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Reply to CC1
[The comments are in italic font, while our responses are in regular font.]

Thank you for this review article for it’s mix of perspectives on autonomous ver-
sus non-autonomous systems, and of natural versus forced (pullback attractors)
responses. It’s known that non-linear otherwise chaotic systems can also deter-
ministically follow the forcing applied. This is where the forced response overrides
the natural response. Doesn’t mean that it’s easy to figure out what the response
is (based partly on “hawkmoth” structural uncertainty ), but like other forced
responses, the dependence on initial conditions becomes irrelevant once it syn-
chronizes with the forcing applied. This means that there may be hope in predicting
dynamical climate once the patterns of forcing and responses are better understood.

The excerpt attached from “Synchronization in Oscillatory Networks”, Osipov et
al (Springer, 2007)

Upload of image excerpt didn’t work in the last reply comment so here is a link to
the image https://imagizer.imageshack.com/img923/3113/FbOxei.png

Thank you, Dr. Pukite, for your interesting comment on our review paper. Your
comment raises two questions: (i) that of structural uncertainty or instability,
sometimes labeled the “hawkmoth effect”; and (ii) that of the connection between
the theory of nonautonomous and random dynamical systems (NDSs and RDSs)
and synchronization theory (e.g., Osipov et al., 2007; Duane et al., 2017).

(i) Structural stability refers to the stability of a system’s behavior under perturba-
tions of its parameters or, more generally, of its governing equations. It is distinct
from and complementary to the usual stability of steady states, in particular, or,
more generally, to that of other invariant solutions, such as periodic (limit cycles)
or quasi-periodic (tori) ones to perturbations in initial conditions. Hence the term
hawkmoth effect for the former, which parallels the term “butterfly effect” for the
latter. Ghil (1976) referred to these two types of stability as external vs. internal.

Structural stability was introduced into dynamical systems theory by Andronov
and Pontryagin (1937) and it is by now well understood for autonomous dynamical
systems (Arnold, 1983; Guckenheimer and Holmes, 1983). Similar results are
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available for NDSs and RDSs (e.g., Caraballo and Han, 2017; Kloeden and Ras-
mussen, 2011). Our review article is already quite long and we could not, at this
stage, add material on this important but somewhat technical topic. The concept of
pullback attraction — as opposed to the forward attraction of autonomous systems,
which we do present and discuss in our paper — plays a key role in the NDS and
RDS case of structural stability, too.

(ii) Synchronization, in its simplest form, is a particular manifestation of an oscil-
lator’s frequency becoming entrained by that of a forcing. A well-known example
is that of circadian rhythms in humans and other animals, as well as in plants
(Winfree, 1980). Ghil and Childress (1987/2012, Ch. 12) have discussed the more
general case of quasi-periodic forcing of a climatic oscillator during the Quater-
nary glaciation cycles. Riechers et al. (2022) have considered this case from the
point of view of NDS theory.

Mutual synchronization between two or more oscillators is another form of this
widespread phenomenon in the physical and life sciences. More recently, the limit
of this case to large networks and continuous media has been actively considered
(Duane et al., 2017, and references therein). It would be of substantial interest
to study the connection between synchronization in this limit and NDS theory.
Again, such considerations go well beyond what’s feasible in the present paper.
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Reply to RC1
[The reviewer’s comments are in italic font, while our responses are in regular font.]

In this very interesting and stimulating review, the authors provide the readers
with an introduction to how algebraic topology can cast insight into the behavior
of dynamical systems, after recalling how dynamical system theory is very relevant
to geophysical models in general and to climate models in particular (it is quite
telling that Henri Poincaré took the example of weather as an example of chaos).

Thank you very much for this insightful and supportive review.

The algebraic topology approach outlined in the review is itself based on a topo-
logical approach whose defining concepts (e.g., branched manifolds) were laid
out by Birman and Williams and whose application to the natural sciences was
pioneered by Gilmore and co-workers. The exposition follows a historical per-
spective where the identification of branched manifolds through cell complexes
and homologies characterizing these complexes is first recalled before presenting
the latest developments in the fields (templexes and stripexes) which not only take
into account the skeleton on the attractor, but how the flow explores it by inferring
the underlying semi-flow. Fundamental nonlinear phenomena such as bistability,
appearance of self-sustained oscillations through a Hopf bifurcation are clearly
explained.

An interesting feature of the review is how it integrates different aspects very
relevant to geophysical and climate applications : noise, variability due to non-
stationarity, eulerian vs lagrangian description which will make the review very
useful for the readers of Nonlinear Processes in Geophysics. How these aspects
increase the complexity of characterizing geophysical systems is well illustrated.
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The paper is quite succcessful in convincing the readers that the approaches ad-
vocated have very promising perspectives to tackle the challenges presented by of
geophysical problems.

I found the perspective section very rich and interesting.

Thus, I strongly recommend this manuscript for publication in NPG, given that the
following minor remarks are taken into account by the authors.

Your strong recommendation is much appreciated, and the authors have done their
very best to take into account your remarks and thoughtful suggestions.

- in the introduction, it would be nice to shortly discuss a geophysical model of
interest to make the discussion more illustrative.

Unfortunately, there is no canonical geophysical model on which all the concepts
and methods discussed in this review could be illustrated. But we now give sepa-
rate examples for all the major ones.

- around Figure 1 and line 135, the authors allude to the stretching, squeezing,
folding etc. mechanisms that build a chaotic attractor, but in my opinion, they do
not provide sufficient information for an uninformed reader to grasp what these
mechanisms are nor do they explain how and why the topological approach is an
elegant and natural way to capture these mechanisms.

- they introduced branched manifolds without describing them very much nor giv-
ing a precise definition of them. Recall that branched manifolds are obtained by
identifying points along a given segment of the stable manifold, so that it is a kind
of projection. How many stable directions must be taken into account will matter
very much, in particular. This is important to understand what is the semi-flow
that the authors invoke.

Answers to the two previous comments:

In “How topology came to chaos,” Gilmore (2013) explains that metric and dy-
namical invariants do not provide a way to distinguish among the different types
of chaotic attractors and that a tool of a different nature was needed to create a
dictionary of processes and mechanisms underlying a chaotic system.

“Listening more closely to Poincaré, it was clear that this new tool ought to involve
the periodic orbits ‘in’ a chaotic attractor. A chaotic trajectory winds around in
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phase space arbitrarily close to any unstable periodic orbit, so it ought to be pos-
sible to use segments of a chaotic trajectory as good approximations (surrogates)
for UPOs. [. . . ] It was clear that UPOs could also serve as the skeleton of the
strange attractor.”

While Gilmore, Lefranc and co-workers were “mulling over implementing a pro-
gram based on building tables of linking numbers and/or relative rotation rates
between trajectories, a better solution became available. Joan Birman and Robert
Williams had shown that the dissipative nature of a flow in phase space allows
projecting the points along the direction of the stable manifold by identifying all
the points with the same future.”

“Suppose we have a dissipative chaotic flow in three dimensions: there are three
Lyapunov exponents (for the unstable direction, for the flow direction and for the
stable direction). The dissipative nature of the flow requires . Then it is possible
to project points in the phase space down in the direction of the stable manifold.
This is done by identifying all the points with the same future:

𝑥 ∼ 𝑦 iff lim
𝑡→+∞

|𝑥(𝑡) − 𝑦(𝑡) | = 0,

where 𝑥(𝑡) is the future in phase space of the point 𝑥 = 𝑥(0) under the flow. This
Birman-Williams identification effectively projects the flow down to a manifold
almost everywhere, except at the points where the flow splits into branches head-
ing towards distinct parts of phase space, or at the points where two branches
are squeezed together. These mathematical structures were called branched mani-
folds.”

A branched manifold can in fact be defined mathematically without reference to a
flow, or to the Birman-Williams projection mentioned above

Definition (from Kinsey page 64). An 𝑛-dimensional manifold is a topological
space such that every point has a neighborhood topologically equivalent to an
n-dimensional open disc with center 𝑥 and radius 𝑟 . Such a manifold is said to be
Hausdorff iff any two distinct points have disjoint neighborhoods.

The second condition is not satisfied precisely at the junction between branches,
i.e., at the locations that describe stretching and squeezing of a flow in phase
space. A branched manifold is therefore a manifold that is not required to fulfill
the Hausdorff property.

We prefer this more general definition, instead of the one related to the Birman-
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Williams projection, for several reasons, including the possibility of extending the
concept of branched manifold to the structure of instantaneous snapshots of ran-
dom attractors. This mathematical definition of a branched manifold will also let
us extend the procedure to cases in which the hypotheses of the Birman-Williams
theorem – in which the dynamical system must be hyperbolic, three-dimensional,
and dissipative – are not valid. In most geoscientific applications, for instance,
uniform hyperbolicity does not apply.

As the topological structure of a branched manifold is closely related to the stretch-
ing and squeezing mechanisms that constitute the fingerprint of a certain chaotic
attractor, its properties can be used to distinguish among different attractors. This
is how the two-way correspondence between topology and dynamics can be jus-
tified. This correspondence remains valid in the case of four-dimensional semi-
conservative systems [Charó et al, 2019; Charó et al, JFM, 2021], for which the
hypotheses of the Birman-Williams theorem do not hold.

The terms “branched manifold” and “template” have often been used interchange-
ably. We do not consider them as synonyms, for technical reasons that will be
important in the development of the concept of templex. A branched manifold is
just a particular type of manifold that can be reconstructed from a set of points in
Rn, by approximating subsets of points by cells, which are glued to form a cell
complex. The dimension of the cell complex d coincides, by construction, with
the local dimension of the branched manifold approximating the point cloud, but
there is no restriction in the value of n or of d. Both values are computed directly
from the dataset, using successive singular value decompositions. The number of
eigenvalues scaling linearly with the number of points grouped in a cell provide
the value of d for that cell, and this computation is done on matrices that contain
the n coordinates of the points, without performing projections of any kind. These
computations construct a cell complex from the point cloud without involving the
flow. The information carried by the flow is not contained in the cell complex but
will be contained in the digraph of the templex.

We have incorporated these clarifications into the text of our paper; please see the
paper’s attached latexdiff between the original submission and the revised version
submitted herewith.

- it is not entirely correct to write that systems whose branched manifolds are
topological equivalent are dynamically equivalent. Their orbit content, or the
associated symbolic dynamics could differ. But it is true that they cannot be equiv-
alent if the branched manifolds differ.
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On page 175 of “How topology came to chaos,” we read:

“Branched manifolds are useful constructions for distinguishing among different
mechanisms that generate strange attractors. Topological equivalence between
branched manifolds is by isotopy. Two things are isotopic if it is possible to mold
one into the other without tearing or gluing it. As a result, identifying the branched
manifold that describes a strange attractor is a powerful tool for distinguishing one
(class of) strange attractors from the other.”

It is in this sense that we speak of dynamical equivalence, while the metric or
dynamical invariants describing the orbit content are not being considered. These
points are now clarifyied in the text; please see attached latexdiff.

- In definition B.1, is 𝑅2
> = or 𝑅2

+ ?

Thank you for noticing the typo in the second line of the definition. Both notations
are used but they should not be mixed up. The single 𝑅2

> = in the definition has
been replaced by 𝑅2

+.

- I find the discussion about pull-back attractors (please define PBA when it first
appears !) interesting however I missed the motivation for introducing the concept,
which became clearer later in the text. Please explain from the beginning why the
concept is interesting and useful. It seems to me that it is particularly relevant for
noisy systems, am I right ?

Good point. We have now defined the PBA acronym the first time it appears, on
p. 13, l. 328, and have paid even more attention to motivation, although several
concepts are introduced to a broader audience and the best sequence in which to
do this is not always obvious. The pullback concept is relevant for all systems that
have time-dependent forcing, whether stochastic or deterministic. This point is
now mentioned in the Abstract, p. 1, l. 14.

- line 375, beta or sigma

It should be sigma. Corrected!

- I would distinguish between nonautonomous systems and non-stationary systems.
The former can have some sort of regularity (e.g., periodic driving). The latter
could experience any type of slow drift. It seems to me that the authors switch
from one type of system to the other without prior notice.
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The definition of nonautonomous system that we are using is unambiguous and
stated as the explicit appearance of time in the mathematical expression of the
governing equations of the system under consideration. Stationarity is a property
of solutions, not of the system of equations. An autonomous system can have
stationary, periodic or chaotic solutions. A nonautonomous system cannot, as far
as we can tell, have stationary solutions, unless the forcing tends to zero.

- there is a strong link between topological chaos as studied by Thiffeault and
Gouillart and what the authors call “topology of chaos”. In a fluid, you have a
flow taking particles from points in space to other points, and the same occurs in
phase space. Chaos is due to mixing processes in the two situations.

There is a strong link between the two situations, but the keywords refer to dif-
ferent motivations and objectives. Working with the topology of real fluid flow
trajectories in physical space implies working in no more than three dimensions,
for example. On the other hand, investigating fluid flows in phase space and in
physical space is not equivalent. Physical space for fluid flows is most often a
plane projection of a higher-dimensional state space.

- it is not entirely true that periodic orbits approximate actual trajectories in the
topological approach. Rather, it estimates the neighboring UPO which the flow is
evolving around. That is the opposite perspective (l. 508).

In the methodology that approximates trajectories with knots, trajectories must be
closed into a knot that approximates the neighboring UPO around which the flow
is evolving.

We have modified the sentence.

- l. 660 I do not quite understand what the problem with the standard approach
of considering time as a state variable for non-autonomous systems, I feel that the
authors should elaborate.

This discussion is central to the Charó et al. [2019] paper. When a dynamical
system is governed by a set of equations where the time explicitly occurs, some
processes involved in the dynamics are not explicitly described and the state space
is not completely determined. In fact, one of the fundamental hypotheses in writing
a dynamical system as a set of ODEs is that time is the only independent variable,
while all state variables are time dependent. Making time play a double role – that
of the only independent variable and that of a state variable – is misleading.
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Working in a space whose dimension is increased by one due to introducing the
extra ODE leads to certain difficulties in using the tools borrowed from nonlin-
ear dynamical systems theory—for instance, the state space is no longer bounded.
When time t is added as an extra coordinate to the phase space, we get an ’extended
phase space’. In this extended phase space, a periodic orbit is no longer a closed
curve, simply because when the system returns to the same state, it does not return
to the same point. The very definition of phase space in which a point univocally
represents a state of the system is no longer valid in the extended phase space.
Many of the properties that are valid in a well-defined phase space are altered in
an extended phase space, and topology is one of them.

In the case of the driven double gyre discussed by Charó et al. [2019], the starting
point is a nonautonomous system of two ODEs. The extended phase space (with a
third ODE written as ¤𝑡 = 1) is three-dimensional. But the paper shows that a fourth
dimension is needed to rewrite the system as an autonomous set of ODEs without
using the trick. The phase space of the autonomized driven double gyre has four
ODEs: two additional variables are required, 𝑢 and 𝑣. Such a transformation
gets rid of the explicit time dependence with a legitimate procedure that does not
run into the previously explained inconsistency. In this four-dimensional phase
space, and for certain initial conditions, the topological structure that is obtained
is a Klein bottle. A Klein bottle cannot be immersed into a three-dimensional
space without self-intersections: the role of the fourth dimension that is required
to rewrite the system in an autonomous form is, therefore, highly relevant here.

Thus, to use topological tools self-consistently, one must be prepared to work in a
well-defined phase space, and with as many dimensions as required. This point is
now clarified in the text; see latexdiff.

- the authors should mention other approaches to characterize dynamical chaos
in arbitrary dimensions. In particular, the method proposed by Lefranc (Phys.
Rev. E 035202, 2006) is based on a triangulation of periodic points that is very
similar to cell complexes, and characterizes how facets of the triangulation are
transformed between themselves, which is a description of the semi-flow. It only
considers the problem of estimating the entropy of the flow, but this is also a
challenge in geophysics. Similary, it would interesting to mention applications of
the Conley index by Mischaikow and collaborators.

- at several places, there is a discussion of using UPO or not utilizing them, but it
could be useful to mention that UPO can be very useful to characterize a chaotic
system because the information about them can be obtained in a finite time, which
can be useful in non-stationary systems and because a single UPO can bring much
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information (see Amon and Lefranc, Phys. Rev. Lett. 094101, 2004).

We have added these references to the text and explain how constructing a cell
complex and computing its homology groups differs from the methodologies con-
sidered in them. Please see the attached latexdiff of the paper.

I am convinced that the authors can easily address these minor issues.

Thank you again for having raised these very useful points.

References
Gilmore, R.: How topology came to chaos, in: Topology and Dynamics of Chaos
in Celebration of Robert Gilmore’s 70th Birthday, edited 1275 by Letellier, C. and
Gilmore, R., pp. 63–98, World Scientific Publishing, 2013.

Reply to CC3
[The reviewer’s input is in italic font, while our responses are in regular font.]

I appreciated the reading of manuscript ”Dynamical Systems, Algebraic Topol-
ogy and the Climate Sciences”, a review article submitted for consideration on
Nonlinear Processes in Geophysics by Michael Ghil and Denisse Sciamarella.
The contribution is part of an invitation-only special issue, ”Perspectives on Cli-
mate Sciences: from historical developments to research frontiers”, meant to be
a follow-up of a webinar series organized under the auspices of the European
Geosciences Union between 2020 and 2021.

The review article is aimed at bringing together authors’ work and views on re-
cent developments in dynamical systems, especially non-autonomous ones, and
the usage of features of branched manifolds defined in algebraic topology for the
characterization of an attractor’s behavior. The article is well written in most of
its parts, and it is a very enjoyable reading, especially for those not familiar with
the specific topics addressed. I wish to share here a few remarks, and also some
views on how these ideas can be expanded and find applications in climate sciences.

We are grateful for your careful reading and for helping us improve this manuscript.
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SPECIFIC COMMENTS

- ll. 146 and elsewhere: a non-expert introduction to branched manifolds is miss-
ing, and I think it would be very welcome, given the potentially broad audience
to whom the contribution is directed. Not only a mathematical definition of these
objects (some idea of that is given at ll. 537-540), but rather expanding on the
potential advantage of adopting this approach in the field of dynamical systems
would be maybe helpful;

This point has been also raised by the first reviewer. An introduction to the
concept of branched manifold is given below. We also comment on how this defi-
nition has been tailored to suit the different aspects of the approach that we present.

In “How topology came to chaos,” Gilmore (2013) explains that metric and dy-
namical invariants do not provide a way to distinguish among the different types
of chaotic attractors and that a tool of a different nature is needed to create a
dictionary of processes and mechanisms underlying a chaotic system.

“Listening more closely to Poincaré, it was clear that this new tool ought to involve
the periodic orbits ‘in’ a chaotic attractor. A chaotic trajectory winds around in
phase space arbitrarily close to any unstable periodic orbit, so it ought to be possi-
ble to use segments of a chaotic trajectory as good approximations (surrogates) for
UPOs. [...] It was clear that UPOs could also serve as the skeleton of the strange
attractor.”

While Gilmore, Lefranc and co-workers were “mulling over implementing a pro-
gram based on building tables of linking numbers and/or relative rotation rates
between trajectories, a better solution became available. Joan Birman and Robert
Williams had shown that the dissipative nature of a flow in phase space allows
projecting the points along the direction of the stable manifold by identifying all
the points with the same future.”

“Suppose we have a dissipative chaotic flow in three dimensions: there are three
Lyapunov exponents (_1 > 0 for the unstable direction, _2 = 0 for the flow direction
and _3 < 0 for the stable direction). The dissipative nature of the flow requires
_1 + _2 + _3 = 0. Then it is possible to project points in the phase space down in
the direction of the stable manifold. This is done by identifying all the points with
the same future via the relation

𝑥 ∼ 𝑦 iff lim
𝑡→+∞

|𝑥(𝑡) − 𝑦(𝑡) | = 0,
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where 𝑥(𝑡) is the future in phase space of the point 𝑥 = 𝑥(0) under the flow. This
Birman-Williams identification effectively projects the flow down to a manifold
almost everywhere, except at the points where the flow splits into branches head-
ing towards distinct parts of phase space, or at the points where two branches
are squeezed together. These mathematical structures were called branched mani-
folds.”

A branched manifold can in fact be defined mathematically without reference to
a flow, or to the Birman-Williams projection mentioned above. Definition (from
Kinsey page 64). An 𝑛-dimensional manifold is a topological space such that every
point has a neighborhood topologically equivalent to an n- dimensional open disc
with center 𝑥 and radius 𝑟. Such a manifold is said to be Hausdorff if and only if
any two distinct points have disjoint neighborhoods.

The second condition is not satisfied precisely at the junction between branches,
i.e., at the locations that describe stretching and squeezing of a flow in phase
space. A branched manifold is therefore a manifold that is not required to fulfill
the Hausdorff property.

We prefer this more general definition, instead of the one related to the Birman-
Williams projection, for several reasons, including the possibility of extending the
concept of branched manifold to the structure of instantaneous snapshots of ran-
dom attractors. This mathematical definition of a branched manifold will also let
us extend the procedure to cases in which the hypotheses of the Birman-Williams
theorem – in which the dynamical system must be hyperbolic, three-dimensional,
and dissipative – are not valid. In most geoscientific applications, for instance,
uniform hyperbolicity does not apply.

As the topological structure of a branched manifold is closely related to the stretch-
ing and squeezing mechanisms that constitute the fingerprint of a certain chaotic
attractor, its properties can be used to distinguish among different attractors. This
is how the two-way correspondence between topology and dynamics can be jus-
tified. This correspondence remains valid in the case of four-dimensional semi-
conservative systems [Charó et al, 2019; Charó et al, JFM, 2021], for which the
hypotheses of the Birman-Williams theorem do not hold.

The terms “branched manifold” and “template” have often been used interchange-
ably. We do not consider them as synonyms, for technical reasons that become
important in the development of the concept of templex. A branched manifold is
just a particular type of manifold that can be reconstructed from a set of points in
R𝑛, by approximating subsets of points by cells, which are glued to form a cell
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complex. The dimension 𝑑 of the cell complex coincides, by construction, with
the local dimension of the branched manifold approximating the point cloud, but
there is no restriction on the value of either 𝑛 or 𝑑. Both values are computed
directly from the dataset, using successive singular value decompositions.

Since the number of eigenvalues scales linearly with the number of points grouped
in a cell, this number provides the value of 𝑑 for the given cell, and this computa-
tion is carried out on matrices that contain the 𝑛 coordinates of the points, without
performing projections of any kind. These computations construct a cell complex
from the point cloud without involving the flow. The information carried by the
flow is not contained in the cell complex but will be contained in the digraph of
the templex.

Please see latexdiff of the paper for the corresponding text; blue paras. at bottom
of p. 31 and top of p. 32.

- Figure 2: the label is not very self-explanatory and should be better detailed;

These three-dimensional point clouds are obtained by integrating the Lorenz equa-
tions using coordinate transformations for some of the variables. The butterfly is
deformed but the topological structure of the butterfly is maintained. The caption
has been expanded.

- ll. 366-371: This paragraph seems to be missing a take-home message;

Good point, thank you. The paragraph now reads:

“The finite-dimensional definition above follows Charó et al. (2021b, Appendix A
and references therein). In fact, both deterministic and stochastic versions of [time-
dependent] forcing have been applied, for instance, by Chekroun et al. (2018) in
the study of an infinite-dimensional, delay-differential equation model of the El
Niño–Southern Oscillation (ENSO). The deterministic forcing corresponded to the
purely periodic, seasonal changes in insolation, while the stochastic component
represented the westerly wind bursts appearing in various ENSO models by F.-F.
Jin and A. Timmermann (e.g., Timmermann and Jin, 2002); see also Chekroun et
al. (2011, Sec. 4.3). This ENSO example, among many others, shows that there is
great flexibility in the application of the concepts and methods of nonautonomous
dynamical systems (NDS and RDS) theory to climate problems.”

The take-home message is in the paragraph’s last sentence.
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- Figure 8: the label here is also a bit ambiguous, as the invariant measure nu is
not defined anywhere in the text;

A full definition of invariant measures would occupy too much additional space
in an already rather long review paper. A simple definition in lay words is given
in the discussion of the heat map of Fig. 6b, ll. 443–448, along with suitable
references. A similar effort has been made in the caption of Fig. 8 on p. 21.

- ll. 569-619: the authors present here an extensive list of possible applications
of the BraMAH approach, but this has not been yet described in the manuscript. I
think this part shall be significantly reduced;

We beg to differ. In fact, the comments of the second solicited reviewer, RC2,
request us to expand the discussion on future perspectives. We prefer to listen to
the advice in RC2.

- l. 671: the authors imply that the method has been adopted and described in
Sect. 3.1, but it is not the case (see my point above);

Line 671, which is part of Sec. 3.2, is a bit confusing, since BraMAH for au-
tonomous systems was, in fact, described in the preceding Sec. 3.1 but the templex
is described in the subsequent Sec. 3.3. The sentence has been modified to clarify
this point.

- l. 681: it would be nice to see how these classes emerge in the DDG model;

These clouds are obtained by integrating Shadden’s ordinary differential equations
from different initial conditions. Further details have been provided in the text
to save the reader the trouble of having to refer to the source article. Please see
latexdiff.

- Figure 13: not clear to me what the colors refer to here, as the label refers to
colors that do not appear to be present in the figure;

- ll. 683-689: are the authors discussing Figure 13 or 14 here;

Information and clarifications have been added to the captions of Figs. 12, 13 &
14 and to the text discussing them, to make this review article as self-contained as
possible; please see the attached latexdiff. Thank you for these remarks.
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- ll. 727-728: to this point, it is not clear to me what a “strip” is in a topological
sense. Given that a reader might not be familiar with algebraic topology, I think
that some qualitative description might be provided here or elsewhere;

Thank you for this remark, the definition of strip is part of the template terminol-
ogy. We have added this explanation to the text. Please see the last full para. on
p. 35 of the latexdiff.

TECHNICAL CORRECTIONS

- l. 141: ”they” → ”the”; - l. 187: ”eingenvalues” → ”eigenvalues”;

Done, thank you.

OUTCOMES

Overall, I think that the approach of random temples on random attractors is very
promising, and I see potential applications on several aspects that are of interest
for climate sciences. I list here a number of possible topics to develop:

• Design of optimal ensembles for climate predictions: given that in the range
of problems related to climate prediction we are not constrained about initial
conditions as in NWP, but even if we are in a genuinely non-autonomous
dynamical system with a possibly random forcing, we are reasonably con-
fident that the evolution of the attractor will preserve its homologies. This
said, an efficient mapping of the ensemble initial conditions on the cloud
of trajectories around the fixed point of the attractor, selected according to
their homological properties, might help increasing the reliability of ensem-
ble prediction with a reduced number of members. This is well inside the
scope of reconciling the different flavors and approaches to Low Frequency
Variability, as outlined in the text;

• Investigation of precursors of tipping points: given the rigorous definition
of “topological tipping points”, it would make sense, as outlined in the
concluding remarks, to discuss to what extent these tipping points are rep-
resentative of tipping points in a climatic sense. In order to do so, idealized
conceptual models of key tipping elements might be useful tools, as they

15



would bear a relatively known attractor, at the same time allowing to ex-
plain the physics behind the described processes and to identify precursors
of critical transitions;

We are grateful to the reviewer for raising these two broader points. Both of them
are related to the information provided by random templexes computed for random
attractors in the investigation of the actual climate system and of its prediction.
We have added a few sentences that might withstand the test of time. Particular
attention has been given to the possible connections between TTPs, on the one
hand, and the better understood tipping points associated with the description and
prediction of the climate system by differential systems rather than by homologies,
on the other.

Please see last sentence of the 2nd para. of Sec. 4.2 Perspectives, p. 44 of the
latexdiff.

Reply to RC2
[The reviewer’s input is in italic font, while our responses are in regular font.]

It has been a great opportunity for me to read this review article. The two authors
have made a great attempt to bring together – to my knowledge for the first time in a
kind of systematic manner – the recent developments regarding applications of the
two commonly rather disparate fields of dynamical system theory and algebraic
topology in the context of climatology. Both authors are well known for their
enormous work on both topics over the last decades, so it is not surprising that the
resulting manuscript presents great educational material on both topics.

Thank you very much for this supportive and encouraging review.

There is practically only one, very minor general comment that I may raise re-
garding this impressive work, and I need to say that this is a very subjective one
based on my own knowledge of both fields, which is far from complete. Eventually,
this paper may benefit (although I am not sure if that would indeed make up for an
improvement) if the authors could highlight the specific potentials for further inte-
gration of both mathematical “disciplines” for future climate (or climate-related)
studies even a bit more prominently. There might be a kind of “grey zone” between
a review and perspectives paper. The way the material is presented is maybe not
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a classical review in the sense of attempting a complete coverage of the addressed
field(s), which I feel absolutely comfortable with when reading this work. In such
situation, I may envision this manuscript to become even more impactful when
outlining somewhat more transparently the authors’ perspective on a possible fu-
ture research agenda, or at least parts of it. Please take this just as a suggestion,
not a definite request of mine.

We agree that there is a grey zone between a review and a perspectives paper.
We have added a few paragraphs to improve the paper in its addressing future
perspectives. Please see in particular the last two paras. of Sec. 4.2 Perspectives,
pp. 47-48 of the latexdiff.

All other comments I may have regarding certain parts of the manuscript are rather
specific and/or technical and listed below:

Specific comments/suggestions

- p.3, ll.68-71: The authors essentially mention codimension-1 bifurcations (is
“transverse” the same as “transcritical”, the term that I am familiar with?); it
might be useful to mention (here or later) the existence (and possible relevance for
climate problems?) of bifurcations of codimension 2 or higher.

Thank you for catching this typo. In fact, “transcritical” is a particular kind of
codimension-1 bifurcation, in which a single solution branch preserves its exis-
tence but changes its stability across the bifurcation point: stable on one side
of it and unstable on the other. “Transverse” refers to a particular condition for
the intersection of two manifolds. Actually, we meant “transcritical”. We have
corrected this typo, inherited from the Ghil et al (1991) paper.

The suggestion that we mention the existence and relevance of codimension-2
bifurcations — such as Shilnikov, which is actually mentioned later, in Sec. 3.1, or
Bogdanov-Takens — has merit. But we eventually decided that adding information
on such bifurcations would break the flow of the presentation in Sec. 2.1.4 without
much connection to the rest of the paper.

- In general, Section 1.1 could benefit from a few more “tutorial” references on
dynamical system theory. The choice of references in this initial overview appears
partially a bit “Ghil-centric”, which is fine for the more specific discussions in
Section 2 focusing on contributions of the first author.
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Good point, thank you. There is a rich literature on autonomous dynamical sys-
tems, in both mathematical and physical texts, although less so in the climate
sciences. The main references in the latter field of applications, due to Henk Dijk-
stra aside from Ghil, have already been mentioned, as has a considerable amount
of NDS and RDS literature in Secs. 2 and 4. But we have added a full paragraph
and several references at the head of p. 3 in the revision.

- p.4, ll.94-95: “This complementary view of the way that dynamics and topology
interact is a main motivation of the present article.” I fundamentally agree with
the authors’ emphasis on this point. There is a lot of algebraic topology tools in
classical as well as modern dynamical system theory. One recent field that seems
to provide another link between the two topics, which has also found vast appli-
cations in climate science in recent years, would be complex networks. I would
leave it to the authors’ choice whether or not to elaborate a bit (maybe one brief
paragraph in the end) on corresponding recent developments and their potentials.
The authors mention this very briefly on p.43, ll. 993-995, which emphasis on a
rather specific problem, but I think there might be more to that.

We acknowledge the impressive work being pursued in complex networks and their
relevance in time series analysis [Zou et al, Physics Reports, Volume 787, 2019,
Pages 1-97]. Algebraic topology is not mentioned in this review, but there have
been some papers applying persistent homologies to complex networks [Horak et
al J. Stat. Mech. (2009) P03034; Petri et al (2013). PloS one, 8(6), e66506; De
Silva & Ghrist (2007). Algebraic & Geometric Topology, 7(1), 339-358].

Horak et al. [2009] construct simplicial complexes from graphs (networks) to
evaluate the robustness of a network and to distinguish different network types.
Petri et al. use persistent homologies to detect particular nonlocal structures, akin
to weighted holes within the link-weight network fabric. De Silva & Ghrist [2007]
propose a method using persistent homologies for nonlocalized sensor networks
with ad hoc wireless communications.

Despite the rapid development of computational topology and data science, the
triple combination between algebraic topology, time series analysis and complex
networks seems to be untouched so far. The network approach is used, however,
to reconstruct the phase space, which is a prior and certainly necessary step for the
analysis of the topological structure of flows from data.

The prospective directions in the field of complex networks enumerated by Zou
et al [2019] share many of the challenges that are also faced by the topology of
chaos.
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We are grateful to the reviewer for having directed our attention to this point
and have added two full paras. on this matter at the very end of the revision.

- Somewhat related to the previous point, I might also suggest mentioning the
framework of persistent homology and its potential applications, maybe even at
the end of the introduction section (it appears only be briefly mentioned on p.24,
l.559, before quickly focusing on the BraMAH methodology in the following).

We have followed the reviewer’s suggestion in this matter by expanding on the
discussion of the Strommen et al. [2023] paper’s application of a multiparameter
PH method to weather regimes, in two paragraphs of Sec. 4.2; please see latexdiff.

- Figure 1: Since it seems not to be further explained, I would find it helpful (for
non-experts) if the term “isopleth” could be briefly explained.

The etymology of “isopleth” combines “iso” with the ancient Greek word plêthos,
“a great number,” as in the modern English word ‘plethora’. It is generically used
to refer to a curve of points sharing the same value of some quantity. In his 1963
paper, Edward N. Lorenz plots the isopleths (isolines) of 𝑋 as a function of 𝑌
and 𝑍 of his attractor, to approximate surfaces formed by all points on limiting
trajectories. We have added this explanation to our manuscript.

- p.8, ll.194-195: I recommend adding a brief clarification that any bifurcation
presents a kind of tipping (“B-tipping” in the language nowadays used by many
authors, probably going back to Ditlivsen and co-workers?), while not every tip-
ping behaviour in a complex system originates from an underlying bifurcation.

There are at least two different interpretations of “tipping” and “tipping points” in
the literature. One of these, emanating from Gladwell (2000) and Lenton et al.
(2008), interprets tipping merely as a sudden change, whether due to a well-defined
bifurcation or not. In this interpretation, a tipping point is merely a threshold.

The other interpretation sees a tipping point as a generalization to nonautonomous
systems of a bifurcation point (Kuehn, 2011; Ghil, 2019]. In this case, tipping is
necessarily related to a tipping point in phase-parameter space and not every jump
or critical transition arises from a such a point.

We have clarified this in the revised version since both points of view have their
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merits, but confusion should be avoided to the extent possible. Please see the two
full paras. at the top of p. 9 in the latexdiff.

- p.11, ll.272-273: In fact, the orbital cycles emerge from chaotic motion, but have
contributions with relatively narrow (yet not exactly fixed) frequency and strongly
varying amplitudes. So in reality, one would not assume that 19 kyr and 41 kyr
variability components are exactly fixed (and, hence, would not have a simple
integer ratio), but may lead to more complex dynamical phase locking-unlocking
processes. This is far beyond the scope of the present work, but maybe the specific
sentence here could be a bit reshaped to clarify what the authors actually attempt
to focus on.

We are not exactly sure whether the reviewer refers to work on the presence of
chaos in the planetary system or not (e.g., Varadi, F., M. Ghil, and W. M. Kaula,
1999: Jupiter, Saturn and the edge of chaos, Icarus, 139, 286–294). We have
clarified this point further, too, with a sentence at the end of the para. in question,
now p. 12, ll. 303-304 of the latexdiff.

- In Section 2.1, state vectors are denoted in bold face. In Section 2.2, however,
vectorial quantities are not written in bold face anymore (e.g. x in Eq. (9), l.307
and following). I strongly suggest revising the appearance of mathematical terms
for self-consistency between the different (sub)sections.

Thank you for this correction. We are now using boldface vectors throughout.

- p.13, l.320: Please clarify that this refers to chaotic trajectories in the Lagrangian
chaos sense, not chaos of the underlying field g(t,x) itself.

This might be a misunderstanding: the text refers to trajectories in phase space,
not to fluid flow in physical space.

- p.13, l.325: Please explain the term “pullback attraction” in a few lay words.

Good idea, thank you. We now use simple language, as follows, “A pullback at-
tractor is a possibly time-dependent object in a system’s phase space that exhibits
attraction in the sense of convergence at each time 𝑡 to a set, called a snapshot, to
which the system’s initial state at time 𝑠 tends to as 𝑠 tends to −∞. This is distinct

20



from the forward attractors that can be defined for autonomous systems started at
a fixed time 𝑡0.”

This highly simplified definition has been inserted in Sec. 2.2.1 NDSs, RDSs and
pullback attraction, on p. 14, ll. 360–363 of the latexdiff.

- p.15, l.375: There is no 𝛽 in Eq. (16), only 𝜎. Is that one meant here?

Yes, thank you for the correction.

- Section 2.2.3: The symbol 𝜔 used here has been previously used for a frequency
in Section 2.2.2. Please consider using a different symbol.

Thank you for noticing. We are now using the symbol 𝜐 in Secs. 2.2.2 and
2.2.3 for a frequency and keep the symbol 𝜔 for a realization of the driving noise,
respectively.

- p.18, ll.434-437: Could you add a brief note on suitable “mathematical” types
of noise distributions?

We have defined more precisely the connection between Brownian motion d[ and
a Wiener process [, including a reference, in the discussion of Eqs. (8) and (24).
Please note that we have also eliminated the redundant notation W in Eq. (8),
replacing it by the notation 𝜼 used later.

- p.20, Fig. 8: The figure caption refers to a color bar that is missing in the figure.

We now explain the color bar in words in the caption.

- p.23, l.517: The term “braids” might be unfamiliar to many readers, so a brief
explanation might be helpful. Similar for p.29, l.671 (“templexes”, only intro-
duced in the following subsection) and p.31, l.714 (“knot-holder”).

We can imagine a knot as a thin tangled rope in three-dimensional space whose
ends are glued together [Prasolov and Sossinsky, Amer. Math. Soc., 1997; refer-
ence added], while a braid is a collection of strands crossing over or under each
other. Both concepts became important around 1987 in the attempt to classify low
dimensional (3-D) systems using topological orbit organization.

The knot approach — i.e., extracting the knot content of hyperbolic attractors —
is rooted in results from Birman-Williams-Holmes, through a geometrical con-
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struction that was named template or knot-holder. The braid approach is based on
results due to Thurston on the classification of 2-D diffeomorphisms and the braid
content of the diffeomorphism [Natiello, M. A., 2007. The User’s Approach to
Topological Methods in 3d Dynamical Systems. World Scientific].

- p.41, ll.918-926: The discussion on “wave-like” vs. “particle-like” behaviour
(drawing upon a quantum mechanical analogy) reminds me a bit of the traffic jam
analogy of atmospheric blocking situations by Nakamura and Huang (Science,
361 (6397), 42-47, 2018). I would wonder if the authors would see some link to
this very active field of studies in climate science (persistent atmospheric wave
trains, blocking, and extreme events) from their more fundamental “mathemati-
cal” (conceptual) perspectives.

Well, the authors are familiar with the very interesting Nakamura and Huang
(2018) paper and one of them is working in a separate collaboration on applying
extremal length theory (Ahlfors, L., 1973. Conformal Invariants: Topics in Ge-
ometric Function Theory, American Mathematical Society) to midlatitude flow
diagnostics. But the paper at hand is getting quite long and persistent anomalies
have been a “very active field of studies in climate science” for over four decades,
so adding yet another approach to Fig. 22 does not seem imperative at this stage.
Thank you, though, for finding inspiration in our quantum mechanical analogy.

Technical suggestions:

- p.1, l.3: “in the 1960s”?

Yes, at least in the U.S. spelling (Chicago Manual of Style), which is used through-
out this paper, that is correct, and not the more common “1960’s.” After the first
mention, the ‘60s and ‘70s are correct, too.

- p.4, l.110: typo “current”
- p.6, l.141: typo “the way”

Both fixed, thank you.

- p.6, l.142: citation style of Williams (1974) should be adjusted

Right, thanks.
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- p.6, l.150: “in the 1990s”? (this would be consistent with l.3 and others. . . )
- p.6, l.160: “in the 1960s and early 1970s”

Both OK as is, as per above.

- p.8, ll.188 and 190: I suggest replacing “in the next subsection” by “in Section
2.1.1”

Done.

- p.8, l.211: It might be too much of a request, but citing some original work by
Maxwell might be a quite unique thing for a paper in this journal.

Given the early Poincaré references, adding James Clark Maxwell or Pierre Curie
would seem quite appropriate. Thank you for sharing our taste for early citations,
but we have found the road to the original references rather lengthy and have merely
provided further perspectives on the importance of the concept; see latexdiff, p. 9,
last full para.

- p.9, l.212; p.10, l.220; p.11, ll.258-259: citation style of Ghil and Childress
(1987) should be adjusted

Thanks for noticing. Done.

- p.11, l.257: replace “in the above figure” by “in Fig. 4”

Thank you, done.

- p.11, l.262: “periodicity of glacial cycles”

Not sure what exactly this refers to: “glacial cycles” suggest a unique periodicity,
“climatic variability” does not. We beg to differ.

- p.13, l.319: the condition should read “𝑡0 ≤ 𝑡1 ≤ 𝑡2” (subscript 1 is missing)

Correct, thanks for noticing; fixed.

- p.13, Definition B.1 (why are definitions enumerated as B.1, B.2, etc.?): You
introduce the set R2

+, but refer to R2
≥ in the definition of the mappings.
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The B’s have been removed; thanks for noticing their being redundant herein. The
difference of notation for the nonnegative real numbers is a typo and has been fixed.

- p.14, l.341: “translation in time”
- p.14, l.344: I would start the sentence with “As an example, analytical compu-
tations. . . ”
- p.14, l.353: I am not sure if the abbreviation PBA had been defined before; I
would suggest to avoid it.
- p.15, Eq. (17): use large brackets
- p.16, Eqs. (22) and (23) (and also a bit of the text in the remainder of Section
2.2.2 mixes up the symbols 𝜙 and 𝜑. Please keep consistency.
- p.22, l.497: replace “While. . . ” with “By contrast. . . ” or something similar
- p.27, ll.638-639: Why is the set of ODEs (26a,26b) infinite?
- p.28, l.649: The solution of the Navier-Stokes equations would be a velocity
field, not a streamfunction. Better write: “. . . the streamfunction. . . would not
correspond to a solution. . . ”
- p.32, l.725: “distinct chaotic attractors”
- p.38, l.852: type “known”
- p.40, l.886: In my understanding, Betti numbers are integers, so any change
in this property must be necessarily discontinuous. Or do the authors want to
emphasize something different here?

Yes, they are integers: the phrase “can be quite sudden” has been changed to “is
quite sudden, since they are integers.”

- p.42, l.943: “Pacific North America (PNA) pattern”
- p.43, l.964: omit abbreviation “TDA”
- p.43, l.971: “. . . and provided further. . . ”
- p.45, l.1038: volume missing in Carlsson & Zomorodian (2007)
- p.46, l.1060: remove “20 pp.”
- p.47, ll.1081-1082: this seems to be a duplicate reference
- p.48, l.1123: remove “41 pages”
- p.48, ll.1132-1133: if this is a book chapter, add page numbers; otherwise if this
is the full book title, adjust citation style accordingly

Full book, done.

- p.49, l.1168: there is something odd with the style of this citation, please
check/correct

There is a blank space missing between “Basis.” and “Contribution”; fixed.
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- p.51, ll.1232 and 1262: please give full (non-abbreviated) journal names
- p.52, l.1295: update reference with volume and page numbers, or provide doi if
still only “online first”
- p.52, ll.1204-1306: this seems to be another duplicate reference
- p.53, l.1307: replace page numbers by proper article ID
- p.53, l.1327: volume missing

All the items that are not specifically addressed in our replies have been taken care
of as well. Thank you for your extremely careful reading and very constructive
comments.

Additional reference
Prasolov, V. V. and Sossinsky, A. B.: Knots, Links, Braids and 3-Manifolds: An
Introduction to the New Invariants in Low-dimensional Topology, 154, American
Mathematical Society, 1997.
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