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 11 

Abstract. Process-oriented observational constraints for the anthropogenic effective radiative forcing due to aerosol-12 

cloud-interactions (ERFaci) are highly desirable because the large uncertainty associated with ERFaci poses a 13 

significant challenge to climate prediction. The satellite-based Contoured Frequency by Optical Depth Diagrams 14 

(CFODD) analysis was previously proposed to supports evaluation of model representation of cloud liquid to rain 15 

conversion processes because the slope of a CFODD, generated from joint MODerate Resolution Imaging 16 

Spectroradiometer (MODIS)-CloudSat cloud retrievals, provides an estimate of cloud droplet collection efficiency in 17 

single-layer warm liquid clouds (SLWCs). Here we present an updated CFODD analysis as an observational constraint 18 

for the ERFaci due to warm rain processes and apply it to the U.S. Department of Energy’s Energy Exascale Earth 19 

System Model version 2 (E3SMv2). Updates to the CFODD analysis include multiple changes to the SLWC detection 20 

algorithm for better consistency between MODIS-CloudSat observations and the satellite simulators, as well as the 21 

estimation of CFODD slopes using Random Sample Consensus robust linear regression. A series of sensitivity 22 

experiments shows that E3SMv2 droplet collection efficiencies and ERFaci are highly sensitive to the treatment of 23 

autoconversion, the rate of mass transfer from cloud liquid to rain, yielding a strong correlation between the CFODD 24 

slope and the shortwave component of ERFaci (ERFaciSW; Pearson’s R = -0.91). We estimate ERFaciSWthe shortwave 25 

component of ERFaci (ERFaciSW), constrained by MODIS-CloudSat, by calculating the intercept of the linear 26 

association between the ERFaciSW E3SMv2 ERFaciSW and the CFODD slopes, using the MODIS-CloudSat CFODD 27 

slope as a reference. When E3SMv2’s droplet collection efficiencyCFODD slope is constrained to agree with the A-28 

Train retrievals, ERFaciSW is reduced by 143 ± 6% in magnitude, indicating that correcting bias in the ERFaciSW due 29 

to autoconversion would bring E3SMv2’s total ERFaci (-1.50 W m-2) into better agreement with the IPCC AR6 ‘very 30 
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likely’ range for ERFaci (-1.0 ± 0.7 W m-2). This study provides a new process-oriented observational constraint for 31 

ERFaci due to warm rain processes to reduce the uncertainty of climate predictions.  32 

 33 

1 Introduction 34 

Single-layer, low-level marine warm clouds cover 25% of the ocean surface  (Charlson et al., 1987) and exert a strong 35 

cooling effect on climate due to their reflectivity (Hartmann et al., 1992; Hartmann and Short, 1980; Ramanathan et 36 

al., 1989). Aerosols modulate multiple radiative properties of low warm clouds, including droplet number 37 

concentration (Nd), liquid water path (LWP), geometric , cloud fraction, and lifetime, and their net impact on the cloud 38 

radiative forcing  is the most uncertain component of the climate system  (e.g., Stevens and Feingold, 2009; 39 

Christensen et al., 2020; Glassmeier et al., 2021). Though aerosols also exert a significant influence on ice and mixed-40 

phase clouds, aerosol-cloud interactions (ACI) make their largest contribution to global radiative forcing via liquid 41 

water clouds (Bellouin et al., 2020). 42 

In marine warm cloud regimes, an increase in aerosol concentrations typically leads to increasing Nd. Given constant 43 

condensed water content, enhanced aerosol concentrations increase cloud albedo due to higher concentrations of 44 

smaller cloud droplets through the so-called “Twomey effect” (Twomey, 1974). However, the cooling effect of 45 

increased Nd can be offset or enhanced by competing aerosol-mediated cloud properties such as cloud fraction and 46 

LWP. For example, increased numbers of smaller droplets can diminish cloud fraction by reducing cloud droplet 47 

sedimentation (Bretherton et al., 2007) and increasing cloud-top evaporation and dry air entrainment (Wang et al., 48 

2003). On the other hand, aerosols can also increase cloud fraction and vertical extent by suppressing precipitation 49 

(Albrecht, 1989; Pincus and Baker, 1994). Christensen et al. (2020) demonstrated that the impact of aerosol on low-50 

level cloud areal coverage depends on the stability of the atmosphere: in thermodynamically stable lower tropospheric 51 

conditions, increased aerosol results in increased cloud fraction, lifetime and Nd, whereas in unstable conditions, 52 

entrainment and evaporation offset Twomey effects, resulting in relatively smaller changes to cloud radiative 53 

properties.  54 

Earth Systems Models (ESMs) are relied upon for estimating the global Effective Radiative Forcing of Aerosol-Cloud 55 

Interactions (ERFaci) due to the dearth of observations from the pre-industrial era. Yet ESM estimates are challenged 56 

by the lack of observational constraints on ERFaci and the cloud processes that modulate ERFaci, which must be 57 
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parameterized due to the computational expense of explicitly resolving them. Mülmenstädt et al. (2020)  proposed a 58 

renewed focus on process-oriented observational constraints as a solution to “equifinality”, whereby differing 59 

representations of cloud processes can reproduce observed state variables such as LWP and cloud fraction. The 60 

problem of equifinality renders many global long-term observations of state variables useless for constraining ERFaci 61 

on their own. Mülmenstädt et al. (2020)  argues that constraints based on cloud process observations are thus highly 62 

desirable as an alternative approach to state variable-based constraints because mitigating bias in a cloud process 63 

representation will improve estimates of the response of the process to aerosols. Process-oriented constraints on 64 

ERFaci are useful for quantifying the sensitivity of ERFaci to a specific process or constraining the component of 65 

ERFaci that is affected by a process,  rather than for constraining ERFaci overall  (Mülmenstädt and Feingold, 2018). 66 

Recent examples of process-based diagnostics include the Earth System Model Aerosol-Cloud Diagnostics Package 67 

(ESMAC Diags) (Tang et al., 2022; Tang et al., 2023), which supports evaluation of aerosol activation processes, and 68 

Varble et al. (2023) which demonstrated multiple model-observations comparison approaches that target processes 69 

affecting cloud albedo susceptibility using geostationary satellite data and surface-based observations. Christensen et 70 

al. (2023) applied ground-based measurements, satellite retrievals and meteorological reanalysis products in a 71 

Lagrangian framework to evaluate multiple aerosol-cloud processes in E3SM, including cloud condensation nuclei 72 

deposition via precipitation and the temporal response in Nd to aerosol perturbations. 73 

In response to the demand for process-oriented constraints on warm liquid cloud processes, we present a constraint on 74 

the shortwave component of ERFaci (ERFaciSW) due to autoconversion, a parameterization representing the transfer 75 

of liquid mass and number from the cloud to rain category, based on satellite cloud retrievals. For the past 12 years, 76 

prior studies have applied the Contoured Frequency by Optical Depth Diagrams (CFODD) analysis (Nakajima et al. 77 

2010; Suzuki et al. 2010) to evaluate model representation of warm rain processes because the slopes of CFODDs, 78 

generated from spaceborne radar reflectivity profiles (CloudSat) (e.g. Marchand et al., 2008) and cloud property 79 

retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) (e.g. Platnick et al., 2017), provide an 80 

estimate of cloud droplet collection efficiency in warm liquid clouds (Suzuki et al. 2010). Here we demonstrate To 81 

demonstrate how an updated CFODD analysis can be applied to constrain ERFaci due to autoconversion using, we 82 

apply an updated CFODD analysis to MODIS-CloudSat retrievals between June 2006 and April 2011as well as the 83 

U.S. Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2) and the relationship between 84 

CFODD slopes and ERFaciSW in SLWCs. in a series of autoconversion sensitivity experiments. We show that the 85 
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shortwave component of ERFaci (ERFaciSW) can be constrained using the correlation between ERFaciSW and CFODD 86 

slopes  (i.e., the slope computed from the in-cloud optical depth and CloudSat radar reflectivity, see Fig. 7 of Suzuki 87 

et al. 2010) using the MODIS-CloudSat CFODD slope as a reference.  88 

To support the application of CFODD analysis as a constraint on ERFaciSW, we modified the Warm Rain Diagnostics 89 

(WRDs) subroutine (Michibata et al. 2019) that was recently implemented in the Cloud Feedback Model 90 

Intercomparison Project (CFMIP) Observations Simulator Package (COSPv2.0), a software package that supports 91 

climate model evaluation against satellite observations (Michibata et al., 2019; Swales et al., 2018). The WRDs 92 

support evaluation of model warm rain processes in single-layer warm liquid clouds (SLWCs) based on joint statistics 93 

from MODIS and CloudSat. The first diagnostic provides the fractional occurrence of SLWCs, classified as non-94 

precipitating, drizzling, or raining clouds based on CloudSat column maximum radar reflectivity. The second 95 

diagnostic is the CFODD, which is the probability density function (PDF) of radar reflectivity as a function of in-96 

cloud optical depth (ICOD), where ICOD is the optical depth integrated from the cloud top downward to each vertical 97 

layer and represents an in-cloud vertical coordinate (Nakajima et al., 2010; Suzuki et al., 2010). The CFODD shows 98 

how vertical cloud microphysical structures transition from non-precipitating to precipitating as a function of cloud-99 

top effective radius (Re), and the slope of reflectivity change with ICOD provides an estimate of droplet collection 100 

efficiency factor (Suzuki et al., 2010). Previous studies have used CFODDs to demonstrate that pollution decreases 101 

droplet collection efficiency, suppressing rainfall near the cloud base (Mangla et al., 2020; Michibata et al., 2014; 102 

Suzuki et al., 20132013), and to evaluate model cloud liquid to rain conversion processes against satellite observations 103 

(Suzuki et al., 2015; Jing et al. 2019; Michibata and Suzuki, 2020). Takahashi et al. (2021) proposed an updated 104 

CFODD analysis in which Re thresholds are defined by quartile distributions of SLWC samples rather than the 105 

traditional CFODD Re thresholds to focus evaluation on warm rain process representation rather than the bias in Re 106 

distribution. Modifications to the WRDs in the present study include additional diagnostics that provide SLWC 107 

sampling statistics to illuminate how sample size affects CFODD results, the implementation of a CloudSat ground-108 

clutter mask in the simulated WRDs and updates to SLWC selection criteria for better consistency between 109 

observations and satellite simulators.  The updated CFODD analysis is demonstrated here as a constraint on the 110 

component of ERFaciSW that is affected by droplet collection efficiency due to autoconversion. 111 

2 Warm Rain Diagnostics Overview 112 
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The WRDs and their implementation in COSPv2.0 were described in Michibata et al. (2019). The WRDs are designed 113 

to run online with the host model, accumulating time step statistics on warm rain cloud processes for subcolumns to 114 

mitigate the risk of data-processing bottlenecks associated with outputting large data volumes. COSPv2.0 generates 115 

ensembles of stochastic subcolumns from model gridbox-mean variables to emulate model subgrid variability and to 116 

resolve discrepancies in spatial resolution between observations and the model grid (Swales et al., 2018). 117 

To generate observational reference data for model evaluation, Michibata et al. (2019) used the MODIS and CloudSat 118 

products 2B-TAU R04 (Polonsky, 2008) and 2B-GEOPROF R04 (Mace et al., 2007; Marchand et al., 2008), 119 

respectively, for SLWC detection between June 2006 and April 2011. The criteria for SLWC detection are described 120 

in Supplement Table S1 and include CloudSat reflectivity ≥ -30 dBZ, MODIS liquid COT > 0.3, and cloud top 121 

temperature ≥ 273 K. Model-simulated SLWCs are detected using COSPv2.0 simulated CloudSat reflectivity and 122 

multiple MODIS cloud properties, including ice water path (IWP), liquid water path (LWP), cloud-top effective radius 123 

(Re), and cloud optical thickness (COT) (Table S1). For the SLWC fractional occurrence (frequency) diagnostic, 124 

SLWCs are binned by precipitation intensity according to the maximum column CloudSat reflectivity (𝑍𝑚𝑎𝑥), where 125 

non-precipitating, drizzling and raining SLWCs correspond to 𝑍𝑚𝑎𝑥 < −15 𝑑𝐵𝑍𝑒 , −15 𝑑𝐵𝑍𝑒 ≤ 𝑍𝑚𝑎𝑥 < 0 𝑑𝐵𝑍𝑒 , 126 

and 𝑍𝑚𝑎𝑥 ≥ 0 𝑑𝐵𝑍𝑒 , respectively. The SLWC fractional occurrence diagnostic features frequency of each 127 

precipitation type relative to the total SLWC population. 128 

To support evaluation of liquid cloud collection efficiencies and cloud to rain transition processes, CFODDs are 129 

constructed from the PDFs of CloudSat reflectivity profiles binned by ICOD. ICOD (τd) is parameterized as a function 130 

of MODIS COT (τc) by invoking the adiabatic condensation growth model to vertically slice the column COT into 131 

each layer (Suzuki et al., 2010). The relationship between τd and τc is as follows: 132 

𝜏𝑑(ℎ)  =  𝜏𝑐 {1 −  (
ℎ

𝐻
)

5/3

}          133 

 (1) 134 

where ℎ is height and 𝐻 is the geometric height of the cloud. The detailed derivation of the ICOD coordinate is 135 

provided in Suzuki et al. (2010). by invoking the adiabatic condensation growth model to vertically slice the column 136 

COT into each layer (Suzuki et al., 2010). The slope of the resulting 2D-PDF diagnostic yields an estimate ofis 137 

modulated by droplet collection efficiency, with steeper slope implying higher efficiency. The CFODD shows where, 138 
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with ICOD on the y-axis as a vertical coordinate, the droplet collection efficiency increases, and where the transition 139 

from non-precipitating to drizzling and raining occurs, using the radar reflectivity as a proxy for the precipitation rate 140 

as described above (e.g., Muhlbaeuer et al., 2014). CFODDs are also typically binned by Re to reveal how droplet 141 

collection efficiency changes with droplet size (Suzuki et al., 2010; Takahashi et al., 2021; Jing et al., 2017).  142 

In this study, CFODD slopes are estimated using RANdom SAmple Consensus (RANSAC) robust linear regression 143 

(Fischler et al., 1987). RANSAC was chosen for performing linear regression due to the right-skewed distribution of 144 

CFODD datasets. The regression is was applied to the CFODD distribution to the MODIS-CloudSat profiles and 145 

E3SMv2 output at 4 ≤ ICOD ≤ 20 and 𝑍 < 20 dBZ. For E3SMv2 output, the regression was applied to approximated 146 

source CloudSat reflectivity and ICOD data that was estimated from time-mean CFODD frequencies. The reflectivity 147 

and ICOD thresholds were were chosen to reduce the effect of the Mie scattering regime where the radar reflectivity 148 

can be saturated and to restrict analysis to profiles where the uncertainty of MODIS COT retrievals is lower as error 149 

can be higher in optically thin liquid clouds (e.g., COT < 4) (Platnick et al., 2017).  The uncertainty in the RANSAC 150 

slope calculation is estimated by “bootstrapping”, repeatedly performing RANSAC regressions on 1000 random 151 

subsamples of 80% the CFODD dataset to generate a distribution of slope estimates. The 1-sigma error and 958% 152 

confidence intervals were calculated from this distribution. The residual threshold applied for RANSAC outlier 153 

detection was 0.1 and 0.5 ×x median absolute error (MAE) for MODIS-CloudSat and E3SMv2, respectively. Data 154 

points with MAE exceeding the residual threshold are excluded from the linear regression in RANSAC. 155 

2.1 E3SMv2  156 

Several updates to the WRDs are described in Sect. 2.2, the impacts of which are demonstrated through an application 157 

of the updated WRDs to the U.S. Department of Energy’s Energy Exascale Earth System Model v2 (E3SMv2). The 158 

atmosphere component of the model, E3SM Atmosphere Model v2 (EAMv2), is described in detail in Golaz et al. 159 

(2022). Like its predecessor EAMv1, EAMv2 predicts stratiform and shallow cumulus cloud macrophysics through 160 

the Cloud Layers Unified by Binormals (CLUBB) parameterization, which unifies the treatment of planetary boundary 161 

layer turbulence, shallow convection, and cloud macrophysics through a higher-order turbulence closure scheme 162 

(Bogenschutz et al., 2013; J. C. Golaz et al., 2002; Larson, 2017; Larson & Golaz, 2005). CLUBB diagnoses cloud 163 

fraction and cloud liquid water from a joint double-Gaussian PDF. Ice and liquid cloud fractions in CLUBB are 164 

analytically diagnosed by integrating saturated proportions of the joint PDF (Guo et al. 2015).  165 
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Cloud microphysics is represented with the “Morrison and Gettelman version 2” (MG2) scheme (Gettelman and 166 

Morrison, 2015). MG2 prognoses the mass mixing ratios and number concentrations of cloud liquid, ice and 167 

precipitation hydrometeors. The coupled MG2 cloud microphysics and CLUBB higher-order turbulence 168 

parametrization explicitly provides values for hydrometer mass and number mixing ratios as well as cloud fraction. 169 

Deep convection is represented by the Zhang and McFarlane (1995) (ZM) scheme. As convective cloud fraction is 170 

not parameterized in the mass-flux based ZM scheme, it is diagnosed from the cloud mass flux for cloud radiation 171 

calculation (Hack et al., 1993). The total cloud fraction in EAMv2 combines CLUBB, deep convective cloud fractions 172 

and ice cloud fraction following (Park et al., 2014). The four-mode version of the Modal Aerosol Module (MAM4) is 173 

used to predict aerosol properties and processes (Liu et al., 2012, 2016; H. Wang et al., 2020). 174 

EAMv2 runs on 72 vertical atmospheric levels with a top at 0.1h Pa (Rasch et al., 2019; Xie et al., 2018). However, 175 

distinct from its predecessor EAMv1, EAMv2 has two separate parameterized physics and dynamics grids (Hannah 176 

et al., 2021), with average horizontal grid spacings of ~165 km and ~110 km, respectively.  177 

A six-year E3SMv2 simulation with transient, present-day forcing was run between 2006 and 2011 with online 178 

COSPv2.0 for comparison with A-Train observations of SLWCs, allowing one additional year (2005) for model spin-179 

up. To facilitate comparison with observations, large-scale winds were constrained via the “nudging” technique (Lin 180 

et al., 2016; Ma et al., 2014; Zhang et al., 2014), in which horizontal and vertical winds are relaxed toward the Modern 181 

Era-Retrospective Analysis for Research and Applications, Version 2 (MERRA2) reanalysis data (Gelaro et al., 2017) 182 

with a 6-hour time-scale. MERRA2 data are read in every 3 hours and linearly interpolated to model times. COSPv2.0 183 

is called at every time step (0.5 h) and run with 10 subcolumns. We observed little change in CFODD results for 184 

increased numbers of subcolumns of 20 to 50. 185 

2.2 COSPv2.0 186 

Cloud-observing instrument simulators support evaluation of model cloud representation by translating gridbox-mean 187 

model variables (e.g., cloud fraction, hydrometeor mass mixing ratio, precipitation) into quantities that are measured 188 

by a cloud sensor (e.g., reflectivity). COSPv2.0 includes multiple cloud-observing satellite simulators and has been 189 

used extensively to diagnose issues in model cloud representation (Cesana & Chepfer, 2012; Kay et al., 2016; Song 190 

et al., 2018a; Y. Zhang et al., 2010). Recently, M. Zhang et al. (2022) used the COSPv2.0 CALIPSO simulator to 191 
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demonstrate that changes to the Wegener-Bergeron-Findeisen process in EAMv2 decreased an ice cloud fraction low 192 

bias in the Arctic compared to EAMv1 but did not correct excesses of supercooled liquid.  193 

There are known limitations to COSPv2.0 that affect its application to E3SM for cloud representation evaluation. The 194 

subgrid distribution of cloud variables generated by COSPv2.0 does not match E3SM subgrid variability. 195 

Hydrometeor species are distributed homogeneously across the subcolumns generated by COSPv2.0 via the 196 

subcolumn generator SCOPS (Subcolumn Cloud Overlap Profile Sampler) (Klein and Jakob, 1999), such that the 197 

ensemble of subcolumns reproduces the gridbox cloud fraction but not the subgrid distribution of liquid and ice within 198 

the simulated clouds (Dewald, 2021). Song et al., (2018b) demonstrated that the default “homogeneous hydrometeor 199 

scheme” from SCOPS results in overestimation of radar reflectivity in warm liquid clouds, thus overestimating 200 

precipitating clouds since maximum column reflectivity is often used to distinguish precipitating clouds (as in the 201 

WRDs). Errors in simulated satellite retrievals have also been attributed to SCOPS overlap assumptions (Hillman et 202 

al., 2018). Such a bias from SCOPS can result in unfair observational evaluation of a host model such as E3SMv2. 203 

Inconsistencies in microphysical assumptions between the host model and COSP pose another challenge. While many 204 

microphysical assumptions in COSPv2.0 can be configured for agreement with E3SMv2 microphysics (MG2), some 205 

inconsistencies remain, including gamma distribution shape parameters for hydrometeor size distributions and 206 

hydrometeor vertical overlap assumptions (J. Wang et al., 2021). Next-generation E3SM development includes efforts 207 

to improve agreement in the subgrid variability and microphysical assumptions involved in forward simulating 208 

satellite retrievals. Other issues include the simplified treatment of satellite cloud detection in simulators. For example, 209 

the CloudSat Cloud Profiling Radar (CPR) cloud mask value threshold ≥ 30 is applied for cloud detection in the 210 

WRDs’ A-Train analysis to indicate “good” or “strong” echo with high confidence detection (see next section and 211 

Supplement Table 1). The CPR cloud mask confidence levels consider signal-to-noise ratios, horizontal averaging, 212 

and spatial continuity (Marchand et al., 2008), but as this cloud mask is not available in COSPv2.0, CloudSat cloud 213 

detection is simulated by applying a reflectivity threshold  -30 ≤ Ze ≤ 20  dBZ.  214 

The WRDs rely on COSPv2.0 simulated MODIS and CloudSat retrievals. The WRDs in COSPv2.0 work as 215 

follows: First, COSPv2.0 takes in model atmospheric state and cloud variables including temperature, pressure, 216 

water vapor and hydrometeor mass mixing ratios, hydrometeor Re, large-scale stratiform cloud fraction, convective 217 

cloud fraction and precipitation rate. The COSPv2.0 subcolumn generator SCOPS then produces subgrid 218 
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distributions of clouds and precipitation for better comparison with smaller scale satellite pixel measurements. 219 

SCOPS subcolumns are homogenous, discrete samples generated such that a sufficiently large ensemble reproduces 220 

the model column profile of bulk cloud properties (Webb et al., 2001; Swales et al., 2018). SCOPS assigns each 221 

subcolumn a type (large-scale stratiform, convective or clear-sky) according to the host model’s convective and 222 

large-scale stratiform cloud fraction. Cloud properties such as hydrometeor mass mixing ratios and Re are distributed 223 

homogeneously across the subcolumns by cloud type (i.e., all stratiform cloud subcolumns are assigned the same 224 

stratiform ice and liquid mixing ratios as SCOPS only takes total convective and stratiform cloud fraction as input, 225 

and does not consider stratiform liquid and ice cloud fraction in its default configuration.  “Maximum-random” 226 

cloud overlap is applied to subcolumns, consistent with the model parameterizations. The MODIS and CloudSat 227 

simulators apply simplified versions of their respective retrieval algorithms to each subcolumn, emulating MODIS 228 

retrievals of cloud properties, radar reflectivity and lidar backscatter, respectively. Gridbox-mean values are 229 

estimated from accumulated subcolumn statistics. The WRDs take as inputs gridbox-mean simulated MODIS 230 

retrievals of LWP, IWP, COT and Re, as well as subcolumn CloudSat reflectivity profiles. The simulated MODIS 231 

COT represents in-cloud mean, as do the other MODIS variables used in the WRDs (e.g., LWP, Re ). For example, 232 

the MODIS liquid COT is computed by averaging the MODIS liquid COT in cloudy subcolumns across the grid-233 

box. In E3SMv2-COSP, the same in-cloud stratiform COT value from the E3SMv2 radiative transfer module is 234 

distributed across all the subcolumns designated as stratiform cloud by SCOPS, as described above. These values 235 

and cloud/clear-sky designations for each subcolumn are used as input to the MODIS simulator to calculate the in-236 

cloud MODIS liquid COT. Subcolumn-level SLWC reflectivity profiles are used as input to the WRDs, also with 237 

cloud properties homogenously distributed across the subcolumns of a given classification. Thus, in E3SM-COSP, 238 

the SLWC samples within a gridbox that have the same subcolumn classification (i.e., stratiform liquid or stratiform 239 

rain) will have the same simulated MODIS COT and CloudSat reflectivity profile. 240 

Deviations from the original WRDs implemented in COSPv2.0 (Michibata et al., 2019b) include the application of 241 

the simulated CloudSat ground-clutter filter (available in COSPv2.0, but not applied to the WRDs previously) for 242 

better comparison with CloudSat retrievals, and the elimination of the “fracout” input used in the SLWC detection 243 

scheme from SCOPS. “Fracout” is the subcolumn-level cloud classification by vertical level from SCOPS, where each 244 

level of each subcolumn is designated as large-scale stratiform, convective, or clear-sky. This input was removed from 245 

the WRDs’ SLWC detection algorithm because of the lack of comparable cloud-type designation in the observations 246 
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and CloudSat simulator and because “fracout” vertical cloud profiles were observed to deviate significantly from 247 

CloudSat reflectivity profiles (i.e., fracout indicates clear-sky where CloudSat reflectivity indicates cloud, or vice 248 

versa).  249 

2.3 Satellite data 250 

The MOD06-1KM-AUX R05 product (Platnick et al., 2017), which provides MODIS collection 6 retrievals at 1 km 251 

resolution along the CloudSat footprint, supplied the 6 MODIS cloud retrievals required for the SLWC detection 252 

described in Suzuki et al. (2010): LWP, IWP, Re, COT, cloud top pressure and cloud layer number. Standard MODIS 253 

products from the 2.1 µm channel were used for Re, consistent with the simulated MODIS Re used in the WRDs. 254 

Atmospheric temperature profiles were obtained from ECMWF-AUX R05 (Partain and Cronk, 2017), which includes 255 

temperature profiles from the European Centre for Medium-Range Weather Forecast (ECMWF) model (Dee et al., 256 

2011) interpolated to the CloudSat footprint. 2B-GEOPROF R05 provided the CloudSat reflectivity profiles, the Cloud 257 

Profiling Radar (CPR) cloud mask and echo top characterization at 1.8 km resolution (Marchand et al., 2008). The 258 

detection of SLWCs and CFODD analysis in the present study follows Suzuki et al. (2010) (see Supplement Table 1 259 

for details) with one exception: a COT threshold was decreased from 15 to 0.3; this had a substantial impact on cloud 260 

occurrence (Figure 1; described next) and is consistent with the COT threshold implemented in the COSPv2.0 WRDs. 261 

The decreased COT threshold also increases the weight of optically thin SLWCs, as the linear regression is applied to 262 

the CFODD source data directly (i.e., the ICOD and reflectivity profiles). 263 

2.4 Autoconversion sensitivity experiments and ERFaci 264 

The autoconversion parameterization in E3SMv2 is a modified Khairoutdinov & Kogan (2000) scheme (hereafter, 265 

KK2000), in which coefficients were updated in response to large uncertainties in different cloud regimes and to 266 

improve fidelity in climate simulations. The KK2000 autoconversion scheme is  
𝛿𝑞𝑟

𝛿𝑡 𝑎𝑢𝑡𝑜
=  𝐴𝑄𝑐

𝛼𝑁𝑑
𝛽

 , where 𝑞𝑟 is 267 

the rainwater mixing ratio, 𝑄𝑐 is the cloud water mixing ratio, 𝑁𝑑 is the cloud droplet number concentration, and A, α 268 

and β are the modified coefficients. 269 

To develop a constraint on the ERFaci due to autoconversion, we performed multiple pairs of simulations featuring 270 

preindustrial (PI) and present-day (PD) aerosol emissions. In each pair of simulations, one of the three coefficients 271 

(A, α or β) was modified to its KK2000 value, a value reported by Wood (2005), a value from Kogan (2013) or a 272 
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value within a range bounded by the three studies. The Kogan (2013) coefficient values were derived from a large-273 

eddy simulation (LES) with bin resolved microphysics for cumulus clouds, whereas the focus of Wood (2005) and 274 

KK2000 was stratocumulus clouds from observational and LES perspectives, respectively. One additional experiment 275 

on the KK2000 parameterization for the accretion rate was performed, the formulation of which is 
𝛿𝑞𝑟

𝛿𝑡 𝑎𝑐𝑐𝑟𝑒
=276 

 𝐹1𝐹267(𝑄𝑐𝑄𝑟)1.15𝜌−1.3, where 𝑄𝑟  is the rain water mixing ratio, 𝐹1 represents subgrid 𝑄𝑐 variability, 𝜌 is air density, 277 

and 𝐹2  is an accretion rate enhancement factor. 𝐹2  was increased by a factor of ~ 3 in the accretion sensitivity 278 

experiment. 𝐹2 is considered a tunable parameter in E3SM (Ma et al., 2022). The experiment details are provided in 279 

Table 1.  280 

Table 1. KK2000 coefficient and accretion enhancement factor values applied in 12 sensitivity experiments. Dash (“-281 

“) indicates the coefficient value was unchanged from the default E3SMv2 parameterization (equal to the “CNTL” 282 

simulation value). 283 

Name A 𝛼 β accre 

CNTL 3.05E4 3.19 -1.4 1.75 

alpha01 - 4.22 - - 

beta01 - - -1.0  

acoef100x 3.05E6 - - - 

alpha02 - 2.47 - - 

acoef0.05x 1.35E3 - - - 

alpha03 - 3.00 - - 

beta03 - - -1.79 - 

beta04 - - -3.01 - 

acoef10x 3.05E5 - - - 

acoef5x 1.53E5 - - - 

acoef50x 1.53E6 - - - 

accre01 - - - 5 

 284 
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ERFaci for each pair of simulations was calculated following the Ghan (2013) method, where 𝐸𝑅𝐹𝑎𝑐𝑖 =  ∆(𝐹𝑐𝑙𝑒𝑎𝑛 −285 

 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛). 𝐹𝑐𝑙𝑒𝑎𝑛 is the radiative flux at the top-of-atmosphere (TOA) neglecting the absorption and scattering of 286 

aerosols, and 𝐹𝑐𝑙𝑒𝑎𝑟,𝑐𝑙𝑒𝑎𝑛 is the radiative flux at the TOA neglecting both clouds and the absorption and scattering of 287 

aerosols. The ∆ indicates the PD – PI difference. While the PD-PI approach is a common strategy for estimating 288 

ERFaci, Christensen et al. (2023) demonstrated that it may yield a different estimate than the PD approach, where 289 

components of ERFaci (LWP adjustment, Nd adjustment, cloud fraction adjustment) are estimated by regressions of 290 

cloud properties multiplied by the anthropogenic aerosol fraction. We calculate ERFaci for SLWCs only, binned by 291 

the MODIS Re range corresponding to the CFODD analysis. 292 

A constraint on ERFaciSW was calculated from the linear regression between E3SMv2 CFODD slopes and ERFaciSW, 293 

using the MODIS-CloudSat CFODD slope as a reference. A 95% confidence interval for the linear fit was estimated 294 

by bootstrapping the linear regression within the uncertainty of the CFODD slopes. CFODD slope values were 295 

randomly sampled 1000 times within their 1-sigma error and repeatedly regressed with ERFaciSW. The original data 296 

(i.e., RANSAC CFODD slope values and corresponding ERFaciSW values) were additionally resampled with 297 

replacement to generate a distribution of coefficients for the ordinary least squares (OLS) regression. The 95% 298 

confidence interval for the linear fit was then calculated from the combined linear regression coefficient distributions 299 

to reflect uncertainty from both the OLS fit and the CFODD slopes. 300 

3 Updates to MODIS and CloudSat SLWC analysis and reference data  301 

The first diagnostic in the original WRDs featured relative frequencies of SLWCs by precipitation intensity in both 302 

the A-Train reference data and the COSPv2.0 output (e.g., Fig. 1 m-o). We have updated this diagnostic with all-sky 303 

frequencies and by decreasing the lower MODIS COT threshold from 15 to 0.3, for consistency with the WRDs 304 

implemented in COSPv2.0  (Fig. 1 a-l). SLWCs featured in Fig. 1 and all following figures and analyses are ocean-305 

only due to higher uncertainties in MODIS retrievals over land (Platnick et al., 2017). 306 
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 307 

Figure 1.  All-sky frequencies of total SLWCs June 2006 – Apr 2011, non-precipitating (𝑍𝑚𝑎𝑥 < −15 𝑑𝐵𝑍𝑒) , drizzling 308 

(−15 𝑑𝐵𝑍𝑒 ≤ 𝑍𝑚𝑎𝑥 < 0 𝑑𝐵𝑍𝑒) and raining (𝑍𝑚𝑎𝑥 ≥ 0 𝑑𝐵𝑍𝑒) ocean-only SLWCs according to original reference analysis of 309 

MODIS and CloudSat observations (Michibata et al., 2019a, 2019b) (a-d), updated reference MODIS and CloudSat analysis (e-h) 310 

and E3SMv2-COSPv2.0 (i-l). Figures m-o show frequencies of non-precipitating, drizzling and raining SLWCs relative to the total 311 

SLWCs simulated by E3SMv2. Values in blue boxes indicate global ocean-only grid-weighted mean frequency. SLWCs were 312 

undersampled in original reference A-Train analysis by a factor of ~5. Compared to the original reference A-Train data, the updated 313 

analysis demonstrates that E3SM underrepresents rather than overrepresents total SLWC frequency and that precipitating SLWCs 314 

are underrepresented by a factor of 6 compared to observations. 315 

Figure 1 also shows that decreasing the lower MODIS COT threshold from 15 to 0.3 in the updated A-Train analysis 316 

(Sect. 2.3) increased total SLWC sampling by 5-fold (global ocean mean, see Sect. 2.3) compared to the original 317 

CFODD analysis in Michibata et al. (2019a) and Michibata et al. (2019b). The increase in SLWC sampling in the 318 

reference data affects multiple outcomes of the model evaluation in this case: E3SMv2 underrepresents, rather than 319 

overrepresents, total SLWCs, and the SLWCs that are missing from E3SMv2 are entirely the precipitating SLWC 320 

populations. The underrepresentation of precipitating SLWCs in E3SMv2-COSP indicates that any bias from SCOPS 321 

towards increased precipitation in warm liquid clouds is relatively minor (Sect. 2.2; Song et al. (2018)).  Not all the 322 

differences between the original and updated reference data can be explained by the change in COT threshold, 323 

however, as we were unable to reproduce the original CFODD data with the updated satellite products used in this 324 

study. Fig. S1 and S2 show that increasing the lower COT threshold from 0.3 to 15 yields SLWC frequencies that are 325 
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much closer to the original reference data (+25%) than the updated reference data, but significant differences remain 326 

in the CFODDs. 327 

The effects of the increased SLWC sampling in the A-Train reference data also significantly affected the CFODDs 328 

and thus the comparison between A-Train and E3SMv2 droplet collection efficiencies. Figure 2 shows CloudSat 329 

reflectivity frequency binned by ICOD for the original A-Train reference data (Fig. 2 a-c), the updated A-Train 330 

reference data (d-f) and E3SMv2 (j-l), and RANSAC robust linear regression slopes at 4 ≤ ICOD ≤ 20. In comparisons 331 

with various other linear regression techniques, we found that RANSAC best supported the comparison of CFODD 332 

slopes between E3SMv2 and observations because of the right-skewed distribution of CloudSat reflectivities at 0 ≤ 333 

ICOD ≤ 20 in E3SMv2 CFODDs (Figs. 2 j-l). RANSAC minimizes the median absolute error (MAE) and is less 334 

sensitive to strong outliers in the dimension of the predicted variable (Ze in this case) compared to other linear 335 

regression techniques.  336 

The updated A-Train CFODD distributions are significantly different than the original CFODD distributions (2D-337 

Kolmogorov-Smirnov test, p ≪ 0.05). Compared to updated A-Train CFODDs, the E3SMv2 CFODDs show 338 

decreased droplet collection efficiencies and an increased range of reflectivities near the cloud top in all size bins, 339 

indicating that regardless of Re, SLWCs are drizzling and raining near the cloud top with significantly higher frequency 340 

than SLWCs in observations but have decreased collection efficiency below cloud top compared to MODIS-CloudSat. 341 

 342 
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 343 

Figure 2. Contoured frequency by optical depth diagrams (CFODDs) for SLWCs June 2006 – April 2011 binned by MODIS cloud 344 

top effective radius (Re) from original reference MODIS-CloudSat observations analysis (a-c), updated reference MODIS-CloudSat 345 

observations analysis (d-f), and E3SMv2 (j-l). Random Sample Consensus (RANSAC) linear regressions were applied to the 346 

CFODD at 4 ≤ ICOD ≤ 20 to estimate droplet collection efficiencies. RANSAC slopes and Median Absolute Error (MAE) values 347 

are shown in blue boxes. Droplet collection efficiencies increase with MODIS Re as expected, except for the largest Re size bin in 348 

the original reference data (Fig. s2c). Figs. g-i and m-o show absolute frequencies of SLWCs by MODIS COT, demonstrating that 349 

E3SMv2 overrepresents SLWCs with small Re relative to medium and large Re, compared to observations. 350 

The high reflectivities near the cloud top are pronounced in the subset of E3SMv2 SLWCs with 4 < MODIS COT < 351 

20 (Fig. S3),, indicating that the high reflectivity at low ICOD in Figs. 2 (j-l) isare not just a product of a subset of 352 

precipitatinghighly reflective, optically thin SLWCs, but that layers near the cloud top in deeper SLWCs are also 353 

precipitating. high reflectivities near cloud top within optically thicker SLWCs also contribute to this strange feature 354 

in the CFODD. The reflectivity profiles used to generate the CFODD come from the CloudSat simulator, which was 355 

not modified for this study.  Examples of simulated CloudSat reflectivity profiles in SLWCs with Ze > 0 dBZ near 356 

cloud top are shown in Fig. S4.     The source of this issue and its implications for E3SMv2 representation of liquid 357 

cloud properties warrant further investigation that is beyond the scope of the present study. 358 
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Figure 2 shows aAbsolute frequencies of SLWCs binned by MODIS COT infor each CFODD Re bin are shown for 359 

the updated A-Train analysis (Fig. 2 g-i) and E3SMv2 only (Fig. 2 m-o). Note, this information was unavailable in 360 

the original reference data (Michibata et al., 2019a). Compared to COT distributions in the updated A-Train analysis, 361 

E3SMv2 shows decreasing SLWC frequency with Re and an underrepresentation of SLWCs with large Re, which 362 

aligns with the underrepresentation of precipitating SLWCs in Fig. 1. Fig. 2o also shows that few SLWCs with large 363 

Re have a COT > 20, indicating that the CFODD reflectivity profile in Fig. 2l at ICOD > 20 is comprised of few 364 

samples. The SLWC COT PDFs have been implemented in the WRDs to support the interpretation of CFODD 365 

statistics.  366 

4 Results and Discussion 367 

 4.1 CFODD analysis to constrain ERFaci due to warm rain processes 368 

To demonstrate the potential of the CFODD analysis described above for constraining ERFaci,SW due to warm rain 369 

processes, we performed 12 experiments featuring variations of E3SMv2’s autoconversion and accretion 370 

parameterizations, computing ERFaciSW for the SLWC samples represented in each CFODD and the corresponding 371 

Re bin (hereafter, “ERFaciSW_SLWCs”) following Ghan (2013; see Sect. 2.4). In each experiment, a single coefficient of 372 

either the KK2000 autoconversion or accretion parameterization was perturbed, each of which is treated as a tunable 373 

parameter in E3SMv2. The uncertain KK2000 coefficients, coupled with parameterization simplifications (e.g., bulk 374 

moments and assumed droplet size distributions), result in uncertainties and biases in the model representation of 375 

raindrop formation and growth.  The experiments are described in Table 1, and the CFODDs for each experiment are 376 

shown in Fig. S5.  377 

Figure 3 shows a strong negative correlation between E3SMv2 ERFaciSW_SLWCs  and thewith “small” or “medium” Re 378 

(i.e., 5 ≤ Re < 18 µm) and the  corresponding combined “small” and “medium” Re 5 ≤ Re < 18 µm CFODD slope (5 ≤ 379 

Re < 18 µm, Pearson’s R = -0.91). SLWCs with large Re (18 ≤ Re < 30 µm) were excluded from the analysis in Fig. 380 

3 because this population represents a negligible fraction of total SLWCs in E3SMv2 (see Fig. S6), resulting in poor 381 

sampling statistics and larger regression uncertainties. The correlation between ERFaciSW and CFODD slope is 382 

stronger in the combined CFODDs relative to the CFODDs considered separately (Fig. S7, also see discussion below). 383 

As CFODD slopes represent an estimate of droplet collection efficiency, Fig. 3 indicates that ERFaciSW strengthens 384 

(increases in magnitude) with increasing droplet collection efficiency in E3SMv2 SLWCs with Re between 5 and 18 385 
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µm. As CFODD slopes represent an estimate of droplet collection efficiency, Fig. 3 indicates demonstrates that 386 

ERFaciSW strengthens (increases in magnitude) with increasing droplet collection efficiency in E3SMv2 SLWCs with 387 

Re between 5 and 18 µm. One possible physical explanation for the relationship between autoconversion, droplet 388 

collection efficiency, and ERfaciSW is that increased autoconversion rates increase the susceptibility of clouds to 389 

precipitation suppression by aerosols. For a given optical depth, SLWCs with lower LWP and/or higher N d will 390 

precipitate more when the autoconversion rate is increased. A larger population of precipitating SLWCs results in 391 

increased susceptibility to precipitation suppression by aerosols overall. When aerosols suppress precipitation (e.g., 392 

Suzuki et al., 2013), LWP and/or cloud fraction may be enhanced, resulting in brighter clouds and stronger ERFaciSW.  393 

The relationship between aerosols, LWP and cloud fraction (Albrecht, 1989), however, is highly uncertain, varies 394 

regionally (Sato et al., 2018), and is influenced by processes that are buffered over multiple spatiotemporal scales 395 

(Stevens and Feingold, 2009). Additionally, E3SMv2’s CFODD slope (“CNTL” simulation) agrees with MODIS-396 

CloudSat within uncertainty, indicating that droplet collection efficiency is well-represented according to CFODD 397 

analysis. 398 

 399 

 400 

 401 

 402 

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10
pt, Subscript

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: 10 pt

Formatted: Line spacing:  Double



18 
 

 403 

 404 



19 
 

Figure 3. Linear regression between E3SMv2 ERFaciSW_SLWCs and CFODD slopes, generated from SLWCs with MODIS Re 405 

between 5 and 18 µm, in 12 PD autoconversion and accretion sensitivity experiments. ERFaciSW_SLWCs values reflect the SLWCs 406 

represented in the corresponding CFODD (i.e., with Re corresponding to the CFODD Re bin). Results show a strong negative 407 

correlation between E3SMv2 ERFaciSW_SLWCsERFaciSW and CFODD slopes. We constrain the ERFaciSW by predicting the 408 

ERFaciSW_SLWCsERFaciSW value at the reference MODIS-CloudSat 5 ≤ Re < 18 µm CFODD slope (purple dashed line) from the 409 

linear regression (intercept shown in blue box). The constrained ERFaciSW value is decreased by 143 ± 6% in magnitude compared 410 

to the CNTL simulation. Error bars represent 1-sigma error estimated from RANSAC-fit bootstrapping (Sect. 2). Grey and pink 411 

shaded regions indicate the 68 and 958% confidence intervals for the MODIS-CloudSat CFODD slope, respectively. Labels 412 

indicate the sensitivity experiment names (Table 1). 413 

In Figure 3, wWe constrain ERFaciSW due to autoconversion uncertainties using the linear regression between the 414 

simulated CFODD slopes and ERFaciSW_SLWCs . ERFaciSW and ERFaciSW_SLWCs  values were calculated following Ghan 415 

et al. (2013), which considers the difference in TOA radiative flux between the PD and PI experiments, neglecting 416 

direct forcing of aerosols (see Sect.  2.4 for details). We estimated the constrained value of ERFaciSW_SLWCs at the 417 

intercept of the linear relationship with in Fig. 3 and the observed MODIS-CloudSat CFODD slope (Fig. S84). as a 418 

reference. The ERFaciSW_SLWCs predicted by the linear regression at the MODIS-CloudSat slope value is -0.0667 W 419 

m-2, a 143 ± 6% decrease in magnitude compared to the ERFaciSW_SLWCs value predicted by the E3SMv2 CNTL 420 

simulation (-0.077 W m-2). E3SMv2’s total ERFaci (-1.50 Wm-2), inclusive of all cloud types and the longwave forcing 421 

component, falls within the IPCC AR6 ‘very likely’ range for ERFaci (-1.0 ± 0.7 Wm-2),. The shortwave component 422 

of ERFaci is significantly larger than longwave in CMIP6 models (e.g., multimodel means of -0.91 and +0.10 W m-2, 423 

respectively, as reported in Smith et al. 2020).  Thus,but our results indicate that correcting foreliminated the bias in 424 

ERFaciSW due to autoconversion uncertainties  would decrease the magnitude of ERFaciSW and bring the predicted 425 

total ERFaci closer to the median IPCC ERFaci value (Forster et al., 2021).  426 
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 427 

Figure 4. CFODDs for subset of SLWCs with max CloudSat reflectivity < 20 dBZ and COT < 20, June 2006 – April 2011, binned 428 

by MODIS Re from updated reference MODIS-CloudSat observations analysis (a-b), and with combined “small” and “medium” 429 

Re SLWCs in (c). RANSAC linear regressions were applied to the CFODD at 4 ≤ ICOD ≤ 20 to estimate droplet collection 430 

efficiencies. RANSAC slopes and Median Absolute Error (MAE) values are shown in blue boxes. 431 

As ERFaciSW is the result of many cloud processes, the updated CFODD analysis should be interpreted as a constraint 432 

on the component of ERFaciSW that is modulated by droplet collection efficiency due to autoconversion. In other 433 

words, the updated CFODD analysis shows the change in ERFaciSW one would expect if the bias in ERFaciSW due to 434 

a specific process representation affecting droplet collection efficiency were eliminated. Base cloud processes that are 435 

independent of aerosol also contribute significantly to ERFaci estimates (Mülmenstädt et al., 2020). Autoconversion 436 

perturbations affect base cloud state (e.g., LWP, cloud fraction) and could, for example, cause stronger ERFaci by 437 

increasing cloud amount rather than increasing the impact of ACI on SW radiative forcing. Jing et al. (2019) evaluated 438 

different autoconversion parameterization schemes in an ESM using the CFODD analysis described in Michibata et 439 

al. (2019b) and found that the autoconversion scheme that yielded the best warm rain representation predicted a 440 

significantly stronger ERFaci that exceeded the uncertainty range of the IPCC AR5 and canceled out much of the 441 

warming trend of the last century. The conflict between process representation and ERFaci predictions in Jing et al. 442 

(2019) underscore a challenge with process-based constraints: improving the representation of a process can result in 443 

adverse outcomes to climate prediction due to compensating biases in the model. This challenge is particularly 444 

troublesome for constraints on processes like autoconversion that affect the base cloud state because decreasing 445 

autoconversion rates can increase total cloud amount, which can yield stronger ERFaci. Thus, a decreased 446 

autoconversion rate may improve precipitation outcomes in an ESM that presents the common “too frequent” warm 447 

rain bias (e.g., Stephens et al., 2010), yet cause improbably strong ERFaci. Our results show, however, that decreased 448 
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autoconversion rates result in weaker ERFaciSW_SLWCs (Fig. 3), demonstrating that the base cloud state issue presented 449 

in prior studies of autoconversion is not a dominant factor contributing to the ERFaciSW of warm rain processes in 450 

E3SMv2.  451 

Fig. S9ure 5a shows the linear relationship between ERFaciSW_SLWCs normalized by the PI SW Cloud Radiative Effect 452 

(SWCRE), which represents the fraction of ERFaci that is independent of base cloud state changes, and CFODD slope. 453 

The correlation coefficient in Fig. S7 5a (Pearson’s R = 0.74) is decreased compared to Fig. 3 (Pearson’s R = -0.91). 454 

However, comparing the negative correlations between CFODD slope and PI SLWC cloud fraction (Fig. S105b; 455 

Pearson’s R = -0.64) and LWP (Fig. S115c; Pearson’s R = -0.89) with Fig. 3, the ERFaciSW_SLWCs increases in 456 

magnitude as LWP and cloud fraction decrease, further demonstrating that the contribution of base cloud state to 457 

ERFaciSW_SLWCs is relatively minor. The decreased correlation coefficient in Fig. S6 5a could also be influenced by 458 

poor sampling statistics in the “acoef100x” experiment. The acoef100x was the only one of six experiments involving 459 

perturbations of the “A” coefficient in KK2000 (Table 1; Sect. 2.4) in which the CFODD slope did not increase with 460 

an increase in magnitude of the “A” coefficient. Given the significant decrease in SLWC cloud fraction in this 461 

experiment compared to the others (Fig. S105b, Table S2), the CFODD slope result may be affected by insufficient 462 

sample size, an additional uncertainty of the CFODD linear regression that is not reflected in the bootstrapping-based 463 

uncertainty estimate (Sect. 2).  464 

 465 

Figure 5. Linear regression between (a) E3SMv2 ERFaciSW_SLWCs normalized by SWCRE, (b) SLWC cloud fraction, (c) SLWC 466 

LWP and CFODD slopes in 12 PD autoconversion and accretion sensitivity experiments, calculated for SLWCs with MODIS Re 467 

between 5 and 18 µm. ERFaciSW_SLWCs values reflect the SLWCs represented in the corresponding CFODD (i.e., with Re 468 

corresponding to 5 < Re < 18 µm). Error bars represent 1-sigma error estimated from RANSAC-fit bootstrapping (Sect. 2). Grey 469 

and pink shaded regions indicate the 68 and 95% confidence intervals for the MODIS-CloudSat CFODD slope, respectively. Labels 470 

indicate the sensitivity experiment names (Table 1). 471 
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While we derive a constraint for ERFaciSW using the combined small and medium Re CFODDs, when the Re subsets 472 

are considered individually, they show distinct contributions to ERFaciSW_SLWCs. Fig. S7 shows that SLWCs with small 473 

Re have a negative ERFaciSW_SLWCs, but that SLWCs in the medium and large Re subsets have positive ERFaciSW_SLWCs 474 

values. This indicates that the dominant effect of aerosols on shortwave radiative forcing in the medium and large 475 

SLWC subsets is decreased cloud fraction, which is reflected in the decreased SLWC sample sizes in the PD 476 

simulations compared to PI (Fig. S12S8, S13S9). The negative linear relationship between ERFaciSW_SLWCs and 477 

CFODD slope in the medium and large Re subsets indicates that increasing droplet collection efficiency partially 478 

counteracts the decrease in cloud fraction due to aerosol. The small Re SLWCs, however, show a positive correlation 479 

between ERFaciSW and CFODD slope, indicating that ERFaciSW weakens as autconversion rates increase, likely due 480 

to decreased precipitation suppression susceptibility in this subset .The small Re SLWCs, however, show a negative 481 

correlation between ERFaciSW and CFODD slope, indicating that the dominant effect of aerosols on this subset via 482 

decreasing of the CFODD slope is to strengthen ERFaciSW. The combined small and medium CFODD and 483 

ERFaciSW_SLWCs, therefore, represent the convolution of two populations with differing ERFaciSW sensitivities to 484 

autoconversion perturbations. We chose to constrain ERFaciSW using the combined small and medium CFODD and 485 

ERFaciSW_SLWCs due the correlation performance and the dearth of large Re SLWCs in E3SMv2. However, constraints 486 

for ERFaciSW could potentially be derived for each individual Re subset or various combinations thereof, depending 487 

on the distribution of SLWCs among the Re size bins and their contribution to the host model’s ERFaci. Considering 488 

that constrained ERFaciSW increases in magnitude with increasing Re in Fig. S7 the underrepresentation of SLWCs 489 

with large Re in E3SMv2 represents a compensating bias, without which the total ERFaci bias would be even larger 490 

compared to IPCC AR6.  491 

4.2 Limitations of CFODD-based constraint on ERFaci 492 

There are multiple limitations to the CFODD analysis that should be considered in its application as a constraint for 493 

ERFaci. First, droplet collection is not explicitly represented in ESMs with bulk microphysical schemes such as 494 

E3SMv2,  but is instead implicit in an amalgamation of process and drop size distribution parameterizations 495 

controlling the evolution of the cloud and precipitation. Delving into the impact of these individual processes on 496 

CFODD-based constraint of ERFaci is a good target of future work, while autoconversion modulation of ERFaci was 497 

the primary focus here. Furthermore, simulated radar reflectivity is highly sensitive to particle size distribution 498 
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assumptions in the forward simulator (e.g., Bodas-Salcedo et al., 2011; J. Wang et al., 2021). The host model, 499 

therefore, could represent warm rain microphysical processes with high fidelity but still produce biased CFODD 500 

profiles when compared with observations.  In COSPv2.0, the CloudSat simulator calculates size distributions from 501 

an assumed distribution (e.g., log-normal, gamma, exponential) as well as mass-mixing ratios, precipitation fluxes, 502 

and gridbox-mean Re from the host model. Default COSPv2.0 size distributions were used in this study: log-normal 503 

for large-scale stratiform and convective cloud liquid, and exponential for large-scale stratiform and convective cloud 504 

rain. The CFODD analysis itself is subject to multiple uncertainties, including the use of simple adiabatic and 505 

condensational growth assumptions to scale MODIS COT to ICOD. These assumptions result in a vertical distribution 506 

of optical depth, mass concentrations and particle size that may not reflect reality. For example, in the CFODD, particle 507 

size and mass concentration are assumed to monotonically increase with height, yet in the real cloud, particle sizes 508 

may decrease near the cloud top due to evaporation and entrainment (Suzuki et al., 2010). The uncertainties from 509 

assumed hydrometeor size distributions and CFODD construction should be carefully considered when using the 510 

CFODD to evaluate model droplet collection efficiencies against observations and in the application as an ERFaci 511 

constraint. Simulated reflectivity biases affect the evaluation of the model CFODD slope against the observational 512 

CFODD slope and thus affect the estimation of ERFaci bias.  513 

A few additional limitations on CFODD analysis are imposed by biases in E3SMv2 SLWC representation. The ERFaci 514 

constraint is restricted to the small and medium Re CFODDs because of the underrepresentation of SLWCs with large 515 

Re. SLWCs with medium Re are also underrepresented in E3SMv2, further limiting the CFODD analysis of E3SMv2 516 

ERFaci because process perturbations are limited to the extent that they do not significantly reduce the number of 517 

SLWCs with medium Re. The high reflectivity near cloud top at ICOD < 4 in E3SMv2 CFODDs presents another 518 

limitation. SLWCs with COT < 4 represent a significant fraction of the SLWC population in both A-Train and 519 

E3SMv2 (Fig. 2), so including optically thin SLWCs in the linear regression would likely affect the CFODD slope 520 

and droplet collection efficiency estimates. 521 

Despite these limitations and the uncertainty associated with estimates of droplet collection efficiency from simulated 522 

radar reflectivity, CFODD analysis offers a highly desired process-oriented constraint on ERFaci due to warm rain 523 

processes. In E3SMv2, the CFODD slope exhibits the expected behavior in response to autoconversion perturbations: 524 

slope increases with perturbations that increase the autoconversion rate and decreases with perturbations that decrease 525 
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the autoconversion rate. Our results also show that the model ERFaciSW is highly sensitive to the processes that the 526 

CFODD represents, enabling the constraint of ERFaciSW against the CFODD slope derived from MODIS-CloudSat 527 

cloud retrievals. Prior studies have demonstrated that radar reflectivity biases can be partially mitigated by bringing 528 

the forward simulator into better agreement with the host model’s microphysics parameterization  and subgrid 529 

variability (Song et al., 2018b; J. Wang et al., 2021). Modified versions of COSP featuring improved consistency with   530 

E3SM are to be implemented in future E3SM model versions, which will decrease the uncertainties associated with 531 

CFODD analysis of E3SM.  532 

6 5 Summary 533 

In this study, we present an updated CFODD analysis and demonstrate how it can be applied to ESMs as a process-534 

oriented constraint on ERFaci. When E3SMv2’s droplet collection efficiencyCFODD slope is constrained by MODIS-535 

CloudSat retrievals, E3SMv2’s ERFaciSW is reduced by 143 ± 6%. Demonstrated here as a constraint based on the 536 

component of ERFaciSW on that is modulated by autoconversion, CFODD analysis represents a highly desirable 537 

constraint on a process, circumventing the equifinality issue that bedevils atmospheric state variable-based approaches 538 

(Mülmenstädt et al., 2020). Limitations of CFODD-based constraint of ERFaci include the implicit representation of 539 

droplet collection efficiency in many ESMs, including E3SMv2, the sensitivity of simulated radar reflectivity to 540 

droplet size distribution representations and simplifying assumptions applied to construct the CFODD (e.g., adiabatic-541 

condensational growth). While this study focuses on autoconversion, future studies should apply CFODD analysis 542 

could potentially apply to any other microphysical processes parameterization that affects droplet collection efficiency 543 

(e.g., accretion, droplet breakup, evaporation) to generate additional ERFaci constraints. 544 

Several updates to the WRDs package in COSPv2.0 were made to support the application of CFODD analysis to 545 

ESMs. In addition to the original WRDs diagnostics featuring relative frequencies of SLWCs by precipitation intensity 546 

and the CFODD by Re, we have implemented additional diagnostics in the WRDs   that include all-sky SLWC 547 

frequency maps and MODIS SLWC COT distributions for CFODD sampling statistics. Other updates include the 548 

estimation of CFODD slopes using Random Sample Consensus robust linear regression and changes to the SLWC 549 

detection schemes for better comparison between observations and satellite simulators.  550 

In addition to the modifications of the WRDs described above, the MODIS and CloudSat observational reference data 551 

has been updated for consistency with COSPv2.0 SLWC detection. SLWC detection is increased 5-fold in the updated 552 
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reference data. The increase in SLWC sampling also significantly affected the CFODD distributions and consequently, 553 

the A-Train reference droplet collection efficiency at large Re (18 µm ≤ Re < 30 µm). The updated WRDs showed that 554 

droplet collection efficiencies in E3SMv2 are decreased compared to observations and SLWCs with small MODIS Re 555 

(5 µm ≥ Re > 12 µm) are overrepresented. The E3SMv2 CFODD results also show reflectivities exceeding 0 dBZ near 556 

cloud top at 2 < ICOD < 4 yet relatively low reflectivities at ICOD > 5. The unreasonably high reflectivities near cloud 557 

top may indicate artifacts due to inconsistencies between E3SMv2 outputs and COSPv2.0 inputs to the CloudSat 558 

simulator. This issue motivates further investigation in future studies involving applications of the CloudSat simulator 559 

to E3SM.  The E3SMv2 CFODD results also show that simulated reflectivity profiles near the cloud top are decoupled 560 

from the cloud below.  The updates described herein have increased the WRDs’ utility for evaluating model warm 561 

rain process representation and support the analysis needed to derive a constraint on ERFaci from CFODD analysis.  562 

Through an evaluation of E3SMv2, we demonstrate that the updated WRDs illuminate specific biases in SLWC 563 

representation and provide contextual sampling statistics that are critical for interpreting CFODD results and thus, for 564 

future applications of this observational constraint on ERFaci. 565 

 566 

Code and Data Availability: The CloudSat and MODIS data products are available from the CloudSat Data Processing 567 

Center at CIRA/Colorado State University (https://www.cloudsat.cira.colostate.edu/; last access: June 28, 2023). The 568 

reference A-Train data used in this study is available here: https://doi.org/10.5281/zenodo.8384180. The modified 569 

source code of COSPv2.0 is available here: https://doi.org/10.5281/zenodo.8371120 and the E3SMv2 source code is 570 

available here: https://github.com/E3SM-Project/E3SM (last access: September 27, 2023). The python package for 571 

the two-dimensional Kolmogorov-Smirnov test applied in this study is available here 572 
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robust linear regression analysis (https://scikit-learn.org/stable/; last access: June 28, 2023). 574 

Author contributions: CMB led the project, developed the additional WRDs diagnostics in this study, performed the 575 

model simulations and wrote the manuscript. PLM provided critical project guidance and support for modeling and 576 

analysis. MWC led the A-Train observations analysis and provided guidance on additional WRDs diagnostics 577 

development. AV provided input on CFODD analysis applications. JM provided guidance on ERFaci analysis. TM 578 

and KS provided guidance on WRDs applications. All authors contributed to writing the manuscript. 579 

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: 10 pt

https://www.cloudsat.cira.colostate.edu/
https://doi.org/10.5281/zenodo.8384180
https://doi.org/10.5281/zenodo.8371120
https://github.com/E3SM-Project/E3SM
https://github.com/syrte/ndtest/tree/master
https://scikit-learn.org/stable/


26 
 

Competing Interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry 580 

and Physics. 581 

Acknowledgements: The study was supported as part of the Enabling Aerosol–cloud interactions at GLobal 582 

convection-permitting scalES (EAGLES) project (project no. 74358) sponsored by the United States Department of 583 

Energy (DOE), Office of Science, Office of Biological and Environmental Research (BER), Earth System Model 584 

Development (ESMD) program area. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by 585 

the Battelle Memorial Institute under Contract DE-AC05-76RL01830. The research used high-performance 586 

computing resources from the PNNL Research Computing, the BER Earth System Modeling program's Compy 587 

computing cluster located at PNNL, and resources of the National Energy Research Scientific Computing Center 588 

(NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National 589 

Laboratory, operated under Contract No. DE-AC02-05CH11231, using NERSC awards ALCC-ERCAP0025938 and 590 

BER-ERCAP0024471.  591 

Financial support.  This study was funded by the U.S. Department of Energy, Office of Science, Office of Biological 592 

and Environmental research, Earth System Model Development (ESMD) program area (project nos. 74358). KS and 593 

TM were supported by the Japan Society for the Promotion of Science KAKENHI (Grant JP19H05669),  MEXT 594 

program for the Advanced Studies of Climate Change Projection (SENTAN) (Grant JPMXD0722680395),  and the 595 

Environment Research and Technology Development Fund (S-20) (Grant JPMEERF21S12004) of the Environmental 596 

Restoration and Conservation Agency. TM was supported by the JST FOREST Program (Grant JPMJFR206Y), 597 

and the Japan Society for the Promotion of Science KAKENHI (Grant JP 23K13171). 598 

 599 

 600 

References 601 

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227--1230 , pmid = 602 
17747885, 10.1126/science.245.4923.1227, 1989. 603 

 604 
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K. S., 605 

Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., 606 
Haywood, J. M., Lohmann, U., Malavelle, F., Mauritsen, T., … Stevens, B.: Bounding Global Aerosol 607 
Radiative Forcing of Climate Change. Rev. Geophys., 58(1), e2019RG000660, 608 
https://doi.org/https://doi.org/10.1029/2019RG000660, 2020. 609 

https://doi.org/https:/doi.org/10.1029/2019RG000660


27 
 

Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P.: Higher-Order 610 
Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model. J. Climate, 611 
26(23), 9655–9676 https://doi.org/https://doi.org/10.1175/JCLI-D-13-00075.1, 2013. 612 

Cesana, G., & Chepfer, H.: How well do climate models simulate cloud vertical structure? A comparison between 613 
CALIPSO-GOCCP satellite observations and CMIP5 models. Geophys. Res. Lett., 39(20). 614 
https://doi.org/https://doi.org/10.1029/2012GL053153, 2012. 615 

Christensen, M. W., Stephens, G. L., & Lebsock, M. D.: Exposing biases in retrieved low cloud properties from 616 
CloudSat: A guide for evaluating observations and climate data: J. Geophys. Res., 118(21), 12, 112–120, 131. 617 
https://doi.org/https://doi.org/10.1002/2013JD020224, 2013. 618 
 619 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., 620 
Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., 621 
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., 622 
Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., 623 
Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: 624 
configuration and performance of the data assimilation system, Quarterly Journal of the Royal Meteorological 625 
Society, 137, 553-597, https://doi.org/10.1002/qj.828, 2011. 626 
 627 

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., 628 
Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., 629 
Conaty, A., da Silva, A. M., Gu, W., … Zhao, B.: The Modern-Era Retrospective Analysis for Research and 630 
Applications, Version 2 (MERRA-2), Journal of Climate, 30(14), 5419–5454, https://doi.org/10.1175/JCLI-D-631 
16-0758.1, 2017. 632 

Ghan, S. J.: Technical Note: Estimating aerosol effects on cloud radiative forcing, Atmospheric Chemistry and 633 
Physics, 13(19), 9971–9974. https://doi.org/10.5194/acp-13-9971-2013, 2013. 634 

Golaz, J. C., Larson, V. E., & Cotton, W. R.: A PDF-based model for boundary layer clouds. Part I: Method and 635 
model description, Journal of the Atmospheric Sciences, 59(24), 3540–3551. https://doi.org/10.1175/1520-636 
0469(2002)059<3540:APBMFB>2.0.CO;2, 2022. 637 

Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, 638 
M. E., Forsyth, R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M., Wang, H., Turner, A. K., Singh, 639 
B., Richter, J. H., … Bader, D. C.: The DOE E3SM Model Version 2: Overview of the Physical Model and 640 
Initial Model Evaluation. Journal of Advances in Modeling Earth Systems, 14(12), e2022MS003156. 641 
https://doi.org/https://doi.org/10.1029/2022MS003156, 2022. 642 

Jing, X., Suzuki, K., Guo, H., Goto, D., Ogura, T., Koshiro, T., and Mülmenstädt, J.: A Multimodel Study on Warm 643 
Precipitation Biases in Global Models Compared to Satellite Observations, Journal of Geophysical Research: 644 
Atmospheres, 122, 11, 806-811, 824, https://doi.org/10.1002/2017JD027310 , issue = 21, 2017. 645 

 646 
Jing, X., Suzuki, K., & Michibata, T.: The Key Role of Warm Rain Parameterization in Determining the Aerosol 647 

Indirect Effect in a Global Climate Model. Journal of Climate, 32(14), 4409–4430. 648 
https://doi.org/https://doi.org/10.1175/JCLI-D-18-0789.1, 2019. 649 

Kay, J. E., Wall, C., Yettella, V., Medeiros, B., Hannay, C., Caldwell, P., & Bitz, C.: Global climate impacts of 650 
fixing the Southern Ocean shortwave radiation bias in the Community Earth System Model (CESM), Journal 651 
of Climate, 29(12), 4617–4636. https://doi.org/10.1175/JCLI-D-15-0358.1, 2016. 652 

Khairoutdinov, M., & Kogan, Y. (2000). A New Cloud Physics Parameterization in a Large-Eddy Simulation Model 653 
of Marine Stratocumulus. Monthly Weather Review, 128(1), 229–243. 654 
https://doi.org/https://doi.org/10.1175/1520-0493(2000)128<0229:ANCPPI>2.0.CO;2 655 

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

https://doi.org/https:/doi.org/10.1175/JCLI-D-13-00075.1
https://doi.org/https:/doi.org/10.1029/2012GL053153
https://doi.org/https:/doi.org/10.1002/2013JD020224
https://doi.org/10.1002/qj.828
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5194/acp-13-9971-2013
https://doi.org/10.1175/1520-0469(2002)059%3c3540:APBMFB%3e2.0.CO;2
https://doi.org/10.1175/1520-0469(2002)059%3c3540:APBMFB%3e2.0.CO;2
https://doi.org/https:/doi.org/10.1029/2022MS003156
https://doi.org/10.1002/2017JD027310
https://doi.org/https:/doi.org/10.1175/JCLI-D-18-0789.1
https://doi.org/10.1175/JCLI-D-15-0358.1
https://doi.org/https:/doi.org/10.1175/1520-0493(2000)128%3c0229:ANCPPI%3e2.0.CO;2


28 
 

Kogan, Y.: A Cumulus Cloud Microphysics Parameterization for Cloud-Resolving Models, Journal of the 656 
Atmospheric Sciences, 70, 1423-1436, https://doi.org/10.1175/JAS-D-12-0183.1, 2013. 657 
 658 

Larson, V. E.: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere, 659 
http://arxiv.org/abs/1711.03675, 2017. 660 

Larson, V. E., & Golaz, J.-C.: Using Probability Density Functions to Derive Consistent Closure Relationships 661 
among Higher-Order Moments. Monthly Weather Review, 133(4), 1023–1042. 662 
https://doi.org/https://doi.org/10.1175/MWR2902.1, 2005. 663 

Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F., Gettelman, A., Morrison, H., Vitt, 664 
F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., 665 
Iacono, M. J., … Mitchell, D.: Toward a minimal representation of aerosols in climate models: Description 666 
and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 5(3), 709–667 
739. https://doi.org/10.5194/GMD-5-709-2012, 2012. 668 

Liu, X., Ma, P.-L., Wang, H., Tilmes, S., Singh, B., Easter, R. C., Ghan, S. J., & Rasch, P. J. Description and 669 
evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the 670 
Community Atmosphere Model. Geoscientific Model Development, 9(2), 505–522, 671 
https://doi.org/10.5194/gmd-9-505-2016, 2016. 672 

Mangla, R., Indu, J., & Lakshmi, V.: Evaluation of convective storms using spaceborne radars over the Indo-673 
Gangetic Plains and western coast of India. Meteorological Applications, 27(3), e1917, 674 
https://doi.org/https://doi.org/10.1002/met.1917, 2020. 675 

Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G.: Hydrometeor Detection Using Cloudsat—An Earth-676 
Orbiting 94-GHz Cloud Radar, Journal of Atmospheric and Oceanic Technology, 25(4), 519–533, 677 
https://doi.org/10.1175/2007JTECHA1006.1, 2008. 678 

Michibata, T., Kawamoto, K., & Takemura, T.: The effects of aerosols on water cloud microphysics 679 
and  macrophysics based on satellite-retrieved data over East Asia and the  North Pacific, Atmospheric 680 
Chemistry and Physics, 14(21), 11935–11948, https://doi.org/10.5194/acp-14-11935-2014, 2014. 681 

Michibata, T., Suzuki, K., Ogura, T., & Jing, X.: Data for the publication “Incorporation of inline warm rain 682 
diagnostics into the COSP2 satellite simulator for process-oriented model evaluation.” Zenodo, 683 
https://doi.org/10.5281/zenodo.3370823, 2019a. 684 

Michibata, T., Suzuki, K., Ogura, T., & Jing, X.: Incorporation of inline warm rain diagnostics into the COSP2 685 
satellite simulator for process-oriented model evaluation. Geoscientific Model Development, 12(10), 4297–686 
4307. https://doi.org/10.5194/gmd-12-4297-2019, 2019b. 687 

Muhlbauer, A., McCoy, I. L., and Wood, R.: Climatology of stratocumulus cloud morphologies: Microphysical 688 
properties and radiative effects, Atmos. Chem. Phys., 14, 2014. 689 

 690 

Mülmenstädt, J. and Feingold, G.: The Radiative Forcing of Aerosol–Cloud Interactions in Liquid Clouds: Wrestling 691 
and Embracing Uncertainty, Current Climate Change Reports, 4, 23-40, 10.1007/s40641-018-0089-y, 2018. 692 

 693 
Mülmenstädt, J., Nam, C., Salzmann, M., Kretzschmar, J., L’Ecuyer, T. S., Lohmann, U., Ma, P.-L., Myhre, G., 694 

Neubauer, D., Stier, P., Suzuki, K., Wang, M., & Quaas, J. (2020). Reducing the aerosol forcing uncertainty 695 
using observational constraints on warm rain processes. Science Advances, 6(22), eaaz6433. 696 
https://doi.org/10.1126/sciadv.aaz6433 697 

Partain, P., & Cronk, H.: CloudSat ECMWF-AUX auxillary data product process description and interface control 698 
document. California Institute of Techology Jet Propulsion Laboratory Doc., 15 pp., 699 

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

https://doi.org/10.1175/JAS-D-12-0183.1
http://arxiv.org/abs/1711.03675
https://doi.org/https:/doi.org/10.1175/MWR2902.1
https://doi.org/10.5194/GMD-5-709-2012
https://doi.org/10.5194/gmd-9-505-2016
https://doi.org/https:/doi.org/10.1002/met.1917
https://doi.org/10.1175/2007JTECHA1006.1
https://doi.org/10.5194/acp-14-11935-2014
https://doi.org/10.5281/zenodo.3370823
https://doi.org/10.5194/gmd-12-4297-2019
https://doi.org/10.1126/sciadv.aaz6433


29 
 

https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-700 
AUX_PDICD.P_R05.rev0_.pdf, 2017, last access: 24 January 2024. 701 

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., 702 
Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., & Riedi, J.: The MODIS Cloud Optical and 703 
Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua. IEEE Transactions on 704 
Geoscience and Remote Sensing, 55(1), 502–525, https://doi.org/10.1109/TGRS.2016.2610522, 2017. 705 

Rasch, P. J., Xie, S., Ma, P. L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., 706 
Cameron-Smith, P., Singh, B., Wan, H., Golaz, J. C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., 707 
Evans, K. J., … Yang, Y.: An Overview of the Atmospheric Component of the Energy Exascale Earth System 708 
Model: Journal of Advances in Modeling Earth Systems, 11(8), 2377–2411. 709 
https://doi.org/10.1029/2019MS001629, 2019. 710 

Sato, Y., Goto, D., Michibata, T., Suzuki, K., Takemura, T., Tomita, H., and Nakajima, T.: Aerosol effects on cloud 711 
water amounts were successfully simulated by a global cloud-system resolving model, Nature Communications, 712 
9, 985, 10.1038/s41467-018-03379-6, 2018. 713 

 714 
Smith, C. J., Kramer, R. J., Myhre, G., Alterskjr, K., Collins, W., Sima, A., Boucher, O., Dufresne, J.-L., Nabat, P., 715 

Michou, M., Yukimoto, S., Cole, J., Paynter, D., Shiogama, H., O'Connor, F. M., Robertson, E., Wiltshire, A., 716 
Andrews, T., Hannay, C., Miller, R., Nazarenko, L., Kirkevg, A., Olivié, D., Fiedler, S., Lewinschal, A., 717 
Mackallah, C., Dix, M., Pincus, R., & Forster, P.: Effective radiative forcing and adjustments in CMIP6 models, 718 
Atmospheric Chemistry and Physics, 20, 9591--9618, 10.5194/acp-20-9591-2020, 2020. 719 

 720 
Song, H., Zhang, Z., Ma, P.-L., Ghan, S. J., & Wang, M.: An Evaluation of Marine Boundary Layer Cloud Property 721 

Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid 722 
Parameterization versus CLUBB. Journal of Climate, 31(6), 2299–2320, 723 
https://doi.org/https://doi.org/10.1175/JCLI-D-17-0277.1, 2018a. 724 

Song, H., Zhang, Z., Ma, P.-L., Ghan, S., & Wang, M.: The importance of considering sub-grid cloud variability 725 
when using  satellite observations to evaluate the cloud and precipitation simulations in  climate models. 726 
Geoscientific Model Development, 11(8), 3147–3158. https://doi.org/10.5194/gmd-11-3147-2018, 2018b. 727 

Stephens, G. L., L’Ecuyer, T., Forbes, R., Gettelmen, A., Golaz, J.-C., Bodas-Salcedo, A., Suzuki, K., Gabriel, P., & 728 
Haynes, J.: Dreary state of precipitation in global models. Journal of Geophysical Research: Atmospheres, 729 
115(D24), https://doi.org/https://doi.org/10.1029/2010JD014532, 2010. 730 

Stevens, B. and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 731 
461, 607-613, 10.1038/nature08281, 2009. 732 

 733 
Suzuki, K., Nakajima, T. Y., & Stephens, G. L.: Particle Growth and Drop Collection Efficiency of Warm Clouds as 734 

Inferred from Joint CloudSat and MODIS Observations. Journal of the Atmospheric Sciences, 67(9), 3019–735 
3032, https://doi.org/10.1175/2010JAS3463.1, 2010. 736 

Suzuki, K., Stephens, G., Bodas-Salcedo, A., Wang, M., Golaz, J.-C., Yokohata, T., & Koshiro, T.: Evaluation of 737 
the Warm Rain Formation Process in Global Models with Satellite Observations. Journal of the Atmospheric 738 
Sciences, 72(10), 3996–4014, https://doi.org/https://doi.org/10.1175/JAS-D-14-0265.1, 2015. 739 

Suzuki, K., Stephens, G. L., & Lebsock, M. D.: Aerosol effect on the warm rain formation process: Satellite 740 
observations and modeling. Journal of Geophysical Research: Atmospheres, 118(1), 170–184, 741 
https://doi.org/https://doi.org/10.1002/jgrd.50043, 2013. 742 

Takahashi, H., Bodas-Salcedo, A., and Stephens, G.: Warm Cloud Evolution, Precipitation, and Their Weak Linkage 743 
in HadGEM3: New Process-Level Diagnostics Using A-Train Observations, Journal of the Atmospheric 744 
Sciences, 78, 2075-2087, https://doi.org/10.1175/JAS-D-20-0321.1, 2021. 745 

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: 9 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: (Default) Times New Roman, 10 pt

https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX_PDICD.P_R05.rev0_.pdf
https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/ecmwf-aux/ECMWF-AUX_PDICD.P_R05.rev0_.pdf
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/10.1029/2019MS001629
https://doi.org/https:/doi.org/10.1175/JCLI-D-17-0277.1
https://doi.org/10.5194/gmd-11-3147-2018
https://doi.org/https:/doi.org/10.1029/2010JD014532
https://doi.org/10.1175/2010JAS3463.1
https://doi.org/https:/doi.org/10.1175/JAS-D-14-0265.1
https://doi.org/https:/doi.org/10.1002/jgrd.50043
https://doi.org/10.1175/JAS-D-20-0321.1


30 
 

Wang, H., Easter, R. C., Zhang, R., Ma, P. L., Singh, B., Zhang, K., Ganguly, D., Rasch, P. J., Burrows, S. M., 746 
Ghan, S. J., Lou, S., Qian, Y., Yang, Y., Feng, Y., Flanner, M., Leung, R. L., Liu, X., Shrivastava, M., Sun, 747 
J., … Yoon, J. H.: Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative 748 
Forcing. Journal of Advances in Modeling Earth Systems, 12(1), https://doi.org/10.1029/2019MS001851, 749 
2020. 750 

Wang, J., Fan, J., Houze, R. A., Brodzik, S. R., Zhang, K., Zhang, G. J., & Ma, P. L.: Using radar observations to 751 
evaluate 3-D radar echo structure simulated by the Energy Exascale Earth System Model (E3SM) version 1. 752 
Geoscientific Model Development, 14(2), 719–734. https://doi.org/10.5194/gmd-14-719-2021, 2021. 753 

Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects. Journal of the Atmospheric 754 
Sciences, 62(9), 3034–3050. https://doi.org/https://doi.org/10.1175/JAS3530.1, 2005. 755 

Zhang, G. J., & McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus convection 756 
in the Canadian climate centre general circulation model. Atmosphere-Ocean, 33(3), 407–446. 757 
https://doi.org/10.1080/07055900.1995.9649539, 1995. 758 

Zhang, M., Xie, S., Liu, X., Lin, W., Zhang, K., Ma, H.-Y., Zheng, X., & Zhang, Y.: Toward Understanding the 759 
Simulated Phase Partitioning of Arctic Single-Layer Mixed-Phase Clouds in E3SM. Earth and Space Science, 760 
7(7), e2020EA001125. https://doi.org/https://doi.org/10.1029/2020EA001125, 2020. 761 

Zhang, M., Xie, S., Liu, X., Lin, W., Zheng, X., Golaz, J.-C., & Zhang, Y.: Cloud Phase Simulation at High Latitudes 762 
in EAMv2: Evaluation Using CALIPSO Observations and Comparison With EAMv1. Journal of Geophysical 763 
Research: Atmospheres, 127(22), e2022JD037100. https://doi.org/https://doi.org/10.1029/2022JD037100, 764 
2022. 765 

Zhang, Y., Klein, S. A., Boyle, J., & Mace, G. G.: Evaluation of tropical cloud and precipitation statistics of 766 
Community Atmosphere Model version 3 using CloudSat and CALIPSO data. Journal of Geophysical 767 
Research: Atmospheres, 115(D12). https://doi.org/https://doi.org/10.1029/2009JD012006, 2010. 768 

Zhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., Rasch, P. J., Qian, Y., Tang, Q., & Ma, H.-Y.: 769 
Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of 770 
Advances in Modeling Earth Systems, 11(5), 1253–1268, 771 
https://doi.org/https://doi.org/10.1029/2018MS001562, 2019a. 772 

Zhang, Y., Xie, S., Lin, W., Klein, S. A., Zelinka, M., Ma, P.-L., Rasch, P. J., Qian, Y., Tang, Q., & Ma, H.-Y.: 773 
Evaluation of Clouds in Version 1 of the E3SM Atmosphere Model With Satellite Simulators. Journal of 774 
Advances in Modeling Earth Systems, 11(5), 1253–1268. 775 
https://doi.org/https://doi.org/10.1029/2018MS001562, 2019b. 776 

  777 

 778 

 779 

 780 

 781 

 782 

Formatted: Indent: Left:  0", Hanging:  0.5"

https://doi.org/10.1029/2019MS001851
https://doi.org/10.5194/gmd-14-719-2021
https://doi.org/https:/doi.org/10.1175/JAS3530.1
https://doi.org/10.1080/07055900.1995.9649539
https://doi.org/https:/doi.org/10.1029/2020EA001125
https://doi.org/https:/doi.org/10.1029/2022JD037100
https://doi.org/https:/doi.org/10.1029/2009JD012006
https://doi.org/https:/doi.org/10.1029/2018MS001562
https://doi.org/https:/doi.org/10.1029/2018MS001562

