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 10 

Abstract. Process-oriented observational constraints for the anthropogenic effective radiative forcing due to aerosol-11 

cloud-interactions (ERFaci) are highly desirable because the uncertainty associated with ERFaci poses a significant 12 

challenge to climate prediction. The Contoured Frequency by Optical Depth Diagrams (CFODD) analysis supports 13 

evaluation of model representation of cloud liquid to rain conversion processes because the slope of a CFODD, 14 

generated from joint MODerate Resolution Imaging Spectroradiometer (MODIS)-CloudSat cloud retrievals, provides 15 

an estimate of cloud droplet collection efficiency in single-layer warm liquid clouds. Here we present an updated 16 

CFODD analysis as an observational constraint for the ERFaci due to warm rain processes and apply it to the U.S. 17 

Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2). A series of sensitivity 18 

experiments shows that E3SMv2 droplet collection efficiencies and ERFaci are highly sensitive to autoconversion, 19 

the rate of mass transfer from cloud liquid to rain, yielding a strong correlation between the CFODD slope and the 20 

shortwave component of ERFaci (ERFaciSW; Pearson’s R = -0.91). We estimate ERFaciSW, constrained by MODIS-21 

CloudSat, by calculating the intercept of the linear association between the ERFaciSW and the CFODD slopes, using 22 

the MODIS-CloudSat CFODD slope as a reference. When E3SMv2’s CFODD slope is constrained to agree with the 23 

A-Train retrievals, ERFaciSW is reduced by 14 ± 6% in magnitude, indicating that correcting bias in the ERFaciSW due 24 

to autoconversion would bring E3SMv2’s total ERFaci (-1.50 W m-2) into better agreement with the IPCC AR6 ‘very 25 

likely’ range for ERFaci (-1.0 ± 0.7 W m-2).  26 

 27 

1 Introduction 28 

Single-layer, low-level marine warm clouds cover 25% of the ocean surface  (Charlson et al., 1987) and exert a strong 29 

cooling effect on climate due to their reflectivity (Hartmann et al., 1992; Hartmann and Short, 1980; Ramanathan et 30 
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al., 1989). Aerosols modulate multiple radiative properties of low warm clouds, including droplet number 31 

concentration (Nd), liquid water path (LWP), geometric , cloud fraction, and lifetime, and their net impact on the cloud 32 

radiative forcing  is the most uncertain component of the climate system  (e.g., Stevens and Feingold, 2009; 33 

Christensen et al., 2020; Glassmeier et al., 2021). Though aerosols also exert a significant influence on ice and mixed-34 

phase clouds, aerosol-cloud interactions (ACI) make their largest contribution to global radiative forcing via liquid 35 

water clouds (Bellouin et al., 2020). 36 

In marine warm cloud regimes, an increase in aerosol concentrations typically leads to increasing Nd. Given constant 37 

condensed water content, enhanced aerosol concentrations increase cloud albedo due to higher concentrations of 38 

smaller cloud droplets through the so-called “Twomey effect” (Twomey, 1974). However, the cooling effect of 39 

increased Nd can be offset or enhanced by competing aerosol-mediated cloud properties such as cloud fraction and 40 

LWP. For example, increased numbers of smaller droplets can diminish cloud fraction by reducing cloud droplet 41 

sedimentation (Bretherton et al., 2007) and increasing cloud-top evaporation and dry air entrainment (Wang et al., 42 

2003). On the other hand, aerosols can also increase cloud fraction and vertical extent by suppressing precipitation 43 

(Albrecht, 1989; Pincus and Baker, 1994). Christensen et al. (2020) demonstrated that the impact of aerosol on low-44 

level cloud areal coverage depends on the stability of the atmosphere: in thermodynamically stable lower tropospheric 45 

conditions, increased aerosol results in increased cloud fraction, lifetime and Nd, whereas in unstable conditions, 46 

entrainment and evaporation offset Twomey effects, resulting in relatively smaller changes to cloud radiative 47 

properties.  48 

Earth Systems Models (ESMs) are relied upon for estimating the global Effective Radiative Forcing of Aerosol-Cloud 49 

Interactions (ERFaci) due to the dearth of observations from the pre-industrial era. Yet ESM estimates are challenged 50 

by the lack of observational constraints on ERFaci and the cloud processes that modulate ERFaci, which must be 51 

parameterized due to the computational expense of explicitly resolving them. Mülmenstädt et al. (2020)  proposed a 52 

renewed focus on process-oriented observational constraints as a solution to “equifinality”, whereby differing 53 

representations of cloud processes can reproduce observed state variables such as LWP and cloud fraction. The 54 

problem of equifinality renders many global long-term observations of state variables useless for constraining ERFaci 55 

on their own. Mülmenstädt et al. (2020)  argues that constraints based on cloud process observations are thus highly 56 

desirable as an alternative approach to state variable-based constraints because mitigating bias in a cloud process 57 
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representation will improve estimates of the response of the process to aerosols. Process-oriented constraints on 58 

ERFaci are useful for quantifying the sensitivity of ERFaci to a specific process or constraining the component of 59 

ERFaci that is affected by a process,  rather than for constraining ERFaci overall (Mülmenstädt and Feingold, 2018). 60 

Recent examples of process-based diagnostics include the Earth System Model Aerosol-Cloud Diagnostics Package 61 

(ESMAC Diags) (Tang et al., 2022; Tang et al., 2023), which supports evaluation of aerosol activation processes, and 62 

Varble et al. (2023) which demonstrated multiple model-observations comparison approaches that target processes 63 

affecting cloud albedo susceptibility using geostationary satellite data and surface-based observations. Christensen et 64 

al. (2023) applied ground-based measurements, satellite retrievals and meteorological reanalysis products in a 65 

Lagrangian framework to evaluate multiple aerosol-cloud processes in E3SM, including cloud condensation nuclei 66 

deposition via precipitation and the temporal response in Nd to aerosol perturbations. 67 

In response to the demand for process-oriented constraints on warm liquid cloud processes, we present a constraint on 68 

the shortwave component of ERFaci (ERFaciSW) due to autoconversion, a parameterization representing the transfer 69 

of liquid mass and number from the cloud to rain category, based on satellite cloud retrievals. For the past 12 years, 70 

prior studies have applied the Contoured Frequency by Optical Depth Diagrams (CFODD) analysis (Nakajima et al. 71 

2010; Suzuki et al. 2010) to evaluate model representation of warm rain processes because the slopes of CFODDs, 72 

generated from spaceborne radar reflectivity profiles (CloudSat) (e.g. Marchand et al., 2008) and cloud property 73 

retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g. Platnick et al., 2017), provide an 74 

estimate of cloud droplet collection efficiency in warm liquid clouds (Suzuki et al. 2010). Here we demonstrate how 75 

an updated CFODD analysis can be applied to constrain ERFaci due to autoconversion usingthe U.S. Department of 76 

Energy’s Energy Exascale Earth System Model version 2 (E3SMv2) and the relationship between CFODD slopes and 77 

ERFaciSW in SLWCs.  78 

To support the application of CFODD analysis as a constraint on ERFaciSW, we modified the Warm Rain Diagnostics 79 

(WRDs) subroutine (Michibata et al. 2019) that was recently implemented in the Cloud Feedback Model 80 

Intercomparison Project (CFMIP) Observations Simulator Package (COSPv2.0), a software package that supports 81 

climate model evaluation against satellite observations (Michibata et al., 2019; Swales et al., 2018). The WRDs 82 

support evaluation of model warm rain processes in single-layer warm liquid clouds (SLWCs) based on joint statistics 83 

from MODIS and CloudSat. The first diagnostic provides the fractional occurrence of SLWCs, classified as non-84 
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precipitating, drizzling, or raining clouds based on CloudSat column maximum radar reflectivity. The second 85 

diagnostic is the CFODD, which is the probability density function (PDF) of radar reflectivity as a function of in-86 

cloud optical depth (ICOD), where ICOD is the optical depth integrated from the cloud top downward to each vertical 87 

layer and represents an in-cloud vertical coordinate (Nakajima et al., 2010; Suzuki et al., 2010). The CFODD shows 88 

how vertical cloud microphysical structures transition from non-precipitating to precipitating as a function of cloud-89 

top effective radius (Re), and the slope of reflectivity change with ICOD provides an estimate of droplet collection 90 

efficiency factor (Suzuki et al., 2010). Previous studies have used CFODDs to demonstrate that pollution decreases 91 

droplet collection efficiency, suppressing rainfall near the cloud base (Mangla et al., 2020; Michibata et al., 2014; 92 

Suzuki et al., 2013), and to evaluate model cloud liquid to rain conversion processes against satellite observations 93 

(Suzuki et al., 2015; Jing et al. 2019; Michibata and Suzuki, 2020). Takahashi et al. (2021) proposed an updated 94 

CFODD analysis in which Re thresholds are defined by quartile distributions of SLWC samples rather than the 95 

traditional CFODD Re thresholds to focus evaluation on warm rain process representation rather than the bias in Re 96 

distribution. Modifications to the WRDs in the present study include additional diagnostics that provide SLWC 97 

sampling statistics to illuminate how sample size affects CFODD results, the implementation of a CloudSat ground-98 

clutter mask in the simulated WRDs and updates to SLWC selection criteria for better consistency between 99 

observations and satellite simulators.  The updated CFODD analysis is demonstrated here as a constraint on the 100 

component of ERFaciSW that is affected by droplet collection efficiency due to autoconversion. 101 

2 Warm Rain Diagnostics Overview 102 

The WRDs and their implementation in COSPv2.0 were described in Michibata et al. (2019). The WRDs are designed 103 

to run online with the host model, accumulating time step statistics on warm rain cloud processes for subcolumns to 104 

mitigate the risk of data-processing bottlenecks associated with outputting large data volumes. COSPv2.0 generates 105 

ensembles of stochastic subcolumns from model gridbox-mean variables to emulate model subgrid variability and to 106 

resolve discrepancies in spatial resolution between observations and the model grid (Swales et al., 2018). 107 

To generate observational reference data for model evaluation, Michibata et al. (2019) used the MODIS and CloudSat 108 

products 2B-TAU R04 (Polonsky, 2008) and 2B-GEOPROF R04 (Mace et al., 2007; Marchand et al., 2008), 109 

respectively, for SLWC detection between June 2006 and April 2011. The  SLWC detection are described in 110 

Supplement Table S1 and include CloudSat reflectivity ≥ -30 dBZ, MODIS liquid COT > 0.3, and cloud top 111 
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temperature ≥ 273 K. Model-simulated SLWCs are detected using COSPv2.0 simulated CloudSat reflectivity and 112 

multiple MODIS cloud properties, including ice water path (IWP), liquid water path (LWP), cloud-top effective radius 113 

(Re), and cloud optical thickness (COT) (Table S1). For the SLWC fractional occurrence (frequency) diagnostic, 114 

SLWCs are binned by precipitation intensity according to the maximum column CloudSat reflectivity (𝑍𝑚𝑎𝑥), where 115 

non-precipitating, drizzling and raining SLWCs correspond to 𝑍𝑚𝑎𝑥 < −15 𝑑𝐵𝑍𝑒 , −15 𝑑𝐵𝑍𝑒 ≤ 𝑍𝑚𝑎𝑥 < 0 𝑑𝐵𝑍𝑒 , 116 

and 𝑍𝑚𝑎𝑥 ≥ 0 𝑑𝐵𝑍𝑒 , respectively. The SLWC fractional occurrence diagnostic features frequency of each 117 

precipitation type relative to the total SLWC population. 118 

To support evaluation of liquid cloud collection efficiencies and cloud to rain transition processes, CFODDs are 119 

constructed from the PDFs of CloudSat reflectivity profiles binned by ICOD. ICOD (τd) is parameterized as a function 120 

of MODIS COT (τc) by invoking the adiabatic condensation growth model to vertically slice the column COT into 121 

each layer (Suzuki et al., 2010). The relationship between τd and τc is as follows: 122 

𝜏𝑑(ℎ)  =  𝜏𝑐 {1 −  (
ℎ

𝐻
)

5/3

}          (1) 123 

where ℎ is height and 𝐻 is the geometric height of the cloud. The detailed derivation of the ICOD coordinate is 124 

provided in Suzuki et al. (2010). The slope of the resulting 2D-PDF diagnostic is modulated by droplet collection 125 

efficiency, with steeper slope implying higher efficiency. The CFODD shows where, with ICOD on the y-axis as a 126 

vertical coordinate, the droplet collection efficiency increases, and where the transition from non-precipitating to 127 

drizzling and raining occurs, using the radar reflectivity as a proxy for the precipitation rate as described above (e.g., 128 

Muhlbaeuer et al., 2014). CFODDs are also typically binned by Re to reveal how droplet collection efficiency changes 129 

with droplet size (Suzuki et al., 2010; Takahashi et al., 2021; Jing et al., 2017).  130 

In this study, CFODD slopes are estimated using RANdom SAmple Consensus (RANSAC) robust linear regression 131 

(Fischler et al., 1987). RANSAC was chosen for performing linear regression due to the right-skewed distribution of 132 

CFODD datasets. The regression was applied to the MODIS-CloudSat profiles and E3SMv2 output at 4 ≤ ICOD ≤ 20 133 

and 𝑍 < 20 dBZ. For E3SMv2 output, the regression was applied to approximated source CloudSat reflectivity and 134 

ICOD data that was estimated from time-mean CFODD frequencies. The reflectivity and ICOD thresholds were were 135 

chosen to reduce the effect of the Mie scattering regime where the radar reflectivity can be saturated and to restrict 136 

analysis to profiles where the uncertainty of MODIS COT retrievals is lower as error can be higher in optically thin 137 
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liquid clouds (e.g., COT < 4) (Platnick et al., 2017).  The uncertainty in the RANSAC slope calculation is estimated 138 

by “bootstrapping”, repeatedly performing RANSAC regressions on 1000 random subsamples of 80% the CFODD 139 

dataset to generate a distribution of slope estimates. The 1-sigma error and 95% confidence intervals were calculated 140 

from this distribution. The residual threshold applied for RANSAC outlier detection was 0.1 and 0.5× median absolute 141 

error (MAE) for MODIS-CloudSat and E3SMv2, respectively. Data points with MAE exceeding the residual threshold 142 

are excluded from the linear regression in RANSAC. 143 

2.1 E3SMv2  144 

Several updates to the WRDs are described in Sect. 2.2, the impacts of which are demonstrated through an application 145 

of the updated WRDs to the U.S. Department of Energy’s Energy Exascale Earth System Model v2 (E3SMv2). The 146 

atmosphere component of the model, E3SM Atmosphere Model v2 (EAMv2), is described in detail in Golaz et al. 147 

(2022). Like its predecessor EAMv1, EAMv2 predicts stratiform and shallow cumulus cloud macrophysics through 148 

the Cloud Layers Unified by Binormals (CLUBB) parameterization, which unifies the treatment of planetary boundary 149 

layer turbulence, shallow convection, and cloud macrophysics through a higher-order turbulence closure scheme 150 

(Bogenschutz et al., 2013; J. C. Golaz et al., 2002; Larson, 2017; Larson & Golaz, 2005). CLUBB diagnoses cloud 151 

fraction and cloud liquid water from a joint double-Gaussian PDF. Ice and liquid cloud fractions in CLUBB are 152 

analytically diagnosed by integrating saturated proportions of the joint PDF (Guo et al. 2015).  153 

Cloud microphysics is represented with the “Morrison and Gettelman version 2” (MG2) scheme (Gettelman and 154 

Morrison, 2015). MG2 prognoses the mass mixing ratios and number concentrations of cloud liquid, ice and 155 

precipitation hydrometeors. The coupled MG2 cloud microphysics and CLUBB higher-order turbulence 156 

parametrization explicitly provides values for hydrometer mass and number mixing ratios as well as cloud fraction. 157 

Deep convection is represented by the Zhang and McFarlane (1995) (ZM) scheme. As convective cloud fraction is 158 

not parameterized in the mass-flux based ZM scheme, it is diagnosed from the cloud mass flux for cloud radiation 159 

calculation (Hack et al., 1993). The total cloud fraction in EAMv2 combines CLUBB, deep convective cloud fractions 160 

and ice cloud fraction following (Park et al., 2014). The four-mode version of the Modal Aerosol Module (MAM4) is 161 

used to predict aerosol properties and processes (Liu et al., 2012, 2016; H. Wang et al., 2020). 162 
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EAMv2 runs on 72 vertical atmospheric levels with a top at 0.1h Pa (Rasch et al., 2019; Xie et al., 2018). However, 163 

distinct from its predecessor EAMv1, EAMv2 has two separate parameterized physics and dynamics grids (Hannah 164 

et al., 2021), with average horizontal grid spacings of ~165 km and ~110 km, respectively.  165 

A six-year E3SMv2 simulation with transient, present-day forcing was run between 2006 and 2011 with online 166 

COSPv2.0 for comparison with A-Train observations of SLWCs, allowing one additional year (2005) for model spin-167 

up. To facilitate comparison with observations, large-scale winds were constrained via the “nudging” technique (Lin 168 

et al., 2016; Ma et al., 2014; Zhang et al., 2014), in which horizontal and vertical winds are relaxed toward the Modern 169 

Era-Retrospective Analysis for Research and Applications, Version 2 (MERRA2) reanalysis data (Gelaro et al., 2017) 170 

with a 6-hour time-scale. MERRA2 data are read in every 3 hours and linearly interpolated to model times. COSPv2.0 171 

is called at every time step (0.5 h) and run with 10 subcolumns. We observed little change in CFODD results for 172 

increased numbers of subcolumns of 20 to 50. 173 

2.2 COSPv2.0 174 

Cloud-observing instrument simulators support evaluation of model cloud representation by translating gridbox-mean 175 

model variables (e.g., cloud fraction, hydrometeor mass mixing ratio, precipitation) into quantities that are measured 176 

by a cloud sensor (e.g., reflectivity). COSPv2.0 includes multiple cloud-observing satellite simulators and has been 177 

used extensively to diagnose issues in model cloud representation (Cesana & Chepfer, 2012; Kay et al., 2016; Song 178 

et al., 2018a; Y. Zhang et al., 2010). Recently, M. Zhang et al. (2022) used the COSPv2.0 CALIPSO simulator to 179 

demonstrate that changes to the Wegener-Bergeron-Findeisen process in EAMv2 decreased an ice cloud fraction low 180 

bias in the Arctic compared to EAMv1 but did not correct excesses of supercooled liquid.  181 

There are known limitations to COSPv2.0 that affect its application to E3SM for cloud representation evaluation. The 182 

subgrid distribution of cloud variables generated by COSPv2.0 does not match E3SM subgrid variability. 183 

Hydrometeor species are distributed homogeneously across the subcolumns generated by COSPv2.0 via the 184 

subcolumn generator SCOPS (Subcolumn Cloud Overlap Profile Sampler) (Klein and Jakob, 1999), such that the 185 

ensemble of subcolumns reproduces the gridbox cloud fraction but not the subgrid distribution of liquid and ice within 186 

the simulated clouds (Dewald, 2021). Song et al., (2018b) demonstrated that the default “homogeneous hydrometeor 187 

scheme” from SCOPS results in overestimation of radar reflectivity in warm liquid clouds, thus overestimating 188 

precipitating clouds since maximum column reflectivity is often used to distinguish precipitating clouds (as in the 189 
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WRDs). Errors in simulated satellite retrievals have also been attributed to SCOPS overlap assumptions (Hillman et 190 

al., 2018). Such a bias from SCOPS can result in unfair observational evaluation of a host model such as E3SMv2. 191 

Inconsistencies in microphysical assumptions between the host model and COSP pose another challenge. While many 192 

microphysical assumptions in COSPv2.0 can be configured for agreement with E3SMv2 microphysics (MG2), some 193 

inconsistencies remain, including gamma distribution shape parameters for hydrometeor size distributions and 194 

hydrometeor vertical overlap assumptions (J. Wang et al., 2021). Next-generation E3SM development includes efforts 195 

to improve agreement in the subgrid variability and microphysical assumptions involved in forward simulating 196 

satellite retrievals. Other issues include the simplified treatment of satellite cloud detection in simulators. For example, 197 

the CloudSat Cloud Profiling Radar (CPR) cloud mask value threshold ≥ 30 is applied for cloud detection in the 198 

WRDs’ A-Train analysis to indicate “good” or “strong” echo with high confidence detection (see next section and 199 

Supplement Table 1). The CPR cloud mask confidence levels consider signal-to-noise ratios, horizontal averaging, 200 

and spatial continuity (Marchand et al., 2008), but as this cloud mask is not available in COSPv2.0, CloudSat cloud 201 

detection is simulated by applying a reflectivity threshold  -30 ≤ Ze ≤ 20  dBZ.  202 

The WRDs rely on COSPv2.0 simulated MODIS and CloudSat retrievals. The WRDs in COSPv2.0 work as 203 

follows: First, COSPv2.0 takes in model atmospheric state and cloud variables including temperature, pressure, 204 

water vapor and hydrometeor mass mixing ratios, hydrometeor Re, large-scale stratiform cloud fraction, convective 205 

cloud fraction and precipitation rate. The COSPv2.0 subcolumn generator SCOPS then produces subgrid 206 

distributions of clouds and precipitation for better comparison with smaller scale satellite pixel measurements. 207 

SCOPS subcolumns are homogenous, discrete samples generated such that a sufficiently large ensemble reproduces 208 

the model column profile of bulk cloud properties (Webb et al., 2001; Swales et al., 2018). SCOPS assigns each 209 

subcolumn a type (large-scale stratiform, convective or clear-sky) according to the host model’s convective and 210 

large-scale stratiform cloud fraction. Cloud properties such as hydrometeor mass mixing ratios and Re are distributed 211 

homogeneously across the subcolumns by cloud type (i.e., all stratiform cloud subcolumns are assigned the same 212 

stratiform ice and liquid mixing ratios as SCOPS only takes total convective and stratiform cloud fraction as input, 213 

and does not consider stratiform liquid and ice cloud fraction in its default configuration.  “Maximum-random” 214 

cloud overlap is applied to subcolumns, consistent with the model parameterizations. The MODIS and CloudSat 215 

simulators apply simplified versions of their respective retrieval algorithms to each subcolumn, emulating MODIS 216 

retrievals of cloud properties, radar reflectivity and lidar backscatter, respectively. Gridbox-mean values are 217 
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estimated from accumulated subcolumn statistics. The WRDs take as inputs gridbox-mean simulated MODIS 218 

retrievals of LWP, IWP, COT and Re, as well as subcolumn CloudSat reflectivity profiles. The simulated MODIS 219 

COT represents in-cloud mean, as do the other MODIS variables used in the WRDs (e.g., LWP, Re ). For example, 220 

the MODIS liquid COT is computed by averaging the MODIS liquid COT in cloudy subcolumns across the grid-221 

box. In E3SMv2-COSP, the same in-cloud stratiform COT value from the E3SMv2 radiative transfer module is 222 

distributed across all the subcolumns designated as stratiform cloud by SCOPS, as described above. These values 223 

and cloud/clear-sky designations for each subcolumn are used as input to the MODIS simulator to calculate the in-224 

cloud MODIS liquid COT. Subcolumn-level SLWC reflectivity profiles are used as input to the WRDs, also with 225 

cloud properties homogenously distributed across the subcolumns of a given classification. Thus, in E3SM-COSP, 226 

the SLWC samples within a gridbox that have the same subcolumn classification (i.e., stratiform liquid or stratiform 227 

rain) will have the same simulated MODIS COT and CloudSat reflectivity profile. 228 

Deviations from the original WRDs implemented in COSPv2.0 (Michibata et al., 2019b) include the application of 229 

the simulated CloudSat ground-clutter filter (available in COSPv2.0, but not applied to the WRDs previously) for 230 

better comparison with CloudSat retrievals, and the elimination of the “fracout” input used in the SLWC detection 231 

scheme from SCOPS. “Fracout” is the subcolumn-level cloud classification by vertical level from SCOPS, where each 232 

level of each subcolumn is designated as large-scale stratiform, convective, or clear-sky. This input was removed from 233 

the WRDs’ SLWC detection algorithm because of the lack of comparable cloud-type designation in the observations 234 

and CloudSat simulator and because “fracout” vertical cloud profiles were observed to deviate significantly from 235 

CloudSat reflectivity profiles (i.e., fracout indicates clear-sky where CloudSat reflectivity indicates cloud, or vice 236 

versa).  237 

2.3 Satellite data 238 

The MOD06-1KM-AUX R05 product (Platnick et al., 2017), which provides MODIS collection 6 retrievals at 1 km 239 

resolution along the CloudSat footprint, supplied the 6 MODIS cloud retrievals required for the SLWC detection 240 

described in Suzuki et al. (2010): LWP, IWP, Re, COT, cloud top pressure and cloud layer number. Standard MODIS 241 

products from the 2.1 µm channel were used for Re, consistent with the simulated MODIS Re used in the WRDs. 242 

Atmospheric temperature profiles were obtained from ECMWF-AUX R05 (Partain and Cronk, 2017), which includes 243 

temperature profiles from the European Centre for Medium-Range Weather Forecast (ECMWF) model (Dee et al., 244 
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2011) interpolated to the CloudSat footprint. 2B-GEOPROF R05 provided the CloudSat reflectivity profiles, the Cloud 245 

Profiling Radar (CPR) cloud mask and echo top characterization at 1.8 km resolution (Marchand et al., 2008). The 246 

detection of SLWCs and CFODD analysis in the present study follows Suzuki et al. (2010) (see Supplement Table 1 247 

for details) with one exception: a COT threshold was decreased from 15 to 0.3; this had a substantial impact on cloud 248 

occurrence (Figure 1; described next) and is consistent with the COT threshold implemented in the COSPv2.0 WRDs. 249 

The decreased COT threshold also increases the weight of optically thin SLWCs, as the linear regression is applied to 250 

the CFODD source data directly (i.e., the ICOD and reflectivity profiles). 251 

2.4 Autoconversion sensitivity experiments and ERFaci 252 

The autoconversion parameterization in E3SMv2 is a modified Khairoutdinov & Kogan (2000) scheme (hereafter, 253 

KK2000), in which coefficients were updated in response to large uncertainties in different cloud regimes and to 254 

improve fidelity in climate simulations. The KK2000 autoconversion scheme is  
𝛿𝑞𝑟

𝛿𝑡 𝑎𝑢𝑡𝑜
=  𝐴𝑄𝑐

𝛼𝑁𝑑
𝛽 , where 𝑞𝑟 is 255 

the rainwater mixing ratio, 𝑄𝑐 is the cloud water mixing ratio, 𝑁𝑑 is the cloud droplet number concentration, and A, α 256 

and β are the modified coefficients. 257 

To develop a constraint on the ERFaci due to autoconversion, we performed multiple pairs of simulations featuring 258 

preindustrial (PI) and present-day (PD) aerosol emissions. In each pair of simulations, one of the three coefficients 259 

(A, α or β) was modified to its KK2000 value, a value reported by Wood (2005), a value from Kogan (2013)or a value 260 

within a range bounded by the three studies. The Kogan (2013) coefficient values were derived from a large-eddy 261 

simulation (LES) with bin resolved microphysics for cumulus clouds, whereas the focus of Wood (2005) and KK2000 262 

was stratocumulus clouds from observational and LES perspectives, respectively. One additional experiment on the 263 

KK2000 parameterization for the accretion rate was performed, the formulation of which is 
𝛿𝑞𝑟

𝛿𝑡 𝑎𝑐𝑐𝑟𝑒
=264 

 𝐹1𝐹267(𝑄𝑐𝑄𝑟)1.15𝜌−1.3, where 𝑄𝑟  is the rain water mixing ratio, 𝐹1 represents subgrid 𝑄𝑐 variability, 𝜌 is air density, 265 

and 𝐹2  is an accretion rate enhancement factor. 𝐹2  was increased by a factor of ~ 3 in the accretion sensitivity 266 

experiment. 𝐹2 is considered a tunable parameter in E3SM (Ma et al., 2022). The experiment details are provided in 267 

Table 1.  268 
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Table 1. KK2000 coefficient and accretion enhancement factor values applied in 12 sensitivity experiments. Dash (“-269 

“) indicates the coefficient value was unchanged from the default E3SMv2 parameterization (equal to the “CNTL” 270 

simulation value). 271 

Name A 𝛼 β accre 

CNTL 3.05E4 3.19 -1.4 1.75 

alpha01 - 4.22 - - 

beta01 - - -1.0  

acoef100x 3.05E6 - - - 

alpha02 - 2.47 - - 

acoef0.05x 1.35E3 - - - 

alpha03 - 3.00 - - 

beta03 - - -1.79 - 

beta04 - - -3.01 - 

acoef10x 3.05E5 - - - 

acoef5x 1.53E5 - - - 

acoef50x 1.53E6 - - - 

accre01 - - - 5 

 272 

ERFaci for each pair of simulations was calculated following the Ghan (2013) method, where 𝐸𝑅𝐹𝑎𝑐𝑖 =  ∆(𝐹𝑐𝑙𝑒𝑎𝑛 −273 

 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛). 𝐹𝑐𝑙𝑒𝑎𝑛 is the radiative flux at the top-of-atmosphere (TOA) neglecting the absorption and scattering of 274 

aerosols, and 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛 is the radiative flux at the TOA neglecting both clouds and the absorption and scattering of 275 

aerosols. The ∆ indicates the PD – PI difference. While the PD-PI approach is a common strategy for estimating 276 

ERFaci, Christensen et al. (2023) demonstrated that it may yield a different estimate than the PD approach, where 277 

components of ERFaci (LWP adjustment, Nd adjustment, cloud fraction adjustment) are estimated by regressions of 278 

cloud properties multiplied by the anthropogenic aerosol fraction. We calculate ERFaci for SLWCs only, binned by 279 

the MODIS Re range corresponding to the CFODD analysis. 280 
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A constraint on ERFaciSW was calculated from the linear regression between E3SMv2 CFODD slopes and ERFaciSW, 281 

using the MODIS-CloudSat CFODD slope as a reference. A 95% confidence interval for the linear fit was estimated 282 

by bootstrapping the linear regression within the uncertainty of the CFODD slopes. CFODD slope values were 283 

randomly sampled 1000 times within their 1-sigma error and repeatedly regressed with ERFaciSW. The original data 284 

(i.e., RANSAC CFODD slope values and corresponding ERFaciSW values) were additionally resampled with 285 

replacement to generate a distribution of coefficients for the ordinary least squares (OLS) regression. The 95% 286 

confidence interval for the linear fit was then calculated from the combined linear regression coefficient distributions 287 

to reflect uncertainty from both the OLS fit and the CFODD slopes. 288 

3 Updates to MODIS and CloudSat SLWC analysis and reference data  289 

The first diagnostic in the original WRDs featured relative frequencies of SLWCs by precipitation intensity in both 290 

the A-Train reference data and the COSPv2.0 output (e.g., Fig. 1 m-o). We have updated this diagnostic with all-sky 291 

frequencies and by decreasing the lower MODIS COT threshold from 15 to 0.3, for consistency with the WRDs 292 

implemented in COSPv2.0  (Fig. 1 a-l). SLWCs featured in Fig. 1 and all following figures and analyses are ocean-293 

only due to higher uncertainties in MODIS retrievals over land (Platnick et al., 2017). 294 

 295 

Figure 1.  All-sky frequencies of total SLWCs June 2006 – Apr 2011, non-precipitating (𝑍𝑚𝑎𝑥 < −15 𝑑𝐵𝑍𝑒) , drizzling 296 

(−15 𝑑𝐵𝑍𝑒 ≤ 𝑍𝑚𝑎𝑥 < 0 𝑑𝐵𝑍𝑒) and raining (𝑍𝑚𝑎𝑥 ≥ 0 𝑑𝐵𝑍𝑒) ocean-only SLWCs according to original reference analysis of 297 

MODIS and CloudSat observations (Michibata et al., 2019a, 2019b) (a-d), updated reference MODIS and CloudSat analysis (e-h) 298 
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and E3SMv2-COSPv2.0 (i-l). Figures m-o show frequencies of non-precipitating, drizzling and raining SLWCs relative to the total 299 

SLWCs simulated by E3SMv2. Values in blue boxes indicate global ocean-only grid-weighted mean frequency. SLWCs were 300 

undersampled in original reference A-Train analysis by a factor of ~5. Compared to the original reference A-Train data, the updated 301 

analysis demonstrates that E3SM underrepresents rather than overrepresents total SLWC frequency and that precipitating SLWCs 302 

are underrepresented by a factor of 6 compared to observations. 303 

Figure 1 also shows that decreasing the lower MODIS COT threshold from 15 to 0.3 in the updated A-Train analysis 304 

(Sect. 2.3) increased total SLWC sampling by 5-fold (global ocean mean, see Sect. 2.3) compared to the original 305 

CFODD analysis in Michibata et al. (2019a) and Michibata et al. (2019b). The increase in SLWC sampling in the 306 

reference data affects multiple outcomes of the model evaluation in this case: E3SMv2 underrepresents, rather than 307 

overrepresents, total SLWCs, and the SLWCs that are missing from E3SMv2 are entirely the precipitating SLWC 308 

populations. The underrepresentation of precipitating SLWCs in E3SMv2-COSP indicates that any bias from SCOPS 309 

towards increased precipitation in warm liquid clouds is relatively minor (Sect. 2.2; Song et al. (2018)).  Not all the 310 

differences between the original and updated reference data can be explained by the change in COT threshold, 311 

however, as we were unable to reproduce the original CFODD data with the updated satellite products used in this 312 

study. Fig. S1 and S2 show that increasing the lower COT threshold from 0.3 to 15 yields SLWC frequencies that are 313 

much closer to the original reference data (+25%) than the updated reference data, but significant differences remain 314 

in the CFODDs. 315 

The effects of the increased SLWC sampling in the A-Train reference data also significantly affected the CFODDs 316 

and thus the comparison between A-Train and E3SMv2 droplet collection efficiencies. Figure 2 shows CloudSat 317 

reflectivity frequency binned by ICOD for the original A-Train reference data (Fig. 2 a-c), the updated A-Train 318 

reference data (d-f) and E3SMv2 (j-l), and RANSAC robust linear regression slopes at 4 ≤ ICOD ≤ 20. In comparisons 319 

with various other linear regression techniques, we found that RANSAC best supported the comparison of CFODD 320 

slopes between E3SMv2 and observations because of the right-skewed distribution of CloudSat reflectivities at 0 ≤ 321 

ICOD ≤ 20 in E3SMv2 CFODDs (Figs. 2 j-l). RANSAC minimizes the median absolute error (MAE) and is less 322 

sensitive to strong outliers in the dimension of the predicted variable (Ze in this case) compared to other linear 323 

regression techniques.  324 

The updated A-Train CFODD distributions are significantly different than the original CFODD distributions (2D-325 

Kolmogorov-Smirnov test, p ≪ 0.05). Compared to updated A-Train CFODDs, the E3SMv2 CFODDs show 326 
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decreased droplet collection efficiencies and an increased range of reflectivities near the cloud top in all size bins, 327 

indicating that regardless of Re, SLWCs are drizzling and raining near the cloud top with significantly higher frequency 328 

than SLWCs in observations but have decreased collection efficiency below cloud top compared to MODIS-CloudSat. 329 

 330 

 331 

Figure 2. Contoured frequency by optical depth diagrams (CFODDs) for SLWCs June 2006 – April 2011 binned by MODIS cloud 332 

top effective radius (Re) from original reference MODIS-CloudSat observations analysis (a-c), updated reference MODIS-CloudSat 333 

observations analysis (d-f), and E3SMv2 (j-l). Random Sample Consensus (RANSAC) linear regressions were applied to the 334 

CFODD at 4 ≤ ICOD ≤ 20 to estimate droplet collection efficiencies. RANSAC slopes and Median Absolute Error (MAE) values 335 

are shown in blue boxes. Droplet collection efficiencies increase with MODIS Re as expected, except for the largest Re size bin in 336 

the original reference data (Fig. s2c). Figs. g-i and m-o show absolute frequencies of SLWCs by MODIS COT, demonstrating that 337 

E3SMv2 overrepresents SLWCs with small Re relative to medium and large Re, compared to observations. 338 

The high reflectivities near the cloud top are pronounced in the subset of E3SMv2 SLWCs with 4 < MODIS COT < 339 

20 (Fig. S3), indicating that the high reflectivity at low ICOD in Figs. 2 (j-l) is not just a product of a subset of 340 

precipitating, optically thin SLWCs, but that layers near the cloud top in deeper SLWCs are also precipitating. also 341 

contribute. The reflectivity profiles used to generate the CFODD come from the CloudSat simulator, which was not 342 
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modified for this study.  Examples of simulated CloudSat reflectivity profiles in SLWCs with Ze > 0 dBZ near cloud 343 

top are shown in Fig. S4.     The source of this issue and its implications for E3SMv2 representation of liquid cloud 344 

properties warrant further investigation that is beyond the scope of the present study. 345 

Figure 2 shows absolute frequencies of SLWCs binned by MODIS COT in each CFODD Re bin for the updated A-346 

Train analysis (Fig. 2 g-i) and E3SMv2 only (Fig. 2 m-o). Note, this information was unavailable in the original 347 

reference data (Michibata et al., 2019a). Compared to COT distributions in the updated A-Train analysis, E3SMv2 348 

shows decreasing SLWC frequency with Re and an underrepresentation of SLWCs with large Re, which aligns with 349 

the underrepresentation of precipitating SLWCs in Fig. 1. Fig. 2o also shows that few SLWCs with large Re have a 350 

COT > 20, indicating that the CFODD reflectivity profile in Fig. 2l at ICOD > 20 is comprised of few samples. The 351 

SLWC COT PDFs have been implemented in the WRDs to support the interpretation of CFODD statistics.  352 

4 Results and Discussion 353 

 4.1 CFODD analysis to constrain ERFaci due to warm rain processes 354 

To demonstrate the potential of the CFODD analysis described above for constraining ERFaciSW due to warm rain 355 

processes, we performed 12 experiments featuring variations of E3SMv2’s autoconversion and accretion 356 

parameterizations, computing ERFaciSW for the SLWC samples represented in each CFODD and the corresponding 357 

Re bin (hereafter, “ERFaciSW_SLWCs”) following Ghan (2013; see Sect. 2.4). In each experiment, a single coefficient of 358 

either the KK2000 autoconversion or accretion parameterization was perturbed, each of which is treated as a tunable 359 

parameter in E3SMv2. The uncertain KK2000 coefficients, coupled with parameterization simplifications (e.g., bulk 360 

moments and assumed droplet size distributions), result in uncertainties and biases in the model representation of 361 

raindrop formation and growth.  The experiments are described in Table 1, and the CFODDs for each experiment are 362 

shown in Fig. S5.  363 

Figure 3 shows a strong negative correlation between E3SMv2 ERFaciSW_SLWCs  with “small” or “medium” Re (i.e., 5 364 

≤ Re < 18 µm) and the corresponding combined 5 ≤ Re < 18 µm CFODD slope ( Pearson’s R = -0.91). SLWCs with 365 

large Re (18 ≤ Re < 30 µm) were excluded from the analysis in Fig. 3 because this population represents a negligible 366 

fraction of total SLWCs in E3SMv2 (see Fig. S6), resulting in poor sampling statistics and larger regression 367 

uncertainties. As CFODD slopes represent an estimate of droplet collection efficiency, Fig. 3 demonstrates that 368 
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ERFaciSW strengthens (increases in magnitude) with increasing droplet collection efficiency in E3SMv2 SLWCs with 369 

Re between 5 and 18 µm. One possible physical explanation for the relationship between autoconversion, droplet 370 

collection efficiency, and ERfaciSW is that increased autoconversion rates increase the susceptibility of clouds to 371 

precipitation suppression by aerosols. For a given optical depth, SLWCs with lower LWP and/or higher Nd will 372 

precipitate more when the autoconversion rate is increased. A larger population of precipitating SLWCs results in 373 

increased susceptibility to precipitation suppression by aerosols overall. When aerosols suppress precipitation (e.g., 374 

Suzuki et al., 2013), LWP and/or cloud fraction may be enhanced, resulting in brighter clouds and stronger ERFaciSW.  375 

The relationship between aerosols, LWP and cloud fraction (Albrecht, 1989), however, is highly uncertain, varies 376 

regionally (Sato et al., 2018), and is influenced by processes that are buffered over multiple spatiotemporal scales 377 

(Stevens and Feingold, 2009). Additionally, E3SMv2’s CFODD slope (“CNTL” simulation) agrees with MODIS-378 

CloudSat within uncertainty, indicating that droplet collection efficiency is well-represented according to CFODD 379 

analysis. 380 

 381 

 382 

 383 

 384 
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 385 

Figure 3. Linear regression between E3SMv2 ERFaciSW_SLWCs and CFODD slopes, generated from SLWCs with MODIS Re 386 

between 5 and 18 µm, in 12 PD autoconversion and accretion sensitivity experiments. ERFaciSW_SLWCs values reflect the SLWCs 387 

represented in the corresponding CFODD (i.e., with Re corresponding to the CFODD Re bin). Results show a strong negative 388 

correlation between E3SMv2 ERFaciSW_SLWCs and CFODD slopes. We constrain the ERFaciSW by predicting the ERFaciSW_SLWCs 389 

value at the reference MODIS-CloudSat 5 ≤ Re < 18 µm CFODD slope (purple dashed line) from the linear regression (intercept 390 

shown in blue box). The constrained ERFaciSW value is decreased by 14 ± 6% in magnitude compared to the CNTL simulation. 391 

Error bars represent 1-sigma error estimated from RANSAC-fit bootstrapping (Sect. 2). Grey and pink shaded regions indicate the 392 

68 and 95% confidence intervals for the MODIS-CloudSat CFODD slope, respectively. Labels indicate the sensitivity experiment 393 

names (Table 1). 394 

In Figure 3, we constrain ERFaciSW due to autoconversion uncertainties using the linear regression between the 395 

simulated CFODD slopes and ERFaciSW_SLWCs. ERFaciSW and ERFaciSW_SLWCs  values were calculated following Ghan 396 

et al. (2013), which considers the difference in TOA radiative flux between the PD and PI experiments, neglecting 397 

direct forcing of aerosols (see Sect.  2.4 for details). We estimated the constrained value of ERFaciSW_SLWCs at the 398 

intercept of the linear relationship with the observed MODIS-CloudSat CFODD slope (Fig. 4).The ERFaciSW_SLWCs 399 



18 
 

predicted by the linear regression at the MODIS-CloudSat slope value is -0.066 W m-2, a 14 ± 6% decrease in 400 

magnitude compared to the ERFaciSW_SLWCs value predicted by the E3SMv2 CNTL simulation (-0.077 W m-2). 401 

E3SMv2’s total ERFaci (-1.50 Wm-2), inclusive of all cloud types and the longwave forcing component, falls within 402 

the IPCC AR6 ‘very likely’ range for ERFaci (-1.0 ± 0.7 Wm-2). The shortwave component of ERFaci is significantly 403 

larger than longwave in CMIP6 models (e.g., multimodel means of -0.91 and +0.10 W m-2, respectively, as reported 404 

in Smith et al. 2020). Thus, our results indicate that eliminated the bias in ERFaciSW due to autoconversion 405 

uncertainties would decrease the magnitude of ERFaciSW and bring the predicted total ERFaci closer to the median 406 

IPCC ERFaci value (Forster et al., 2021).  407 

 408 

Figure 4. CFODDs for subset of SLWCs with max CloudSat reflectivity < 20 dBZ and COT < 20, June 2006 – April 2011, binned 409 

by MODIS Re from updated reference MODIS-CloudSat observations analysis (a-b), and with combined “small” and “medium” 410 

Re SLWCs in (c). RANSAC linear regressions were applied to the CFODD at 4 ≤ ICOD ≤ 20 to estimate droplet collection 411 

efficiencies. RANSAC slopes and Median Absolute Error (MAE) values are shown in blue boxes. 412 

As ERFaciSW is the result of many cloud processes, the updated CFODD analysis should be interpreted as a constraint 413 

on the component of ERFaciSW that is modulated by droplet collection efficiency due to autoconversion. In other 414 

words, the updated CFODD analysis shows the change in ERFaciSW one would expect if the bias in ERFaciSW due to 415 

a specific process representation affecting droplet collection efficiency were eliminated. Base cloud processes that are 416 

independent of aerosol also contribute significantly to ERFaci estimates (Mülmenstädt et al., 2020). Autoconversion 417 

perturbations affect base cloud state (e.g., LWP, cloud fraction) and could, for example, cause stronger ERFaci by 418 

increasing cloud amount rather than increasing the impact of ACI on SW radiative forcing. Jing et al. (2019) evaluated 419 

different autoconversion parameterization schemes in an ESM using the CFODD analysis described in Michibata et 420 
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al. (2019b) and found that the autoconversion scheme that yielded the best warm rain representation predicted a 421 

significantly stronger ERFaci that exceeded the uncertainty range of the IPCC AR5 and canceled out much of the 422 

warming trend of the last century. The conflict between process representation and ERFaci predictions in Jing et al. 423 

(2019) underscore a challenge with process-based constraints: improving the representation of a process can result in 424 

adverse outcomes to climate prediction due to compensating biases in the model. This challenge is particularly 425 

troublesome for constraints on processes like autoconversion that affect the base cloud state because decreasing 426 

autoconversion rates can increase total cloud amount, which can yield stronger ERFaci. Thus, a decreased 427 

autoconversion rate may improve precipitation outcomes in an ESM that presents the common “too frequent” warm 428 

rain bias (e.g., Stephens et al., 2010), yet cause improbably strong ERFaci. Our results show, however, that decreased 429 

autoconversion rates result in weaker ERFaciSW_SLWCs (Fig. 3), demonstrating that the base cloud state issue presented 430 

in prior studies of autoconversion is not a dominant factor contributing to the ERFaciSW of warm rain processes in 431 

E3SMv2.  432 

Figure 5a shows the linear relationship between ERFaciSW_SLWCs normalized by the PI SW Cloud Radiative Effect 433 

(SWCRE), which represents the fraction of ERFaci that is independent of base cloud state changes, and CFODD slope. 434 

The correlation coefficient in Fig. 5a (Pearson’s R = 0.74) is decreased compared to Fig. 3 (Pearson’s R = -0.91). 435 

However, comparing the negative correlations between CFODD slope and PI SLWC cloud fraction (Fig. 5b; Pearson’s 436 

R = -0.64) and LWP (Fig. 5c; Pearson’s R = -0.89) with Fig. 3, the ERFaciSW_SLWCs increases in magnitude as LWP 437 

and cloud fraction decrease, further demonstrating that the contribution of base cloud state to ERFaciSW_SLWCs is 438 

relatively minor. The decreased correlation coefficient in Fig. 5a could also be influenced by poor sampling statistics 439 

in the “acoef100x” experiment. The acoef100x was the only one of six experiments involving perturbations of the “A” 440 

coefficient in KK2000 (Table 1; Sect. 2.4) in which the CFODD slope did not increase with an increase in magnitude 441 

of the “A” coefficient. Given the significant decrease in SLWC cloud fraction in this experiment compared to the 442 

others (Fig. 5b, Table S2), the CFODD slope result may be affected by insufficient sample size, an additional 443 

uncertainty of the CFODD linear regression that is not reflected in the bootstrapping-based uncertainty estimate (Sect. 444 

2).  445 
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 446 

Figure 5. Linear regression between (a) E3SMv2 ERFaciSW_SLWCs normalized by SWCRE, (b) SLWC cloud fraction, (c) SLWC 447 

LWP and CFODD slopes in 12 PD autoconversion and accretion sensitivity experiments, calculated for SLWCs with MODIS Re 448 

between 5 and 18 µm. ERFaciSW_SLWCs values reflect the SLWCs represented in the corresponding CFODD (i.e., with Re 449 

corresponding to 5 < Re < 18 µm). Error bars represent 1-sigma error estimated from RANSAC-fit bootstrapping (Sect. 2). Grey 450 

and pink shaded regions indicate the 68 and 95% confidence intervals for the MODIS-CloudSat CFODD slope, respectively. Labels 451 

indicate the sensitivity experiment names (Table 1). 452 

While we derive a constraint for ERFaciSW using the combined small and medium Re CFODDs, when the Re subsets 453 

are considered individually, they show distinct contributions to ERFaciSW_SLWCs. Fig. S7 shows that SLWCs with small 454 

Re have a negative ERFaciSW_SLWCs, but that SLWCs in the medium and large Re subsets have positive ERFaciSW_SLWCs 455 

values. This indicates that the dominant effect of aerosols on shortwave radiative forcing in the medium and large 456 

SLWC subsets is decreased cloud fraction, which is reflected in the decreased SLWC sample sizes in the PD 457 

simulations compared to PI (Fig. S8, S9). The negative linear relationship between ERFaciSW_SLWCs and CFODD slope 458 

in the medium and large Re subsets indicates that increasing droplet collection efficiency partially counteracts the 459 

decrease in cloud fraction due to aerosol. The small Re SLWCs, however, show a positive correlation between 460 

ERFaciSW and CFODD slope, indicating that ERFaciSW weakens as autconversion rates increase, likely due to 461 

decreased precipitation suppression susceptibility in this subset.. The combined small and medium CFODD and 462 

ERFaciSW_SLWCs, therefore, represent the convolution of two populations with differing ERFaciSW sensitivities to 463 

autoconversion perturbations. We chose to constrain ERFaciSW using the combined small and medium CFODD and 464 

ERFaciSW_SLWCs due the correlation performance and the dearth of large Re SLWCs in E3SMv2. However, constraints 465 

for ERFaciSW could potentially be derived for each individual Re subset or various combinations thereof, depending 466 

on the distribution of SLWCs among the Re size bins and their contribution to the host model’s ERFaci. Considering 467 

that constrained ERFaciSW increases in magnitude with increasing Re in Fig. S7 the underrepresentation of SLWCs 468 
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with large Re in E3SMv2 represents a compensating bias, without which the total ERFaci bias would be even larger 469 

compared to IPCC AR6.  470 

4.2 Limitations of CFODD-based constraint on ERFaci 471 

There are multiple limitations to the CFODD analysis that should be considered in its application as a constraint for 472 

ERFaci. First, droplet collection is not explicitly represented in ESMs with bulk microphysical schemes such as 473 

E3SMv2, but is instead implicit in an amalgamation of process and drop size distribution parameterizations controlling 474 

the evolution of the cloud and precipitation. Delving into the impact of these individual processes on CFODD-based 475 

constraint of ERFaci is a good target of future work, while autoconversion modulation of ERFaci was the primary 476 

focus here. Furthermore, simulated radar reflectivity is highly sensitive to particle size distribution assumptions in the 477 

forward simulator (e.g., Bodas-Salcedo et al., 2011; J. Wang et al., 2021). The host model, therefore, could represent 478 

warm rain microphysical processes with high fidelity but still produce biased CFODD profiles when compared with 479 

observations.  In COSPv2.0, the CloudSat simulator calculates size distributions from an assumed distribution (e.g., 480 

log-normal, gamma, exponential) as well as mass-mixing ratios, precipitation fluxes, and gridbox-mean Re from the 481 

host model. Default COSPv2.0 size distributions were used in this study: log-normal for large-scale stratiform and 482 

convective cloud liquid, and exponential for large-scale stratiform and convective cloud rain. The CFODD analysis 483 

itself is subject to multiple uncertainties, including the use of simple adiabatic and condensational growth assumptions 484 

to scale MODIS COT to ICOD. These assumptions result in a vertical distribution of optical depth, mass 485 

concentrations and particle size that may not reflect reality. For example, in the CFODD, particle size and mass 486 

concentration are assumed to monotonically increase with height, yet in the real cloud, particle sizes may decrease 487 

near the cloud top due to evaporation and entrainment (Suzuki et al., 2010). The uncertainties from assumed 488 

hydrometeor size distributions and CFODD construction should be carefully considered when using the CFODD to 489 

evaluate model droplet collection efficiencies against observations and in the application as an ERFaci constraint. 490 

Simulated reflectivity biases affect the evaluation of the model CFODD slope against the observational CFODD slope 491 

and thus affect the estimation of ERFaci bias.  492 

A few additional limitations on CFODD analysis are imposed by biases in E3SMv2 SLWC representation. The ERFaci 493 

constraint is restricted to the small and medium Re CFODDs because of the underrepresentation of SLWCs with large 494 

Re. SLWCs with medium Re are also underrepresented in E3SMv2, further limiting the CFODD analysis of E3SMv2 495 
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ERFaci because process perturbations are limited to the extent that they do not significantly reduce the number of 496 

SLWCs with medium Re. The high reflectivity near cloud top at ICOD < 4 in E3SMv2 CFODDs presents another 497 

limitation. SLWCs with COT < 4 represent a significant fraction of the SLWC population in both A-Train and 498 

E3SMv2 (Fig. 2), so including optically thin SLWCs in the linear regression would likely affect the CFODD slope 499 

and droplet collection efficiency estimates. 500 

Despite these limitations and the uncertainty associated with estimates of droplet collection efficiency from simulated 501 

radar reflectivity, CFODD analysis offers a highly desired process-oriented constraint on ERFaci due to warm rain 502 

processes. In E3SMv2, the CFODD slope exhibits the expected behavior in response to autoconversion perturbations: 503 

slope increases with perturbations that increase the autoconversion rate and decreases with perturbations that decrease 504 

the autoconversion rate. Our results also show that the model ERFaciSW is highly sensitive to the processes that the 505 

CFODD represents, enabling the constraint of ERFaciSW against the CFODD slope derived from MODIS-CloudSat 506 

cloud retrievals. Prior studies have demonstrated that radar reflectivity biases can be partially mitigated by bringing 507 

the forward simulator into better agreement with the host model’s microphysics parameterization and subgrid 508 

variability (Song et al., 2018b; J. Wang et al., 2021). Modified versions of COSP featuring improved consistency with   509 

E3SM are to be implemented in future E3SM model versions, which will decrease the uncertainties associated with 510 

CFODD analysis of E3SM.  511 

5 Summary 512 

In this study, we present an updated CFODD analysis and demonstrate how it can be applied to ESMs as a process-513 

oriented constraint on ERFaci. When E3SMv2’s CFODD slope is constrained by MODIS-CloudSat retrievals, 514 

E3SMv2’s ERFaciSW is reduced by 14 ± 6%. Demonstrated here as a constraint on the component of ERFaciSW that is 515 

modulated by autoconversion, CFODD analysis represents a highly desirable constraint on a process, circumventing 516 

the equifinality issue that bedevils atmospheric state variable-based approaches (Mülmenstädt et al., 2020). 517 

Limitations of CFODD-based constraint of ERFaci include the implicit representation of droplet collection efficiency 518 

in many ESMs, including E3SMv2, the sensitivity of simulated radar reflectivity to droplet size distribution 519 

representations and simplifying assumptions applied to construct the CFODD (e.g., adiabatic-condensational growth). 520 

While this study focuses on autoconversion, future studies should apply CFODD analysis to other microphysical 521 
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processes that affect droplet collection efficiency (e.g., accretion, droplet breakup, evaporation) to generate additional 522 

ERFaci constraints. 523 

Several updates to the WRDs package in COSPv2.0 were made to support the application of CFODD analysis to 524 

ESMs. In addition to the original WRDs diagnostics featuring relative frequencies of SLWCs by precipitation intensity 525 

and the CFODD by Re, we have implemented additional diagnostics in the WRDs   that include all-sky SLWC 526 

frequency maps and MODIS SLWC COT distributions for CFODD sampling statistics. Other updates include the 527 

estimation of CFODD slopes using Random Sample Consensus robust linear regression and changes to the SLWC 528 

detection schemes for better comparison between observations and satellite simulators.  529 

In addition to the modifications of the WRDs described above, the MODIS and CloudSat observational reference data 530 

has been updated for consistency with COSPv2.0 SLWC detection. SLWC detection is increased 5-fold in the updated 531 

reference data. The increase in SLWC sampling also significantly affected the CFODD distributions and consequently, 532 

the A-Train reference droplet collection efficiency at large Re (18 µm ≤ Re < 30 µm). The updated WRDs showed that 533 

droplet collection efficiencies in E3SMv2 are decreased compared to observations and SLWCs with small MODIS Re 534 

(5 µm ≥ Re > 12 µm) are overrepresented. The E3SMv2 CFODD results also show reflectivities exceeding 0 dBZ near 535 

cloud top at 2 < ICOD < 4 yet relatively low reflectivities at ICOD > 5. The unreasonably high reflectivities near cloud 536 

top may indicate artifacts due to inconsistencies between E3SMv2 outputs and COSPv2.0 inputs to the CloudSat 537 

simulator. This issue motivates further investigation in future studies involving applications of the CloudSat simulator 538 

to E3SM.  The updates described herein have increased the WRDs’ utility for evaluating model warm rain process 539 

representation and support the analysis needed to derive a constraint on ERFaci from CFODD analysis. Through an 540 

evaluation of E3SMv2, we demonstrate that the updated WRDs illuminate specific biases in SLWC representation 541 

and provide contextual sampling statistics that are critical for interpreting CFODD results and thus, for future 542 

applications of this observational constraint on ERFaci. 543 
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Code and Data Availability: The CloudSat and MODIS data products are available from the CloudSat Data Processing 545 

Center at CIRA/Colorado State University (https://www.cloudsat.cira.colostate.edu/; last access: June 28, 2023). The 546 

reference A-Train data used in this study is available here: https://doi.org/10.5281/zenodo.8384180. The modified 547 

source code of COSPv2.0 is available here: https://doi.org/10.5281/zenodo.8371120 and the E3SMv2 source code is 548 

https://www.cloudsat.cira.colostate.edu/
https://doi.org/10.5281/zenodo.8384180
https://doi.org/10.5281/zenodo.8371120


24 
 

available here: https://github.com/E3SM-Project/E3SM (last access: September 27, 2023). The python package for 549 

the two-dimensional Kolmogorov-Smirnov test applied in this study is available here 550 

(https://github.com/syrte/ndtest/tree/master; last access: June 28, 2023). The python package scikit-learn was used for 551 

robust linear regression analysis (https://scikit-learn.org/stable/; last access: June 28, 2023). 552 

Author contributions: CMB led the project, developed the additional WRDs diagnostics in this study, performed the 553 

model simulations and wrote the manuscript. PLM provided critical project guidance and support for modeling and 554 

analysis. MWC led the A-Train observations analysis and provided guidance on additional WRDs diagnostics 555 

development. AV provided input on CFODD analysis applications. JM provided guidance on ERFaci analysis. TM 556 

and KS provided guidance on WRDs applications. All authors contributed to writing the manuscript. 557 

Competing Interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry 558 

and Physics. 559 

Acknowledgements: The study was supported as part of the Enabling Aerosol–cloud interactions at GLobal 560 

convection-permitting scalES (EAGLES) project (project no. 74358) sponsored by the United States Department of 561 

Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Earth System Model 562 

Development (ESMD) program area. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by 563 

the Battelle Memorial Institute under Contract DE-AC05-76RL01830. The research used high-performance 564 

computing resources from the PNNL Research Computing, the BER Earth System Modeling program's Compy 565 

computing cluster located at PNNL, and resources of the National Energy Research Scientific Computing Center 566 

(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National 567 

Laboratory, operated under Contract No. DE-AC02-05CH11231, using NERSC awards ALCC-ERCAP0025938 and 568 

BER-ERCAP0024471.  569 

Financial support.  This study was funded by the U.S. Department of Energy, Office of Science, Office of Biological 570 

and Environmental research, Earth System Model Development (ESMD) program area (project nos. 74358). KS and 571 

TM were supported by the Japan Society for the Promotion of Science KAKENHI (Grant JP19H05669), MEXT 572 

program for the Advanced Studies of Climate Change Projection (SENTAN) (Grant JPMXD0722680395), and the 573 

Environment Research and Technology Development Fund (S-20) (Grant JPMEERF21S12004) of the Environmental 574 

https://github.com/E3SM-Project/E3SM
https://github.com/syrte/ndtest/tree/master
https://scikit-learn.org/stable/


25 
 

Restoration and Conservation Agency. TM was supported by the JST FOREST Program (Grant JPMJFR206Y), 575 

and the Japan Society for the Promotion of Science KAKENHI (Grant JP 23K13171). 576 

 577 

 578 

References 579 

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227--1230 , pmid = 580 
17747885, 10.1126/science.245.4923.1227, 1989. 581 

 582 
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., 583 

Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., 584 
Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., … Stevens, B.: Bounding Global Aerosol 585 
Radiative Forcing of Climate Change. Rev. Geophys., 58(1), e2019RG000660, 586 
https://doi.org/https://doi.org/10.1029/2019RG000660, 2020. 587 

Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P.: Higher-Order 588 
Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model. J. Climate, 589 
26(23), 9655–9676 https://doi.org/https://doi.org/10.1175/JCLI-D-13-00075.1, 2013. 590 

Cesana, G., & Chepfer, H.: How well do climate models simulate cloud vertical structure? A comparison between 591 
CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett., 39(20). 592 
https://doi.org/https://doi.org/10.1029/2012GL053153, 2012. 593 

Christensen, M. W., Stephens, G. L., & Lebsock, M. D.: Exposing biases in retrieved low cloud properties from 594 
CloudSat: A guide for evaluating observations and climate data: J. Geophys. Res., 118(21), 12, 112–120, 131. 595 
https://doi.org/https://doi.org/10.1002/2013JD020224, 2013. 596 
 597 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., 598 
Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., 599 
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., 600 
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., 601 
Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: 602 
configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological 603 
Society, 137, 553-597, https://doi.org/10.1002/qj.828, 2011. 604 
 605 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., 606 
Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., 607 
Conaty, A., da Silva, A. M., Gu, W., … Zhao, B.: The Modern-Era Retrospective Analysis for Research and 608 
Applications, Version 2 (MERRA-2), Journal of Climate, 30(14), 5419–5454, https://doi.org/10.1175/JCLI-D-609 
16-0758.1, 2017. 610 

Ghan, S. J.: Technical Note: Estimating aerosol effects on cloud radiative forcing, Atmospheric Chemistry and 611 
Physics, 13(19), 9971–9974. https://doi.org/10.5194/acp-13-9971-2013, 2013. 612 

Golaz, J. C., Larson, V. E., & Cotton, W. R.: A PDF-based model for boundary layer clouds. Part I: Method and 613 
model description, Journal of the Atmospheric Sciences, 59(24), 3540–3551. https://doi.org/10.1175/1520-614 
0469(2002)059<3540:APBMFB>2.0.CO;2, 2022. 615 

https://doi.org/https:/doi.org/10.1029/2019RG000660
https://doi.org/https:/doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/https:/doi.org/10.1029/2012GL053153
https://doi.org/https:/doi.org/10.1002/2013JD020224
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5194/acp-13-9971-2013
https://doi.org/10.1175/1520-0469(2002)059%3c3540:APBMFB%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059%3c3540:APBMFB%3e2.0.CO;2


26 
 

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, 616 
M. E., Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, 617 
B., Richter, J. H., … Bader, D. C.: The DOE E3SM Model Version 2: Overview of the Physical Model and 618 
Initial Model Evaluation. Journal of Advances in Modeling Earth Systems, 14(12), e2022MS003156. 619 
https://doi.org/https://doi.org/10.1029/2022MS003156, 2022. 620 

Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., and Mülmenstädt, J.: A Multimodel Study on Warm 621 
Precipitation Biases in Global Models Compared to Satellite Observations, Journal of Geophysical Research: 622 
Atmospheres, 122, 11, 806-811, 824, https://doi.org/10.1002/2017JD027310 , issue = 21, 2017. 623 

 624 
Jing, X., Suzuki, K., & Michibata, T.: The Key Role of Warm Rain Parameterization in Determining the Aerosol 625 

Indirect Effect in a Global Climate Model. Journal of Climate, 32(14), 4409–4430. 626 
https://doi.org/https://doi.org/10.1175/JCLI-D-18-0789.1, 2019. 627 

Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C.: Global climate impacts of 628 
fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM), Journal 629 
of Climate, 29(12), 4617–4636. https://doi.org/10.1175/JCLI-D-15-0358.1, 2016. 630 

Khairoutdinov, M., & Kogan, Y. (2000). A New Cloud Physics Parameterization in a Large-Eddy Simulation Model 631 
of Marine Stratocumulus. Monthly Weather Review, 128(1), 229–243. 632 
https://doi.org/https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2 633 

Kogan, Y.: A Cumulus Cloud Microphysics Parameterization for Cloud-Resolving Models, Journal of the 634 
Atmospheric Sciences, 70, 1423-1436, https://doi.org/10.1175/JAS-D-12-0183.1, 2013. 635 
 636 

Larson, V. E.: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere, 637 
http://arxiv.org/abs/1711.03675, 2017. 638 

Larson, V. E., & Golaz, J.-C.: Using Probability Density Functions to Derive Consistent Closure Relationships 639 
among Higher-Order Moments. Monthly Weather Review, 133(4), 1023–1042. 640 
https://doi.org/https://doi.org/10.1175/MWR2902.1, 2005. 641 

Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F., Gettelman, A., Morrison, H., Vitt, 642 
F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., 643 
Iacono, M. J., … Mitchell, D.: Toward a minimal representation of aerosols in climate models: Description 644 
and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5(3), 709–645 
739. https://doi.org/10.5194/GMD-5-709-2012, 2012. 646 

Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J. Description and 647 
evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the 648 
Community Atmosphere Model. Geoscientific Model Development, 9(2), 505–522, 649 
https://doi.org/10.5194/gmd-9-505-2016, 2016. 650 

Mangla, R., Indu, J., & Lakshmi, V.: Evaluation of convective storms using spaceborne radars over the Indo-651 
Gangetic Plains and western coast of India. Meteorological Applications, 27(3), e1917, 652 
https://doi.org/https://doi.org/10.1002/met.1917, 2020. 653 

Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G.: Hydrometeor Detection Using Cloudsat—An Earth-654 
Orbiting 94-GHz Cloud Radar, Journal of Atmospheric and Oceanic Technology, 25(4), 519–533, 655 
https://doi.org/10.1175/2007JTECHA1006.1, 2008. 656 

Michibata, T., Kawamoto, K., & Takemura, T.: The effects of aerosols on water cloud microphysics 657 
and  macrophysics based on satellite-retrieved data over East Asia and the  North Pacific, Atmospheric 658 
Chemistry and Physics, 14(21), 11935–11948, https://doi.org/10.5194/acp-14-11935-2014, 2014. 659 

https://doi.org/https:/doi.org/10.1029/2022MS003156
https://doi.org/10.1002/2017JD027310
https://doi.org/https:/doi.org/10.1175/JCLI-D-18-0789.1
https://doi.org/10.1175/JCLI-D-15-0358.1
https://doi.org/https:/doi.org/10.1175/1520-0493(2000)128%3c0229:ANCPPI%3e2.0.CO;2
https://doi.org/10.1175/JAS-D-12-0183.1
http://arxiv.org/abs/1711.03675
https://doi.org/https:/doi.org/10.1175/MWR2902.1
https://doi.org/10.5194/GMD-5-709-2012
https://doi.org/10.5194/gmd-9-505-2016
https://doi.org/https:/doi.org/10.1002/met.1917
https://doi.org/10.1175/2007JTECHA1006.1
https://doi.org/10.5194/acp-14-11935-2014


27 
 

Michibata, T., Suzuki, K., Ogura, T., & Jing, X.: Data for the publication “Incorporation of inline warm rain 660 
diagnostics into the COSP2 satellite simulator for process-oriented model evaluation.” Zenodo, 661 
https://doi.org/10.5281/zenodo.3370823, 2019a. 662 

Michibata, T., Suzuki, K., Ogura, T., & Jing, X.: Incorporation of inline warm rain diagnostics into the COSP2 663 
satellite simulator for process-oriented model evaluation. Geoscientific Model Development, 12(10), 4297–664 
4307. https://doi.org/10.5194/gmd-12-4297-2019, 2019b. 665 

Muhlbauer, A., McCoy, I. L., and Wood, R.: Climatology of stratocumulus cloud morphologies: Microphysical 666 
properties and radiative effects, Atmos. Chem. Phys., 14, 2014. 667 

 668 

Mülmenstädt, J. and Feingold, G.: The Radiative Forcing of Aerosol–Cloud Interactions in Liquid Clouds: Wrestling 669 
and Embracing Uncertainty, Current Climate Change Reports, 4, 23-40, 10.1007/s40641-018-0089-y, 2018. 670 

 671 
Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J., L’Ecuyer, T. S., Lohmann, U., Ma, P.-L., Myhre, G., 672 

Neubauer, D., Stier, P., Suzuki, K., Wang, M., & Quaas, J. (2020). Reducing the aerosol forcing uncertainty 673 
using observational constraints on warm rain processes. Science Advances, 6(22), eaaz6433. 674 
https://doi.org/10.1126/sciadv.aaz6433 675 

Partain, P., & Cronk, H.: CloudSat ECMWF-AUX auxillary data product process description and interface control 676 
document. California Institute of Techology Jet Propulsion Laboratory Doc., 15 pp., 677 
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-678 
AUX_PDICD.P_R05.rev0_.pdf, 2017, last access: 24 January 2024. 679 

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., 680 
Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., & Riedi, J.: The MODIS Cloud Optical and 681 
Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Transactions on 682 
Geoscience and Remote Sensing, 55(1), 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017. 683 

Rasch, P. J., Xie, S., Ma, P. L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., 684 
Cameron-Smith, P., Singh, B., Wan, H., Golaz, J. C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., 685 
Evans, K. J., … Yang, Y.: An Overview of the Atmospheric Component of the Energy Exascale Earth System 686 
Model: Journal of Advances in Modeling Earth Systems, 11(8), 2377–2411. 687 
https://doi.org/10.1029/2019MS001629, 2019. 688 

Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima, T.: Aerosol effects on cloud 689 
water amounts were successfully simulated by a global cloud-system resolving model, Nature Communications, 690 
9, 985, 10.1038/s41467-018-03379-6, 2018. 691 

 692 
Smith, C. J., Kramer, R. J., Myhre, G., Alterskjr, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., 693 

Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., 694 
Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevg, A., Olivié, D., Fiedler, S., Lewinschal, A., 695 
Mackallah, C., Dix, M., Pincus, R., & Forster, P.: Effective radiative forcing and adjustments in CMIP6 models, 696 
Atmospheric Chemistry and Physics, 20, 9591--9618, 10.5194/acp-20-9591-2020, 2020. 697 

 698 
Song, H., Zhang, Z., Ma, P.-L., Ghan, S. J., & Wang, M.: An Evaluation of Marine Boundary Layer Cloud Property 699 

Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid 700 
Parameterization versus CLUBB. Journal of Climate, 31(6), 2299–2320, 701 
https://doi.org/https://doi.org/10.1175/JCLI-D-17-0277.1, 2018a. 702 

Song, H., Zhang, Z., Ma, P.-L., Ghan, S., & Wang, M.: The importance of considering sub-grid cloud variability 703 
when using  satellite observations to evaluate the cloud and precipitation simulations in  climate models. 704 
Geoscientific Model Development, 11(8), 3147–3158. https://doi.org/10.5194/gmd-11-3147-2018, 2018b. 705 

https://doi.org/10.5281/zenodo.3370823
https://doi.org/10.5194/gmd-12-4297-2019
https://doi.org/10.1126/sciadv.aaz6433
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX_PDICD.P_R05.rev0_.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX_PDICD.P_R05.rev0_.pdf
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.1029/2019MS001629
https://doi.org/https:/doi.org/10.1175/JCLI-D-17-0277.1
https://doi.org/10.5194/gmd-11-3147-2018


28 
 

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P., & 706 
Haynes, J.: Dreary state of precipitation in global models. Journal of Geophysical Research: Atmospheres, 707 
115(D24), https://doi.org/https://doi.org/10.1029/2010JD014532, 2010. 708 

Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 709 
461, 607-613, 10.1038/nature08281, 2009. 710 

 711 
Suzuki, K., Nakajima, T. Y., & Stephens, G. L.: Particle Growth and Drop Collection Efficiency of Warm Clouds as 712 

Inferred from Joint CloudSat and MODIS Observations. Journal of the Atmospheric Sciences, 67(9), 3019–713 
3032, https://doi.org/10.1175/2010JAS3463.1, 2010. 714 

Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata, T., & Koshiro, T.: Evaluation of 715 
the Warm Rain Formation Process in Global Models with Satellite Observations. Journal of the Atmospheric 716 
Sciences, 72(10), 3996–4014, https://doi.org/https://doi.org/10.1175/JAS-D-14-0265.1, 2015. 717 

Suzuki, K., Stephens, G. L., & Lebsock, M. D.: Aerosol effect on the warm rain formation process: Satellite 718 
observations and modeling. Journal of Geophysical Research: Atmospheres, 118(1), 170–184, 719 
https://doi.org/https://doi.org/10.1002/jgrd.50043, 2013. 720 

Takahashi, H., Bodas-Salcedo, A., and Stephens, G.: Warm Cloud Evolution, Precipitation, and Their Weak Linkage 721 
in HadGEM3: New Process-Level Diagnostics Using A-Train Observations, Journal of the Atmospheric 722 
Sciences, 78, 2075-2087, https://doi.org/10.1175/JAS-D-20-0321.1, 2021. 723 

Wang, H., Easter, R. C., Zhang, R., Ma, P. L., Singh, B., Zhang, K., Ganguly, D., Rasch, P. J., Burrows, S. M., 724 
Ghan, S. J., Lou, S., Qian, Y., Yang, Y., Feng, Y., Flanner, M., Leung, R. L., Liu, X., Shrivastava, M., Sun, 725 
J., … Yoon, J. H.: Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative 726 
Forcing. Journal of Advances in Modeling Earth Systems, 12(1), https://doi.org/10.1029/2019MS001851, 727 
2020. 728 

Wang, J., Fan, J., Houze, R. A., Brodzik, S. R., Zhang, K., Zhang, G. J., & Ma, P. L.: Using radar observations to 729 
evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) version 1. 730 
Geoscientific Model Development, 14(2), 719–734. https://doi.org/10.5194/gmd-14-719-2021, 2021. 731 

Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects. Journal of the Atmospheric 732 
Sciences, 62(9), 3034–3050. https://doi.org/https://doi.org/10.1175/JAS3530.1, 2005. 733 

Zhang, G. J., & McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus convection 734 
in the Canadian climate centre general circulation model. Atmosphere-Ocean, 33(3), 407–446. 735 
https://doi.org/10.1080/07055900.1995.9649539, 1995. 736 

Zhang, M., Xie, S., Liu, X., Lin, W., Zhang, K., Ma, H.-Y., Zheng, X., & Zhang, Y.: Toward Understanding the 737 
Simulated Phase Partitioning of Arctic Single-Layer Mixed-Phase Clouds in E3SM. Earth and Space Science, 738 
7(7), e2020EA001125. https://doi.org/https://doi.org/10.1029/2020EA001125, 2020. 739 

Zhang, M., Xie, S., Liu, X., Lin, W., Zheng, X., Golaz, J.-C., & Zhang, Y.: Cloud Phase Simulation at High Latitudes 740 
in EAMv2: Evaluation Using CALIPSO Observations and Comparison With EAMv1. Journal of Geophysical 741 
Research: Atmospheres, 127(22), e2022JD037100. https://doi.org/https://doi.org/10.1029/2022JD037100, 742 
2022. 743 

Zhang, Y., Klein, S. A., Boyle, J., & Mace, G. G.: Evaluation of tropical cloud and precipitation statistics of 744 
Community Atmosphere Model version 3 using CloudSat and CALIPSO data. Journal of Geophysical 745 
Research: Atmospheres, 115(D12). https://doi.org/https://doi.org/10.1029/2009JD012006, 2010. 746 

Zhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., Rasch, P. J., Qian, Y., Tang, Q., & Ma, H.-Y.: 747 
Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of 748 

https://doi.org/https:/doi.org/10.1029/2010JD014532
https://doi.org/10.1175/2010JAS3463.1
https://doi.org/https:/doi.org/10.1175/JAS-D-14-0265.1
https://doi.org/https:/doi.org/10.1002/jgrd.50043
https://doi.org/10.1175/JAS-D-20-0321.1
https://doi.org/10.1029/2019MS001851
https://doi.org/10.5194/gmd-14-719-2021
https://doi.org/https:/doi.org/10.1175/JAS3530.1
https://doi.org/10.1080/07055900.1995.9649539
https://doi.org/https:/doi.org/10.1029/2020EA001125
https://doi.org/https:/doi.org/10.1029/2022JD037100
https://doi.org/https:/doi.org/10.1029/2009JD012006


29 
 

Advances in Modeling Earth Systems, 11(5), 1253–1268, 749 
https://doi.org/https://doi.org/10.1029/2018MS001562, 2019a. 750 

Zhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., Rasch, P. J., Qian, Y., Tang, Q., & Ma, H.-Y.: 751 
Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of 752 
Advances in Modeling Earth Systems, 11(5), 1253–1268. 753 
https://doi.org/https://doi.org/10.1029/2018MS001562, 2019b. 754 

  755 

 756 

 757 

 758 

 759 

 760 

https://doi.org/https:/doi.org/10.1029/2018MS001562
https://doi.org/https:/doi.org/10.1029/2018MS001562

