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Abstract

As a phytotoxic pollutant, surface ozone (O3) not only affects plant physiology but also
influences meteorological fields and air quality by altering leaf stomatal functions.
Previous studies revealed strong feedbacks of O3-vegetation coupling in China but with
large uncertainties due to the applications of varied O3 damage schemes and chemistry-
vegetation models. In this study, we quantify the Oz vegetation damage and the
consequent feedbacks to surface meteorology and air quality in China by coupling two
O3 damage schemes (52007 vs. L2013) into a fully coupled regional meteorology-
chemistry model. With different schemes and damaging sensitivities, surface Oj is
predicted to decrease summertime gross primary productivity by 5.5%-21.4% and
transpiration by 5.4%-23.2% in China, in which the L2013 scheme yields 2.5-4 times
of losses relative to the S2007 scheme. The damages to photosynthesis of sunlit leaves
are ~2.6 times that of shaded leaves in the S2007 scheme but show limited differences
in the L2013 scheme. Though with large discrepancies in offline responses, the two
schemes yield similar magnitude of feedback to surface meteorology and Os air quality.
The Os-induced damage to transpiration increases national sensible heat by 3.2-6.0 W
m~ (8.9% to 16.2%) while reduces latent heat by 3.3-6.4 W m (-5.6% to -17.4%),
leading to a 0.2-0.51 °C increase in surface air temperature and a 2.2-3.9% reduction in
relative humidity. Meanwhile, surface O3 concentrations on average increase by 13-
332.6-4.4 pg m> due to the inhibitions of stomatal uptake and the anomalous
enhancement in isoprene emissions, the latter of which is attributed to the surface
warming by Os-vegetaion coupling. Our results highlight the importance of O3 control
in China due to its adverse effects on ecosystem functions, deterioration—of-global
warming, and exaeerbatien-e£ O3 pollution through the Os-vegetation coupling.

Keywords: Ozone, vegetation, feedback, meteorology, air quality, regional model
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1 Introduction

Surface ozone (O3) is one of the most enduring air pollutants affecting air quality
in China, with detrimental effects on human health and ecosystem functions (Monk et
al., 2015). Long-term observations and numerical simulations have shown that O;
affects stomatal conductance (Li et al., 2017), accelerates vegetation aging (Feng et al.,
2015), and reduces photosynthesis (Wittig et al., 2007). These negative effects altered
carbon allocation (Yue and Unger, 2014; Lombardozzi et al., 2015) and inhibited plant
growth (Li et al., 2016), leading to-a-deereased strength-efsuppressing ecosystem carbon
uptake (Ainsworth, 2012). Moreover, these effects have profound implications for
global/regional climate and atmospheric environment. Given the significant ecological
impacts, a systematic quantification of the O3 vegetation damage effect in China is of
great importance for the better understanding of the side effects of O3 pollution on both
regional carbon uptake and climate change.

At present, field experiments on Os-induced vegetation damage have been
conducted in China but were mostly confined to individual monitoring sites. For
instance, Su et al. (2017) conducted experiments on grassland in Inner Mongolia and
found that elevated O3 concentrations resulted in a decrease of approximately 20% in
the photosynthetic rate of herbaceous plants. Meta-analysis of tropical, subtropical, and
temperate tree species in China found that increased O3 concentrations reduced net
photosynthesis and total biomass of Chinese woody plants by 28% and 14%,
respectively (Li et al., 2017). However, most of these experiments were conducted
using open-top chambers with artificially controlled O3 concentrations, rather than
actual surface O3 concentrations, making it difficult to quantitatively estimate the
impact of ambient O3 on vegetation productivity. Furthermore, the spatial coverage of
field experiments is limited, which hinders the direct use of observational data for
assessing O3 vegetation damage in different regions of China.

Alternatively, numerical models provide a more feasible approach to quantify the
Os-induced vegetation damage from the regional to global scales. Currently, there are

three main parameterizations for the calculation of ozone vegetation damage. Felzer et
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al. (2004) established an empirical scheme based on the Accumulated Ozone exposure
over a Threshold of 40 ppb (AOT40) within the framework of a terrestrial ecosystem
model. They further estimated that O3 pollution in the United States led to a decrease
in net primary productivity (NPP) by 2.6% to 6.8% during the period of 1980-1990.
However, the AOT40 is related to O3 concentrations alone and ignores the biological
regulations on the O3 stomatal uptake, leading to inconsistent tendencies between O3
pollution level and plant damage at the drought conditions (Gong et al., 2021). In
acknowledge of such deficit, Sitch et al. (2007) proposed a semi-mechanistic scheme
calculating O3 vegetation damage based on the stomatal uptake of O3 fluxes and the
coupling between stomatal conductance and leaf photosynthesis. Yue and Unger (2014)
implemented this scheme into the Yale Interactive terrestrial Biosphere (YIBs) model.
Taking into account varied O3 sensitivities of different vegetation types, they estimated
that surface O3 led to reductions of 2-5% in the summer gross primary productivity
(GPP) in eastern U.S. from 1998 to 2007. Later, Lombardozzi et al. (2013) conducted
a meta-analysis using published chamber data and found different levels of responses
to O3 exposure between stomatal conductance and photosynthesis. They further
implemented the independent response relationships into the Community Land Model
(CLM) and estimated that current ozone levels led to a reduction in global GPP by 8%-
12% (Lombardozzi et al., 2015).

The O3 stress on vegetation physiology can feed back to affect regional climate.
Lombardozzi et al. (2015) employed the CLM model and found that current Os
exposure reduced transpiration by 2%-2.4% globally and up to 15% regionally over
eastern U.S., Europe, and Southeast Asia, leading to further perturbations in surface
energy andrunetfbalance. In U.S., Li et al. (2016) found that the O3 vegetation damage
reduced latent heat (LH) flux, precipitation, and runoff by 10-27 W m?, 0.9-1.4 mm d
!, and 0.1-0.17 mm d’!, respectively, butand increased surface air temperature by 0.6-
2.0 °C during the summer of 2007-2012. In China, Zhu et al. (2022) performed
simulations and found that the inclusion of Os-vegetation interaction caused a 5-30 W

m decrease in LH, 0.2-0.8 °C increase in surface air temperature, and 3% reduction in
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relative-humiditrelative humidity during summers of 2014-2017. Recently, Jin et al.

(2023) applied a different regional model and estimated that O3 exposure weakened
plant transpiration and altered surface heat flux in China, resulting in significant
increase of up to 0.16 °C in maximum daytime temperature and decrease of -0.74% in
relative humidity. However, all these previous estimates of Osz-induced feedback to
climate were derived using the empirical Oz damage scheme proposed by Lombardozzi
et al. (2013), which assumed fixed damage ratios independent of O3 dose for some
vegetation species and as a result may have biases in the further estimated feedback to
climate.

The Os-vegetation coupling also has intricate implications for air quality. On one
hand, Os-vegetation coupling can influence meteorological conditions that affect Os
generation, ultimately influencing the O3 level (Sadiq et al., 2017). On the other hand,
it can also influence biogenic emissions and dry deposition, thereby affecting O3
concentrations (Gong et al., 2020). Sadiq et al. (2017) implemented O3z-vegetation
coupling in the Community Earth System Model (CESM) and estimated that surface
Os concentrations increased 4-6 ppb in Europe, North America, and China due to Os-
vegetation coupling. By using the CLM model with the empirical scheme of
Lombardozzi et al. (2013), Zhou et al. (2018) found that Os-induced damage on leaf
area index (LAI) could lead to changes in global O3 concentrations by -1.8 to +3 ppb
in boreal summer. Gong et al., (2020) used the O3 damage scheme from Sitch et al.
(2007) embedded in a global climate-chemistry-carbon coupled model and estimated
that Os-induced stomatal inhibition led to an average surface O3 increase of 1.2-2.1 ppb
in eastern China and 1.0-1.3 ppb in western Europe. Different from the above global
simulations with coarse resolutions, regional modeling with fine resolution can reveal
more details about Os-vegetation coupling and feedback to surface O3 concentrations
in China (Zhu et al., 2022; Jin et al., 2023). However, all these regional simulations
were carried out using O3 damage scheme of Lombardozzi et al. (2013), limiting the
exploration of model uncertainties due to varied O3 vegetation damage schemes.

In this study, we implemented O3 vegetation damage schemes from both Sitch et
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al. (2007) and Lombardozzi et al. (2013) into the widely-used regional meteorology-
chemistry model WRF-Chem. We validated the simulated meteorology and O3
concentrations, and performed sensitivity experiments to explore the O3 damage to GPP
and consequent feedbacks to regional climate and air quality in China. Within the same
framework, we compared the differences of Oz-vegetation coupling from two schemes
and explored the causes for the discrepancies. We aimed to quantify the modeling
uncertainties in the up-to-date estimates of O3 impact on regional carbon fluxes and its

feedback to regional climate and air quality in China.

2 Method
2.1 WRF-Chem model

We used WRF-Chem model version 3.9.1 to simulate meteorological fields and
Os concentration in China. The model includes atmospheric physics and dynamical
processes, atmospheric chemistry, and biophysical and biochemical processes (Grell et
al., 2005, Skamarock et al., 2008). The model domain is configured with 196x160 gird
cells at 27 km horizontal resolution on the Lambert conformal projection, and covers
the entire mainland China. In the vertical direction, 28 layers are set extending from
surface to 50 hPa. The meteorological initial and boundary conditions were adopted
from ERAS reanalysis produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF) at a horizontal resolution of 0.25°<0.25° (Hersbach et al., 2020).
The chemical initial and boundary conditions were generated from the Model for Ozone
and Related Chemical Tracer version 4 (MOZART-4), which is available at a horizontal
resolution of 1.9°x2.5° with 56 vertical layers (Emmons et al., 2010).

Anthropogenic emissions are adopted from the 0.25° Multi-resolution Emission
Inventory for China (MEIC) and MIX Asian emission inventory for the other regions
(available at http://meicmodel.org). Biogenic emissions are calculated online using the
Model of Emissions of Gases and Aerosols from Nature (Guenther et al., 2006), which
considers the impacts of plant types, weather conditions, and leaf area on vegetation

emissions. Atmospheric chemistry is simulated using the Carbon Bond Mechanism
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version Z (CBMZ) (Zaveri and Peters, 1999) gas-phase chemistry module coupled with
a four-bin sectional Model for Simulating Aerosol Interactions and Chemistry
(MOSAIC) (Zaveri et al., 2008). The photolysis scheme is based on the Madronich
Fast-TUV photolysis module (Tie et al., 2003). The physical configurations include the
Morrison double-moment microphysics scheme (Morrison et al., 2009), the Grell-3
cumulus scheme (Grell et al., 2002), the Rapid Radiative Transfer Model longwave
radiation scheme (Mlawer et al., 1997), the Goddard short-wave radiation scheme
(Chou and Suarez, 1994), the Yonsei University planetary boundary layer scheme
(Hong et al., 2006), and the revised MMS5 (Fifth generation Mesoscale Model) Monin—

Obukhov surface layer scheme.

2.2 Noah-MP model

Noah-MP is a land surface model coupled to WRF-Chem with multiple options
for key land-atmosphere interaction processes (Niu et al., 2011). Noah-MP considers
canopy structure with canopy height and crown radius, and depicts leaves with
prescribed dimensions, orientation, density, and radiometric properties. The model
employs a two-stream radiative transfer approach for surface energy and water transfer
processes (Dickinson, 1983). Noah-MP is capable of distinguishing photosynthesis
pathways between C; and C4 plants, and defines vegetation-specific parameters for leaf
photosynthesis and respiration.

Noah-MP considers prognostic vegetation growth through the coupling between
photosynthesis and stomatal conductance (Farquhar et al., 1980; Ball et al., 1987). The
photosynthesis rate, 4 (umolCO, m™ s™), is calculated as one of three limiting factors
as follows:

Agor = min (W, W;, W)l s (1)
where W, is the RuBisco-limited photosynthesis rate, W; is the light-limited
photosynthesis rate, and W, is the export-limited photosynthesis rate. Iy; is the
growing season index with values ranging from O to 1. Stomatal conductance (g;) is

computed based on photosynthetic rate as follows:
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where b is the minimum stomatal conductance; m is the Ball-Berry slope of the
conductance-photosynthesis relationship; A.e: is the net photosynthesis by subtracting
dark respiration from 4., Cs is the ambient CO; concentration at the leaf surface. The
assimilated carbon is allocated to various parts of vegetation (leaf, stem, wood, and root)
and soil carbon pools (fast and slow), which determines the variations of LAI and
canopy height. Plant transpiration rate is then estimated using the dynamic LAI and
stomatal conductance. Noah-MP also distinguishes the photosynthesis of sunlit and
shaded leaves. Sunlit leaves are more limited by CO> concentration while shaded leaves

are more constrained by insolation, leading to varied responses to O3 damage.

2.3 Scheme for ozone damage on vegetation

We implemented the O3 vegetation damage schemes proposed by Sitch et al. (2007)
(thereafter S2007) and Lombardozzi et al. (2013) (thereafter L2013) into the Noah-MP.
In S2007 scheme, the undamaged fraction F for net photosynthesis is dependent on the
sensitivity parameter aprr and excessive area-based stomatal Os flux, which is

calculated as the difference between f,; and threshold yprr:
F =1—appr X max{fo, — Yprr, 0} (3)
where aprr and yprr are specifically determined for individual plant functional types

(PFTs) based on measurements (Table 1). The stomatal Os flux fy,is calculated as

fo, = —loal_ "

- TatkosTs
where [O3] is the O3 concentration at the reference level (nmol m™), 7, is the
aerodynamic and boundary layer resistance between leaf surface and reference level (s
m™). ko3 = 1.67 represents the ratio of leaf resistance for O3 to that for water vapor. r;
represents stomatal resistance (s m™). For S2007 scheme, stomatal conductance is

damaged with the same ratio (1-F) as photosynthesis and further affects O3 uptake. In

Noah-MP, the f, _are calculated separately for sunlit and shaded leaves with

corresponding stomatal resistance (Supplementary Text S1).
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As a comparison, the L2013 scheme applies separate O3 damaging relationships
for photosynthetic rate and stomatal conductance. These independent relationships
account for different plant groups and are calculated based on the cumulative uptake of
O3 (CUO) under different levels of chronic O3 exposure. The leaf-level CUO (mmol m

2) over the growing season is calculated as follows:

CHO-=2thg /s /4>H401CUO = X(Ko, /15 + 1/1a) X [03]

(5)

The physical parameters in Equation (5) are the same as those in Equation (4). O3 uptake
is accumulated over time steps during the growing season with mean LAI > 0.5
(Lombardozzi et al., 2012), when vegetation is most vulnerable to air pollution episodes.
Os uptake is only accumulated when O3 flux is above an instantaneous threshold of 0.8
nmol O3 m? s to account for ozone detoxification by vegetation at low O3 levels
(Lombardozzi et al., 2015). We also include a leaf-turnover rate for evergreen plants so
that the accumulation of O3 flux does not last beyond the average foliar lifetime. The

O3 damaging ratios depend on CUO with empirical linear relationships as follows:
Fpo3 = a, X CUO +-b5=b,,

(6)

F.o3 =a, X CUO +bzb._

(7

where Fpo3 and Fco3 are the ozone damage ratios for photosynthesis and stomatal
conductance, respectively. The slopes (a, for photosynthesis and a. for stomatal
conductance) and intercepts (b, for photosynthesis and b. for stomatal conductance) of
regression functions are determined based on the meta-analysis of hundreds of
measurements (Table 2). The ratios predicted in Equations (6) and (7) are applied to
photosynthesis and stomatal conductance, respectively, to account for their independent

responses to O3 damages. In Noah-MP, the /,03 and F.o; are calculated separately for

sunlit and shaded leaves based on corresponding stomatal resistance (Supplementary

Text S1).

2.4 Observational data
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We validated the simulated meteorology and air pollutants with observations. The
meteorological data were downloaded from the National Meteorological Information
Center of China Meteorological Administration (CMA Meteorological Data Centre,
2022, http://data.cma.cn/data/detail/dataCode/A.0012.0001.html). The daily averaged
surface pressure (PRES), wind speed at a height of 10 m (WS10), relative humidity
(RH) and temperature at a height of 2 m (T2) were collected from 839 ground stations.
Hourly surface O3 concentrations at 1597 sites in China were collected from Chinese
National Environmental Monitoring Center (CNEMC,
http/websearch-mep-goventhttp://websearch.mep.gov.cn/).

2.5. Simulations

We performed seven experiments to quantify the damaging effects of ambient O3
on GPP and the feedbacks to regional climate and air quality (Table 3). All simulations
are conducted from 1% May to 315" August of 2017 with the first month excluded from
the analysis as the spin-up. The control simulations (CRTL) excluded the impact of
ozone on vegetation. Three offline simulations were performed with the same settings
as the CTRL run, except that O3 vegetation damages were calculated and output without
feedback to affect vegetation growth. These offline runs were established using either
the S2007 scheme (Offline SHO7 for high sensitivity and Offline SLO7 for low
sensitivity) or the L2013 scheme (Offline L13). As a comparison, three online
simulations applied the S2007 scheme (Online SHO7 for high sensitivity and
Online SLO7 for low sensitivity) and the L2013 scheme (Online L13) to estimate the
Os damages to GPP, which further influenced LAI development, leaf transpiration, and
dry deposition. The differences between CTRL and Online runs indicated the responses

of surface meteorology and O3 concentrations to the Os-induced vegetation damages.

3. Results
3.1 Model evaluations

We compared the simulated summer near-surface temperature, relative humidity,

10
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wind speed, and surface O3 concentrations to observations. The model reasonably
reproduces the spatial pattern of higher near-surface temperature with-warmings-in the

Southeast and Northwest but-eoehingsand lower temperature over the Tibetan Plateau

(Figure 1a). On the national scale, the near-surface temperature is underestimated with

a mean bias (MB) of 1.04 °C andbut it shows a spatial-high correlation (R-6£=0.96-).

Unlike temperature, simulated relative humidity is overestimated with a MB of 5.04 %
but a high R of 0.93 (Figure 1b). Due to the modeling biases in the topographic effects,

simulated wind speed is overestimated by more than 1.06 m s™' on the national scale

(Figure 1c). Such overestimation was also reported in other studies using WRF models
(Hu et al., 2016, Liu et al., 2020, Zhu et al., 2022).

Comparisons with the measurements from air quality sites show that the simulated
O; deviates from the observed mean concentrations by 5.42 ug m with a spatial R of
0.68. The model reasonably captures the hotspots over North China Plain though with

some overestimations-, potentially attributed to uncertain emissions and coarse model

resolutions. Such elevated bias in summer O3 is a common issue for both global and
regional models over Asia. For example, Zhu et al. (2022) reported the overestimated
summer average ozone concentration by 13.82 pg m? in China. Liu et al. (2020)
reached positive biases ranging from 3.7 pg m™ to 13.32 ug m> using the WRF-CMAQ
model. Overall, the WRF-Chem model shows reasonable performance in the simulation

of surface meteorology and O3 concentrations in China.

3.2 Offline O3 damage

We compared the offline O3 damage to photosynthesis between sunlit (PSNSUN)
and shaded (PSNSHA) leaves during the summer. The S2007 scheme is dependent on
instantaneous O3 uptake, which peaks when both O3 concentrations and stomatal
conductance are high. For the same O3 pollution level, the damages are much higher
for the sunlit leaves (Figures 2a-2b) than that for the shaded leaves (Figures 2d-2e),
because of the higher stomatal conductance linked with the more active photosynthesis

for the sunlit leaves. In contrast, the L2013 scheme depends on the accumulated Os flux;

11
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whichresults and assumes constant damages for some PFTs (Table 2), resulting in

vegetation—damagereductions of photosynthesis even at lewer—nstantlow O3

concentrations. As—a—resuttConsequently, we found limited differences in the O3
damages between sunlit (Figure 2¢) and shaded (Figure 2f) leaves with L2013 scheme.
Observations have reported that surface O3 has limited impacts on the shaded leaves

(Wan et al., 2014), consistent with the results simulated by the S2007 scheme.
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Figure 3 shows the effect of O3 damage to stomatal resistance of sunlit (RSSUN)
and shaded (RSSHA) leaves. Overall, the spatial pattern of the changes in stomatal
resistance is consistent with those of photosynthesis (Figure 2) but with opposite signs.
Both RSSUN and RSSHA are enhanced by O3 damage so as to prevent more O3 uptake.
For S2007 scheme, RSSUN with high and low sensitivities respectively increases by
13.43% (Figure 3a) and 8.35% (Figure 3b), higher than the rates of 4.71% (Figure 3d)
and 2.97% (Figure 3e) for RSSHA. These ratios are inversely connected to the changes
of photosynthesis (Figure 2), suggesting the full coupling of damages between leaf
photosynthesis and stomatal conductance. For L2013 scheme, predicted changes in
RSSUN (Figure 3c) and RSSHA (Figure 3f) are very similar with the magnitude of
25.3%-26.3%. These changes are higher than the loss of photosynthesis (Figures 2¢ and
2f), suggesting the decoupling of O; damages to leaf photosynthesis and stomatal
conductance as revealed by the L2013 scheme.

We further assessed the O3 damage to GPP and transpiration (TR). For S2007

scheme, O3 causes damages to national average GPP and TR approximately by 5.5%

with low sensitivity (Figures 4b and 4e) and 8.4% with high sensitivity (Figures 4a and
4d) compared to the CTRL simulation. The model predicts high GPP damages over
North China Plain and moderate damages in the southeastern and northeastern regions.
In the northwest, GPP damage is very limited due to the low relative humidity (Figure

1b) that constrains the stomatal uptake. For L2013 scheme, TR shows uniform

12
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reductions exceeding -25% in most regions of China except for the northwest (Figure
4f), though O3 concentrations show distinct spatial gradient (Figure 1d). The changes
of GPP are similar to that of TR but with lower inhibitions (Figure 4c). On average, the
GPP reduction with the L2013 scheme is 2.5-3.9 times of that predicted with the S2007
scheme. The most significant differences are located in Tibetan Plateau with limited

damages in S2007 but strong inhibitions of both GPP and TR in L2013. Given-theeold

environment The low temperature (Figure la) that-eenstrainsand O3 concentrations

(Figure 1d) jointly constrain O3 stomatal uptake (Witkinsen-et-al;2001);-we-consider
theFigure S2), leading to low O3 impaets—ndamages over Tibetan Plateau predieted
with the S2007 scheme-are-more—+reasonable.. However, the L2013 scheme applies

b,=0.8021 for grassland (Table 2), suggesting strong baseline damages up to 20% even

with CUO=0 over Tibetan Plateau where the grassland dominates (Figure S3).

3.3 The Os-vegetation feedback to surface energy and meteorology

The O; vegetation damage causes contrasting responses in surface sensible heat
(SH) and LH (Figure 5). For S2007 scheme, the SH fluxes on average increase by 3.17
W m? (8.85%) with low sensitivity (Figure 5b) and 5.99 W m? (16.22%) with high
sensitivity (Figure 5a). The maximum enhancement is located in southern China, where
the increased stomatal resistance (Figure 3a) reduces transpiration and the consequent
heat dissipation. Meanwhile, LH fluxes decrease by 3.26 W m™ (5.58%) with low
sensitivity (Figure 5e) and 6.43 W m (15.29%) with high sensitivity (Figure 5d),
following the reductions in transpiration (Figures 4d and 4e). We found similar changes
in surface energy by Os-vegetation coupling between the S2007 and L2013 schemes.
The SH shows the same hotspots over southern China with national average increase
of 12.85% (Figure 5¢), which is within the range of 8.85% to 16.22% predicted by the
S2007 scheme. The LH largely decreases in central and northern China with the mean
reduction of 17.4% (Figure 5f), close to the magnitude of 15.29% predicted with the
S2007 scheme using the high O3 sensitivity (Figure 5d). Although the offline damages
to GPP and TR are much larger with the L2013 than S2007 (Figure 4), their feedback

13
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to surface energy shows consistent spatial pattern and magnitude (Figure 5), likely

because the O3 inhibition in S2007 has the same diurnal cycle with energy fluxes while

the L2013 scheme shows almost constant inhibitions threugh—theday{(Fisure-SH-

Fhethroughout the day (Figure S1). The zero or near-zero slope parameters (a, and a.)

in the L.2013 scheme (Table 2) lead to insensitive responses of photosynthesis and

stomatal conductance to the variations of CUQ. As a result, there were very limited

diurnal variations in O3 damage with the .2013 scheme. However, the strong nighttime

damages in L2013 have limited contributions to the changes of surface energy, which
usually peaks at the daytime.

The Os-induced damages to stomatal conductance weaken plant transpiration and
thus slow down the heat dissipation at the surface, leading to the higher temperature but
lower RH in China (Figure 6). On the national scale, temperature increases by 0.5 °C
due to O3 vegetation damage with the high sensitivity (Figure 6a) and 0.23 °C with the
low sensitivity (Figure 6b) predicted using the S2007 scheme. A similar warming is
predicted with the L2013 scheme except that temperature shows moderate enhancement
over Tibetan Plateau (Figure 6¢). The average RH decreases by 3.68% with the high O3
sensitivity (Figure 6d) and 2.22% with the low sensitivity (Figure 6e) in response to the
suppressed plant transpiration. A stronger RH reduction of -3.85% is achieved with the

L2013 scheme, which predicts the maximum RH reductions in the North (Figure 6f).

3.4 The Os-vegetation feedback to air quality

The Os-induced inhibition on stomatal resistance leads to a significant increase in
surface O3 concentrations, particularly in eastern China (Figures 7a-7c¢). The main cause
of such feedback is the reduction in O3 dry deposition, which exacerbates the Os
pollution in China. For S2007 scheme, this positive feedback can reach up to 15 pg m
3 with high sensitivity (Figure 7a) and 8 ng m> with low sensitivity (Figure 7b) over
North China Plain. On the national scale, surface O3 enhances 3-314.40 pg m> (+:25w¢
My er7925.08 %) with high O3 sensitivity and 2.62 ug m™ (3.04%) with low O3

sensitivity through the high—-dew)—Os—sensitivitycoupling to vegetation. For L2013
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scheme, the changes of Oz concentration (Figure 7c) are comparable to that of the
S2007 scheme with high sensitivity (Figure 7a), except that the O3 enhancement is
stronger in the Southeast but weaker in the Northeast.

The Os-vegetation coupling also increases surface isoprene emissions. For S2007
scheme, isoprene emissions increase by 6.13% with high sensitivity (Figure 7d) and
3.43% with low sensitivity (Figure 7e), with regional hotspots in North China Plain,
northeastern and southern regions. The predictions using L2013 scheme (Figure 7f)
show very similar patterns and magnitude of isoprene changes to the S2007 scheme
with high sensitivity. Such enhancement in isoprene emissions is related to the
additional surface warming by Os-vegetation interactions (Figures 6a-6c¢). In turn, the

increased isoprene emissions contribute to the deterioration of O3 pollution in China.

4. Conclusions and discussion

In this study, we explored the feedback of Os-vegetation coupling to surface
meteorology and air quality in China using two O3 damage schemes embedded in a
regional meteorology-chemistry coupled model. The two schemes predicted distinct
spatial patterns with much larger magnitude of GPP loss in the L2013 scheme than that
in the S2007 scheme. We further distinguished the leaf responses with different
illuminations. For the S2007 scheme, the damages to photosynthesis of sunlit leaves
are ~2.6 times of that to shaded leaves. However, for the L2013 scheme, limited
differences are found between the sunlit and shaded leaves. The damages to leaf
photosynthesis increase stomatal resistance, leading to the reductions of transpiration
but enhancement of sensible heat due to the less efficient heat dissipation. These
changes in surface energy and water fluxes feed back to increase surface temperature
but decrease relative humidity. Although the L2013 scheme predicts much stronger
offline damages, the feedback causes very similar pattern and magnitude in surface
warming as the S2007 scheme. Consequently, surface O3 increases due to the stomatal
closure and isoprene emissions enhance due to the anomalous warming.

Our predicted O3 damage to GPP was within the range of -4% to -40% as estimated
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in previous studies using different models and/or parameterizations over China (Ren et
al., 2011; Lombardozzi et al., 2015; Yue et al., 2015; Sadiq et al., 2017; Xie et al., 2019;
Zhu et al., 2022; Jin et al., 2023). Such a wide span revealed the large uncertainties in
the estimate of O3 impacts on ecosystem functions. In this study, we employed two
schemes and compared their differences. With the S2007 scheme, we predicted GPP
reductions of -5.5% to -8.5% in China;. This is similar to the range of -4% to -10%

estimated by Yue et al. (2015) using the same O3 damage scheme-but. However, it is

lower than the estimate of -12.1% predicted by Xie et al. (2019), likely due to the slight
overestimation of surface Os in the latter study. With the L2013 scheme, we predicted
much larger GPP reductions of -21.4%. However, such value was still lower than the -
28.9% in Jin et al. (2023) and -20% to -40% in Zhu et al. (2022) using the same L2013
scheme embedded in WRF-Chem model, though all studies showed similar spatial
patterns in the GPP reductions. Such differences were likely attributed to the varied
model configuration as we ran the model from May while the other studies started from
the beginning of years. The longer time for the accumulation of O3 stomatal uptake in
other studies resultedmight result in higher damages than our estimates with the L2013
scheme.

The Os-vegetation coupling caused strong feedback to surface meteorology and
air quality. Our simulations with either scheme revealed that surface SH increases by
2-28 W m™ and LH decreases by 4-32W m™ over eastern China, consistent with the
estimates of 5-30 W m by Zhu et al. (2022) using WRF-Chem model with the L2013
scheme. Consequently, surface air temperature on average increases by 0.23-0.51°C
while relative humidity decreases by 2.2-3.8%, similar to the warming of 0.2-0.8°C and
RH reduction of 3% as predicted by Zhu et al. (2022). However, these changes in
surface energy flux and meteorology are much higher than that in Jin et al. (2023),
likely because the latter focuses on the perturbations averaged throughout the year

instead of summer period as in this study and Zhu et al. (2022). We further predicted
that O3 vegetation damage increased surface O3 by 8-6-1.7ppbv0-3.33 g m™ in China,

similar to the +-2-2-1ppb+.35-4.11 pg m™ estimated for eastern China using a global

16



458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

model (Gong et al., 2020). Regionally, the O3z enhancement reached as high as 4-7.5

ppb¥84-14.70 g m~ in North China Plain, consistent with the maximum value of 6

ppb¥11.76 ng m> over the same domain predicted by Zhu et al. (2022). However,
limited feedback to surface O3 was predicted in Jin et al. (2023), mainly because the
decreased dry deposition had comparable but opposite effects to the decreased isoprene
emissions due to the reductions of LAI. Such discrepancy was likely caused by the
stronger O3 inhibition in Jin et al. (2023) following the longer period of Os
accumulation, consequently exacerbating the negative impacts of LAI reductions on O3
production.

There were some limitations in our parameterizations and simulations. FheFirst,

we predicted increases of isoprene emissions in eastern China mainly due to the

increased leaf temperature, which is in line with previous studies (Sadiq et al., 2017:

Zhu et al.. 2022). However, isoprene production is coupled to photosynthesis. There are

empirical evidences showing that high dose of O3 exposure reduces isoprene emissions

when Os exposure is prolonged enough to suppress photosynthesis (Bellucci et al.,

2023). Inclusion of such negative feedback might alleviate the Os-induced

enhancement in isoprene emissions. Second, the WRF-Chem model slightly

overestimated summer O3 concentrations, which could exacerbate the damages to

stomatal conductance and the subsequent feedback. FheThird, the S2007 scheme

employed the coupled responses in photosynthesis and stomatal conductance to O3
vegetation damage. However, some observations revealed that stomatal response is
slow under long-term O3 exposure, resulting in loss of stomatal function and decoupling
from photosynthesis (Calatayud et al., 2007; Lombardozzi et al., 2012). The L2013
scheme considered the decoupling between photosynthesis and stomatal conductance.

However, this scheme eeuldnet-distinguish—the—responses—efshows no significant

different changes for sunlit and shaded leaves. In addition, the calculation of CUO

heavily relied on the ezeneO; threshold and accumulation period, leading to varied
responses among different studies using the same scheme. Furthermore, the slopes of

Os sensitivity in L2013 scheme were set to zero for some PFTs, leading to constant
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damages independent of CUO. EinalyFourth, the current knowledge of the O3 effects
on stomatal conductance was primarily derived from leaf-level measurements
(Matyssek et al., 2008), which were much fewer compared to that for photosynthesis.
The limited data availability and lack of inter-PFT responses constrain the development
of empirical parameterizations.

Despite these limitations, our study provided the first comparison of different
parameterizations in simulating Oz-vegetation interactions. We found similar feedbacks
to surface energy and meteorology though the two schemes showed varied magnitude
and distribution in the offline responses of GPP and stomatal conductance to surface
Os. The main cause of such inconsistency lied in the low feedback of damages in L2013
with some unrealistic inhibitions of ecosystem functions at night and over the regions
with low O3 level. Such similarity provides a solid foundation for the exploration of
Os-vegetation coupling using different schemes. The positive feedback of O3 vegetation
damage to surface air temperature and O3 concentrations posed emerging but ignored

threats to both climate change and air quality in China.
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717 Tables

718 Table 1. Parameters used for S2007 O3 damage scheme.

PFTs ® aprr(nmol! m? s) ® yerr(nmol m2 s7)
EBF 0.075, 0.02 1.6
NF 0.075, 0.02 1.6

DBF 0.15, 0.04 1.6

SHR 0.1,0.03 1.6

GRA 1.4,0.25 5

CRO 1.4,0.25 5

719  ?The plant functional types (PFTs) include evergreen broadleaf forest (EBF), needleleaf
720  forest (NF), deciduous broadleaf forest (DBF), shrubland (SHR), grassland (GRA), and
721 cropland (CRO).

722 ° The first number is for high sensitivity and the second is for low sensitivity.

723
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Table 2. Slopes and intercepts used for L2013 O3 damage scheme.

PFTs a, (mmol m™?) by a. (mmol m) b¢
EBF 0 0.8752 0 0.9125
NF 0 0.839 0.0048 0.7823
DBF 0 0.8752 0 0.9125
SHR 0 0.8752 0 0.9125
GRA -0.0009 0.8021 0 0.7511
CRO -0.0009 0.8021 0 0.7511
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731

Table 3.

Summary of simulation experiments

O3 damage to

Name Scheme
vegetable

CRTL - -
Oftline SHO7 High Sitch et al. (2007)
Offline SLO7 Low Sitch et al. (2007)
Oftline L13 - Lombardozzi et al. (2013)
Online SHO7 High Sitch et al. (2007)
Online SLO7 Low Sitch et al. (2007)

Online L13

Lombardozzi et al. (2013)
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Figure captions
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Figure 1 Evaluations of simulated summer (June—August) daily (24-h average) (a)
near-surface temperature, (b) relative humidity, (c) wind speed, and (d) surface O3
concentrations in China. The dots represent the site-level observations. The correlation
coefficients (R), mean biases (MB), and root-mean-square error (RMSE) for the
comparisons are shown in the lower left corner of each panel.
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744 Figure 2 Offline O3z damage (%) to the summertime photosynthesis of (a-c) sunlit and
745  (d-f) shaded leaves predicted by the S2007 scheme with (a, d) high and (b, e) low
746  sensitivities or the (c, f) L2013 scheme. The area-weighted percentage changes are
747  shown in the lower left corner.
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(a) A RSSUN (%), $2007, High (b) A RSSUN (%), 52007, Low
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Figure 3 The same as Figure 2 but for the changes in stomatal resistance.
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755  Figure 4 Offline O3z damage (%) to the (a-c) gross primary productivity (GPP) and (d-
756  f) transpiration rate (TR) predicted by the Sitch scheme with (a, d) high and (b,e) low
757  sensitivities or the (c, f) Lombardozzi scheme. The area-weighted percentage changes
758  are shown in the lower left corner.
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Figure 5 The feedback of O3-vegetation interaction to surface (a-c) sensible and (d-f)
latent heat fluxes in the summer predicted by the S2007 scheme with (a, d) high and (b,
e) low sensitivities or the (c, f) L2013 scheme. The relative changes are shown with
area-weighted percentage changes indicated at the lower left corner.
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{a) A T2 (°C), 52007, High

(b} A T2 (°C), S2007, Low

(c) AT2(°C), L2013
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Figure 6 The same as Figure 5 but for changes in (top) air temperature and (bottom)

relative humidity at 2 meters.
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Figure 7 The feedback of Os-vegetation interaction to surface O3 concentrations and
isoprene emissions in the summer predicted by the S2007 scheme with (a, d) high and
(b, e) low sensitivities or the (c, f) L2013 scheme. The area-weighted percentage
changes are shown in the lower left corner.
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