

1 **Simulation of ozone-vegetation coupling and feedback in**
2 **China using multiple ozone damage schemes**

3
4
5 Jiachen Cao¹, Xu Yue^{1*}, Mingrui Ma²
6

7 1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution
8 Control, Collaborative Innovation Center of Atmospheric Environment and Equipment
9 Technology, School of Environmental Science and Engineering, Nanjing University of
10 Information Science & Technology (NUIST), Nanjing, 210044, China
11 2. State Key Laboratory of Pollution Control and Resource Reuse, School of the
12 Environment, Nanjing University, Nanjing, 210044, China

13
14
15
16 *Corresponding author: Xu Yue

17 email: yuexu@nuist.edu.cn

Abstract

As a phytotoxic pollutant, surface ozone (O_3) not only affects plant physiology but also influences meteorological fields and air quality by altering leaf stomatal functions. Previous studies revealed strong feedbacks of O_3 -vegetation coupling in China but with large uncertainties due to the applications of varied O_3 damage schemes and chemistry-vegetation models. In this study, we quantify the O_3 vegetation damage and the consequent feedbacks to surface meteorology and air quality in China by coupling two O_3 damage schemes (S2007 vs. L2013) into a fully coupled regional meteorology-chemistry model. With different schemes and damaging sensitivities, surface O_3 is predicted to decrease summertime gross primary productivity by 5.5%-21.4% and transpiration by 5.4%-23.2% in China, in which the L2013 scheme yields 2.5-4 times of losses relative to the S2007 scheme. The damages to photosynthesis of sunlit leaves are \sim 2.6 times that of shaded leaves in the S2007 scheme but show limited differences in the L2013 scheme. Though with large discrepancies in offline responses, the two schemes yield similar magnitude of feedback to surface meteorology and O_3 air quality. The O_3 -induced damage to transpiration increases national sensible heat by 3.2-6.0 W m^{-2} (8.9% to 16.2%) while reduces latent heat by 3.3-6.4 W m^{-2} (-5.6% to -17.4%), leading to a 0.2-0.51 $^{\circ}C$ increase in surface air temperature and a 2.2-3.9% reduction in relative humidity. Meanwhile, surface O_3 concentrations on average increase by 2.6-4.4 $\mu g m^{-3}$ due to the inhibitions of stomatal uptake and the anomalous enhancement in isoprene emissions, the latter of which is attributed to the surface warming by O_3 -vegetation coupling. Our results highlight the importance of O_3 control in China due to its adverse effects on ecosystem functions, global warming, and O_3 pollution through the O_3 -vegetation coupling.

49
50 **Keywords:** Ozone, vegetation, feedback, meteorology, air quality, regional model

52 **1 Introduction**

53 Surface ozone (O_3) is one of the most enduring air pollutants affecting air quality
54 in China, with detrimental effects on human health and ecosystem functions (Monk et
55 al., 2015). Long-term observations and numerical simulations have shown that O_3
56 affects stomatal conductance (Li et al., 2017), accelerates vegetation aging (Feng et al.,
57 2015), and reduces photosynthesis (Wittig et al., 2007). These negative effects altered
58 carbon allocation (Yue and Unger, 2014; Lombardozzi et al., 2015) and inhibited plant
59 growth (Li et al., 2016), suppressing ecosystem carbon uptake (Ainsworth, 2012).
60 Moreover, these effects have profound implications for global/regional climate and
61 atmospheric environment. Given the significant ecological impacts, a systematic
62 quantification of the O_3 vegetation damage effect in China is of great importance for
63 the better understanding of the side effects of O_3 pollution on both regional carbon
64 uptake and climate change.

65 At present, field experiments on O_3 -induced vegetation damage have been
66 conducted in China but were mostly confined to individual monitoring sites. For
67 instance, Su et al. (2017) conducted experiments on grassland in Inner Mongolia and
68 found that elevated O_3 concentrations resulted in a decrease of approximately 20% in
69 the photosynthetic rate of herbaceous plants. Meta-analysis of tropical, subtropical, and
70 temperate tree species in China found that increased O_3 concentrations reduced net
71 photosynthesis and total biomass of Chinese woody plants by 28% and 14%,
72 respectively (Li et al., 2017). However, most of these experiments were conducted
73 using open-top chambers with artificially controlled O_3 concentrations, rather than
74 actual surface O_3 concentrations, making it difficult to quantitatively estimate the
75 impact of ambient O_3 on vegetation productivity. Furthermore, the spatial coverage of
76 field experiments is limited, which hinders the direct use of observational data for
77 assessing O_3 vegetation damage in different regions of China.

78 Alternatively, numerical models provide a more feasible approach to quantify the
79 O_3 -induced vegetation damage from the regional to global scales. Currently, there are
80 three main parameterizations for the calculation of ozone vegetation damage. Felzer et

81 al. (2004) established an empirical scheme based on the Accumulated Ozone exposure
82 over a Threshold of 40 ppb (AOT40) within the framework of a terrestrial ecosystem
83 model. They further estimated that O₃ pollution in the United States led to a decrease
84 in net primary productivity (NPP) by 2.6% to 6.8% during the period of 1980-1990.
85 However, the AOT40 is related to O₃ concentrations alone and ignores the biological
86 regulations on the O₃ stomatal uptake, leading to inconsistent tendencies between O₃
87 pollution level and plant damage at the drought conditions (Gong et al., 2021). In
88 acknowledge of such deficit, Sitch et al. (2007) proposed a semi-mechanistic scheme
89 calculating O₃ vegetation damage based on the stomatal uptake of O₃ fluxes and the
90 coupling between stomatal conductance and leaf photosynthesis. Yue and Unger (2014)
91 implemented this scheme into the Yale Interactive terrestrial Biosphere (YIBs) model.
92 Taking into account varied O₃ sensitivities of different vegetation types, they estimated
93 that surface O₃ led to reductions of 2-5% in the summer gross primary productivity
94 (GPP) in eastern U.S. from 1998 to 2007. Later, Lombardozzi et al. (2013) conducted
95 a meta-analysis using published chamber data and found different levels of responses
96 to O₃ exposure between stomatal conductance and photosynthesis. They further
97 implemented the independent response relationships into the Community Land Model
98 (CLM) and estimated that current ozone levels led to a reduction in global GPP by 8%-
99 12% (Lombardozzi et al., 2015).

100 The O₃ stress on vegetation physiology can feed back to affect regional climate.
101 Lombardozzi et al. (2015) employed the CLM model and found that current O₃
102 exposure reduced transpiration by 2%-2.4% globally and up to 15% regionally over
103 eastern U.S., Europe, and Southeast Asia, leading to further perturbations in surface
104 energy balance. In U.S., Li et al. (2016) found that the O₃ vegetation damage reduced
105 latent heat (LH) flux, precipitation, and runoff by 10-27 W m⁻², 0.9-1.4 mm d⁻¹, and
106 0.1-0.17 mm d⁻¹, respectively, and increased surface air temperature by 0.6-2.0 °C
107 during the summer of 2007-2012. In China, Zhu et al. (2022) performed simulations
108 and found that the inclusion of O₃-vegetation interaction caused a 5-30 W m⁻² decrease
109 in LH, 0.2-0.8 °C increase in surface air temperature, and 3% reduction in relative

110 humidity during summers of 2014-2017. Recently, Jin et al. (2023) applied a different
111 regional model and estimated that O₃ exposure weakened plant transpiration and altered
112 surface heat flux in China, resulting in significant increase of up to 0.16 °C in maximum
113 daytime temperature and decrease of -0.74% in relative humidity. However, all these
114 previous estimates of O₃-induced feedback to climate were derived using the empirical
115 O₃ damage scheme proposed by Lombardozzi et al. (2013), which assumed fixed
116 damage ratios independent of O₃ dose for some vegetation species and as a result may
117 have biases in the further estimated feedback to climate.

118 The O₃-vegetation coupling also has intricate implications for air quality. On one
119 hand, O₃-vegetation coupling can influence meteorological conditions that affect O₃
120 generation, ultimately influencing the O₃ level (Sadiq et al., 2017). On the other hand,
121 it can also influence biogenic emissions and dry deposition, thereby affecting O₃
122 concentrations (Gong et al., 2020). Sadiq et al. (2017) implemented O₃-vegetation
123 coupling in the Community Earth System Model (CESM) and estimated that surface
124 O₃ concentrations increased 4-6 ppb in Europe, North America, and China due to O₃-
125 vegetation coupling. By using the CLM model with the empirical scheme of
126 Lombardozzi et al. (2013), Zhou et al. (2018) found that O₃-induced damage on leaf
127 area index (LAI) could lead to changes in global O₃ concentrations by -1.8 to +3 ppb
128 in boreal summer. Gong et al., (2020) used the O₃ damage scheme from Sitch et al.
129 (2007) embedded in a global climate-chemistry-carbon coupled model and estimated
130 that O₃-induced stomatal inhibition led to an average surface O₃ increase of 1.2-2.1 ppb
131 in eastern China and 1.0-1.3 ppb in western Europe. Different from the above global
132 simulations with coarse resolutions, regional modeling with fine resolution can reveal
133 more details about O₃-vegetation coupling and feedback to surface O₃ concentrations
134 in China (Zhu et al., 2022; Jin et al., 2023). However, all these regional simulations
135 were carried out using O₃ damage scheme of Lombardozzi et al. (2013), limiting the
136 exploration of model uncertainties due to varied O₃ vegetation damage schemes.

137 In this study, we implemented O₃ vegetation damage schemes from both Sitch et
138 al. (2007) and Lombardozzi et al. (2013) into the widely-used regional meteorology-

139 chemistry model WRF-Chem. We validated the simulated meteorology and O₃
140 concentrations, and performed sensitivity experiments to explore the O₃ damage to GPP
141 and consequent feedbacks to regional climate and air quality in China. Within the same
142 framework, we compared the differences of O₃-vegetation coupling from two schemes
143 and explored the causes for the discrepancies. We aimed to quantify the modeling
144 uncertainties in the up-to-date estimates of O₃ impact on regional carbon fluxes and its
145 feedback to regional climate and air quality in China.

146

147 **2 Method**

148 **2.1 WRF-Chem model**

149 We used WRF-Chem model version 3.9.1 to simulate meteorological fields and
150 O₃ concentration in China. The model includes atmospheric physics and dynamical
151 processes, atmospheric chemistry, and biophysical and biochemical processes (Grell et
152 al., 2005, Skamarock et al., 2008). The model domain is configured with 196 × 160 grid
153 cells at 27 km horizontal resolution on the Lambert conformal projection, and covers
154 the entire mainland China. In the vertical direction, 28 layers are set extending from
155 surface to 50 hPa. The meteorological initial and boundary conditions were adopted
156 from ERA5 reanalysis produced by the European Centre for Medium-Range Weather
157 Forecasts (ECMWF) at a horizontal resolution of 0.25° × 0.25° (Hersbach et al., 2020).
158 The chemical initial and boundary conditions were generated from the Model for Ozone
159 and Related Chemical Tracer version 4 (MOZART-4), which is available at a horizontal
160 resolution of 1.9° × 2.5° with 56 vertical layers (Emmons et al., 2010).

161 Anthropogenic emissions are adopted from the 0.25° Multi-resolution Emission
162 Inventory for China (MEIC) and MIX Asian emission inventory for the other regions
163 (available at <http://meicmodel.org>). Biogenic emissions are calculated online using the
164 Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006), which
165 considers the impacts of plant types, weather conditions, and leaf area on vegetation
166 emissions. Atmospheric chemistry is simulated using the Carbon Bond Mechanism
167 version Z (CBMZ) (Zaveri and Peters, 1999) gas-phase chemistry module coupled with

168 a four-bin sectional Model for Simulating Aerosol Interactions and Chemistry
169 (MOSAIC) (Zaveri et al., 2008). The photolysis scheme is based on the Madronich
170 Fast-TUV photolysis module (Tie et al., 2003). The physical configurations include the
171 Morrison double-moment microphysics scheme (Morrison et al., 2009), the Grell-3
172 cumulus scheme (Grell et al., 2002), the Rapid Radiative Transfer Model longwave
173 radiation scheme (Mlawer et al., 1997), the Goddard short-wave radiation scheme
174 (Chou and Suarez, 1994), the Yonsei University planetary boundary layer scheme
175 (Hong et al., 2006), and the revised MM5 (Fifth generation Mesoscale Model) Monin–
176 Obukhov surface layer scheme.

177

178 **2.2 Noah-MP model**

179 Noah-MP is a land surface model coupled to WRF-Chem with multiple options
180 for key land-atmosphere interaction processes (Niu et al., 2011). Noah-MP considers
181 canopy structure with canopy height and crown radius, and depicts leaves with
182 prescribed dimensions, orientation, density, and radiometric properties. The model
183 employs a two-stream radiative transfer approach for surface energy and water transfer
184 processes (Dickinson, 1983). Noah-MP is capable of distinguishing photosynthesis
185 pathways between C₃ and C₄ plants, and defines vegetation-specific parameters for leaf
186 photosynthesis and respiration.

187 Noah-MP considers prognostic vegetation growth through the coupling between
188 photosynthesis and stomatal conductance (Farquhar et al., 1980; Ball et al., 1987). The
189 photosynthesis rate, A ($\mu\text{molCO}_2 \text{ m}^{-2} \text{ s}^{-1}$), is calculated as one of three limiting factors
190 as follows:

$$191 A_{tot} = \min (W_c, W_j, W_e) I_{gs} \quad (1)$$

192 where W_c is the RuBisco-limited photosynthesis rate, W_j is the light-limited
193 photosynthesis rate, and W_e is the export-limited photosynthesis rate. I_{gs} is the
194 growing season index with values ranging from 0 to 1. Stomatal conductance (g_s) is
195 computed based on photosynthetic rate as follows:

$$196 g_s = \frac{1}{r_s} = m \frac{A_{net}}{C_s} RH + b \quad (2)$$

197 where b is the minimum stomatal conductance; m is the Ball-Berry slope of the
198 conductance-photosynthesis relationship; A_{net} is the net photosynthesis by subtracting
199 dark respiration from A_{tot} ; C_s is the ambient CO₂ concentration at the leaf surface. The
200 assimilated carbon is allocated to various parts of vegetation (leaf, stem, wood, and root)
201 and soil carbon pools (fast and slow), which determines the variations of LAI and
202 canopy height. Plant transpiration rate is then estimated using the dynamic LAI and
203 stomatal conductance. Noah-MP also distinguishes the photosynthesis of sunlit and
204 shaded leaves. Sunlit leaves are more limited by CO₂ concentration while shaded leaves
205 are more constrained by insolation, leading to varied responses to O₃ damage.

206

207 **2.3 Scheme for ozone damage on vegetation**

208 We implemented the O₃ vegetation damage schemes proposed by Sitch et al. (2007)
209 (hereafter S2007) and Lombardozzi et al. (2013) (hereafter L2013) into the Noah-MP.
210 In S2007 scheme, the undamaged fraction F for net photosynthesis is dependent on the
211 sensitivity parameter a_{PFT} and excessive area-based stomatal O₃ flux, which is
212 calculated as the difference between f_{O_3} and threshold y_{PFT} :

213
$$F = 1 - a_{PFT} \times \max\{f_{O_3} - y_{PFT}, 0\} \quad (3)$$

214 where a_{PFT} and y_{PFT} are specifically determined for individual plant functional types
215 (PFTs) based on measurements (Table 1). The stomatal O₃ flux f_{O_3} is calculated as

216
$$f_{O_3} = \frac{[O_3]}{r_a + k_{O_3} \cdot r_s} \quad (4)$$

217 where [O₃] is the O₃ concentration at the reference level (nmol m⁻³), r_a is the
218 aerodynamic and boundary layer resistance between leaf surface and reference level (s
219 m⁻¹). $k_{O_3} = 1.67$ represents the ratio of leaf resistance for O₃ to that for water vapor. r_s
220 represents stomatal resistance (s m⁻¹). For S2007 scheme, stomatal conductance is
221 damaged with the same ratio (1- F) as photosynthesis and further affects O₃ uptake. In
222 Noah-MP, the f_{O_3} are calculated separately for sunlit and shaded leaves with
223 corresponding stomatal resistance (Supplementary Text S1).

224 As a comparison, the L2013 scheme applies separate O₃ damaging relationships

225 for photosynthetic rate and stomatal conductance. These independent relationships
226 account for different plant groups and are calculated based on the cumulative uptake of
227 O_3 (CUO) under different levels of chronic O_3 exposure. The leaf-level CUO (mmol m^{-2})
228 is calculated by accumulating stomatal O_3 fluxes of Eq. (4) from the start of the
229 growing season to the specific time step with mean LAI > 0.5 (Lombardozzi et al.,
230 2012), when vegetation is most vulnerable to air pollution episodes. O_3 uptake is only
231 accumulated when O_3 flux is above an instantaneous threshold of $0.8 \text{ nmol O}_3 \text{ m}^{-2} \text{ s}^{-1}$
232 to account for ozone detoxification by vegetation at low O_3 levels (Lombardozzi et al.,
233 2015). We also include a leaf-turnover rate for evergreen plants so that the accumulation
234 of O_3 flux does not last beyond the average foliar lifetime. The O_3 damaging ratios
235 depend on CUO with empirical linear relationships as follows:

236 $F_{pO_3} = a_p \times CUO + b_p$ (5)

237 $F_{cO_3} = a_c \times CUO + b_c$ (6)

238 where F_{pO_3} and F_{cO_3} are the ozone damage ratios for photosynthesis and stomatal
239 conductance, respectively. The slopes (a_p for photosynthesis and a_c for stomatal
240 conductance) and intercepts (b_p for photosynthesis and b_c for stomatal conductance) of
241 regression functions are determined based on the meta-analysis of hundreds of
242 measurements (Table 2). The ratios predicted in Eq. (5) and (6) are applied to
243 photosynthesis and stomatal conductance, respectively, to account for their independent
244 responses to O_3 damages. In Noah-MP, the F_{pO_3} and F_{cO_3} are calculated separately for
245 sunlit and shaded leaves based on corresponding stomatal resistance (Supplementary
246 Text S1).

247

248 **2.4 Observational data**

249 We validated the simulated meteorology and air pollutants with observations. The
250 meteorological data were downloaded from the National Meteorological Information
251 Center of China Meteorological Administration (CMA Meteorological Data Centre,
252 2022, <http://data.cma.cn/data/detail/dataCode/A.0012.0001.html>). The daily averaged
253 surface pressure (PRES), wind speed at a height of 10 m (WS10), relative humidity
254 (RH) and temperature at a height of 2 m (T2) were collected from 839 ground stations.

255 Hourly surface O₃ concentrations at 1597 sites in China were collected from Chinese
256 National Environmental Monitoring Center (CNEMC, <http://websearch.mep.gov.cn/>).
257

258 **2.5. Simulations**

259 We performed seven experiments to quantify the damaging effects of ambient O₃
260 on GPP and the feedbacks to regional climate and air quality (Table 3). All simulations
261 are conducted from 1 May to 31 August of 2017 with the first month excluded from the
262 analysis as the spin-up. The control simulations (CTRL) excluded the impact of ozone
263 on vegetation. Three offline simulations were performed with the same settings as the
264 CTRL run, except that O₃ vegetation damages were calculated and output without
265 feedback to affect vegetation growth. These offline runs were established using either
266 the S2007 scheme (Offline_SH07 for high sensitivity and Offline_SL07 for low
267 sensitivity) or the L2013 scheme (Offline_L13). As a comparison, three online
268 simulations applied the S2007 scheme (Online_SH07 for high sensitivity and
269 Online_SL07 for low sensitivity) and the L2013 scheme (Online_L13) to estimate the
270 O₃ damages to GPP, which further influenced LAI development, leaf transpiration, and
271 dry deposition. The differences between CTRL and Online runs indicated the responses
272 of surface meteorology and O₃ concentrations to the O₃-induced vegetation damages.
273

274 **3. Results**

275 **3.1 Model evaluations**

276 We compared the simulated summer near-surface temperature, relative humidity,
277 wind speed, and surface O₃ concentrations to observations. The model reasonably
278 reproduces the spatial pattern of higher near-surface temperature in Southeast and
279 Northwest and lower temperature over the Tibetan Plateau (Fig. 1a). On the national
280 scale, the near-surface temperature is underestimated with a mean bias (MB) of 1.04 °C
281 but it shows a high correlation (R=0.96). Unlike temperature, simulated relative
282 humidity is overestimated with a MB of 5.04 % but a high R of 0.93 (Fig. 1b). Due to
283 the modeling biases in the topographic effects, simulated wind speed is overestimated

284 by more than 1.06 m s^{-1} on the national scale (Fig. 1c). Such overestimation was also
285 reported in other studies using WRF models (Hu et al., 2016, Liu et al., 2020, Zhu et
286 al., 2022).

287 Comparisons with the measurements from air quality sites show that the simulated
288 O_3 deviates from the observed mean concentrations by $5.42 \mu\text{g m}^{-3}$ with a spatial R of
289 0.68. The model reasonably captures the hotspots over North China Plain though with
290 some overestimations, potentially attributed to uncertain emissions and coarse model
291 resolutions. Such elevated bias in summer O_3 is a common issue for both global and
292 regional models over Asia. For example, Zhu et al. (2022) reported the overestimated
293 summer average ozone concentration by $13.82 \mu\text{g m}^{-3}$ in China. Liu et al. (2020)
294 reached positive biases ranging from $3.7 \mu\text{g m}^{-3}$ to $13.32 \mu\text{g m}^{-3}$ using the WRF-CMAQ
295 model. Overall, the WRF-Chem model shows reasonable performance in the simulation
296 of surface meteorology and O_3 concentrations in China.

297

298 **3.2 Offline O_3 damage**

299 We compared the offline O_3 damage to photosynthesis between sunlit (PSNSUN)
300 and shaded (PSNSHA) leaves during the summer. The S2007 scheme is dependent on
301 instantaneous O_3 uptake, which peaks in July when both O_3 concentrations and stomatal
302 conductance are high (Fig. S1 and S2). For the same O_3 pollution level, the damages
303 are much higher for the sunlit leaves (Fig. 2a-2b) than that for the shaded leaves (Fig.
304 2d-2e), because of the higher stomatal conductance linked with the more active
305 photosynthesis for the sunlit leaves. In contrast, the L2013 scheme depends on the
306 accumulated O_3 flux and assumes constant damages for some PFTs (Table 2), resulting
307 in reductions of photosynthesis even at low O_3 concentrations. The O_3 damage to
308 photosynthesis of sunlit and shaded leaves increases month by month, reaching a
309 maximum in August (Fig. S1 and S2). We found limited differences in the O_3 damages
310 between sunlit (Fig. 2c) and shaded (Fig. 2f) leaves with L2013 scheme. Observations
311 have reported that surface O_3 has limited impacts on the shaded leaves (Wan et al.,
312 2014), consistent with the results simulated by the S2007 scheme.

313 Figure 3 shows the effect of O₃ damage to stomatal resistance of sunlit (RSSUN)
314 and shaded (RSSHA) leaves. Overall, the spatial pattern of the changes in stomatal
315 resistance is consistent with those of photosynthesis (Fig. 2) but with opposite signs.
316 Both RSSUN and RSSHA are enhanced by O₃ damage so as to prevent more O₃ uptake.
317 For S2007 scheme, RSSUN with high and low sensitivities respectively increases by
318 13.43% (Fig. 3a) and 8.35% (Fig. 3b), higher than the rates of 4.71% (Fig. 3d) and 2.97%
319 (Fig. 3e) for RSSHA. These ratios are inversely connected to the changes of
320 photosynthesis (Fig. 2), suggesting the full coupling of damages between leaf
321 photosynthesis and stomatal conductance. For L2013 scheme, predicted changes in
322 RSSUN (Fig. 3c) and RSSHA (Fig. 3f) are very similar with the magnitude of 25.3%-
323 26.3%. These changes are higher than the loss of photosynthesis (Fig. 2c and 2f),
324 suggesting the decoupling of O₃ damages to leaf photosynthesis and stomatal
325 conductance as revealed by the L2013 scheme.

326 We further assessed the O₃ damage to GPP and transpiration (TR). For S2007
327 scheme, O₃ causes damages to national average GPP and TR approximately by 5.5%
328 with low sensitivity (Fig. 4b and 4e) and 8.4% with high sensitivity (Fig. 4a and 4d)
329 compared to the CTRL simulation. The model predicts high GPP damages over North
330 China Plain and moderate damages in the southeastern and northeastern regions. In the
331 northwest, GPP damage is very limited due to the low relative humidity (Fig. 1b) that
332 constrains the stomatal uptake. For L2013 scheme, TR shows uniform reductions
333 exceeding -25% in most regions of China except for the northwest (Fig. 4f), though O₃
334 concentrations show distinct spatial gradient (Fig. 1d). The changes of GPP are similar
335 to that of TR but with lower inhibitions (Fig. 4c). On average, the GPP reduction with
336 the L2013 scheme is 2.5-3.9 times of that predicted with the S2007 scheme. The most
337 significant differences are located in Tibetan Plateau with limited damages in S2007
338 but strong inhibitions of both GPP and TR in L2013. The low temperature (Fig. 1a) and
339 O₃ concentrations (Fig. 1d) jointly constrain O₃ stomatal uptake (Fig. S3), leading to
340 low O₃ damages over Tibetan Plateau with the S2007 scheme. However, the L2013
341 scheme applies $b_p=0.8021$ for grassland (Table 2), suggesting strong baseline damages

342 up to 20% even with CUO=0 over Tibetan Plateau where the grassland dominates (Fig.
343 S4).

344

345 **3.3 The O₃-vegetation feedback to surface energy and meteorology**

346 The O₃ vegetation damage causes contrasting responses in surface sensible heat
347 (SH) and LH (Fig. 5). For S2007 scheme, the SH fluxes on average increase by 3.17 W
348 m⁻² (8.85%) with low sensitivity (Fig. 5b) and 5.99 W m⁻² (16.22%) with high
349 sensitivity (Fig. 5a). The maximum enhancement is located in southern China, where
350 the increased stomatal resistance (Fig. 3a) reduces transpiration and the consequent heat
351 dissipation. Meanwhile, LH fluxes decrease by 3.26 W m⁻² (5.58%) with low sensitivity
352 (Fig. 5e) and 6.43 W m⁻² (15.29%) with high sensitivity (Fig. 5d), following the
353 reductions in transpiration (Fig. 4d and 4e). We found similar changes in surface energy
354 by O₃-vegetation coupling between the S2007 and L2013 schemes. The SH shows the
355 same hotspots over southern China with national average increase of 12.85% (Fig. 5c),
356 which is within the range of 8.85% to 16.22% predicted by the S2007 scheme. The LH
357 largely decreases in central and northern China with the mean reduction of 17.4% (Fig.
358 5f), close to the magnitude of 15.29% predicted with the S2007 scheme using the high
359 O₃ sensitivity (Fig. 5d). Although the offline damages to GPP and TR are much larger
360 with the L2013 than S2007 (Fig. 4), their feedback to surface energy shows consistent
361 spatial pattern and magnitude (Fig. 5), likely because the O₃ inhibition in S2007 has the
362 same diurnal cycle with energy fluxes while the L2013 scheme shows almost constant
363 inhibitions throughout the day (Fig. S5). The zero or near-zero slope parameters (a_p and
364 a_c) in the L2013 scheme (Table 2) lead to insensitive responses of photosynthesis and
365 stomatal conductance to the variations of CUO. As a result, there were very limited
366 diurnal variations in O₃ damage with the L2013 scheme. However, the strong nighttime
367 damages in L2013 have limited contributions to the changes of surface energy, which
368 usually peaks at the daytime.

369 The O₃-induced damages to stomatal conductance weaken plant transpiration and
370 thus slow down the heat dissipation at the surface, leading to the higher temperature but

371 lower RH in China (Fig. 6). On the national scale, temperature increases by 0.5 °C due
372 to O₃ vegetation damage with the high sensitivity (Fig. 6a) and 0.23 °C with the low
373 sensitivity (Fig. 6b) predicted using the S2007 scheme. A similar warming is predicted
374 with the L2013 scheme except that temperature shows moderate enhancement over
375 Tibetan Plateau (Fig. 6c). The average RH decreases by 3.68% with the high O₃
376 sensitivity (Fig. 6d) and 2.22% with the low sensitivity (Fig. 6e) in response to the
377 suppressed plant transpiration. A stronger RH reduction of -3.85% is achieved with the
378 L2013 scheme, which predicts the maximum RH reductions in the North (Fig. 6f).

379

380 **3.4 The O₃-vegetation feedback to air quality**

381 The O₃-induced inhibition on stomatal resistance leads to a significant increase in
382 surface O₃ concentrations, particularly in eastern China (Fig. 7a-7c). The main cause of
383 such feedback is the reduction in O₃ dry deposition, which exacerbates the O₃ pollution
384 in China. For S2007 scheme, this positive feedback can reach up to 15 $\mu\text{g m}^{-3}$ with high
385 sensitivity (Fig. 7a) and 8 $\mu\text{g m}^{-3}$ with low sensitivity (Fig. 7b) over North China Plain.
386 On the national scale, surface O₃ enhances 4.40 $\mu\text{g m}^{-3}$ (5.08 %) with high O₃ sensitivity
387 and 2.62 $\mu\text{g m}^{-3}$ (3.04%) with low O₃ sensitivity through the coupling to vegetation. For
388 L2013 scheme, the changes of O₃ concentration (Fig. 7c) are comparable to that of the
389 S2007 scheme with high sensitivity (Fig. 7a), except that the O₃ enhancement is
390 stronger in the Southeast but weaker in the Northeast.

391 The O₃-vegetation coupling also increases surface isoprene emissions. For S2007
392 scheme, isoprene emissions increase by 6.13% with high sensitivity (Fig. 7d) and 3.43%
393 with low sensitivity (Fig. 7e), with regional hotspots in North China Plain, northeastern
394 and southern regions. The predictions using L2013 scheme (Fig. 7f) show very similar
395 patterns and magnitude of isoprene changes to the S2007 scheme with high sensitivity.
396 Such enhancement in isoprene emissions is related to the additional surface warming
397 by O₃-vegetation interactions (Fig. 6a-6c). In turn, the increased isoprene emissions
398 contribute to the deterioration of O₃ pollution in China.

399

400 **4. Conclusions and discussion**

401 In this study, we explored the feedback of O₃-vegetation coupling to surface
402 meteorology and air quality in China using two O₃ damage schemes embedded in a
403 regional meteorology-chemistry coupled model. The two schemes predicted distinct
404 spatial patterns with much larger magnitude of GPP loss in the L2013 scheme than that
405 in the S2007 scheme. We further distinguished the leaf responses with different
406 illuminations. For the S2007 scheme, the damages to photosynthesis of sunlit leaves
407 are ~2.6 times of that to shaded leaves. However, for the L2013 scheme, limited
408 differences are found between the sunlit and shaded leaves. The damages to leaf
409 photosynthesis increase stomatal resistance, leading to the reductions of transpiration
410 but enhancement of sensible heat due to the less efficient heat dissipation. These
411 changes in surface energy and water fluxes feed back to increase surface temperature
412 but decrease relative humidity. Although the L2013 scheme predicts much stronger
413 offline damages, the feedback causes very similar pattern and magnitude in surface
414 warming as the S2007 scheme. Consequently, surface O₃ increases due to the stomatal
415 closure and isoprene emissions enhance due to the anomalous warming.

416 Our predicted O₃ damage to GPP was within the range of -4% to -40% as estimated
417 in previous studies using different models and/or parameterizations over China (Ren et
418 al., 2011; Lombardozzi et al., 2015; Yue et al., 2015; Sadiq et al., 2017; Xie et al., 2019;
419 Zhu et al., 2022; Jin et al., 2023). Such a wide span revealed the large uncertainties in
420 the estimate of O₃ impacts on ecosystem functions. In this study, we employed two
421 schemes and compared their differences. With the S2007 scheme, we predicted GPP
422 reductions of -5.5% to -8.5% in China. This is similar to the range of -4% to -10%
423 estimated by Yue et al. (2015) using the same O₃ damage scheme. However, it is lower
424 than the estimate of -12.1% predicted by Xie et al. (2019), likely due to the slight
425 overestimation of surface O₃ in the latter study. With the L2013 scheme, we predicted
426 much larger GPP reductions of -21.4%. However, such value was still lower than the -
427 28.9% in Jin et al. (2023) and -20% to -40% in Zhu et al. (2022) using the same L2013
428 scheme embedded in WRF-Chem model, though all studies showed similar spatial

429 patterns in the GPP reductions. Such differences were likely attributed to the varied
430 model configuration as we ran the model from May while the other studies started from
431 the beginning of years. The longer time for the accumulation of O₃ stomatal uptake in
432 other studies might result in higher damages than our estimates with the L2013 scheme.

433 The O₃-vegetation coupling caused strong feedback to surface meteorology and
434 air quality. Our simulations with either scheme revealed that surface SH increases by
435 2-28 W m⁻² and LH decreases by 4-32 W m⁻² over eastern China, consistent with the
436 estimates of 5-30 W m⁻² by Zhu et al. (2022) using WRF-Chem model with the L2013
437 scheme. Consequently, surface air temperature on average increases by 0.23-0.51°C
438 while relative humidity decreases by 2.2-3.8%, similar to the warming of 0.2-0.8°C and
439 RH reduction of 3% as predicted by Zhu et al. (2022). However, these changes in
440 surface energy flux and meteorology are much higher than that in Jin et al. (2023),
441 likely because the latter focuses on the perturbations averaged throughout the year
442 instead of summer period as in this study and Zhu et al. (2022). We further predicted
443 that O₃ vegetation damage increased surface O₃ by 1.0-3.33 μg m⁻³ in China, similar
444 to the 2.35-4.11 μg m⁻³ estimated for eastern China using a global model (Gong et al.,
445 2020). Regionally, the O₃ enhancement reached as high as 7.84-14.70 μg m⁻³ in North
446 China Plain, consistent with the maximum value of 11.76 μg m⁻³ over the same domain
447 predicted by Zhu et al. (2022). However, limited feedback to surface O₃ was predicted
448 in Jin et al. (2023), mainly because the decreased dry deposition had comparable but
449 opposite effects to the decreased isoprene emissions due to the reductions of LAI. Such
450 discrepancy was likely caused by the stronger O₃ inhibition in Jin et al. (2023) following
451 the longer period of O₃ accumulation, consequently exacerbating the negative impacts
452 of LAI reductions on O₃ production.

453 There were some limitations in our parameterizations and simulations. First, we
454 predicted increases of isoprene emissions in eastern China mainly due to the increased
455 leaf temperature, which is in line with previous studies (Sadiq et al., 2017; Zhu et al.,
456 2022). However, isoprene production is coupled to photosynthesis. There are empirical
457 evidences showing that high dose of O₃ exposure reduces isoprene emissions when O₃

458 exposure is prolonged enough to suppress photosynthesis (Bellucci et al., 2023).
459 Inclusion of such negative feedback might alleviate the O₃-induced enhancement in
460 isoprene emissions. Second, the WRF-Chem model slightly overestimated summer O₃
461 concentrations, which could exacerbate the damages to stomatal conductance and the
462 subsequent feedback. Third, the S2007 scheme employed the coupled responses in
463 photosynthesis and stomatal conductance to O₃ vegetation damage. However, some
464 observations revealed that stomatal response is slow under long-term O₃ exposure,
465 resulting in loss of stomatal function and decoupling from photosynthesis (Calatayud
466 et al., 2007; Lombardozzi et al., 2012). The L2013 scheme considered the decoupling
467 between photosynthesis and stomatal conductance. However, this scheme shows no
468 significant different changes for sunlit and shaded leaves. In addition, the calculation
469 of CUO heavily relied on the O₃ threshold and accumulation period, leading to varied
470 responses among different studies using the same scheme. Furthermore, the slopes of
471 O₃ sensitivity in L2013 scheme were set to zero for some PFTs, leading to constant
472 damages independent of CUO. Fourth, the current knowledge of the O₃ effects on
473 stomatal conductance was primarily derived from leaf-level measurements (Matyssek
474 et al., 2008), which were much fewer compared to that for photosynthesis. The limited
475 data availability and lack of inter-PFT responses constrain the development of empirical
476 parameterizations.

477 Despite these limitations, our study provided the first comparison of different
478 parameterizations in simulating O₃-vegetation interactions. We found similar feedbacks
479 to surface energy and meteorology though the two schemes showed varied magnitude
480 and distribution in the offline responses of GPP and stomatal conductance to surface
481 O₃. The main cause of such inconsistency lied in the low feedback of damages in L2013
482 with some unrealistic inhibitions of ecosystem functions at night and over the regions
483 with low O₃ level. Such similarity provides a solid foundation for the exploration of
484 O₃-vegetation coupling using different schemes. The positive feedback of O₃ vegetation
485 damage to surface air temperature and O₃ concentrations posed emerging but ignored
486 threats to both climate change and air quality in China.

487
488 **Data availability.** The observed hourly O₃ concentrations were obtained from Chinese
489 National Environmental Monitoring Center (CNEMC, <http://websearch.mep.gov.cn/>).
490 The observed meteorological data were obtained from the National Meteorological
491 Information Center of China Meteorological Administration (CMA Meteorological
492 Data Centre, 2022, <http://data.cma.cn/data/detail/dataCode/A.0012.0001.html>). The
493 MEIC and MIX emission inventory are available at
494 http://meicmodel.org.cn/?page_id=560 and http://meicmodel.org.cn/?page_id=89.
495

496 **Author contributions.** XY conceived the study. XY and JC designed the research and
497 carried out the simulations. JC completed data analysis and the first draft. MM provided
498 useful comments on the paper. XY reviewed and edited the manuscript.
499

500 **Competing interests.** The authors declare that they have no conflict of interest.
501

502 **Acknowledgements.** The authors are grateful to three anonymous reviewers for their
503 constructive comments that have improved this study.
504

505 **Financial support.** This study was jointly funded by the National Key Research and
506 Development Program of China (grant no. 2023YFF0805403), National Natural
507 Science Foundation of China (grant no. 42293323), and Jiangsu Funding Program for
508 Excellent Postdoctoral Talent (grant no. 2023ZB737).
509

510 **References**

511 Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The
512 effects of tropospheric ozone on net primary productivity and implications for
513 climate change, *Annu. Rev. Plant Biol.*, 63, 637–661,
514 <https://doi.org/10.1146/annurevplant-042110-103829>, 2012.
515 Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance
516 and its contribution to the control of photosynthesis under different environmental

517 conditions, Prog. Photosynthesis, Springer, Dordrecht, 4, 221–224, 1987.

518 Bellucci, M., Locato, V., Sharkey, T. D., Gara D. and Loreto, F.: Isoprene emission by
519 plants in polluted environments, J PLANT INTERACT., 18:1, 2266463,
520 <https://doi.org/10.1080/17429145.2023.2266463>, 2023

521 Calatayud, V., Cerveró, J., and Sanz, M. J.: Foliar, physiologial and growth responses
522 of four maple species exposed to ozone, Water Air Soil Pollut., 185, 239–254,
523 <https://doi.org/10.1007/s11270-007-9446-5>, 2007.

524 Chou, M. D. and Suarez, M. J.: An efficient thermal infrared radiation parameterization
525 for use in general circulation models, NASA Tech. Memo., 104506, 3, Maryland,
526 USA, 85 pp., 1994.

527 Dickinson, R. E.: Land surface processes and climate – Surface albedos and energy
528 balance, Adv. Geophys., 25, 305–353, [https://doi.org/10.1016/S0065-2687\(08\)60176-4](https://doi.org/10.1016/S0065-2687(08)60176-4), 1983.

530 Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D.,
531 Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall,
532 G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation
533 of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),
534 Geosci. Model Dev., 3, 43–67, <https://doi.org/10.5194/gmd-3-43-2010>, 2010.

535 Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemicalmodel of
536 photosynthetic CO₂ assimilation in leaves of C3 species, Planta, 149, 78–90,
537 <https://doi.org/10.1007/bf00386231>, 1980.

538 Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R.: Effects of
539 ozone on net primary production and carbon sequestration in the conterminous
540 United States using a biogeochemistry model, Tellus B, 56, 230–248,
541 <https://doi.org/10.1111/j.1600-0889.2004.00097.x>, 2004.

542 Feng, Z., Hu, E., Wang, X., Jiang, L., and Liu, X.: Ground-level O₃ pollution and its
543 impacts on food crops in China: A review, Environ. Pollut., 199, 42–48,
544 <https://doi.org/10.1016/j.envpol.2015.01.016>, 2015.

545 Gong, C., Lei, Y., Ma, Y., Yue, X., and Liao, H.: Ozone– vegetation feedback through

546 dry deposition and isoprene emissions in a global chemistry–carbon–climate
547 model, *Atmos. Chem. Phys.*, 20, 3841–3857, <https://doi.org/10.5194/acp-203841-2020>, 2020.

549 Gong, C., Yue ,X., Liao, H., and Ma, Y.: A humidity-based exposure index representing
550 ozone damage effects on vegetation, *Environ. Res. Lett.*, 16, 044030,
551 <https://doi.org/10.1088/1748-9326/abecbb>, 2021.

552 Grell, G. A., McKeen, S., Michalakes, J., Bao, J.-W., Trainer, M., and Hsie, E.-Y.: Real-
553 time simultaneous prediction of air pollution and weather during the Houston 2000
554 Field Experiment, presented at the 4th Conference on Atmospheric Chemistry:
555 Atmospheric Chemistry and Texas Field Study, 13–17 January, American
556 Meteorological Society, Orlando, 2002.

557 Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C.,
558 and Eder, B.: Fully coupled “online” chemistry within the WRF model. *Atmos.*
559 *Environ.*, 39, 6957–6975, <https://doi.org/10.1016/j.atmosenv.2005.04.027>, 2005.

560 Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.:
561 Estimates of global terrestrial isoprene emissions using MEGAN (Model of
562 Emissions of Gases and Aerosols from Nature), *Atmos. Chem. Phys.*, 6, 3181–
563 3210, <https://doi.org/10.5194/acp-6-3181-2006>, 2006.

564 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J.,
565 Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla,
566 S., Abellán, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De
567 Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J.,
568 Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm,
569 E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de
570 Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
571 global reanalysis, *Q. J. Roy. Meteor. Soc.*, 146, 1999–2049,
572 <https://doi.org/10.1002/qj.3803>, 2020.

573 Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with explicit
574 treatment of entrainment processes, *Mon. Weather Rev.*, 134, 2318–2341,

575 <https://doi.org/10.1175/MWR3199.1>, 2006.

576 Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate
577 matter in China using WRF/CMAQ modeling system, *Atmos. Chem. Phys.*, 16,
578 10333–10350, <https://doi.org/10.5194/acp-16-10333-2016>, 2016.

579 Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li S and Zhuang.:
580 Effects of elevated ozone exposure on regional meteorology and air quality in
581 China through ozone-vegetation coupling. *J. Geophys. Res.-Atmos.*, 128,
582 e2022JD038119. <https://doi.org/10.1029/2022JD038119>, 2023.

583 Li, J., Mahalov, A., and Hyde, P.: Simulating the impacts of chronic ozone exposure on
584 plant conductance and photosynthesis, and on the regional hydroclimate using
585 WRF/Chem, *Environ. Res. Lett.*, 11, 114017,
586 <https://doi.org/10.1088/17489326/11/11/114017>, 2016.

587 Li, P., Calatayud, V., Gao, F., Uddling, J., and Feng, Z. Z.: Differences in ozone
588 sensitivity among woody species are related to leaf morphology and antioxidant
589 levels, *Tree Physiol.*, 36, 1105–1116, <https://doi.org/10.1093/treephys/tpw042>,
590 2016.

591 Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., and Paoletti, E.: A meta-analysis on
592 growth, physiological, and biochemical responses of woody species to ground-
593 level ozone highlights the role of plant functional types, *Plant Cell Environ.*, 40,
594 2369–2380, <https://doi.org/10.1111/pce.13043>, 2017.

595 Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017–
596 Part 1: The complex and varying roles of meteorology, *Atmos. Chem. Phys.*, 20,
597 6305–6321, <https://doi.org/10.5194/acp-20-6305-2020>, 2020.

598 Lombardozzi, D., Levis, S., Bonan, G., and Sparks, J. P.: Predicting photosynthesis and
599 transpiration responses to ozone: decoupling modeled photosynthesis and stomatal
600 conductance, *Biogeosciences*, 9, 3113–3130, <https://doi.org/10.5194/bg-9-31132012>, 2012.

602 Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O₃ influences on terrestrial
603 processes: photosynthetic and stomatal response data available for regional and

604 global modeling, *Biogeosciences*, 10, 6815–6831, <https://doi:10.5194/bg-10-6815-2013>, 2013.

605

606 Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The influence of
607 chronic ozone exposure on global carbon and water cycles, *J. Climate*, 28, 292–
608 305, <https://doi.org/10.1175/JCLI-D-14-00223.1>, 2015.

609

610 Matyssek, R., Sandermann, H., Wieser, G., Booker, F., Cieslik, S., Musselman, R., and
611 Ernst, D.: The challenge of making ozone risk assessment for forest trees more
612 mechanistic, *Environ. Pollut.*, 156, 567–582,
613 <https://doi:10.1016/j.envpol.2008.04.017>, 2008.

614

615 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative
616 transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model
617 for the longwave, *J. Geophys. Res-Atmos.*, 102(D14), 16663–16682,
618 <https://doi.org/10.1029/97JD00237>, 1997.

619

620 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler,
621 D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret,
622 V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.:
623 Tropospheric ozone and its precursors from the urban to the global scale from air
624 quality to short-lived climate forcer, *Atmos. Chem. Phys.*, 15, 8889–8973,
625 <https://doi.org/10.5194/acp-15-8889-2015>, 2015.

626

627 Morrison, H., Thompson, G., and Tatarkii, V.: Impact of cloud microphysics on the
628 development of trailing stratiform precipitation in a simulated squall line:
629 comparison of one- and two-moment schemes, *Mon. Weather Rev.*, 137, 991–1007,
630 <https://doi.org/10.1175/2008MWR2556.1>, 2009.

631

632 Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A.,
633 Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community
634 Noah land surface model with multiparameterization options (Noah-MP): 1.
635 Model description and evaluation with local-scale measurements, *J. Geophys.
636 Res-Atmos.*, 116, D12, <https://doi.org/10.1029/2010JD015139>, 2011.

637

638 Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., and Xu,

633 X.: Impacts of tropospheric ozone and climate change on net primary productivity
634 and net carbon exchange of China's forest ecosystems, *Glob. Ecol. Biogeogr.*, 20,
635 391–406, <https://doi.org/10.1111/j.1466-8238.2010.00606.x>, 2011.

636 Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–
637 vegetation coupling on surface ozone air quality via biogeochemical and
638 meteorological feedbacks, *Atmos. Chem. Phys.*, 17, 3055–3066,
639 <https://doi.org/10.5194/acp-17-3055-2017>, 2017.

640 Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of
641 climate change through ozone effects on the land-carbon sink, *Nature*, 448, 791–
642 794, <https://doi.org/10.1038/nature06059>, 2007.

643 Skamarock W C and Klemp J B. A time-split nonhydrostatic atmospheric model for
644 weather research and forecasting applications. *J. Comput. Phys.*, 227(7): 3465–
645 3485, <https://doi.org/10.1016/j.jcp.2007.01.037>, 2008.

646 Su, B., Zhou, M., Xu, H., Zhang, X., Li, Y., Su, H., and Xiang B.: Photosynthesis and
647 biochemical responses to elevated O₃ in *Plantago major* and *Sonchus oleraceus*
648 growing in a lowland habitat of northern China, *J. Environ. SCI.*, 53(3): 113–121,
649 <https://doi.org/10.1016/j.jes.2016.05.011>, 2017.

650 Tie, X. X., Madronich, S., Walters, S., Zhang, R. Y., Rasch, P., and Collins, W.: Effect
651 of clouds on photolysis and oxidants in the troposphere, *J. Geophys. Res.-Atmos.*,
652 108, 4642, <https://doi.org/10.1029/2003jd003659>, 2003.

653 Wan, W., Manning, WJ., Wang, X., Zhang, H., Sun, X., and Zhang, Q.: Ozone and
654 ozone injury on plants in and around Beijing, China, *Environ Pollut.*, 191: 215–
655 222, <https://doi.org/10.1016/j.envpol.2014.02.035>, 2014

656 Wilkinson, S., Clephan, A. L., and Davies, W. J.: Rapid Low Temperature-Induced
657 Stomatal Closure Occurs in Cold-Tolerant *Commelina Communis* Leaves But Not
658 in Cold-Sensitive Tobacco Leaves, via a Mechanism That Involves Apoplastic
659 Calcium But Not Abscisic Acid. *Plant Physiol.*, 126, 1566–1578.
660 <https://doi.org/10.1104/pp.126.4.1566>, 2001.

661 Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current and projected

662 increases in surface ozone affect photosynthesis and stomatal conductance of trees?
663 A metaanalytic review of the last 3 decades of experiments, *Plant Cell Environ.*,
664 30, 1150–1162, <https://doi.org/10.1111/j.13653040.2007.01717.x>, 2007.

665 Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., Wang, M., and Yang, X.: Numerical
666 modeling of ozone damage to plants and its effects on atmospheric CO₂ in China,
667 *Atmos. Environ.*, 217, 116970, <https://doi.org/10.1016/j.atmosenv.2019.116970>,
668 2019.

669 Yue, X. and Unger, N.: Ozone vegetation damage effects on gross primary productivity
670 in the United States, *Atmos. Chem. Phys.*, 14, 9137–9153,
671 <https://doi.org/10.5194/acp-14-9137-2014>, 2014.

672 Yue, X. and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0:
673 description, evaluation and implementation into NASA GISS ModelE2, *Geosci.
674 Model Dev.*, 8, 2399–2417, <https://doi.org/10.5194/gmd-8-2399-2015>, 2015.

675 Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for
676 large-scale applications, *J. Geophys. Res-Atmos.*, 104, 30387-30415,
677 <https://doi.org/10.1029/1999JD900876>, 1999.

678 Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for simulating aerosol
679 interactions and chemistry (MOSAIC), *J. Geophys. Res-Atmos.*, 113, D13204,
680 <https://doi.org/10.1029/2007JD008782>, 2008.

681 Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling
682 between surface ozone and leaf area index in a chemical transport model: strength
683 of feedback and implications for ozone air quality and vegetation health, *Atmos.
684 Chem. Phys.*, 18, 14133–14148, <https://doi.org/10.5194/acp-18-14133-2018>, 2018.

685 Zhu, J., Tai, A. P. K., and Yim, S. H. L.: Effects of ozone-vegetation interactions on
686 meteorology and air quality in China using a two-way coupled land-atmosphere
687 model, *Atmos. Chem. Phys.*, 22, 765-782, <https://doi.org/10.5194/acp-22-765-2022>, 2022.

689

690 **Tables**691 **Table 1.** Parameters used for S2007 O₃ damage scheme ^a.

PFTs ^b	a_{PFT} (nmol ⁻¹ m ² s) ^c	y_{PFT} (nmol m ⁻² s ⁻¹)
EBF	0.075, 0.02	1.6
NF	0.075, 0.02	1.6
DBF	0.15, 0.04	1.6
SHR	0.1, 0.03	1.6
GRA	1.4, 0.25	5
CRO	1.4, 0.25	5

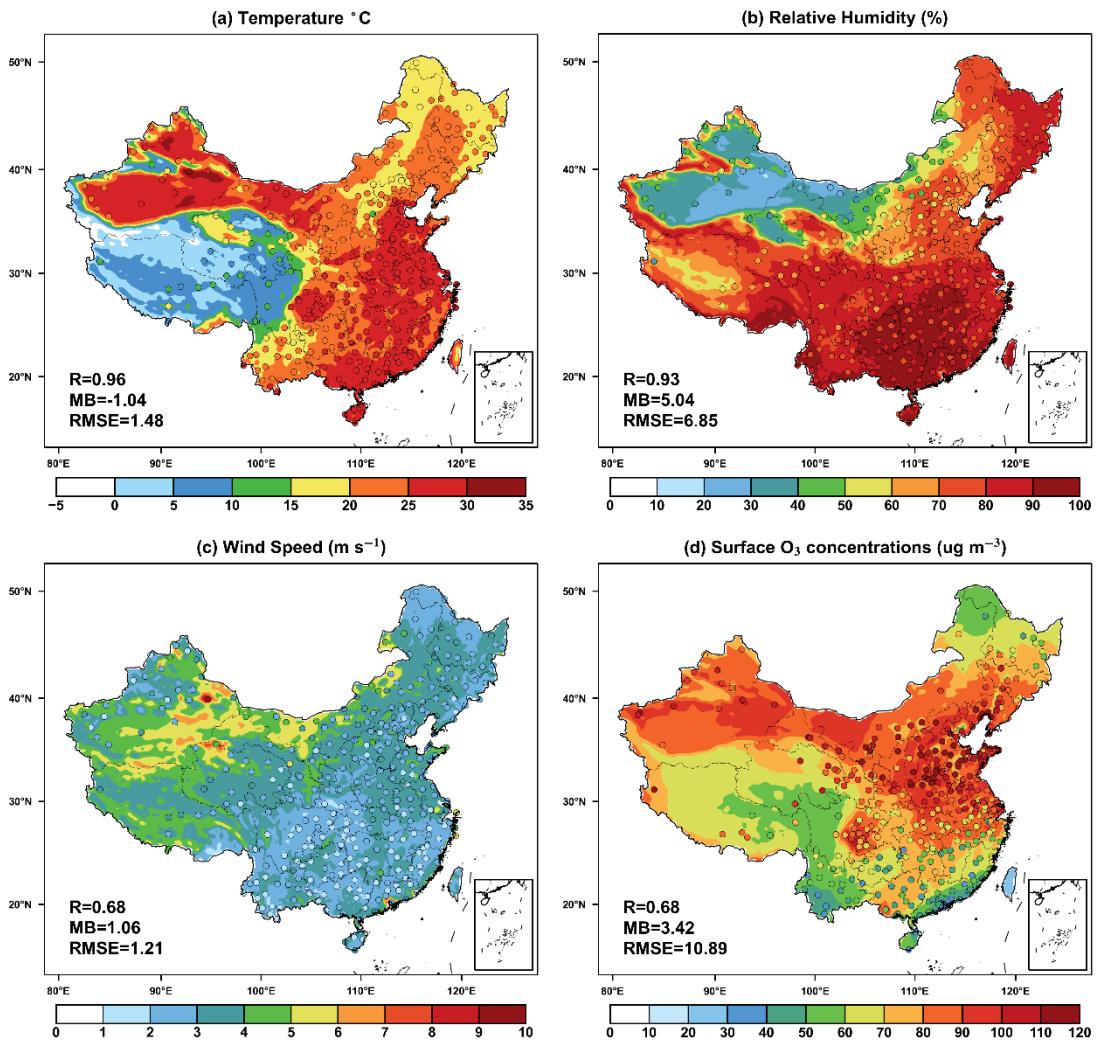
692 ^a The data source is Sitch et al. (2007).693 ^b The plant functional types (PFTs) include evergreen broadleaf forest (EBF), needleleaf
694 forest (NF), deciduous broadleaf forest (DBF), shrubland (SHR), grassland (GRA), and
695 cropland (CRO).696 ^c The first number is for high sensitivity and the second is for low sensitivity.

697

698

699

Table 2. Slopes and intercepts used for L2013 O₃ damage scheme ^a.


PFTs	a_p (mmol m ⁻²)	b_p	a_c (mmol m ⁻²)	b_c
EBF	0	0.8752	0	0.9125
NF	0	0.839	0.0048	0.7823
DBF	0	0.8752	0	0.9125
SHR	0	0.8752	0	0.9125
GRA	-0.0009	0.8021	0	0.7511
CRO	-0.0009	0.8021	0	0.7511

700 ^a The data source is Lombardozzi et al. (2015). Due to the data limit, we apply the same
 701 sensitivity parameters for EBF, DBF, and SHR.

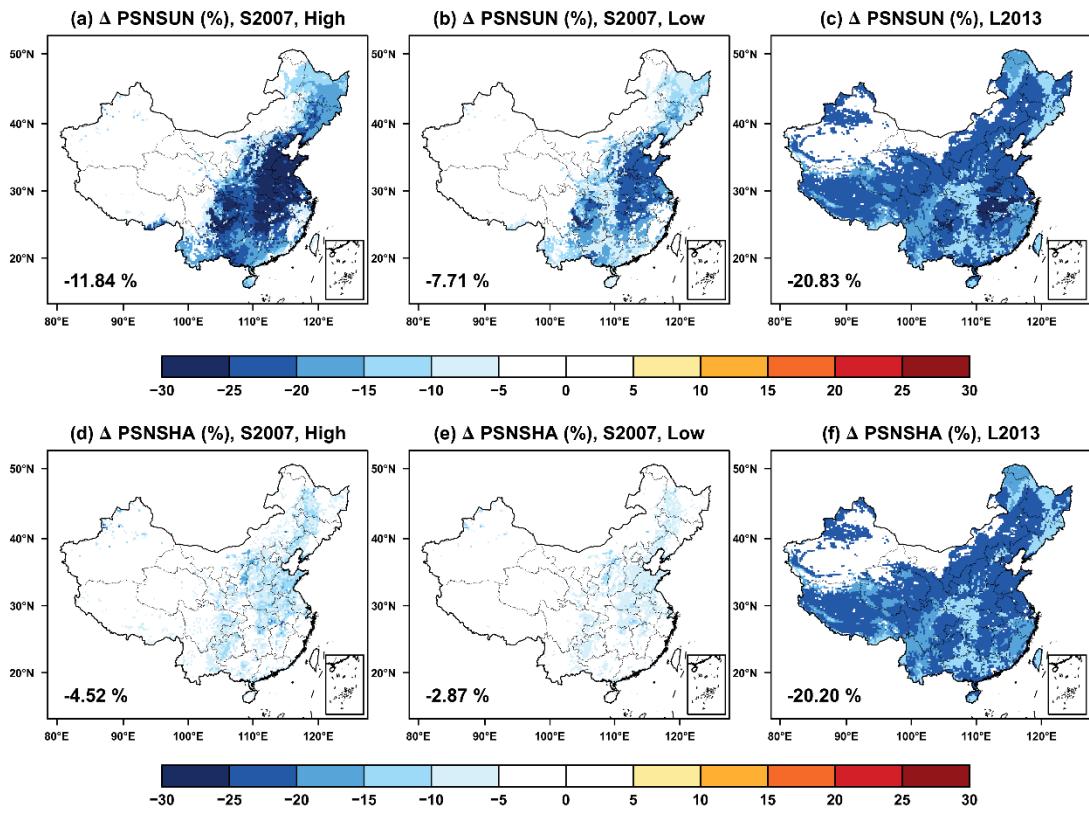
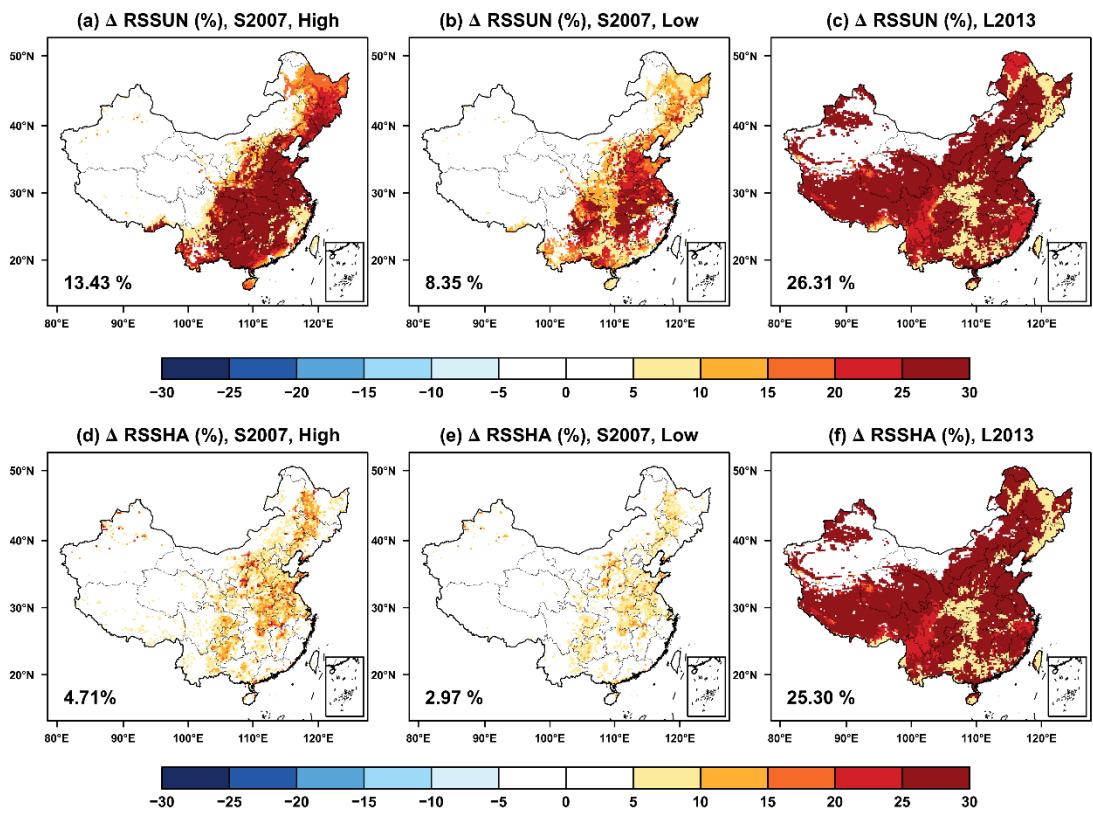

702

Table 3. Summary of simulation experiments

Name	O ₃ damage to vegetable	Scheme
CRTL	-	-
Offline_SH07	High	Sitch et al. (2007)
Offline_SL07	Low	Sitch et al. (2007)
Offline_L13	-	Lombardozzi et al. (2013)
Online_SH07	High	Sitch et al. (2007)
Online_SL07	Low	Sitch et al. (2007)
Online_L13	-	Lombardozzi et al. (2013)

706 **Figure captions**

Figure 1 Evaluations of simulated summer (June–August) daily (24-h average) (a) near-surface temperature, (b) relative humidity, (c) wind speed, and (d) surface O_3 concentrations in China. The dots represent the site-level observations. The correlation coefficients (R), mean biases (MB), and root-mean-square error (RMSE) for the comparisons are shown in the lower left corner of each panel.



716

717

718 **Figure 2** Offline O₃ damage (%) to the summertime photosynthesis of (a-c) sunlit and
719 (d-f) shaded leaves predicted by the S2007 scheme with (a, d) high and (b, e) low
720 sensitivities or the (c, f) L2013 scheme. The area-weighted percentage changes are
721 shown in the lower left corner.

722

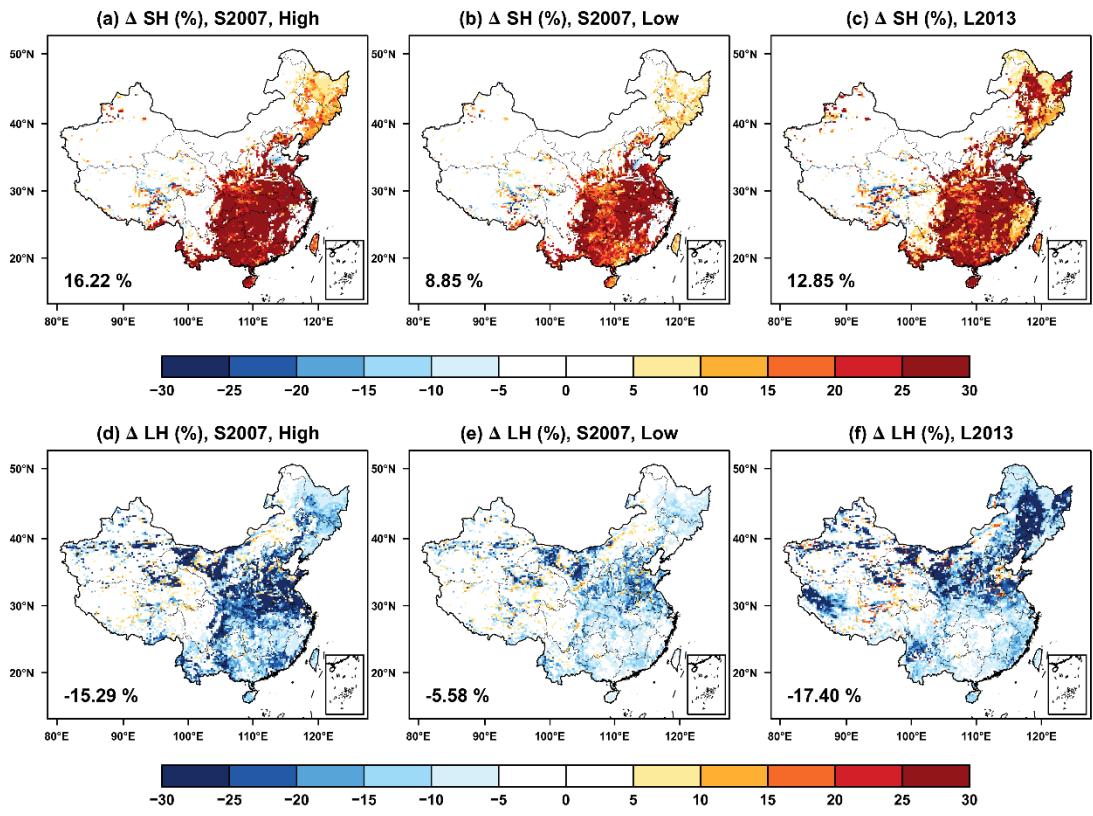
723

724

725

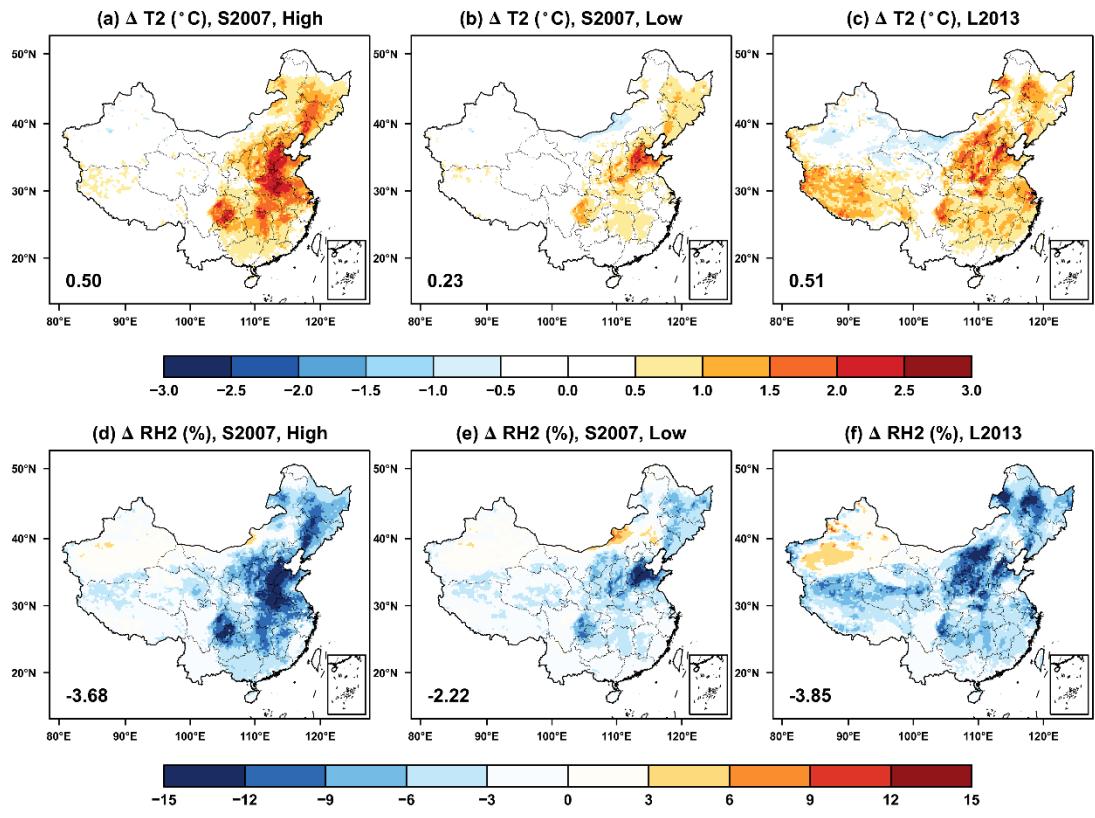
Figure 3 The same as Fig. 2 but for the changes in stomatal resistance.

726



727

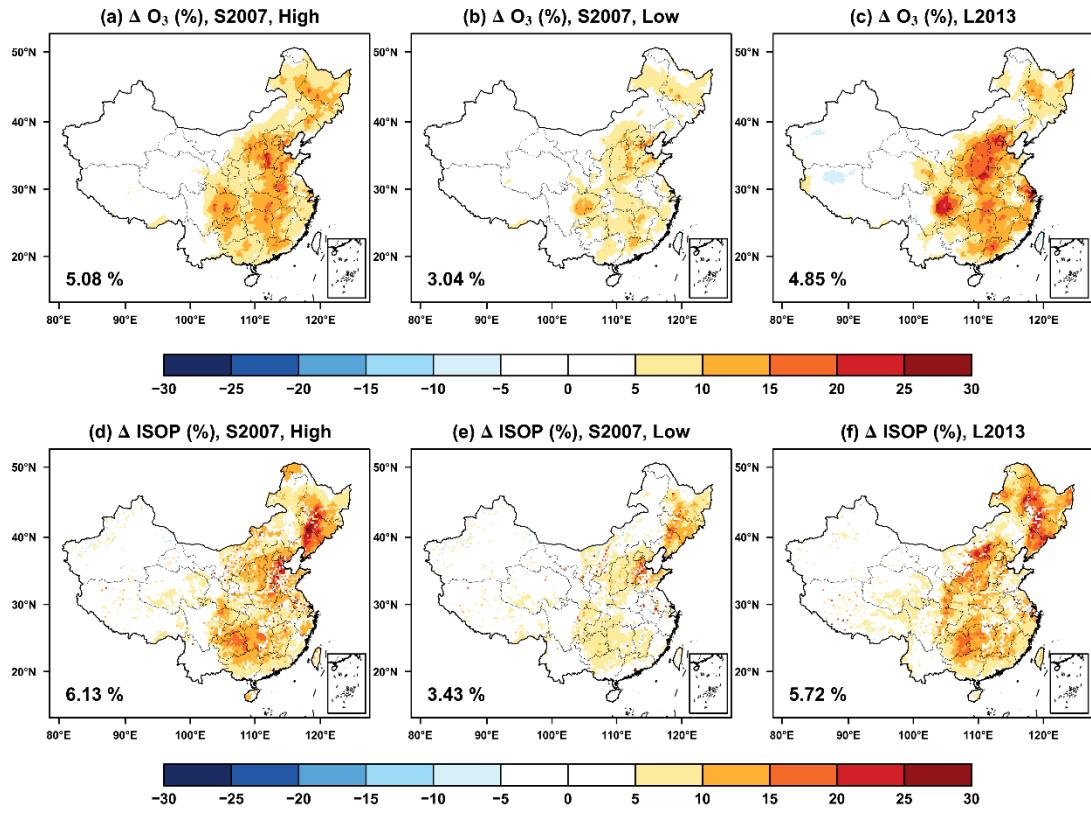
728


729 **Figure 4** Offline O₃ damage (%) to the (a-c) gross primary productivity (GPP) and (d-f) transpiration rate (TR) predicted by the Sitch scheme with (a, d) high and (b,e) low
730 sensitivities or the (c, f) Lombardozzi scheme. The area-weighted percentage changes
731 are shown in the lower left corner.
732

733

734
735
736
737
738
739
740
741

Figure 5 The feedback of O_3 -vegetation interaction to surface (a-c) sensible and (d-f) latent heat fluxes in the summer predicted by the S2007 scheme with (a, d) high and (b, e) low sensitivities or the (c, f) L2013 scheme. The relative changes are shown with area-weighted percentage changes indicated at the lower left corner.


742

743

744 **Figure 6** The same as Fig. 5 but for changes in (top) air temperature and (bottom)
745 relative humidity at 2 meters.

746

747

751 **Figure 7** The feedback of O₃-vegetation interaction to surface O₃ concentrations and
 752 isoprene emissions in the summer predicted by the S2007 scheme with (a, d) high and
 753 (b, e) low sensitivities or the (c, f) L2013 scheme. The area-weighted percentage
 754 changes are shown in the lower left corner.