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Abstract. 

China stands out as a major contributor to anthropogenic methane (CH4) emissions, with coal mine methane (CMM) playing 

a crucial role. To control and reduce CH4 emissions, China has made a dedicated commitment and formulated an ambitious 

mitigation plan. To verify the progress made, the consistent acquisition of independent CH4 emission data is required. This 

paper aims to implement a wind-assigned anomaly method for the precise determination of regional-scale CMM emissions 15 

within the coal-rich Shanxi province. We use the TROPOspheric Monitoring Instrument (TROPOMI) CH4 observations from 

May 2018 to May 2023, coupled with ERA5 wind and a bottom-up inventory dataset based on the IPCC Tier 2 approach 

covering the Changzhi, Jincheng and Yangquan regions of the Shanxi province. The derived emission strengths are 8.4× 1026 

molec. s-1 (0.706 Tg yr-1, ± 25%), 1.4 × 1027 molec. s-1 (1.176 Tg yr-1, ± 20%), and 4.9 × 1026molec. s-1 (0.412 Tg yr-1, ± 21%), 

respectively. Our results exhibit biases of -18%, 8%, and 14%, respectively, when compared to the IPCC Tier 2 bottom-up 20 

inventory. Larger discrepancies are found when comparing the estimates to the CAMS-GLOB-ANT and EDGARv7.0 

inventories (64%-176%), suggesting that the two inventories may be overestimating CH4 emissions from the studied coal 

mining regions. Our estimates provide a comprehensive characterization of the regions within the Shanxi province, contribute 

to the validation of emission inventories, and provide additional insights into CMM emissions mitigation. 

1. Introduction 25 

Methane (CH4) is the second most important anthropogenic greenhouse gas (GHG) with a relatively shorter lifetime but a 

larger global warming potential than carbon dioxide (CO2) (IPCC, 2014; Etminan et al., 2016). For this reason, efforts to 

reduce CH4 emissions would be beneficial for rapid climate change mitigation in the short term. The atmospheric CH4 is 

emitted from a variety of natural sources (accounting for 40%, e.g., wetlands, termites) and anthropogenic sources (accounting 

for 60%, e.g. industrial fossil fuel production and consumption, waste disposal, agriculture) (Saunois et al., 2020). Currently, 30 
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a significant fraction (~33% for the 2008-2017 decade) of global CH4 emissions related to fossil fuels comes from the 

exploitation, transportation, and usage of coal (Saunois et al., 2020). China is one of the leading CH4 emitters in the world and 

accounted for around 14-22% of global anthropogenic CH4 emission (Janssens-Maenhout et al., 2019; Liu et al., 2021). China 

has demonstrated its commitment to addressing CH4 emissions by signing key international agreements such as the Kyoto 

Protocol in 1998 and the Paris Agreement in 2016, underscoring its commitment to global efforts in mitigating climate change. 35 

Additionally, in 2021, China committed to reduce CH4 emissions under the Glasgow Agreement and intended to develop a 

comprehensive and ambitious National Action Plan with the goal of achieving a substantial impact on methane emission 

control and reductions in the 2020s (USDoS, 2021). Thus, the precise measurement of CH4 emission changes is essential for 

determining the effectiveness of these commitments.  

The anthropogenic CH4 emissions in China increased by 40% in the 2000s (Liu et al., 2021), probably reflecting increasing 40 

coal production (Gao et al., 2021). Coal production in China reached 3.9 Gt in 2020, with approximately half of the coal being 

utilized for thermal power generation (National Bureau of Statistics of China, 2022). China’s official GHG emission inventory 

(MEE, 2019) reports that the country’s coal mine methane (CMM) emissions amounted to about 21 Tg in 2014, thus accounting 

for 38% of its total anthropogenic CH4 emissions. China has submitted three versions of the National Communications on 

Climate Change (NDRC, 2004, 2012; MEE, 2019b) and two reports of Biennial Update Reports on Climate Change since 45 

2004 (NDRC, 2017; MEE 2019a), in which the estimated inventories of the CMM emissions are reported. The current CMM 

emission inventories are usually based on bottom-up data-based approaches, which involves identifying and quantifying the 

CH4 emissions from each type of coal mine (Gao et al., 2020).  

Mainland China's coal mines are spread across 26 provinces and were comprised of approximately 1000 coalfields and over 

10,000 coal mines in 2011 (SACMS, 2012). The CMM emissions in China show unique characteristics and complexities, due 50 

to the large variability of the coal rank, capacity, geological conditions, and mining technologies of the numerous coal mines 

(Gao et al., 2020, 2021; Peng et al., 2016; Scarpelli et al., 2020). This large number of coal mines and the heterogeneity 

between them also induce considerable uncertainties in bottom-up estimates and are thus a challenge in achieving accurate 

CMM emissions estimates (Sheng et al., 2019). Qu et al. (2021) highlighted significant challenges in their satellite inversion 

over southeast China characterized by elevated seasonal rice emissions that coincide with extensive cloud cover and potential 55 

misallocation of coal emission. A recent study from Chen et al. (2022) suggests a downward correction in CMM emissions (-

15%) in China compared to the United Nations Framework Convention on Climate Change (UNFCCC) reports, partly driven by 

reductions in the Shanxi province. Zhang et al. (2021) documented an overestimation of anthropogenic emissions from China, 

revealing a 30% decrease in the posterior estimates, with approximately 60% of this downward correction attributed to coal 

mining. Therefore, a strong demand exists for independent and objective verification of CMM emissions from local to regional 60 

scales based on atmospheric observations, which are commonly known as top-down approaches. The observations from 

satellites, e.g. the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor satellite, provide due 
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to their global, high-resolution measurements, the ability to estimate the CMM emissions from regional scales (Sadavarte et 

al., 2021; Tu et al., 2022b; Chen et al., 2022) to a global scale (Shen et al., 2023). 

This study conducts the wind-assigned anomaly method (Tu et al., 2022a, b) on TROPOMI XCH4 observations derived 65 

from 2018 to 2023 for three subregions in the Shanxi province to determine the CMM emissions over that period. Shanxi 

province is known for its abundant coal reserves and is considered one of the coal-richest provinces in China. The coal 

production in Shanxi exceeded 1 billion tons in 2021, accounting for nearly one-third of the country’s total coal output and 

12% of the global output. This highlights the significant role of Shanxi province in China’s energy sector and emphasizes the 

importance of estimating CMM emissions from the mining activities in the region. In this work, the emission estimation 70 

method and the TROPOMI dataset are introduced in Sect. 2. In Sect. 3 we present the results of the TROPOMI observations 

and three different inventories used for comparison, followed by estimated CMM emissions over three subregions. An 

uncertainty analysis based on a dispersion model, wind information and inventory are also performed in this section. A 

conclusion is given in Sect. 4. 

2. Data and method 75 

2.1 TROPOMI dataset 

Launched in October 2017, the TROPOMI instrument is an imaging spectrometer which is designed to view the Earth in 

nadir direction. The instrument utilizes passive remote-sensing techniques to measure the backscattered solar radiation across 

the ultraviolet (UV), visible (VIS), near-infrared (NIR), and short-wave spectral (SWIR) bands (Veefkind et al., 2012). The 

instrument is capable of providing an unprecedented combination of high spatial resolution (5.5 × 7 km2) and complete daily 80 

global coverage of the CH4 total column-averaged dry-air mole fraction (XCH4) (Veefkind et al., 2012; Lorente et al., 2021). 

The RemoTec algorithm, which has been widely utilized in deriving CH4 and CO2 from the Greenhouse Gases Observing 

Satellite (GOSAT) (Butz et al., 2011; Guerlet et al., 2013), is also deployed here to retrieve XCH4 from TROPOMI 

measurements. These measurements capture sunlight backscattered by the Earth’s surface and atmosphere in the NIR and 

SWIR spectral bands (Hu et al., 2018). Recent studies show the potential of using high-resolution TROPOMI XCH4 for 85 

detection and quantification of the CH4 emissions. TROPOMI observations have been used for quantifying CH4 emissions 

from the oil and gas sector (Pandey et al., 2019; Varon et al., 2019; de Gouw et al., 2020; Schneising et al., 2020; Zhang et al., 

2020), from urban areas (Tu et al., 2022a; Foy et al., 2023; Plant et al., 2022), and from coal mining (Sadavarte et al., 2021; 

Tu et al., 2022b). In this study, the TROPOMI XCH4 observations spanning the period from May 2018 to May 2023 over the 

study areas in the Shanxi province are used. A data quality filter (qa = 1.0) is applied to characterize the data during clear-sky 90 

and low-cloud atmospheric conditions. 
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2.2 CH4 inventory datasets 

Qin et al. (2023) used both public and private datasets from over 600 individual coal mines in Shanxi Province. The IPCC 

Tier 2 approach is applied to calculate the corresponding CH4 emissions based on 3-5 sets of observed emission factors, thereby 

establishing a range of bottom-up estimation of CMM on a mine-by-mine basis. In the following work, the bottom-up inventory 95 

computed from the median emission factors (E5) will serve as a prior information in the wind-assigned method for estimating 

emissions, referring to IPCC Tier 2 bottom-up inventory. In their study, an eddy-covariance tower was installed in Changzhi 

during two two-month periods to derive an average observed CH4 flux. Based on the in-situ measurements, a series of scaling 

factors at different percentiles of the observational distribution (i.e., 10%, 30%, 50%, 70%, 90%) were generated. These scaling 

factors were subsequently employed to update the preliminary Tier 2 bottom-up inventory (Qin et al., 2023). The scaling 100 

factors for a specific percentile of the observational distribution show minimal variations among different coal mines, 

suggesting these factors can be treated as constant values across the ensemble of coal mines at each percentile. Our wind-

assigned method emphasizes the proportional share of emissions per mine rather than absolute values, resulting in estimated 

CMM emissions that do not significantly differ whether using the Tier 2 bottom-up inventory or one of the scaled inventory 

datasets. In additional to the current IPCC 2 Tier bottom-up inventory, the scaled inventory is also provided as an additional 105 

reference point in this work. 

The CAMS Global anthropogenic emissions (CAMS-GLOB-ANT) inventory provides methane emissions for different 

sectors with a spatial resolution of 0.1º × 0.1º and temporal coverage from 2000 to 2024 (Granier et al., 2019; 

https://permalink.aeris-data.fr/CAMS-GLOB-ANT, last access: 12 July 2023). Emissions are provided as monthly and yearly 

averages and v5.3, which includes updated ship emissions from CAMS-GLOB-SHIP v3.1, is used in this study. The yearly 110 

mean of CAMS-GLOB-ANT for 14 sectors are illustrated in Figure 1a. Emissions from maritime transport in the study area 

are zero and not shown here. The inventory very well presents the dominant emission sources in the study area. The coal 

production (fugitives (coal)) is the dominant source of methane emissions, accounting for ~96% of the total emissions. The 

sector of solid waste and waste water is the second most important emission source which contributes to 2%. Figure 1b shows 

the spatial distribution of coal emission in Changzhi and the corresponding distributions for Jincheng and Yangquan are 115 

presented in Figure A- 1. The locations of the coal mines and the corresponding emission rates are in good agreement with the 

CAMS inventory. About half of the coal mines are concentrated in the southern region, while the other half are located further 

north, along a southwest to northeast direction. The two reddish grid points (36.05ºN-36.15ºN, 113.05ºE) denote the highest 

emission rate in the CAMS inventory, partly due to the Changzhi city, which is located nearby. The CH4 emission in the city 

region are primarily attributed to the traffic (particularly during the morning and evening rush hours), CH4 leaks at gas stations 120 

and is released by the utilization and release of natural gas in residential areas (Liu et al., 2022). The CH4 emission accounts 

for 1.77 × 1027 molec. s-1 (1.5 Tg yr-1) for the whole study area, which is 55% higher than the IPCC Tier 2 bottom-up inventory 

(1.14 × 1027 molec. s-1 ~ 0.96 Tg yr-1). 
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The EDGARv7.0 emission inventory is the first product of the new Emissions Database for Global Atmospheric Research 

(EDGAR) Community GHG emissions database (Crippa et al., 2021), which provides estimates of emissions of the three main 125 

GHGs (CO2, CH4 and N2O) and fluorinated gases per sector and country. The dataset offers the same spatial resolution of 0.1º 

× 0.1º as the CAMS inventory and covers the period of 1970 to 2022. The CH4 emissions from the fuel exploitation sector are 

the dominant CH4 sources in the study area, accounting for 95.5% of the total CH4 emissions during 2018-2021 (Figure A- 2 

left). The total estimates originating from the energy sector are around 1.85 × 1027 molec. s-1 (1.6 Tg yr-1). The EDGARv7 

estimates a very similar spatial distribution (Figure A- 2 right) as the CAMS inventory with slightly higher (4.5%) values in 130 

Changzhi. The spatial patterns in Jincheng and Yangquan are presented in Figure A- 3. 

 

Figure 1: Left: time-series plot of the yearly averaged CAMS global anthropogenic emissions for different sectors for 2018–2023 
(https://permalink.aeris-data.fr/CAMS-GLOB-ANT, last access: 12 July 2023, Granier et al., 2019). The percentage values represent 
the share of methane emission from coal production and distribution (fugitives (coal)). Right: spatial distribution of methane 135 
emission from coal production for the CAMS-GLOB-ANT inventory. The triangle symbols denote the locations of the coal mines 
and the respective colors represent their emission rates based on the IPCC Tier 2 bottom-up inventory (Qin et al., 2023). 

2.3 Dispersion model 

2.3.1 Cone plume model 

The CH4 emerging from a point source is expected to be distributed along the wind direction. It is assumed that the CH4 140 

molecules disperse evenly along a fan-shaped plume (Tu et al., 2022a). The column enhancement in the downwind side due 

to the assumed source is represented by the following equation:  

𝑑𝑐𝑜𝑙!"! =	
𝜀

𝑣 ∙ 𝑑 ∙ 𝑓𝑜𝑣 
Eq. (1) 

wherein 𝜀 represents the emission rate at the source point in molec. s-1, 𝑣 is the wind speed in ms-1 with the ERA5 wind data 

at 100 m employed in this study, 𝑑 the distance between the source point and the downwind point, and 𝑓𝑜𝑣 the opening angle 

of the cone plume in rad. Here 𝑓𝑜𝑣 is assumed to be 60º based on previous studies (Tu et al., 2022a, b). It should be noted that 145 
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the point source does not generate enhanced CH4 concentrations outside of the cone. This may introduce some uncertainties 

and will be discussed in Sect. 3.4. 

2.3.2 Gaussian plume model 

The dispersion of a gas as a function of distance downwind from a point source can alternatively be approximated by a 

Gaussian plume model (Seinfeld and Pandis, 2006). To evaluate the sensitivity of the analysis with respect to the cone plume 150 

model assumption, as an alternative a Gaussian plume model is investigated in the following.  

𝑑𝑐𝑜𝑙!"! =	
𝜀

𝑣 ∙ 𝑑 ∙ √2𝜋 ∙ (𝑓𝑜𝑣2 )
∙ exp	(−

1
2 ∙ (

𝜑

(𝑓𝑜𝑣2 )
)#) Eq. (2) 

where 𝑑𝑐𝑜𝑙!"! represents the enhanced column in the downwind direction, the 𝑓𝑜𝑣  the angle of the opening angle adopted 

from the cone plume model (Tu et al., 2022a), 𝑣 the wind direction, 𝑑 the distance between the point source and the downwind 

location, and 𝜑 the angle of plume axis and the direction under consideration. The 𝑑𝑐𝑜𝑙!"! 	in the cone plume is restricted in 

the cone area with an opening angle of	𝑓𝑜𝑣, while the values in the Gaussian plume show a gradually fading enhancement 155 

along the circle arc at any radius d (Figure A- 4). We use the Gaussian plume model here in addition to the cone plume outlined 

before for enhancing the error estimate of the emissions resulting from our inversions. We estimate the error budget by varying 

the model parameters of each model description within reasonable limits. Using two alternative models for describing the gas 

dispersion, in addition enables us to investigate the uncertainties introduced by the chosen model type. 

2.4 Background removal and wind-assigned anomaly method 160 

It is of importance to separate the increase of the atmospheric CH4 concentration due to local emissions from the accumulated 

atmospheric CH4 background concentration (the CH4 atmospheric lifetime is in the order of 12 years). A Jacobian matrix is 

introduced to reconstruct the background according to a few background model coefficients, i.e., a constant CH4 value and 

superimposed disturbances: a temporal linear increase, a seasonal cycle determined by the amplitude and phase of the three 

frequencies 1/year, 2/year and 3/year, a daily signal (same value for all data measured during a single day), and a horizonal 165 

gradient (same value for any time but dependent on the horizontal location) (Tu et al., 2022a). In the following discussion, the 

satellite enhancements refer to the residual signal as deduced from TROPOMI CH4 observations after subtracting the modelled 

background (Figure 4 lower panel). 

The wind-assigned anomaly method was first developed for quantifying CH4 emissions from landfills in Madrid (Tu et al., 

2022a). Its applicability for estimating the CMM emissions in the Upper Silesian Coal Basin (USCB) in southern Poland was 170 

demonstrated afterwards (Tu et al., 2022b). The wind-assigned anomalies refer to the difference of enhancements under two 

opposite wind regimes ((e.g., NW (>215º and <45º) and SE (45º – 215º) fields for Changzhi region). The wind regimes are 

divided mainly based on the predominant wind fields over the study regions. The expected daily enhancements (plumes) 

generated by individual emission sources are computed based on Eq. (1) and all contributions then are superimposed to obtain 
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a total daily pattern of CH4 enhancement due to local sources. A temporally averaged pattern is obtained for each wind regime 175 

over the study period and the difference between the two patterns is therefore the modeled wind-assigned anomaly. The 

empirical anomalies are computed from the satellite XCH4 data. The estimated emission rate is computed by scaling the 

modeled anomalies to the empirical anomalies. The uncertainties of the empirical anomalies are determined by the deficits of 

the background model resulting in an imperfect elimination of the background, and the noise errors in the satellite observations. 

3. Results and discussion 180 

3.1 TROPOMI observations 

Shanxi province is rich in coal resources, and as a result, there are more than 600 coal mines spread across the province. 

Most of these coal mines are concentrated in the northern, eastern and southeastern, and central regions of Shanxi. A multi-

year average of TROPOMI XCH4 observations in the whole Shanxi province is shown in Figure 2, superimposed to the 

locations of mines in the area. Elevated XCH4 is observed in three regions: Yangquan (east), Changzhi (southeast) and Jincheng 185 

(south). Of these regions, the Changzhi region is of particular interest since a field campaign was implemented in 2022. This 

field campaign region covers an area of 35.8ºN–37.2ºN, 112.6ºE–113.6ºE, i.e., 155 km × 90 km) and will be discussed in detail 

as an example to better understand the CH4 emissions from coal mining activities in Shanxi province.  

 
Figure 2: TROPOMI XCH4 and the location of coal mines in Shanxi province. Green dot symbols denote the coal mine locations 190 
(http://nyj.shanxi.gov.cn/, last access: August 21, 2023). 

There are 62 coal mines located over the study area in Changzhi region, as shown in Figure 3. The emission rates range 

from 1.6 × 1024 to 1.4 × 1026 molec. s-1 (~0.001 Tg yr-1 – 0.11 Tg yr-1) (Qin et al., 2023). There are near 30 small coal mines 

scattered in the mountain area in the south and each mine has a relatively low emission rate, measuring less than 1.0 × 1025 

molec. s-1. Some larger coal mines with higher emissions rates (emission rate > 1.0 × 1025 molec. s-1) are found close to the 195 
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Zhangzi county as well as in the north region and the mean value for these is around 7.3 × 1025 molec. s-1 with a standard 

deviation of 4.6 × 1025 molec. s-1. 

 
Figure 3: Terrain map with IPCC Tier 2 bottom-up inventory (Qin et al., 2023). The triangle symbols represent the location of all 
individual coal mines, and different colors denote the emission rates. The square symbols denote the locations of Changzhi city and 200 
Zhangzi county. Terrain information originates from World Imagery. 

A time series of five-years of TROPOMI XCH4 observations in the Changzhi region is shown in Figure 4. The average 

concentration is 1906.8 ± 41.0 ppb over the entire period. From 2019 to 2022, there is an observed increase in XCH4 levels by 

approximately 0.7% per year. The observations in the figure indicate that there is a clear seasonal variability in the 

concentrations. The data show that the lowest abundances of XCH4 occur in the early part of the year, while the highest values 205 

are observed in autumn. The seasonal pattern is determined by both sinks and sources. The elimination of methane (CH4) by 

hydroxyl radicals (OH) in the troposphere, known as atmospheric oxidation, plays a crucial role in controlling the 

concentrations of climate-relevant gases like CH4 (Rigby et al., 2017; Li et al., 2018). This process is responsible for 

approximately 85-90% of atmospheric CH4 loss (Saunois et al., 2020). On the other hand, the dominant factor contributing to 

CH4 emissions in this region is coal mining activities. These coal production activities can vary throughout the year and have 210 

a significant impact on the overall XCH4 concentrations. 
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Figure 4: Time-series of average TROPOMI XCH4 (upper panel) and corresponding enhancement after removing the background 
(lower panel) over Changzhi region (35.8ºN—37.2ºN, 112.6ºE—113.6ºE) from May 2018 to April 2023. 

3.2 Estimation of CH4 emission strengths from TROPOMI data sets 215 

The ERA5 wind at 100 m altitude above ground is used for describing the transport with the wind-assigned method. The 

wind is segmented as NW (>215º and <45º) and SE (45º – 215º) fields for Changzhi region (Figure A- 5). Due to the observed 

seasonal changes in XCH4, the observed variable background concentrations need to be considered when estimating the 

emissions. The TROPOMI enhancements after removing the background are shown in Figure 5a. High values are observed in 

the center and south of the study area, i.e., close to the clusters of the coal mines (triangle symbols). It is difficult to distinguish 220 

the CH4 from the residential regions since the coal mines are located close to Zhangzi county and Changzhi city. The averaged 

enhancements are 4.7 ppb ± 5.6 ppb for the whole region. The wind-assigned anomalies from the TROPOMI observations 

indicate the difference of the enhancements for wind coming from NW and from SE, resulting in a positive plume in the SE 

direction and negative plume in NW direction (Figure 5b).  

The correlation of the wind-assigned anomalies deduced from the TROPOMI observations and from the plume model using 225 

the IPCC Tier 2 bottom-up inventory (Qin et al., 2023) is presented in Figure 5c, and the estimated emission rate is 8.4 × 1026 

molec. s-1 (R2 = 0.61). In comparison to our results based on the TROPOMI observations and the wind-assigned method, the 

IPCC Tier 2 bottom-up (Qin et al., 2023), CAMS and EDGARv7 inventories are overestimating the emissions, and have a 

high bias by 31%, 120% and 130%.  
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 230 
Figure 5: TROPOMI XCH4 enhancement (XCH4-background) (a), the wind-assigned anomalies (NW–SE) (b), and correlation plot 
of the wind-assigned anomalies (c) between TROPOMI and the simple cone plume model with using the IPCC Tier 2 bottom-up 
inventory (1.1 × 1027 molec. s−1 in total, Qin et al., 2023) and ERA5 wind at 100 m during May 2018–May 2023 over the Changzhi 
region. The triangle symbols denote the inventory locations, with different colours indicating varying emission rates. Hatched areas 
in (a)–(b) indicate grids with no available data. The uncertainty in (c) is presented by the average error bars of the anomalies, which 235 
are derived from the uncertainty in the background and the TROPOMI observations. 

The wind-assigned method was also applied to Jincheng and Yangquan regions. The wind segmentations are NW-SE for 

Jincheng and E-W for Yangquan based on the ERA5 wind information (Figure A- 5). The estimated emission is 1.4 × 1027 

molec. s-1 for Jincheng and 4.9 × 1026 molec. s-1 for Yangquan. The wind-assigned anomalies in the Jincheng region shows a 

better correlation with a R2 value of 0.80, whereas the value is lower (R2=0.42) in the Yangquan region (Figure A- 6). The 240 

resulting estimate for Jincheng is close to the IPCC Tier 2 bottom-up inventory (Qin et al., 2023), displaying a minor deviation 

of around 8%. However, the distinction is more pronounced for Yangquan, exhibiting a slightly larger difference of 14%. 

Figure 6 summarizes the estimated emissions based on the wind-assigned anomaly method compared to the predictions based 

on the inventories in all regions. In general, the estimates are comparable to the IPCC Tier 2 bottom-up inventory (Qin et al., 

2023), whereas both CAMS and EDGAR inventories overestimate the emissions with a relative difference of about 245 

120%/130% in Changzhi, 60%/68% in Jincheng and 165%/186% in Yangquan.  

Our CMM estimates in these three regions fall within the 30th and 70th percentile range of the updated emission rates in the 

study by Qin et al. (2023). In addition, our results are consistently lower than the CAMS-GLOB-ANT and the EDGARv7 

inventories. This result agrees with previous studies. For instance, a -15% underestimation compared to the UNFCCC has been 

reported by Chen et al., (2022). Additionally, Zhang et al., (2021) documented a 30% decrease in their posterior estimates for 250 

China, with 60% attributed to coal mining. This pattern of overestimated anthropogenic emissions, in comparison to China’s 

inventory, has also been found in previous research, utilizing GOSAT inversion and various versions of the EDGAR inventory 

as a priori estimates (Miller et al., 2019; Maasakkers et al., 2019). This divergence may be attributed to two reasons: (1) missing 

observation of strong CMM emissions during the TROPOMI overpass. It is important to note that CMM emissions exhibit a 

strong dependency on coal mine activities, which vary over time. The TROPOMI data provide instantaneous observations, 255 
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capturing CH4 concentrations at a specific moment (local time ~ 13:30), thereby leading to limitations in detecting strong 

CMM emissions during both morning and afternoon periods. (2) the CMM utilization connected with a reduction of release 

into the atmosphere has been largely improved in the last decade, since the national government issued specific targets in the 

national 12th and 13th five-year plan (Gao et al., 2021; Lu et al., 2021).   

 260 
Figure 6: Estimated emission rates and emission rates from three different inventories for the Changzhi, Jincheng and Yangquan 
regions. The dot symbols in the grey bars represent the emission rates updated with the flux tower observations with 50th percentile 
of distribution, and the bottom and top error bars (red) represent the values with 30th and 70th percentile, respectively (Qin et al., 
2023). 

3.3 Uncertainty analysis 265 

3.3.1 Background removal 

In comparison to the atmospheric concentration, the CH4 amounts emitted from the sources are relatively small (Figure 4). 

To assess the impact of background removal sensitivity, the 10th lower percentile of overall satellite observations each day is 

considered as the background for the study area on that day, instead of separately considering the spatial and temporal variation 

as described in Section 2.3. The XCH4 enhancements using the new background removal method, are generally higher than 270 

those achieved with the previous approach, exhibiting a mean bias of 21.5 ± 14.4 ppb in Changzhi (Figure A- 7a). This 

discrepancy diminishes to -3.6 ± 2.1 ppb when comparing the wind-assigned anomalies computed from TROPOMI 

enhancements based on different background removal methods (Figure A- 7b). Calculating the differences in enhancements 

under two different wind field segmentations helps to reduce systematic errors associated with the background removal. The 

substitution of the background removal method results in a 7% increase in estimated emission rates in Changzhi, a 6% increase 275 

in Jincheng and a 9% increase in Yangquan. 
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3.3.2 Cone plume and Gaussian plume model 

To further investigate the uncertainty of the two plume models, different opening angles are tested for estimating CH4 

emissions in the study regions. Estimated emissions increased with increasing fov for both plume models (Figure 7 for 

Changzhi, and Figure A- 8 for Jincheng and Yangquan). The results based on the Gaussian plume is higher than those based 280 

on the cone plume and the discrepancy between the two models increases with increasing opening angle. For Changzhi region, 

when the fov is chosen as the previous setting value (60º), the estimated emission rate based on the Gaussian plume are 9.4 × 

1026, which is 12% higher that based on the cone plume model. The relative difference between these two models drops to 5% 

for fov = 20º. The anomalies derived from the Gaussian plume model are overall similar to those from the cone plume model, 

showing a slightly better correlation with the anomalies from the TROPOMI observations (R2 = 0.65, Figure A- 9). 285 

 
Figure 7: Estimates of emission rates in Changzhi region with respect to different opening angles based on cone plume and Gaussian 
plume model. The three different inventories are presented as well. 

3.3.3 Wind analysis data and field segmentation 

Uncertainty in wind direction and speed is one of the largest sources of error in correctly estimating the emission rates (Tu 290 

et al., 2022b). Thus, use of winds at different model height level and different wind field segmentations are tested, the spatial 

variation of the winds is investigated, and an alternative wind data set is applied for the wind-assigned anomaly analysis.  

The wind direction exhibits a similar pattern at 10 m and 100 m model levels, while the speed increases with height. The 

wind speed at 10 m is 15.4% lower than that at 100 m in Changzhi region. Consequently, the corresponding estimated emission 

rate amounts to 7.4 × 1026 molec. s-1, representing an 11.9% decrease compared to the estimate obtained using wind data at 295 

100 m. Using 10 m winds instead of 100 m reduces the emission estimates by 10.7% (the average wind speed reduces by 17%) 

in Jincheng and 4.1% (the average wind speed reduces by 10%) in Yangquan for wind at 10 m, in comparison to those using 

wind data at 100 m. The wind segmentation is mainly based on the local predominant wind regimes. To quantify its uncertainty, 

different segmentations (N and S segmentations for Changzhi and Jingcheng, and NW and SE segmentations for Yangquan) 
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are applied. The corresponding CH4 emission increases by 12% in Changzhi, whereas it decreases by 7% in Jincheng and by 300 

6% in Yangquan. 

The topography can affect the surface wind, making it challenging to determine the exact pathway of transport from the 

emission source to the measurement station (Babenhauserheide et al., 2020). Considering the elevation features, the central 

part of the Changzhi region is characterized by flat terrain, while elevations rise in the northeast and southeast, as depicted in 

Figure A- 10. To further investigate the sensitivity of the wind spatial variation, the wind data at the central point (36.5º N, 305 

113º E for Changzhi, 35.5º N, 112.75º E for Jincheng and 38º N, 113.5º E in Yangquan) is used as a representative value to 

represent the wind for the entire study area. The wind direction pattern at the central point tends to have more wind from east 

and the averaged wind speed decreases only by 4.4% compared to that over the whole study area in Changzhi (Figure A- 11). 

This substitution results in a decreased estimated emission rate with 11% (emission rate: 7.5 × 1026 molec. s-1) in Changzhi, 

an increased emission rate with 7% (1.5 × 1027 molec. s-1) in Jincheng and 8% (5.3× 1026 molec. s-1) in Yangquan.  310 

An alternative wind dataset at a height of 100 m above the ground from the Global Data Assimilation System (GDAS) are 

used instead of the ERA5 dataset. The GDAS FNL (Final) operational global analysis and forecast data is provided by the 

National Centers for Environmental Prediction (NCEP) with a spatial resolution of 0.25º × 0.25º and a temporal resolution of 

6 h (National Centers for Environmental Prediction et al., 2015). Compared with the ERA5 data, the NCEP data shows 

comparable wind distributions (Figure A- 13), featuring slightly elevated wind speeds and a more prevalent wind direction 315 

originating from the broader northwest region. The estimated emission strength for using the NCEP dataset amounts to 7.9 × 

1026 molec. s-1, indicating a 6% reduction compared to the value obtained using the ERA5 dataset in Changzhi. The estimates 

increase by 7% in Jincheng and decrease by 2% in Yangquan. 

3.3.4 Inventories 

The use of an inventory as a priori knowledge is integral to the wind-assigned anomaly approach. As detailed in Sect. 3.2, 320 

the IPCC Tier 2 bottom-up and the CAMS-GLOB-ANT (or EDGAR) inventories highlight discrepancies in emission sources 

both in terms of location and abundance. To investigate the uncertainty introduced by the inventory, the CAMS-GLOB-ANT 

inventory is employed in the approach instead of the IPCC Tier 2 bottom-up inventory. Given the similarity in pattern between 

the CAMS and EDGAR inventories, we have exclusively focused on the CAMS inventory. This substitution leads to minor 

deviations in the observed enhancements (TROPOMI XCH4 - background) across the Changzhi region (Figure A- 14(a) and 325 

Figure 5(a)). In general, the spatial patterns maintain a notable similarity, while presenting some divergence in abundance. The 

calculated average stands at 3.61 ± 4.44 ppb when employing the CAMS-GLOB-ANT inventory. In contrast, using the IPCC 

Tier 2 bottom-up inventory yields an average of 4.68 ± 5.59 ppb. These two datasets show a mean bias of 1.12 (± 2.93) ppb 

with an R2 value of 0.8562 (Figure A- 14(b)). The wind-assigned anomalies from both datasets also present comparable 

patterns and display a strong correlation between them (Figure A- 14(c), R2 = 0.9962). It is because the systematic errors in 330 

background removal is compensated by computing the differences of enhancements under different wind field segmentations. 

The estimated emission strength amounts to 8.5 × 1026 molec. s-1 in Changzhi, which is very close (1%) to the strength 
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estimated using the Tier 2 IPCC bottom-up inventory as the a priori. Similar results are observed in the other two regions, with 

biases of 7% higher and 12% lower biases in Jincheng and Yangquan, respectively.  

Based on the error propagation, the total uncertainties in the estimated emission rates from the different error sources 335 

(background removal and noise in the satellite data, dispersion model (Gaussian plume and opening angle fov = 70º), wind 

information (ERA5 wind for height level = 10 m, wind without considering spatial variation, different wind segmentation, and 

NCEP wind data), and different inventories) are approximately 25% for Changzhi, 20% for Jincheng and 21% for Yangquan.  

4. Conclusion 

Quantifying CMM emissions using high-spatial resolution satellite observations can contribute independent emission 340 

estimates for evaluating inventories and assisting in the development of reduction strategies and interventions. In this study, a 

wind-assigned anomaly method was used for analyzing the TROPOMI XCH4 observations between May 2018 to May 2023. 

The CMM emissions in three subregions (Changzhi, Jincheng, Yangquan) in the coal-rich Shanxi province of China were 

achieved. The three regions are aggregation areas of coal mines, consequently exhibiting elevated XCH4 abundances. The 

concluded emission strengths are 8.4× 1026 molec. s-1 (0.706 Tg yr-1, ± 25%), 1.4 × 1027 molec. s-1 (1.176 Tg yr-1, ± 20%), and 345 

4.9 × 1026 molec. s-1 (0.412 Tg yr-1, ± 21%), respectively.  

The estimates obtained derived through the wind-assigned anomaly method demonstrate comparability with the IPCC Tier 

2 bottom-up inventory (Qin et al., 2023). Compared to the estimates, the inventory shows relative differences of 31%, -7%, 

and -12% in Changzhi, Jincheng, and Yangquan, respectively. Our CMM estimates in these three regions fall within the 30th 

and 70th percentile range of the updated emission rates in the study by Qin et al. (2023). The CAMS-GLOB-ANT and 350 

EDGARv7.0 inventories show very similar results. However, higher discrepancies are found when comparing our estimates 

to these inventories, with differences reaching approximately 125%, 64%, and 176%, respectively. This indicates a potential 

overestimation of CH4 emissions from these coal mining regions in the CAMS-GLOB-ANT and EDGARv7.0 inventories. 

Previous studies have also documented similar trends, reporting overestimated CMM emission estimates in inventories (Chen 

et al., 2022; Zhang et al., 2021; Miller et al., 2019; Maasakkers et al., 2019). In additional, our lower estimates might due to 355 

two reasons: (1) a lack of observation of strong CMM emissions during TROPOMI overpasses. CMM emissions are closely 

tied to coal mine activities, which exhibit temporal variability. TROPOMI data provide instantaneous observations, capturing 

CH4 concentrations at a specific local time (~ 13:30), which may limit the detection of strong CMM emissions during morning 

and afternoon periods. (2) improvement in CMM and reduction of atmospheric release have been substantial in the last decade. 

This improvement is attributed to specific targets set by the national government in the national 12th and 13th five-year plan 360 

(Gao et al., 2021; Lu et al., 2021), indicating a potential decrease in actual emissions compared to historical inventory estimates. 

To evaluate uncertainties, we explore variations in background removal, the dispersion model and its inputs (wind data and 

inventory serving as a priori knowledge). The background removal introduces upward biases in 6%-9% when using the 10th 

lower percentile of overall satellite observations each day as the background for the study area on that day. The cone plume 
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model introduces uncertainties due to assuming a sharply bordered fan-shaped plume extending along the downwind direction, 365 

i.e., any points located outside of the cone area experience no enhancement. To estimate uncertainties connected to the assumed 

plume shape, we investigate the assumption of a Gaussian plume, resulting in an estimated emission strength increase of 12%, 

7% and 8% in Changzhi, Jincheng, and Yangquan, respectively. Beyond consideration of the dispersion model, the assumed 

wind speed and direction represent major sources of uncertainty. An analysis of using wind at 10 m height reveals lower biases 

of 4%-12%. Additionally, we tested an alternative wind category (N-S), yielding a 10% increase in estimated emission strength 370 

in Changzhi and 7% and 6% decrease in Jincheng and Yangquan (NW-SW), respectively. Considering the elevation features, 

the spatial variation in wind leads to median biases ranging from 6% to 9%. Introducing another wind dataset (NCEP FNL) 

for analysis results in different biases of -6%, 7% and -2% in the three different regions. The emission inventory is considered 

as a priori knowledge in the approach and replacing the IPCC Tier 2 bottom-up inventory with the CAMS-GLOB-ANT 

inventory introduces small biases (1%, 7% and -12%). Considering all the impacts mentioned above, the total uncertainties, 375 

computed through error propagation, are determined to be 25% in Changzhi, 20% in Jincheng and 21% in Yangquan. 

This study further demonstrates the practicality of employing the wind-assigned anomaly method together with the high 

spatial resolution TROPOMI XCH4 to quantify regional-scale CH4 emission strengths. This approach holds promise for 

extending its application to estimate CMM emission in other coal mine-active regions, thereby providing top-down estimates 

that can enhance the refinement of inventories. Moreover, these results offer support for enhancement of the mitigation 380 

strategies and the efficient control of CMM emissions. 
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Appendix 

 
Figure A- 1: Similar to Figure 1-right, but for Jincheng (left) and Yangquan (right) regions, respectively. 
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 410 
Figure A- 2: Similar to Figure 1 but for the EDGARv7 energy sector in Changzhi. 

 
Figure A- 3: Similar to Figure 1-right, but for the EDGARv7 energy sector in Jincheng (left) and Yangquan (right) regions, 
respectively. 

 415 
Figure A- 4: Spatial distribution of dispersion based on the cone plume (left) and Gaussian plume (right) model. The wind from west 
is used as an example. 
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Figure A- 5: Wind roses plots for local daytime (08:00–18:00 UTC) from May 2018 to April 2023 for the ERA5 model wind in 
Changzhi, Jincheng and Yangquan regions, respectively.  420 

 
Figure A- 6: Similar to Figure 5(c), but for the Jincheng and Yangquan regions. 

 
Figure A- 7: XCH4 enhancements (TROPOMI - background) and its corresponding wind-assigned anomaly using different 
background removal methods. The grey solid line corresponds to the 1:1 line. 425 
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Figure A- 8: Similar to Figure 7 but for Jincheng and Yangquan regions. 

 
Figure A- 9: Similar to Figure 5(c) but using the Gaussian plume model. 

 430 
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Figure A- 10: Altitude map for Changzhi, Jincheng and Yangquan regions. Data originate from ALOS World 3D – 30m (AW3D30) 
(Tadono et al., 2014). 

 435 
Figure A- 11: Similar to Figure A- 5(a) but for the grid at 36.5º N, 113º E in Changzhi. 
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Figure A- 12: XCH4 enhancements (XCH4 - background) for Jincheng and Yangquan region. 

 

Figure A- 13: Similar to Figure A- 5(a) but from NCEP FNL operational analysis data in the Changzhi region. 440 

 

Figure A- 14: (a): Similar to Figure 5(a) but using the CAMS-GLOB-ANT inventory as a prior information. The triangle symbols 
denote the inventory location (emission rate > 1 × 1024 molec. s-1).  (b): correlation for the enhancement and (c): correlation for the 
wind-assigned anomalies derived from the TROPOMI observations using the IPCC Tier 2 bottom-up inventory (Qin et al., 2023) 
and the CAMS-GLOB-ANT inventory. The grey line corresponds to the 1:1 line. 445 
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