1	Simulation of ozone-vegetation coupling and feedback in
2	China using multiple ozone damage schemes
3	
4	
5	Jiachen Cao ¹ , Xu Yue ^{1*} , Mingrui Ma ²
6	
7 8 9 10	1. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology (NUIST), Nanjing, 210044, China
11 12	2. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210044, China
13	
14	
15	
16	*Corresponding author: Xu Yue
17	email: <u>yuexu@nuist.edu.cn</u>
18	
19	
20	
21	
22	
23	
24	

Abstract

As a phytotoxic pollutant, surface ozone (O_3) not only affects plant physiology but also 26 influences meteorological fields and air quality by altering leaf stomatal functions. 27 Previous studies revealed strong feedbacks of O₃-vegetation coupling in China but with 28 large uncertainties due to the applications of varied O₃ damage schemes and chemistry-29 vegetation models. In this study, we quantify the O₃ vegetation damage and the 30 consequent feedbacks to surface meteorology and air quality in China by coupling two 31 32 O₃ damage schemes (S2007 vs. L2013) into a fully coupled regional meteorologychemistry model. With different schemes and damaging sensitivities, surface O₃ is 33 predicted to decrease summertime gross primary productivity by 5.5%-21.4% and 34 transpiration by 5.4%-23.2% in China, in which the L2013 scheme yields 2.5-4 times 35 of losses relative to the S2007 scheme. The damages to photosynthesis of sunlit leaves 36 are ~2.6 times that of shaded leaves in the S2007 scheme but show limited differences 37 in the L2013 scheme. Though with large discrepancies in offline responses, the two 38 schemes yield similar magnitude of feedback to surface meteorology and O₃ air quality. 39 40 The O₃-induced damage to transpiration increases national sensible heat by 3.2-6.0 W m^{-2} (8.9% to 16.2%) while reduces latent heat by 3.3-6.4 W m^{-2} (-5.6% to -17.4%), 41 leading to a 0.2-0.51 °C increase in surface air temperature and a 2.2-3.9% reduction in 42 relative humidity. Meanwhile, surface O_3 concentrations on average increase by $\frac{1.3}{1.3}$ 43 3.32.6-4.4 μ g m⁻³ due to the inhibitions of stomatal uptake and the anomalous 44 enhancement in isoprene emissions, the latter of which is attributed to the surface 45 warming by O₃-vegetaion coupling. Our results highlight the importance of O₃ control 46 in China due to its adverse effects on ecosystem functions, deterioration of global 47 48 warming, and exacerbation of O₃ pollution through the O₃-vegetation coupling.

49

50 Keywords: Ozone, vegetation, feedback, meteorology, air quality, regional model

52 **1 Introduction**

Surface ozone (O_3) is one of the most enduring air pollutants affecting air quality 53 54 in China, with detrimental effects on human health and ecosystem functions (Monk et al., 2015). Long-term observations and numerical simulations have shown that O₃ 55 affects stomatal conductance (Li et al., 2017), accelerates vegetation aging (Feng et al., 56 2015), and reduces photosynthesis (Wittig et al., 2007). These negative effects altered 57 carbon allocation (Yue and Unger, 2014; Lombardozzi et al., 2015) and inhibited plant 58 59 growth (Li et al., 2016), leading to a decreased strength of suppressing ecosystem carbon uptake (Ainsworth, 2012). Moreover, these effects have profound implications for 60 global/regional climate and atmospheric environment. Given the significant ecological 61 impacts, a systematic quantification of the O₃ vegetation damage effect in China is of 62 great importance for the better understanding of the side effects of O₃ pollution on both 63 regional carbon uptake and climate change. 64

At present, field experiments on O3-induced vegetation damage have been 65 conducted in China but were mostly confined to individual monitoring sites. For 66 67 instance, Su et al. (2017) conducted experiments on grassland in Inner Mongolia and found that elevated O₃ concentrations resulted in a decrease of approximately 20% in 68 the photosynthetic rate of herbaceous plants. Meta-analysis of tropical, subtropical, and 69 temperate tree species in China found that increased O₃ concentrations reduced net 70 photosynthesis and total biomass of Chinese woody plants by 28% and 14%, 71 respectively (Li et al., 2017). However, most of these experiments were conducted 72 using open-top chambers with artificially controlled O₃ concentrations, rather than 73 actual surface O₃ concentrations, making it difficult to quantitatively estimate the 74 75 impact of ambient O₃ on vegetation productivity. Furthermore, the spatial coverage of field experiments is limited, which hinders the direct use of observational data for 76 assessing O₃ vegetation damage in different regions of China. 77

Alternatively, numerical models provide a more feasible approach to quantify the O₃-induced vegetation damage from the regional to global scales. Currently, there are three main parameterizations for the calculation of ozone vegetation damage. Felzer et

al. (2004) established an empirical scheme based on the Accumulated Ozone exposure 81 over a Threshold of 40 ppb (AOT40) within the framework of a terrestrial ecosystem 82 model. They further estimated that O₃ pollution in the United States led to a decrease 83 in net primary productivity (NPP) by 2.6% to 6.8% during the period of 1980-1990. 84 However, the AOT40 is related to O₃ concentrations alone and ignores the biological 85 regulations on the O₃ stomatal uptake, leading to inconsistent tendencies between O₃ 86 pollution level and plant damage at the drought conditions (Gong et al., 2021). In 87 88 acknowledge of such deficit, Sitch et al. (2007) proposed a semi-mechanistic scheme calculating O₃ vegetation damage based on the stomatal uptake of O₃ fluxes and the 89 coupling between stomatal conductance and leaf photosynthesis. Yue and Unger (2014) 90 implemented this scheme into the Yale Interactive terrestrial Biosphere (YIBs) model. 91 Taking into account varied O₃ sensitivities of different vegetation types, they estimated 92 that surface O₃ led to reductions of 2-5% in the summer gross primary productivity 93 (GPP) in eastern U.S. from 1998 to 2007. Later, Lombardozzi et al. (2013) conducted 94 a meta-analysis using published chamber data and found different levels of responses 95 96 to O₃ exposure between stomatal conductance and photosynthesis. They further implemented the independent response relationships into the Community Land Model 97 (CLM) and estimated that current ozone levels led to a reduction in global GPP by 8%-98 12% (Lombardozzi et al., 2015). 99

The O₃ stress on vegetation physiology can feed back to affect regional climate. 100 Lombardozzi et al. (2015) employed the CLM model and found that current O₃ 101 exposure reduced transpiration by 2%-2.4% globally and up to 15% regionally over 102 103 eastern U.S., Europe, and Southeast Asia, leading to further perturbations in surface 104 energy and runoffbalance. In U.S., Li et al. (2016) found that the O₃ vegetation damage reduced latent heat (LH) flux, precipitation, and runoff by 10-27 W m⁻², 0.9-1.4 mm d⁻ 105 ¹, and 0.1-0.17 mm d⁻¹, respectively, but and increased surface air temperature by 0.6-106 2.0 °C during the summer of 2007-2012. In China, Zhu et al. (2022) performed 107 simulations and found that the inclusion of O₃-vegetation interaction caused a 5-30 W 108 m⁻² decrease in LH, 0.2-0.8 °C increase in surface air temperature, and 3% reduction in 109

110 relative humiditrelative humidity during summers of 2014-2017. Recently, Jin et al. 111 (2023) applied a different regional model and estimated that O₃ exposure weakened plant transpiration and altered surface heat flux in China, resulting in significant 112 increase of up to 0.16 °C in maximum daytime temperature and decrease of -0.74% in 113 relative humidity. However, all these previous estimates of O₃-induced feedback to 114 climate were derived using the empirical O₃ damage scheme proposed by Lombardozzi 115 et al. (2013), which assumed fixed damage ratios independent of O₃ dose for some 116 vegetation species and as a result may have biases in the further estimated feedback to 117 climate. 118

The O₃-vegetation coupling also has intricate implications for air quality. On one 119 hand, O₃-vegetation coupling can influence meteorological conditions that affect O₃ 120 generation, ultimately influencing the O₃ level (Sadiq et al., 2017). On the other hand, 121 it can also influence biogenic emissions and dry deposition, thereby affecting O₃ 122 concentrations (Gong et al., 2020). Sadiq et al. (2017) implemented O₃-vegetation 123 coupling in the Community Earth System Model (CESM) and estimated that surface 124 125 O₃ concentrations increased 4-6 ppb in Europe, North America, and China due to O₃vegetation coupling. By using the CLM model with the empirical scheme of 126 Lombardozzi et al. (2013), Zhou et al. (2018) found that O₃-induced damage on leaf 127 area index (LAI) could lead to changes in global O₃ concentrations by -1.8 to +3 ppb 128 in boreal summer. Gong et al., (2020) used the O₃ damage scheme from Sitch et al. 129 (2007) embedded in a global climate-chemistry-carbon coupled model and estimated 130 131 that O_3 -induced stomatal inhibition led to an average surface O_3 increase of 1.2-2.1 ppb in eastern China and 1.0-1.3 ppb in western Europe. Different from the above global 132 133 simulations with coarse resolutions, regional modeling with fine resolution can reveal more details about O3-vegetation coupling and feedback to surface O3 concentrations 134 in China (Zhu et al., 2022; Jin et al., 2023). However, all these regional simulations 135 were carried out using O₃ damage scheme of Lombardozzi et al. (2013), limiting the 136 exploration of model uncertainties due to varied O₃ vegetation damage schemes. 137

138 In this study, we implemented O₃ vegetation damage schemes from both Sitch et

al. (2007) and Lombardozzi et al. (2013) into the widely-used regional meteorology-139 chemistry model WRF-Chem. We validated the simulated meteorology and O₃ 140 concentrations, and performed sensitivity experiments to explore the O₃ damage to GPP 141 and consequent feedbacks to regional climate and air quality in China. Within the same 142 framework, we compared the differences of O₃-vegetation coupling from two schemes 143 and explored the causes for the discrepancies. We aimed to quantify the modeling 144 uncertainties in the up-to-date estimates of O₃ impact on regional carbon fluxes and its 145 feedback to regional climate and air quality in China. 146

147

148 **2 Method**

149 **2.1 WRF-Chem model**

We used WRF-Chem model version 3.9.1 to simulate meteorological fields and 150 O₃ concentration in China. The model includes atmospheric physics and dynamical 151 processes, atmospheric chemistry, and biophysical and biochemical processes (Grell et 152 al., 2005, Skamarock et al., 2008). The model domain is configured with 196×160 gird 153 154 cells at 27 km horizontal resolution on the Lambert conformal projection, and covers the entire mainland China. In the vertical direction, 28 layers are set extending from 155 surface to 50 hPa. The meteorological initial and boundary conditions were adopted 156 from ERA5 reanalysis produced by the European Centre for Medium-Range Weather 157 Forecasts (ECMWF) at a horizontal resolution of 0.25°×0.25° (Hersbach et al., 2020). 158 The chemical initial and boundary conditions were generated from the Model for Ozone 159 and Related Chemical Tracer version 4 (MOZART-4), which is available at a horizontal 160 resolution of $1.9^{\circ} \times 2.5^{\circ}$ with 56 vertical layers (Emmons et al., 2010). 161

Anthropogenic emissions are adopted from the 0.25° Multi-resolution Emission Inventory for China (MEIC) and MIX Asian emission inventory for the other regions (available at http://meicmodel.org). Biogenic emissions are calculated online using the Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006), which considers the impacts of plant types, weather conditions, and leaf area on vegetation emissions. Atmospheric chemistry is simulated using the Carbon Bond Mechanism

version Z (CBMZ) (Zaveri and Peters, 1999) gas-phase chemistry module coupled with 168 a four-bin sectional Model for Simulating Aerosol Interactions and Chemistry 169 170 (MOSAIC) (Zaveri et al., 2008). The photolysis scheme is based on the Madronich Fast-TUV photolysis module (Tie et al., 2003). The physical configurations include the 171 Morrison double-moment microphysics scheme (Morrison et al., 2009), the Grell-3 172 cumulus scheme (Grell et al., 2002), the Rapid Radiative Transfer Model longwave 173 radiation scheme (Mlawer et al., 1997), the Goddard short-wave radiation scheme 174 (Chou and Suarez, 1994), the Yonsei University planetary boundary layer scheme 175 (Hong et al., 2006), and the revised MM5 (Fifth generation Mesoscale Model) Monin-176 Obukhov surface layer scheme. 177

178

179 **2.2 Noah-MP model**

Noah-MP is a land surface model coupled to WRF-Chem with multiple options 180 for key land-atmosphere interaction processes (Niu et al., 2011). Noah-MP considers 181 canopy structure with canopy height and crown radius, and depicts leaves with 182 183 prescribed dimensions, orientation, density, and radiometric properties. The model employs a two-stream radiative transfer approach for surface energy and water transfer 184 processes (Dickinson, 1983). Noah-MP is capable of distinguishing photosynthesis 185 pathways between C₃ and C₄ plants, and defines vegetation-specific parameters for leaf 186 photosynthesis and respiration. 187

188 Noah-MP considers prognostic vegetation growth through the coupling between 189 photosynthesis and stomatal conductance (Farquhar et al., 1980; Ball et al., 1987). The 190 photosynthesis rate, A (µmolCO₂ m⁻² s⁻¹), is calculated as one of three limiting factors 191 as follows:

$$192 A_{tot} = min (W_c, W_j, W_e) I_{gs} (1)$$

193 where W_c is the RuBisco-limited photosynthesis rate, W_j is the light-limited 194 photosynthesis rate, and W_e is the export-limited photosynthesis rate. I_{gs} is the 195 growing season index with values ranging from 0 to 1. Stomatal conductance (g_s) is 196 computed based on photosynthetic rate as follows:

197
$$g_s = \frac{1}{r_s} = m \frac{A_{net}}{c_s} RH + b \tag{2}$$

198 where b is the minimum stomatal conductance; m is the Ball-Berry slope of the conductance-photosynthesis relationship; A_{net} is the net photosynthesis by subtracting 199 dark respiration from A_{tot} ; C_s is the ambient CO₂ concentration at the leaf surface. The 200 assimilated carbon is allocated to various parts of vegetation (leaf, stem, wood, and root) 201 and soil carbon pools (fast and slow), which determines the variations of LAI and 202 203 canopy height. Plant transpiration rate is then estimated using the dynamic LAI and 204 stomatal conductance. Noah-MP also distinguishes the photosynthesis of sunlit and shaded leaves. Sunlit leaves are more limited by CO₂ concentration while shaded leaves 205 are more constrained by insolation, leading to varied responses to O₃ damage. 206

207

208 **2.3 Scheme for ozone damage on vegetation**

We implemented the O₃ vegetation damage schemes proposed by Sitch et al. (2007) (thereafter S2007) and Lombardozzi et al. (2013) (thereafter L2013) into the Noah-MP. In S2007 scheme, the undamaged fraction *F* for net photosynthesis is dependent on the sensitivity parameter a_{PFT} and excessive area-based stomatal O₃ flux, which is calculated as the difference between f_{O3} and threshold y_{PFT} :

214
$$F = 1 - a_{PFT} \times max\{f_{O_3} - y_{PFT}, 0\}$$
(3)

215 where a_{PFT} and y_{PFT} are specifically determined for individual plant functional types

216 (PFTs) based on measurements (Table 1). The stomatal O₃ flux f_{O_3} is calculated as

217
$$f_{O_3} = \frac{[O_3]}{r_a + k_{O_3} \cdot r_s}$$
 (4)

where $[O_3]$ is the O₃ concentration at the reference level (nmol m⁻³), r_a is the aerodynamic and boundary layer resistance between leaf surface and reference level (s m⁻¹). $k_{O3} = 1.67$ represents the ratio of leaf resistance for O₃ to that for water vapor. r_s represents stomatal resistance (s m⁻¹). For S2007 scheme, stomatal conductance is damaged with the same ratio (1-*F*) as photosynthesis and further affects O₃ uptake. In Noah-MP, the f_{O_3} are calculated separately for sunlit and shaded leaves with corresponding stomatal resistance (Supplementary Text S1). As a comparison, the L2013 scheme applies separate O_3 damaging relationships for photosynthetic rate and stomatal conductance. These independent relationships account for different plant groups and are calculated based on the cumulative uptake of O_3 (CUO) under different levels of chronic O_3 exposure. The leaf-level CUO (mmol m⁻ 229 ²) over the growing season is calculated as follows:

230 $CUO = \sum (k_{O_2}/r_s + 1/r_a) \times [O_3]$ $CUO = \sum (k_{O_3}/r_s + 1/r_a) \times [O_3]$

231 (5)

The physical parameters in Equation (5) are the same as those in Equation (4). O_3 uptake 232 is accumulated over time steps during the growing season with mean LAI > 0.5233 (Lombardozzi et al., 2012), when vegetation is most vulnerable to air pollution episodes. 234 235 O_3 uptake is only accumulated when O_3 flux is above an instantaneous threshold of 0.8 nmol O₃ m⁻² s⁻¹ to account for ozone detoxification by vegetation at low O₃ levels 236 (Lombardozzi et al., 2015). We also include a leaf-turnover rate for evergreen plants so 237 that the accumulation of O_3 flux does not last beyond the average foliar lifetime. The 238 O₃ damaging ratios depend on CUO with empirical linear relationships as follows: 239

 $240 \qquad F_{PO3} = a_p \times CUO + \frac{b_p}{p} b_p$

241 (6)

242 $F_{cO3} = a_c \times CUO + \frac{b_c}{b_c} b_c$

243 (7)

where F_{pO3} and F_{cO3} are the ozone damage ratios for photosynthesis and stomatal 244 conductance, respectively. The slopes $(a_p \text{ for photosynthesis and } a_c \text{ for stomatal}$ 245 conductance) and intercepts (b_p for photosynthesis and b_c for stomatal conductance) of 246 regression functions are determined based on the meta-analysis of hundreds of 247 248 measurements (Table 2). The ratios predicted in Equations (6) and (7) are applied to photosynthesis and stomatal conductance, respectively, to account for their independent 249 250 responses to O₃ damages. In Noah-MP, the F_{pO3} and F_{cO3} are calculated separately for sunlit and shaded leaves based on corresponding stomatal resistance (Supplementary 251 252 Text S1).

253

254 2.4 Observational data

We validated the simulated meteorology and air pollutants with observations. The 255 meteorological data were downloaded from the National Meteorological Information 256 Center of China Meteorological Administration (CMA Meteorological Data Centre, 257 2022, http://data.cma.cn/data/detail/dataCode/A.0012.0001.html). The daily averaged 258 surface pressure (PRES), wind speed at a height of 10 m (WS10), relative humidity 259 (RH) and temperature at a height of 2 m (T2) were collected from 839 ground stations. 260 Hourly surface O₃ concentrations at 1597 sites in China were collected from Chinese 261 262 National Environmental Monitoring Center (CNEMC, http://websearch.mep.gov.cn/http://websearch.mep.gov.cn/). 263

264

265 **2.5. Simulations**

We performed seven experiments to quantify the damaging effects of ambient O₃ 266 on GPP and the feedbacks to regional climate and air quality (Table 3). All simulations 267 are conducted from 1st May to 31st August of 2017 with the first month excluded from 268 the analysis as the spin-up. The control simulations (CRTL) excluded the impact of 269 270 ozone on vegetation. Three offline simulations were performed with the same settings as the CTRL run, except that O3 vegetation damages were calculated and output without 271 feedback to affect vegetation growth. These offline runs were established using either 272 the S2007 scheme (Offline SH07 for high sensitivity and Offline SL07 for low 273 sensitivity) or the L2013 scheme (Offline L13). As a comparison, three online 274 simulations applied the S2007 scheme (Online SH07 for high sensitivity and 275 Online SL07 for low sensitivity) and the L2013 scheme (Online L13) to estimate the 276 O3 damages to GPP, which further influenced LAI development, leaf transpiration, and 277 278 dry deposition. The differences between CTRL and Online runs indicated the responses 279 of surface meteorology and O₃ concentrations to the O₃-induced vegetation damages.

280

281 **3. Results**

282 **3.1 Model evaluations**

283 We com

We compared the simulated summer near-surface temperature, relative humidity,

wind speed, and surface O_3 concentrations to observations. The model reasonably 284 285 reproduces the spatial pattern of higher near-surface temperature with warmings in the 286 Southeast and Northwest but coolingsand lower temperature over the Tibetan Plateau (Figure 1a). On the national scale, the near-surface temperature is underestimated with 287 a mean bias (MB) of 1.04 °C and but it shows a spatial-high correlation (R-of=0.96-). 288 Unlike temperature, simulated relative humidity is overestimated with a MB of 5.04 % 289 but a high R of 0.93 (Figure 1b). Due to the modeling biases in the topographic effects, 290 simulated wind speed is overestimated by more than 1.06 m s⁻¹ on the national scale 291 292 (Figure 1c). Such overestimation was also reported in other studies using WRF models (Hu et al., 2016, Liu et al., 2020, Zhu et al., 2022). 293

Comparisons with the measurements from air quality sites show that the simulated 294 O_3 deviates from the observed mean concentrations by 5.42 µg m⁻³ with a spatial R of 295 0.68. The model reasonably captures the hotspots over North China Plain though with 296 297 some overestimations, potentially attributed to uncertain emissions and coarse model resolutions. Such elevated bias in summer O₃ is a common issue for both global and 298 299 regional models over Asia. For example, Zhu et al. (2022) reported the overestimated summer average ozone concentration by 13.82 µg m⁻³ in China. Liu et al. (2020) 300 reached positive biases ranging from 3.7 µg m⁻³ to 13.32 µg m⁻³ using the WRF-CMAQ 301 model. Overall, the WRF-Chem model shows reasonable performance in the simulation 302 of surface meteorology and O₃ concentrations in China. 303

- 304
- 305 3.2 Offline O3 damage

We compared the offline O_3 damage to photosynthesis between sunlit (PSNSUN) and shaded (PSNSHA) leaves during the summer. The S2007 scheme is dependent on instantaneous O_3 uptake, which peaks when both O_3 concentrations and stomatal conductance are high. For the same O_3 pollution level, the damages are much higher for the sunlit leaves (Figures 2a-2b) than that for the shaded leaves (Figures 2d-2e), because of the higher stomatal conductance linked with the more active photosynthesis for the sunlit leaves. In contrast, the L2013 scheme depends on the accumulated O_3 flux₅ 313 which results and assumes constant damages for some PFTs (Table 2), resulting in 314 vegetation damagereductions of photosynthesis even at lower instantlow O3 concentrations. As a result<u>Consequently</u>, we found limited differences in the O₃ 315 damages between sunlit (Figure 2c) and shaded (Figure 2f) leaves with L2013 scheme. 316 Observations have reported that surface O₃ has limited impacts on the shaded leaves 317 318 (Wan et al., 2014), consistent with the results simulated by the S2007 scheme. 319 Furthermore, surface O₃ concentrations are low in southwest during summer (Figure 320 1d), suggesting a low O₃ vegetation damage over Tibetan Plateau and the more reasonable performance with the S2007 scheme. 321

322 Figure 3 shows the effect of O_3 damage to stomatal resistance of sunlit (RSSUN) and shaded (RSSHA) leaves. Overall, the spatial pattern of the changes in stomatal 323 resistance is consistent with those of photosynthesis (Figure 2) but with opposite signs. 324 Both RSSUN and RSSHA are enhanced by O₃ damage so as to prevent more O₃ uptake. 325 For S2007 scheme, RSSUN with high and low sensitivities respectively increases by 326 13.43% (Figure 3a) and 8.35% (Figure 3b), higher than the rates of 4.71% (Figure 3d) 327 328 and 2.97% (Figure 3e) for RSSHA. These ratios are inversely connected to the changes of photosynthesis (Figure 2), suggesting the full coupling of damages between leaf 329 photosynthesis and stomatal conductance. For L2013 scheme, predicted changes in 330 RSSUN (Figure 3c) and RSSHA (Figure 3f) are very similar with the magnitude of 331 25.3%-26.3%. These changes are higher than the loss of photosynthesis (Figures 2c and 332 2f), suggesting the decoupling of O_3 damages to leaf photosynthesis and stomatal 333 334 conductance as revealed by the L2013 scheme.

We further assessed the O_3 damage to GPP and transpiration (TR). For S2007 scheme, O_3 causes damages to <u>national average</u> GPP and TR approximately by 5.5% with low sensitivity (Figures 4b and 4e) and 8.4% with high sensitivity (Figures 4a and 4d) compared to the CTRL simulation. The model predicts high GPP damages over North China Plain and moderate damages in the southeastern and northeastern regions. In the northwest, GPP damage is very limited due to the low relative humidity (Figure 1b) that constrains the stomatal uptake. For L2013 scheme, TR shows uniform

reductions exceeding -25% in most regions of China except for the northwest (Figure 342 4f), though O₃ concentrations show distinct spatial gradient (Figure 1d). The changes 343 of GPP are similar to that of TR but with lower inhibitions (Figure 4c). On average, the 344 GPP reduction with the L2013 scheme is 2.5-3.9 times of that predicted with the S2007 345 scheme. The most significant differences are located in Tibetan Plateau with limited 346 damages in S2007 but strong inhibitions of both GPP and TR in L2013. Given the cold 347 environment The low temperature (Figure 1a) that constrains and O₃ concentrations 348 349 (Figure 1d) jointly constrain O₃ stomatal uptake (Wilkinson et al., 2001), we consider theFigure S2), leading to low O₃ impacts indamages over Tibetan Plateau predicted 350 with the S2007 scheme-are more reasonable. However, the L2013 scheme applies 351 $b_p=0.8021$ for grassland (Table 2), suggesting strong baseline damages up to 20% even 352 353 with CUO=0 over Tibetan Plateau where the grassland dominates (Figure S3).

354

355

3.3 The O₃-vegetation feedback to surface energy and meteorology

The O₃ vegetation damage causes contrasting responses in surface sensible heat 356 357 (SH) and LH (Figure 5). For S2007 scheme, the SH fluxes on average increase by 3.17 W m⁻² (8.85%) with low sensitivity (Figure 5b) and 5.99 W m⁻² (16.22%) with high 358 sensitivity (Figure 5a). The maximum enhancement is located in southern China, where 359 the increased stomatal resistance (Figure 3a) reduces transpiration and the consequent 360 heat dissipation. Meanwhile, LH fluxes decrease by 3.26 W m⁻² (5.58%) with low 361 sensitivity (Figure 5e) and 6.43 W m⁻² (15.29%) with high sensitivity (Figure 5d), 362 following the reductions in transpiration (Figures 4d and 4e). We found similar changes 363 in surface energy by O₃-vegetation coupling between the S2007 and L2013 schemes. 364 365 The SH shows the same hotspots over southern China with national average increase of 12.85% (Figure 5c), which is within the range of 8.85% to 16.22% predicted by the 366 S2007 scheme. The LH largely decreases in central and northern China with the mean 367 reduction of 17.4% (Figure 5f), close to the magnitude of 15.29% predicted with the 368 S2007 scheme using the high O₃ sensitivity (Figure 5d). Although the offline damages 369 to GPP and TR are much larger with the L2013 than S2007 (Figure 4), their feedback 370

to surface energy shows consistent spatial pattern and magnitude (Figure 5), likely 371 because the O₃ inhibition in S2007 has the same diurnal cycle with energy fluxes while 372 373 the L2013 scheme shows almost constant inhibitions through the day (Figure S1). The throughout the day (Figure S1). The zero or near-zero slope parameters (a_p and a_c) 374 in the L2013 scheme (Table 2) lead to insensitive responses of photosynthesis and 375 stomatal conductance to the variations of CUO. As a result, there were very limited 376 377 diurnal variations in O₃ damage with the L2013 scheme. However, the strong nighttime damages in L2013 have limited contributions to the changes of surface energy, which 378 usually peaks at the daytime. 379

The O₃-induced damages to stomatal conductance weaken plant transpiration and 380 thus slow down the heat dissipation at the surface, leading to the higher temperature but 381 lower RH in China (Figure 6). On the national scale, temperature increases by 0.5 °C 382 due to O₃ vegetation damage with the high sensitivity (Figure 6a) and 0.23 °C with the 383 low sensitivity (Figure 6b) predicted using the S2007 scheme. A similar warming is 384 predicted with the L2013 scheme except that temperature shows moderate enhancement 385 386 over Tibetan Plateau (Figure 6c). The average RH decreases by 3.68% with the high O₃ sensitivity (Figure 6d) and 2.22% with the low sensitivity (Figure 6e) in response to the 387 suppressed plant transpiration. A stronger RH reduction of -3.85% is achieved with the 388 L2013 scheme, which predicts the maximum RH reductions in the North (Figure 6f). 389 390

391 **3.4 The O₃-vegetation feedback to air quality**

392 The O₃-induced inhibition on stomatal resistance leads to a significant increase in surface O₃ concentrations, particularly in eastern China (Figures 7a-7c). The main cause 393 394 of such feedback is the reduction in O₃ dry deposition, which exacerbates the O₃ pollution in China. For S2007 scheme, this positive feedback can reach up to 15 µg m⁻ 395 ³ with high sensitivity (Figure 7a) and 8 μ g m⁻³ with low sensitivity (Figure 7b) over 396 North China Plain. On the national scale, surface O₃ enhances $\frac{3.314.40}{1.25 \text{ }\mu\text{g}}$ m⁻³ ($\frac{1.25 \text{ }\mu\text{g}}{1.25 \text{ }\mu\text{g}}$ 397 m^{-3}) or 7.925.08 %) with high O₃ sensitivity and 2.62 µg m⁻³ (3.04%) with low O₃ 398 sensitivity through the high (low) O3 sensitivity coupling to vegetation. For L2013 399

400 scheme, the changes of O_3 concentration (Figure 7c) are comparable to that of the 401 S2007 scheme with high sensitivity (Figure 7a), except that the O_3 enhancement is 402 stronger in the Southeast but weaker in the Northeast.

The O₃-vegetation coupling also increases surface isoprene emissions. For S2007 403 scheme, isoprene emissions increase by 6.13% with high sensitivity (Figure 7d) and 404 3.43% with low sensitivity (Figure 7e), with regional hotspots in North China Plain, 405 northeastern and southern regions. The predictions using L2013 scheme (Figure 7f) 406 407 show very similar patterns and magnitude of isoprene changes to the S2007 scheme with high sensitivity. Such enhancement in isoprene emissions is related to the 408 additional surface warming by O₃-vegetation interactions (Figures 6a-6c). In turn, the 409 increased isoprene emissions contribute to the deterioration of O₃ pollution in China. 410

411

412 4. Conclusions and discussion

In this study, we explored the feedback of O₃-vegetation coupling to surface 413 meteorology and air quality in China using two O₃ damage schemes embedded in a 414 415 regional meteorology-chemistry coupled model. The two schemes predicted distinct spatial patterns with much larger magnitude of GPP loss in the L2013 scheme than that 416 in the S2007 scheme. We further distinguished the leaf responses with different 417 illuminations. For the S2007 scheme, the damages to photosynthesis of sunlit leaves 418 are ~2.6 times of that to shaded leaves. However, for the L2013 scheme, limited 419 differences are found between the sunlit and shaded leaves. The damages to leaf 420 421 photosynthesis increase stomatal resistance, leading to the reductions of transpiration but enhancement of sensible heat due to the less efficient heat dissipation. These 422 423 changes in surface energy and water fluxes feed back to increase surface temperature but decrease relative humidity. Although the L2013 scheme predicts much stronger 424 offline damages, the feedback causes very similar pattern and magnitude in surface 425 warming as the S2007 scheme. Consequently, surface O₃ increases due to the stomatal 426 closure and isoprene emissions enhance due to the anomalous warming. 427

428 Our predicted O_3 damage to GPP was within the range of -4% to -40% as estimated

in previous studies using different models and/or parameterizations over China (Ren et 429 al., 2011; Lombardozzi et al., 2015; Yue et al., 2015; Sadiq et al., 2017; Xie et al., 2019; 430 431 Zhu et al., 2022; Jin et al., 2023). Such a wide span revealed the large uncertainties in the estimate of O₃ impacts on ecosystem functions. In this study, we employed two 432 schemes and compared their differences. With the S2007 scheme, we predicted GPP 433 434 reductions of -5.5% to -8.5% in China₅. This is similar to the range of -4% to -10% 435 estimated by Yue et al. (2015) using the same O₃ damage scheme-but. However, it is 436 lower than the estimate of -12.1% predicted by Xie et al. (2019), likely due to the slight overestimation of surface O₃ in the latter study. With the L2013 scheme, we predicted 437 much larger GPP reductions of -21.4%. However, such value was still lower than the -438 28.9% in Jin et al. (2023) and -20% to -40% in Zhu et al. (2022) using the same L2013 439 scheme embedded in WRF-Chem model, though all studies showed similar spatial 440 patterns in the GPP reductions. Such differences were likely attributed to the varied 441 model configuration as we ran the model from May while the other studies started from 442 the beginning of years. The longer time for the accumulation of O₃ stomatal uptake in 443 444 other studies resulted might result in higher damages than our estimates with the L2013 scheme. 445

The O₃-vegetation coupling caused strong feedback to surface meteorology and 446 447 air quality. Our simulations with either scheme revealed that surface SH increases by 2-28 W m⁻² and LH decreases by 4-32W m⁻² over eastern China, consistent with the 448 estimates of 5-30 W m⁻² by Zhu et al. (2022) using WRF-Chem model with the L2013 449 scheme. Consequently, surface air temperature on average increases by 0.23-0.51°C 450 while relative humidity decreases by 2.2-3.8%, similar to the warming of 0.2-0.8°C and 451 452 RH reduction of 3% as predicted by Zhu et al. (2022). However, these changes in surface energy flux and meteorology are much higher than that in Jin et al. (2023), 453 likely because the latter focuses on the perturbations averaged throughout the year 454 instead of summer period as in this study and Zhu et al. (2022). We further predicted 455 that O₃ vegetation damage increased surface O₃ by $\frac{0.6}{1.7 \text{ ppbv}}$ $\frac{0}{2.33 \text{ } \mu \text{g m}^{-3}}$ in China, 456 similar to the $\frac{1.2-2.1 \text{ ppbv}.35-4.11 \text{ }\mu\text{g m}^{-3}}{2}$ estimated for eastern China using a global 457

458 model (Gong et al., 2020). Regionally, the O_3 enhancement reached as high as 4-7.5 $\frac{1}{100}$ ppbv84-14.70 µg m⁻³ in North China Plain, consistent with the maximum value of 6 459 ppbv11.76 µg m⁻³ over the same domain predicted by Zhu et al. (2022). However, 460 limited feedback to surface O₃ was predicted in Jin et al. (2023), mainly because the 461 decreased dry deposition had comparable but opposite effects to the decreased isoprene 462 emissions due to the reductions of LAI. Such discrepancy was likely caused by the 463 stronger O₃ inhibition in Jin et al. (2023) following the longer period of O₃ 464 465 accumulation, consequently exacerbating the negative impacts of LAI reductions on O₃ production. 466

467 There were some limitations in our parameterizations and simulations. TheFirst, we predicted increases of isoprene emissions in eastern China mainly due to the 468 469 increased leaf temperature, which is in line with previous studies (Sadiq et al., 2017; Zhu et al., 2022). However, isoprene production is coupled to photosynthesis. There are 470 empirical evidences showing that high dose of O₃ exposure reduces isoprene emissions 471 when O₃ exposure is prolonged enough to suppress photosynthesis (Bellucci et al., 472 473 2023). Inclusion of such negative feedback might alleviate the O₃-induced enhancement in isoprene emissions. Second, the WRF-Chem model slightly 474 overestimated summer O3 concentrations, which could exacerbate the damages to 475 476 stomatal conductance and the subsequent feedback. The Third, the S2007 scheme employed the coupled responses in photosynthesis and stomatal conductance to O₃ 477 vegetation damage. However, some observations revealed that stomatal response is 478 479 slow under long-term O₃ exposure, resulting in loss of stomatal function and decoupling from photosynthesis (Calatayud et al., 2007; Lombardozzi et al., 2012). The L2013 480 481 scheme considered the decoupling between photosynthesis and stomatal conductance. 482 However, this scheme could not distinguish the responses of shows no significant different changes for sunlit and shaded leaves. In addition, the calculation of CUO 483 heavily relied on the ozoneO₃ threshold and accumulation period, leading to varied 484 responses among different studies using the same scheme. Furthermore, the slopes of 485 O₃ sensitivity in L2013 scheme were set to zero for some PFTs, leading to constant 486

damages independent of CUO. FinallyFourth, the current knowledge of the O₃ effects
on stomatal conductance was primarily derived from leaf-level measurements
(Matyssek et al., 2008), which were much fewer compared to that for photosynthesis.
The limited data availability and lack of inter-PFT responses constrain the development
of empirical parameterizations.

492 Despite these limitations, our study provided the first comparison of different parameterizations in simulating O₃-vegetation interactions. We found similar feedbacks 493 494 to surface energy and meteorology though the two schemes showed varied magnitude and distribution in the offline responses of GPP and stomatal conductance to surface 495 O₃. The main cause of such inconsistency lied in the low feedback of damages in L2013 496 with some unrealistic inhibitions of ecosystem functions at night and over the regions 497 with low O₃ level. Such similarity provides a solid foundation for the exploration of 498 O₃-vegetation coupling using different schemes. The positive feedback of O₃ vegetation 499 damage to surface air temperature and O₃ concentrations posed emerging but ignored 500 threats to both climate change and air quality in China. 501

502

503 Data availability

. The observed hourly O₃ concentrations were obtained from Chinese National 504 Environmental Monitoring Center (CNEMC, http://websearch.mep.gov.cn/). The 505 observed meteorological data were obtained from the National Meteorological 506 Information Center of China Meteorological Administration (CMA Meteorological 507 508 Data 2022. Centre. 509 http://data.cma.cn/data/detail/dataCode/A.0012.0001.html).http://data.cma.cn/data/det 510 ail/dataCode/A.0012.0001.html). The MEIC and MIX emission inventory are available at (http://meicmodel.org.cn/?page id=560 and http://meicmodel.org.cn/?page id=89). 511 http://meicmodel.org.cn/?page_id=89. 512

513

514 Author contributions

515 .XY conceived the study. XY and JC designed the research and carried out the

516	simulations. JC completed data analysis and the first draft. MM provided useful		
517	comments on the paper. XY reviewed and edited the manuscript.		
518			
519	Competing interests. The authors declare that they have no conflict of interest.		
520			
521	Acknowledgements. The authors declare are grateful to three anonymous reviewers for		
522	their constructive comments that they have no conflict of interestimproved this study.		
523			
524	Acknowledgments		
525	<u>Financial support.</u> This study was jointly funded by the National <u>Key Research and</u>		
526	Development Program of China (grant no. 2023YFF0805403), National Natural		
527	Science Foundation of China (grant no. 42293323), and Jiangsu Funding Program for		
528	Excellent Postdoctoral Talent (grant no. 2023ZB737).		
529			
530	References		
531	Ainsworth, E. A., Yendrek, C. R., Sitch, S., Collins, W. J., and Emberson, L. D.: The		
532	effects of tropospheric ozone on net primary productivity and implications for		
533	climate change, Annu. Rev. Plant Biol., 63, 637–661,		
534	https://doi.org/10.1146/annurevarplant-042110-103829, 2012.		
535	Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance		
536	and its contribution to the control of photosynthesis under different environmental		
537	conditions, Prog. Photosynthesis, Springer, Dordrecht, 4, 221–224, 1987.		
538	Bellucci, M., Locato, V., Sharkey, T. D., Gara D. and Loreto, F.: Isoprene emission by		
539	plants in polluted environments, J PLANT INTERACT., 18:1, 2266463,		
540	https://doi.org/10.1080/17429145.2023.2266463, 2023		
541	Calatayud, V., Cerveró, J., and Sanz, M. J.: Foliar, physiologial and growth responses		
542	of four maple species exposed to ozone, Water Air Soil Pollut., 185, 239-254,		
543	https://doi.org/10.1007/s11270-007-9446-510.1007/s11270-007-9446-5, 2007.		
544	Chou, MD. and Suarez, M.J.: An Efficient Thermal Infrared Radiation		
545	Parameterization for Use in General Circulation Models. Technical Report, 85p.		
	19		

1994.

- 547 Dickinson, R. E.: Land surface processes and climate Surface albedos and energy
 548 balance, Adv. Geophys., 25, 305–353, https://doi.org/10.1016/S0065549 2687(08)60176-4, 1983.
- Emmons, L. K., Walters, S., Hess, P. G., Lamarque, J.-F., Pfister, G. G., Fillmore, D.,
 Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall,
 G., Wiedinmyer, C., Baughcum, S. L., and Kloster, S.: Description and evaluation
 of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4),

554 Geosci. Model Dev., 3, 43–67, https://doi.org/10.5194/gmd-3-43-2010, 2010.

- Farquhar, G. D., Caemmerer, S. V., and Berry, J. A.: A biochemicalmodel of
 photosynthetic CO₂ assimilation in leaves of C3 species, Planta, 149, 78–90,
 https://doi.org/10.1007/bf00386231, 1980.
- Felzer, B., Kicklighter, D., Melillo, J., Wang, C., Zhuang, Q., and Prinn, R.: Effects of
 ozone on net primary production and carbon sequestration in the conterminous
 United States using a biogeochemistry model, Tellus B, 56, 230–248,
 https://doi.org/10.1111/j.1600-0889.2004.00097.x, 2004.
- Feng, Z., Hu, E., Wang, X., Jiang, L., and Liu, X.: Ground-level O₃ pollution and its
 impacts on food crops in China: A review, Environ. Pollut., 199, 42–48,
 https://doi.org/10.1016/j.envpol.2015.01.016, 2015.
- Gong, C., Lei, Y., Ma, Y., Yue, X., and Liao, H.: Ozone– vegetation feedback through
 dry deposition and isoprene emissions in a global chemistry–carbon–climate
 model, Atmos. Chem. Phys., 20, 3841–3857, https://doi.org/10.5194/acp-2038412020, 2020.
- Gong, C., Yue ,X., Liao, H., and Ma, Y.: A humidity-based exposure index representing
 ozone damage effects on vegetation, Environ. Res. Lett., 16, 044030,
 https://doi.org/10.1088/1748-9326/abecbb, 2021.
- Grell, G. A., McKeen, S., Michalakes, J., Bao, J.-W., Trainer, M., and Hsie, E.-Y.: Realtime simultaneous prediction of air pollution and weather during the Houston 2000
 Field Experiment, presented at the 4th Conference on Atmospheric Chemistry:

- Atmospheric Chemistry and Texas Field Study, 13-17 January, American 575 Meteorological Society, Orlando, 2002. 576
- Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G., Skamarock, W. C., 577 and Eder, B.: Fully coupled "online" chem- istry within the WRF model. Atmos. 578 Environ., 39, 6957–6975, https://doi.org/10.1016/j.atmosenv.2005.04.027, 2005. 579
- Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: 580 Estimates of global terrestrial isoprene emissions using MEGAN (Model of 581 Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181-582 3210, https://doi.org/10.5194/acp-6-3181-2006, 2006. 583
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., 584 Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, 585 S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De
- Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., 587
- Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, 588
- E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de 589 590 Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
- global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999-2049, 2020. 591

- Hong, S.-Y., Noh, Y., and Dudhia, J.: A new vertical diffusion package with explicit 592 treatment of entrainment processes, Mon. Weather Rev., 134, 2318-2341, 593 594 https://doi.org/10.1175/MWR3199.1 https://doi.org/10.1175/MWR3199.1, 2006.
- Hu, J., Chen, J., Ying, Q., and Zhang, H.: One-year simulation of ozone and particulate 595 matter in China using WRF/CMAQ modeling system, Atmos. Chem. Phys., 16, 596 597 https://doi.org/10.5194/acp-16-10333-10333-10350,
- 598 2016https://doi.org/10.5194/acp-16-10333-2016, 2016.
- Jin, Z., Yan, D., Zhang, Z., Li, M., Wang, T., Huang, X., Xie, M., Li S and Zhuang .: 599 Effects of elevated ozone exposure on regional meteorology and air quality in 600 China through ozone-vegetation coupling. J. Geophys. Res.-Atmos., 128, 601 602 e2022JD038119.
- https://doi.org/10.1029/2022JD038119https://doi.org/10.1029/2022JD038119. 603

2023.

- Li, J., Mahalov, A., and Hyde, P.: Simulating the impacts of chronic ozone exposure on
 plant conductance and photosynthesis, and on the regional hydroclimate using
 WRF/Chem, Environ. Res. Lett., 11, 114017,
 https://doi.org/10.1088/17489326/11/11/114017, 2016.
- Li, P., Calatayud, V., Gao, F., Uddling, J., and Feng, Z. Z.: Differences in ozone
 sensitivity among woody species are related to leaf morphology and antioxidant
 levels, Tree Physiol., 36, 1105–1116, https://doi.org/10.1093/treephys/tpw042,
 2016.
- Li, P., Feng, Z., Catalayud, V., Yuan, X., Xu, Y., and Paoletti, E.: A meta-analysis on
 growth, physiological, and biochemical responses of woody species to groundlevel ozone highlights the role of plant functional types, Plant Cell Environ., 40,
 2369–2380, https://doi.org/10.1111/pce.13043, 2017.
- Liu, Y. and Wang, T.: Worsening urban ozone pollution in China from 2013 to 2017 –
 Part 1: The complex and varying roles of meteorology, Atmos. Chem. Phys., 20,
 6305–6321, https://doi.org/10.5194/acp-20-6305-2020, 2020.
- Lombardozzi, D., Levis, S., Bonan, G., and Sparks, J. P.: Predicting photosynthesis and
 transpiration responses to ozone: decoupling modeled photosynthesis and stomatal
 conductance, Biogeosciences, 9, 3113–3130, https://doi.org/10.5194/bg-931132012, 2012.
- Lombardozzi, D., Sparks, J. P., and Bonan, G.: Integrating O3 influences on terrestrial
 processes: photosynthetic and stomatal response data available for regional and
 global modeling, Biogeosciences, 10, 6815–6831, https://doi:10.5194/bg-106815-2013, 2013.
- Lombardozzi, D., Levis, S., Bonan, G., Hess, P. G., and Sparks, J. P.: The influence of
 chronic ozone exposure on global carbon and water cycles, J. Climate, 28, 292–
 305, https://doi.org/10.1175/JCLI-D-14-00223.1, 2015.
- Matyssek, R., Sandermann, H., Wieser, G., Booker, F., Cieslik, S., Musselman, R., and
 Ernst, D.: The challenge of making ozone risk assessment for forest trees more

633mechanistic,Environ.Pollut.,156,567–582,634https://doi:10.1016/j.envpol.2008.04.017, 2008.

- Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative
 transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model
 for the longwave, J. Geophys. Res-Atmos., 102(D14), 16 663–16 682,
 <u>https://doi.org/10.1029/97JD00237</u>, 1997.
- 639 Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M., Derwent, R., Fowler,
- D., Granier, C., Law, K. S., Mills, G. E., Stevenson, D. S., Tarasova, O., Thouret,
 V., von Schneidemesser, E., Sommariva, R., Wild, O., and Williams, M. L.:
 Tropospheric ozone and its precursors from the urban to the global scale from air
 quality to short-lived climate forcer, Atmos. Chem. Phys., 15, 8889–8973,
 https://doi.org/10.5194/acp-15-8889-201510.5194/acp-15-8889-2015, 2015.
- Morrison, H., Thompson, G., and Tatarskii, V.: Impact of cloud microphysics on the
 development of trailing stratiform precipitation in a simulated squall line:
 comparison of one- and two-moment schemes, Monthly Weather Review, 137,
 991–1007, https://doi.org/10.1175/2008MWR2556.1, 2009.
- Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A.,
 Manning, K., Niyogi, D., Rosero, E., Tewari, M., and Xia, Y.: The community
 Noah land surface model with multiparameterization options (Noah-MP): 1.
 Model description and evaluation with local-scale measurements, J. Geophys.
 Res-Atmos., 116, D12, https://doi.org/10.1029/2010JD015139, 2011.
- Ren, W., Tian, H., Tao, B., Chappelka, A., Sun, G., Lu, C., Liu, M., Chen, G., and Xu,
 X.: Impacts of tropospheric ozone and climate change on net primary productivity
 and net carbon exchange of China's forest ecosystems, Glob. Ecol. Biogeogr., 20,
 391–406, https://doi.org/10.1111/j.1466-8238.2010.00606.x, 2011.
- Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–
 vegetation coupling on surface ozone air quality via biogeochemical and
 meteorological feedbacks, Atmos. Chem. Phys., 17, 3055–3066,
 https://doi.org/10.5194/acp-17-3055-2017, 2017.

662	Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C.: Indirect radiative forcing of
663	climate change through ozone effects on the land-carbon sink, Nature, 448, 791-
664	794, https://doi.org/10.1038/nature06059, 2007.
665	Skamarock W C and Klemp J B. A time-split nonhydrostatic atmospheric model for
666	weather research and forecasting applications. J. Comput. Phys., 227(7): 3465-
667	3485,
668	https://doi.org/10.1016/j.jcp.2007.01.037https://doi.org/10.1016/j.jcp.2007.01.03
669	<u>7</u> , 2008.
670	Su, B., Zhou, M., Xu, H., Zhang, X., Li, Y., Su, H., and XiangXiang B.: Photosynthesis
671	and biochemical responses to elevated O3 in Plantago major and Sonchus
672	oleraceus growing in a lowland habitat of northern China, J. Environ. SCI., 53(3):
673	113-121,
674	https://doi.org/10.1016/j.jes.2016.05.011https://doi.org/10.1016/j.jes.2016.05.011,
675	2017.
676	Tie, X. X., Madronich, S., Walters, S., Zhang, R. Y., Rasch, P., and Collins, W.: Effect
677	of clouds on photolysis and oxidants in the troposphere, J. Geophys. ResAtmos.,
678	108, 4642,
679	https://doi.org/10.1029/2003jd003659https://doi.org/10.1029/2003jd003659,
680	2003.
681	Wan, W., Manning, WJ., Wang, X., Zhang, H., Sun, X., and Zhang, Q.: Ozone and
682	ozone injury on plants in and around Beijing, China, Environ Pollut., 191: 215-
683	222, https://doi.org/10.1016/j.envpol.2014.02.035, 2014
684	Wilkinson, S., Clephan, A. L., and Davies, W. J.: Rapid Low Temperature-Induced
685	Stomatal Closure Occurs in Cold-Tolerant Commelina Communis Leaves But Not
686	in Cold-Sensitive Tobacco Leaves, via a Mechanism That Involves Apoplastic
687	Calcium But Not Abscisic Acid. Plant Physiol., 126, 1566–1578.
688	https://doi.org/ 10.1104/pp.126.4.1566 10.1104/pp.126.4.1566, 2001.
689	Wittig, V. E., Ainsworth, E. A., and Long, S. P.: To what extent do current and projected
690	increases in surface ozone affect photosynthesis and stomatal conductance of trees?

691 A metaanalytic review of the last 3 decades of experiments, Plant Cell Environ.,

692 30, 1150–1162, https://doi.org/10.1111/j.13653040.2007.01717.x, 2007.

- Xie, X., Wang, T., Yue, X., Li, S., Zhuang, B., Wang, M., and Yang, X.: Numerical
 modeling of ozone damage to plants and its effects on atmospheric CO₂ in China,
 Atmos. Environ., 217, 116970, https://doi.org/10.1016/j.atmosenv.2019.116970,
 2019.
- Yue, X. and Unger, N.: Ozone vegetation damage effects on gross primary productivity
 in the United States, Atmos. Chem. Phys., 14, 9137–9153,
 https://doi.org/10.5194/acp-14-9137-2014, 2014.
- Yue, X. and Unger, N.: The Yale Interactive terrestrial Biosphere model version 1.0:
 description, evaluation and implementation into NASA GISS ModelE2, Geosci.
 Model Dev., 8, 2399–2417, https://doi.org/10.5194/gmd-8-2399-2015, 2015.
- Zaveri, R. A., and Peters, L. K.: A new lumped structure photochemical mechanism for
 large-scale applications, J Geophys Res-Atmos, 104, 30387-30415, 1999.
- Zaveri, R. A., Easter, R. C., Fast, J. D., and Peters, L. K.: Model for simulating aerosol
 interactions and chemistry (MOSAIC), J. Geophys. Res-Atmos., 113, D13204,
 https://doi.org/10.1029/2007JD008782, 2008.
- Zhou, S. S., Tai, A. P. K., Sun, S., Sadiq, M., Heald, C. L., and Geddes, J. A.: Coupling
 between surface ozone and leaf area index in a chemical transport model: strength
 of feedback and implications for ozone air quality and vegetation health, Atmos.
 Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, 2018.
- Zhu, J., Tai, A. P. K., and Yim, S. H. L.: Effects of ozone-vegetation interactions on meteorology and air quality in China using a two-way coupled land-atmosphere model, Atmos. Chem. Phys., 22, 765-782, https://doi.org/10.5194/acp-22-765-202210.5194/acp-22-765-2022, 2022.
- 716

717 Tables

7	1	0
1	1	-0

 Table 1. Parameters used for S2007 O3 damage scheme.

PFTs ^a	a_{PFT} (nmol ⁻¹ m ² s) ^b	y_{PFT} (nmol m ⁻² s ⁻¹)
EBF	0.075, 0.02	1.6
NF	0.075, 0.02	1.6
DBF	0.15, 0.04	1.6
SHR	0.1, 0.03	1.6
GRA	1.4, 0.25	5
CRO	1.4, 0.25	5

^a The plant functional types (PFTs) include evergreen broadleaf forest (EBF), needleleaf

forest (NF), deciduous broadleaf forest (DBF), shrubland (SHR), grassland (GRA), and

721 cropland (CRO).

^b The first number is for high sensitivity and the second is for low sensitivity.

Table 2. Slopes and intercepts used for L2013 O₃ damage scheme.

EBF 0 0.8752 0 0.9125 NF 0 0.839 0.0048 0.7823 DBF 0 0.8752 0 0.9125 SHR 0 0.8752 0 0.9125	b_c	$a_c \pmod{\mathrm{m}^{-2}}$	b_p	$a_p \ (\mathrm{mmol} \ \mathrm{m}^{-2})$	PFTs
NF00.8390.00480.7823DBF00.875200.9125SHR00.875200.9125	0.9125	0	0.8752	0	EBF
DBF00.875200.9125SHR00.875200.9125	0.7823	0.0048	0.839	0	NF
SHR 0 0.8752 0 0.9125	0.9125	0	0.8752	0	DBF
	0.9125	0	0.8752	0	SHR
GRA -0.0009 0.8021 0 0.7511	0.7511	0	0.8021	-0.0009	GRA
CRO -0.0009 0.8021 0 0.7511	0.7511	0	0.8021	-0.0009	CRO

Name	O ₃ damage to vegetable	Scheme
CRTL	-	-
Offline_SH07	High	Sitch et al. (2007)
Offline_SL07	Low	Sitch et al. (2007)
Offline_L13	-	Lombardozzi et al. (2013)
Online_SH07	High	Sitch et al. (2007)
Online_SL07	Low	Sitch et al. (2007)
Online_L13	-	Lombardozzi et al. (2013)

Table 3. Summary of simulation experiments

732 Figure captions

733 734

Figure 1 Evaluations of simulated summer (June–August) daily (24-h average) (a) near-surface temperature, (b) relative humidity, (c) wind speed, and (d) surface O₃ concentrations in China. The dots represent the site-level observations. The correlation coefficients (R), mean biases (MB), and root-mean-square error (RMSE) for the comparisons are shown in the lower left corner of each panel.

742 743

Figure 2 Offline O_3 damage (%) to the summertime photosynthesis of (a-c) sunlit and (d-f) shaded leaves predicted by the S2007 scheme with (a, d) high and (b, e) low sensitivities or the (c, f) L2013 scheme. The area-weighted percentage changes are shown in the lower left corner.

748

Figure 3 The same as Figure 2 but for the changes in stomatal resistance.

753 754

Figure 4 Offline O₃ damage (%) to the (a-c) gross primary productivity (GPP) and (df) transpiration rate (TR) predicted by the Sitch scheme with (a, d) high and (b,e) low sensitivities or the (c, f) Lombardozzi scheme. The area-weighted percentage changes are shown in the lower left corner.

Figure 5 The feedback of O₃-vegetation interaction to surface (a-c) sensible and (d-f)
latent heat fluxes in the summer predicted by the S2007 scheme with (a, d) high and (b,
e) low sensitivities or the (c, f) L2013 scheme. The relative changes are shown with
area-weighted percentage changes indicated at the lower left corner.

Figure 6 The same as Figure 5 but for changes in (top) air temperature and (bottom)
relative humidity at 2 meters.

775 776

Figure 7 The feedback of O₃-vegetation interaction to surface O₃ concentrations and isoprene emissions in the summer predicted by the S2007 scheme with (a, d) high and (b, e) low sensitivities or the (c, f) L2013 scheme. The area-weighted percentage changes are shown in the lower left corner.