatherer 
 
Managed forester 
 
State land manager 

Classification tree 
 
Classification tree 
 
Classification tree 
 
Classification tree 

Linear model 
 
Linear model 
 
Constant 
 
Regression tree 

BA fraction 
 
BA fraction 
 
N/A 
 
BA fraction 

 
 
None 
 
None 
 
None 
 
None 
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1.3 Pasture management 

Two adjustments to the default fire parameterisation process were made for pasture management fires. 

Firstly, as with intensive arable farmers’ crop residue burning, a constant value was used for burned 

area calculations for intensive livestock farmers due to sparse data (n = 6) and, therefore, no 

meaningful relationships being found with predictor variables. Secondly, fire return period was used 

rather than burned area fraction to generate burned area maps for other AFTs owing to data 

availability.  

Secondly, a more fundamental challenge was presented by the ‘rangeland’ land use class, which was a 

new inclusion in the CMIP6 land use & land cover data (Hurtt et al., 2020). In describing land use 

classes in the Hyde database v3.2 that were subsequently adopted by Hurtt et al., (2020), Goldewijk et 

al., (2017), define rangelands as extensively managed grazing lands, comprising ‘natural grasslands, 

shrublands, woodlands, wetlands, and deserts (which) grow primarily native vegetation’. Therefore, 

with rangelands occupying hugely differing biophysical niches, and in particular including arid and 

semi-arid regions, they could have greatly divergent livestock stocking levels, and therefore use of 

fire. A top-down constraint was applied to livestock farmers occupying rangeland land covers to 

account for this potential large variation. This constraint was calculated by summing the raw 

competitiveness scores of the ‘active’ rangeland AFTs (pastoralist, extensive and intensive livestock 

farmers). Where these values summed to less than unity, this was interpreted as a lack of competition 

for land – and hence less densely stocked semi-natural rangelands. The adjusted rangeland burned 

area was therefore: 

 

𝑟𝑐 = min (1, ∑ 𝐴𝐹𝑇𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑)                           (S4) 

𝐵𝐴𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑 = 𝐵𝐴𝑙𝑖𝑣𝑒𝑠𝑡𝑜𝑐𝑘 ∗ 𝑟𝑐                             (S5) 

 

where ∑ 𝐴𝐹𝑇𝑟𝑎𝑛𝑔𝑒𝑙𝑎𝑛𝑑 is the sum of the un-normalised competitiveness scores for the three ‘active’ 

rangeland livestock farming AFTs, 𝑟𝑐 is the rangeland occupancy constraint, and 𝐵𝐴 is burned area. 

Abandoned rangeland was not directly included in this calculation as it does not represent ‘active’ 

rangeland use.  

  



9 
 

1.4 Pyrome management 

Pyrome management was perhaps the most diverse fire use, involving four different AFTs – hunter 

gatherer, state land manager, conservationists, and managed forestry. Two adjustments were made to 

the default process for fire use parametrisation. Firstly, the global mean was used as a constant (0.01) 

for the managed forestry burned area fraction owing to a lack of data; fire use tendency (probability of 

use) was calculated according to the default method. Secondly, owing to a lack of quantification of 

burned area fraction for the hunter gatherer AFT using pyrome management fire (n = 1), available 

data for hunter gatherers were combined with those for conservationists. This was done as, 

increasingly, conservationists and indigenous peoples are working together on fire regime 

management in fire prone regions (Ansell and Evans, 2019; Neale et al., 2019).   

 

1.5 Hunting and gathering 

Fire use for hunting and gathering occurred across larger areas in grasslands and savannas (18.0% of 

land cover burned on average) than forests (6.7% of land cover burned). This in part reflects a 

difference in strategy between open hunting and gathering of non-timber forest products. As the 

simple land cover types used in DAFI could not be directly transplanted into JULES PFT types, a 

constraint based on the amount of tree cover in JULES PFT distribution was implemented. This was 

calculated as: 

                       𝐵𝐴𝐻𝐺,𝑡 =  𝐵�̂�𝐻𝐺,𝑡 ∗ 1 − (0.5 ∗ 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟𝑡)                          (S6) 

 where  𝐵�̂�𝐻𝐺,𝑖is the burned area for hunting and gathering at time = 𝑡, and 𝑇𝑟𝑒𝑒𝑐𝑜𝑣𝑒𝑟 is the fraction 

of the cell covered by JULES tree PFTs.  
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Supplement C: Evaluation of sub-models 
This supplementary information accompanies Perkins et al., (in submission). It covers evaluation of 

the sub-models of fire use and management in WHAM!: the Wildfire Human Agency Model. This 

complements overall evaluation, which is presented in the main text. Evaluation of unmanaged fire 

and fire suppression outputs will only be possible once WHAM! is coupled with the JULES-

INFERNO dynamic global vegetation model (Wiltshire et al., 2020). Evaluation is presented first as 

methods, results, and a brief discussion.  

 

1. Evaluation methods 

WHAM! sub-models were evaluated in three ways. The first two were purely empirical evaluations, 

whilst the third adopts a pattern-oriented approach, an approach which seeks to evaluate the realism of 

model structure (Grimm and Railsback 2012). Firstly, within sample performance of individual fire 

use models against their respective training data was assessed with r2 (burned area) and AUC 

(tendency). These two metrics are standard measures of model predictive accuracy for regression (r2) 

and classification (AUC) respectively (Steyerberg et al., 2010).  

Secondly, model outputs for all modes of managed fire were compared against unseen data in the 

Database for Anthropogenic Fire Impacts (DAFI; Millington et al., 2022) - i.e. those that were not 

used during AFT parameterisation. For example, if fire return period was used to parameterise a 

particular AFT fire use, then it could be evaluated against unseen burned area % data from other case 

studies. Pearson’s r (correlation coefficient) was used to assess performance. As noted in the main 

text, smaller case studies in DAFI tended to focus on niche areas of widespread anthropogenic fire 

use, so larger case studies may be more representative at landscape scale and above. Indeed, 

Specifically, the spatial resolution of WHAM! and DAFI case study data are substantially different: 

the median WHAM! cell is seven times larger than the median DAFI case study (24,684 vs 3,508 

km2). Therefore, the correlation coefficient was calculated for WHAM! outputs against the raw 

unseen DAFI data, and for WHAM! outputs against DAFI case studies weighted by their geographic 

area. Weights were calculated as a fraction of the largest case study in the evaluation set; those 

without a reported area were assigned the median weight. 
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Finally, a pattern-oriented assessment was conducted by comparing the temporal trend in WHAM! 

outputs against the qualitative evaluation of temporal trend in fire use in the LIFE database of (Smith 

et al., 2022). Assessment of the temporal trend in WHAM! managed fire outputs should test whether 

AFT parameterisations are capturing ‘structurally realistic’ system dynamics (Gallagher et al., 2021). 

The LIFE database contains assessment of whether ‘subsistence’- and ‘market’- oriented fire uses 

were increasing or decreasing at a given location. Comparison with the LIFE database was conducted 

at two scales.  

Firstly, it was assessed whether WHAM! reproduced the global finding of Smith et al., (2022), that 

subsistence-oriented fire had decreased whilst market-oriented fire had increased. Secondly, data were 

compared at a case-study level. Crop field preparation, pasture management and hunter gatherer fire 

uses were considered primarily subsistence-oriented; crop residue burning and vegetation clearance 

were considered primarily market-oriented; pyrome management was not classifiable as either. Given 

the LIFE database does not quantify the magnitude of change, the evaluation metric used was the 

proportion of WHAM! model runs that produced the same temporal trend as LIFE.    

 

2. Evaluation results  

2.1 AFT managed fire parameterisations 

The combined mean r2 for the managed fire sub-models was 0.266, whilst the mean AUC for the 

tendency of an AFT to a given managed fire use was 0.772 (Table S3). This represents reasonably 

robust performance given the prior knowledge gaps and lack of reliable data on anthropogenic fire 

use. However, within this broad picture there were clear areas where model performance was more 

reliable, and these corresponded closely with areas where underlying data were most robust.  

Firstly, models performed better for sedentary forms of land use than for (semi-) nomadic systems 

such as shifting cultivation and pastoralists. The mean AUC and r2 were 0.761 and 0.321 respectively 

for fire use by sedentary types against 0.623 (AUC) and 0.069 (r2) for the nomadic types. This is 

largely a reflection of the underlying data used to build the models and is assessed further in the 

discussion. A possible outlier to this trend is hunting and gathering fire, for which a stronger model 

performance was observed (auc = 0.860, r2 = 0.547). However, only 7 data points were available for 

developing the burned area model.  
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Table S3: Summary of performance of parameterisation of managed fire by mode of fire use 

and AFT. The performance of sub-models is stronger for AFTs associated with sedentary 

agricultural systems than for nomadic and semi-nomadic systems such as shifting 

cultivation, pastoralism. 

 

Fire use AFT AUC R2 

Crop field preparation Shifting cultivation 0.602 0.064 

Crop residue burning 

SOSH  
 
MOSH 
 
Intensive arable farmer 

N/A 
 
N/A 
 
0.723 

0.237 
 
0.326 
 
N/A 

Hunter gatherer Hunter gatherer 0.860 0.547 

Pasture management 

Pastoralist 
 
Extensive livestock farmer 
 
Intensive livestock farmer 

0.644 
 
0.828 
 
0.731 

0.073 
 
0.400 
 
N/A 

Pyrome management 

Conservationist 
 
Hunter gatherer 
 
Managed forester 
 
State land manager 

0.736 
 
0.788 
 
0.860 
 
0.952 

0.400 
 
0.304 
 
N/A 
 
0.178 

Overall All 0.772 0.266 
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2.2 Unmanaged fire parameterisations 

Performance of models of unmanaged fires from arson and accidental (background) sources follow a 

similar pattern to those of managed fire (Table S4). Namely, those practices that are legal (or not 

explicitly clandestine) perform well reasonably well (r2 = 0.286), whilst arson (an illicit practice) is 

more challenging to model (r2 = 0.042). The difference can be attributed to the challenge in gathering 

data on violent and clandestine fire use, whereas the background rate of accidental or unattributed 

fires is readily documented in government and fire service statistics. However, the presence of a 

strong theoretical framework for why fire is used as a weapon – namely as a form of resistance for 

those without access to other forms of redress (Scott, 1985) – enables a robust performance in 

predicting its presence (AUC = 0.800), but not the number of associated fires.  

Finally, model performance for the distribution of fire control practices, which in turn inform the rate 

of escaped fire by mode of fire use, is strong, with mean AUC of 0.856. Together with the notable 

influence of fire control on rates of fire escape (main text Table 5), this can be considered good 

evidence that the AFRs are a useful means of describing anthropogenic fire regime management on a 

landscape.  

 

Table S4: Summary of performance of parameterisation of un-managed fire by fire type 

(where relevant). Similarly, to managed fire, the performance of sub-models is stronger for 

unattributed or accidental background fires - than for the inherently illicit practice of arson. 

The strong performance of modelled AFR distribution in predicting the degree of fire control 

behaviour highlights their utility in capturing anthropogenic fire regime management.  

Fire type Escaped fire type(s) AUC R2 

Background fires - NA 0.286 

Arson - 0.800 0.042 

Escaped fire (degree 
of fire control) 

Hunter gatherer & pasture fire; 
 
Crop residue & Crop field 
preparation & vegetation 
clearance 
 
Pyrome management, arson 

0.854 
 
 
0.858 
 
 
NA 

NA 
 
 
NA 
 
 
NA 
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2.3 Evaluation with unseen DAFI data 

WHAM! reproduces the broad patterns of burned area in unseen DAFI data (Table S5). The ability of 

WHAM! to reproduce these data increases when they are weighted by case study area. WHAM! 

achieves a mean Pearson’s r of 0.35 against unseen DAFI case study data. However, when case 

studies were weighted by their spatial extent, this rises to 0.71. Performance is best for those fire types 

which occupy most of the land surface: crop residue burning (r = 0.93) and pasture management fire 

(r = 0.81).  

Further, WHAM! consistently produces lower burned area for a given case study location than is 

recorded in DAFI (Figure S4). DAFI by design comprises case studies from locations with active 

anthropogenic fire use, so it may well be a positive indicator that WHAM! reverts towards a lower 

overall mean across larger areas. This underestimation of fire by WHAM! is most acute in areas of 

crop residue burning, and particularly tightly packed rice fields (e.g. Lasko et al., 2017), in ways that 

cannot be captured at a coarse spatial resolution.  

 

2.4 Evaluation with LIFE database 

At global-scale, WHAM! and the LIFE database are in strong agreement (Table S6). All model runs 

for crop residue burning, pasture management and vegetation clearance agree with the global trend 

presented in LIFE. Agreement for crop field preparation is more modest (77/100 model runs in 

agreement). There is no agreement in global trends for hunting and gathering fire (11/100 model 

runs), this may be as data were limited for this parameterisation (Supplement B). 

By contrast, case-study level comparison yields a no-result. The mean number of model runs in 

agreement with the trend assessment in LIFE for individual fire types is 53 – essentially no better than 

a coin flip. Therefore, WHAM! and LIFE project the same trends at macro-scale, but at finer spatial 

resolution there is little agreement. This reiterates the finding of the comparison with unseen WHAM! 

data: that it is challenging to compare small-scale case studies and a coarse-scale model such as 

WHAM! This tension is unpacked further in the discussion.  
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Table S5: Correlation coefficient (r) of WHAM! outputs against unseen data in the DAFI 

database. WHAM! performance is greatly enhanced once the size of the case study was 

accounted for (size weighted). 

 

Fire type Equal weights Size weighted 

Crop field preparation 0.45 0.52 

Crop residue burning 0.12 0.93 

Pasture management 0.39 0.81 

Vegetation clearance 0.43 0.56 

Overall 0.35 0.71 

 

 

 

Figure S4: Violin plot comparing distributions of outputs from WHAM! and unseen data from 

the Database of Anthropogenic Fire Impacts (DAFI); WHAM! consistently projects lower 

burned area than DAFI, indicative of their greatly differing spatial resolution. Key: CFP = 

Crop field preparation, CRB = Crop residue burning, Pasture = Pasture management, VC = 

Vegetation clearance 
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Table S6: Change in WHAM! model runs compared to the assessment in the LIFE database 

of Smith et al., (2022): A) at global scale, and B) at case-study level. Numbers reflect the 

proportion of the 100 WHAM! runs which agree with the Smith et al., assessment. At global 

scale, there is robust agreement; however, at case study level less agreement is observed. 

Results are shown for fire types individually and for market / subsistence (Sub’ce) oriented 

types grouped together. 

Key: CFP = Crop field preparation, CRB = Crop residue burning, HG = Hunter gatherer, 

Pasture = Pasture management, Pyrome = Pyrome management, VC = Vegetation 

clearance; (s) = primarily subsistence oriented, (m) = primarily market oriented. 

 

LIFE Database WHAM! outputs (proportion of model runs) 

Orientation Status 
CFP  
(s) 

CRB 
(m) 

HG 
(s) 

Pasture 
(s) 

VC 
(m) 

Market 
(m) 

Sub’ce 
(s) 

Market Increasing  N/A 1 N/A N/A 1 1 
 
N/A 

Subsistence Decreasing 0.77 N/A 0.11  1  N/A 
 
N/A 

 
0.98 

 

 

LIFE Database WHAM! outputs (proportion of model runs) 

Orientation Status 
CFP  
(s) 

CRB 
(m) 

HG 
(s) 

Pasture 
(s) 

VC 
(m) 

Market 
(m) 

Sub’ce 
(s) 

Market Decreasing N/A 0.90 N/A N/A 0.47 0.64 N/A 

Market Increasing N/A 0.66 N/A N/A 0.53 0.59 N/A 

Subsistence Decreasing 0.41 N/A 0.30 0.47  N/A N/A 0.44 

Subsistence Increasing 0.61 N/A 0.41 0.48  N/A N/A 0.43 
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3. Evaluation discussion 

 

In comparisons against both DAFI and LIFE, WHAM! outputs capture macro-scale trends, but 

struggle to capture trends at the case-study level (Tables S5 & S6). In the case of the comparison 

against unseen DAFI data, this lack of case-study level agreement was partly intentional. As a part of 

the managed burned area parameterisation, WHAM! multiplies together a probability of fire use (0-1), 

which was calculated with up-sampled absence cases, and a burned area fraction map (0-1), which 

was calculated against case study data (Figure S3). This directly leads to burned area predictions that 

are lower than the raw DAFI data. Justification for this decision is further seen in the comparison of 

crop fire outputs with GFED5 – as with additional DAFI case studies in transitioning agricultural 

systems without widespread residue burning WHAM! may have better constrained this relationship 

(See main text; Section 3.2). 

WHAM! therefore explicitly assumes that DAFI may bias locations with very active, or perhaps 

problematic fire use, as these may be most pertinent for study of human-fire interactions. This 

assumption can be justified as fire is often studied where it poses a risk to humans, whether from 

direct damage (e.g. Radeloff et al., 2018); air quality (Abdurrahman et al., 2020); or biodiversity loss 

through deforestation (Cardil et al., 2020). The extent to which this parameterisation holds true will 

only be fully clear after evaluation of the coupled WHAM-INFERNO ensemble. Nevertheless, 

WHAM! outputs demonstrate broad coherence with DAFI & LIFE case study data, which is notable 

given the divergent spatial-scales of WHAM! and the respective data sources.   
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Supplement D: Model sensitivity analysis 
This supplement to Perkins et al., (in submission) describes a sensitivity exploration of WHAM!: the 

Wildfire Human Agency Model. This is presented first as methods, then results.  

 

1. Methods 

Given that the purpose of WHAM! is to couple with the JULES-INFERNO, sensitivity analysis of 

WHAM! as a standalone model was conducted to explore and understand the model’s behaviour 

rather than assess overall parameter uncertainty. Therefore, in the first instance, an exploratory single 

parameter perturbation approach was undertaken to understand model sensitivity to its free 

parameters. As principally an empirical model, WHAM! has only 6 free parameters (Table S7). Two 

of these relate to the two top-down fire constraints described in section 2.3; three relate to the rate of 

vegetation clearance fire, and the final parameter, theta, is a land system distribution parameter 

described in (Perkins et al., 2022) 

For Theta, the fuel fire threshold and AFR fire threshold, the range over which pertubations were 

conducted was the full range over which the parameter was likely to meaningfully alter model 

outputs. For example, as very few model cells had >0.8 fractional coverage of the industrial AFR once 

the AFR fire threshold reached this level it was likely to have no impact on model outputs. For the 

vegetation clearance fire parameters, the full range of values (0-1) was examined for the transitional 

and industrial AFR parameters, whilst ensuring that the transitional AFR parameter value was higher 

than the industrial AFR value.  

 
Table S7: WHAM! free parameters and ranges used during sensitivity analysis.  

Variable Model domain Parameter range Use 

Theta 

Land system 

distribution 0-0.2 

AFT competitiveness 

scores < Theta are set to 0. 

Vegetation clearance 

fractions (x3) AFT fire use 

Preindustrial: 1 

Transitional 0.5-1 

Industrial 0-0.5 

Fraction of vegetation 

clearance conducted using 

fire for each AFR 

Fuel fire threshold 

Top-down fire 

constraint 0-0.4 

Fraction of bare soil 

coverage in a cell at which 

the fuel constraint is applied 

AFR fire threshold 

Top-down fire 

constraint 0.4-0.8 

Fraction of cell coverage of 

industrial AFR at which it 

reduces overall fire use 
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2. Results 

Parameter perturbation reveals a maximum sensitivity of global managed burned area outputs to a 

single parameter of ± 17.9 Mha - for the ‘theta’ threshold (Figure S5). This equates to a variation of 

± 4.4% averaged over 1990-2014. Mean sensitivity across the three parameters that impact all 

managed fire types (the vegetation threshold, the dominant AFR threshold and the theta threshold) is 

± 13.9 Mha (± 3.2%). The total range of global burned area outputs in the model sensitivity 

exploration is 42.9 Mha, which is just 19.5% of the data uncertainty defined by bootstrap resampling 

of DAFI (219.8 Mha; See main text). Although full parameter uncertainty cannot be assessed before 

model coupling, it is likely that WHAM! is substantially more sensitive to uncertainties in its 

underlying data than to uncertainty in model free parameters.  

A partial exception is found in the case of the vegetation clearance fire parameters. As a proportion of 

burned area from vegetation clearance alone, parameter perturbation leads to a total sensitivity of 

41.7% (± 1.7 Mha). This occurs as the relationship between vegetation clearance and fire could not be 

defined empirically from DAFI data, and so is captured by free parameters.     

 
Figure S5: Sensitivity of model mean burned area from managed fire (1990-2014) from one 

parameter perturbations. The model is most sensitive overall to the Theta fire constraint, but 

the overall range of sensitivity is just +-4.4%. Key: AFR = Anthropogenic fire regime, 

Vegetation = Vegetation constraint, VC = Vegetation Clearance   
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