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Abstract. The rivers of High Mountain Asia provide freshwater to around 1.9 billion people. However, precipitation, the main

driver of river flow, is still poorly understood due to limited in situ measurements in this area. Existing tools to interpolate these

measurements or downscale and bias-correct precipitation models have several limitations. To overcome these challenges,

this paper uses a probabilistic machine learning approach called Multi-Fidelity Gaussian Processes (MFGPs) to downscale

ERA5 climate reanalysis. The method is first validated by downscaling ERA5 precipitation data over data-rich Europe and5

then data-sparse upper Beas and Sutlej River basins in the Himalayas. We find that MFGPs are simpler to implement and

more applicable to smaller datasets than other state-of-the-art machine learning methods. MFGPs are also able to quantify and

narrow the uncertainty associated with the precipitation estimates, which is especially needed over ungauged areas, and can be

used to estimate the likelihood of extreme events that lead to floods or droughts. Over the upper Beas and Sutlej River basins,

the precipitation estimates from the MFGP model are similar to or more accurate than available gridded precipitation products10

(APHRODITE, TRMM, CRU TS, bias-corrected WRF). The MFGP model and APHRODITE annual mean precipitation esti-

mates generally agree with each other for this region with the MFGP model predicting slightly higher average precipitation and

variance. However, more significant spatial deviations between the MFGP model and APHRODITE over this region appear

during the summer monsoon. The MFGP model also presents a more effective resolution, generating more structure at finer

spatial scales than ERA5 and APHRODITE. MFGP precipitation estimates for the upper Beas and Sutlej basins between 198015

and 2012 at a 0.0625° resolution (approx. 7 km) are jointly published with this paper.

1 Introduction

High Mountain Asia underpins the water security of around 1.9 billion people, supplying them with fresh water for agriculture,

energy, industry and domestic usage via Asia’s largest rivers (Wester et al., 2019; Immerzeel et al., 2020; Orr et al., 2022).

In this area, precipitation drives river flow either directly through rain or, indirectly, by depositing snow reserves that are20

eventually released through glacier and snow melt (Immerzeel et al., 2020). Precipitation over High Mountain Asia is mainly

influenced by two large scale atmospheric patterns: the Indian Summer Monsoon and Western Disturbances, which dominate
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in the boreal winter (Bookhagen and Burbank, 2010; Palazzi et al., 2013; Dimri et al., 2015). On a local scale, precipitation

over High Mountain Asia is characterised by large variances across relatively small distances of 1 to 10 km due to the region’s

complex topography (Anders et al., 2006; Bookhagen and Burbank, 2006; Karki et al., 2017; Bookhagen and Burbank, 2010;25

Sigdel and Ma, 2017; Orr et al., 2017; Bannister et al., 2019). However, the spatiotemporal distribution of precipitation in this

area is comparatively poorly understood (Singh et al., 2015; Dahri et al., 2021a; Orr et al., 2022).

Knowledge of precipitation patterns in High Mountain Asia is principally constrained by limited observations. Only a small

number of in situ precipitation observations exist in this region, with most gauge stations placed in unrepresentative locations

(below 2000 m a.s.l.) (Winiger et al., 2005; Salzmann et al., 2014; Immerzeel et al., 2015; Duan et al., 2015; Bhardwaj et al.,30

2017; Krishnan et al., 2019). Indirect observations through satellites are available but struggle to capture the distribution differ-

ences between valleys and ridges, as well as short-lived extreme events. Furthermore, satellites often confuse precipitation with

ice and snow at the surface level. This leads to remote sensing products generally underestimating precipitation in mountain-

ous areas (Yin et al., 2008; Andermann et al., 2011). These obstacles mean that many physical relationships, such as between

precipitation rates and elevation, are not well understood in High Mountain Asia (Dahri et al., 2016). This in turn adversely35

affects tools to interpolate or combine precipitation measurements to create gridded precipitation products (Meng et al., 2014;

Bhardwaj et al., 2017; Hussain et al., 2017; Ji et al., 2020). As a result, interpolation-based products such as APHRODITE

(Yatagai et al., 2012) tend to underestimate precipitation at high altitudes (Immerzeel et al., 2015; Li et al., 2017). Furthermore,

such gridded products often have no uncertainty estimates.

In addition to interpolation-based products, outputs from regional climate models (RCMs) can also be used to estimate pre-40

cipitation over High Mountain Asia (Maussion et al., 2014; Norris et al., 2017, 2019; Orr et al., 2017; Norris et al., 2020).

However, these physical models are computationally expensive, lack error estimates, generate large model-dependent uncer-

tainty (Hawkins and Sutton, 2009), and are generally not well-optimised for mountainous regions (Cannon et al., 2017; Norris

et al., 2017, 2019; Orr et al., 2017). For example, the ensemble of RCMs from the Coordinated Regional Climate Downscal-

ing Experiment (CORDEX) for South Asia regularly overestimates historical precipitation over High Mountain Asia by over45

100% for both winter and summer (Sanjay et al., 2017). RCM precipitation outputs therefore typically need to be bias-corrected

before use in this region (Maussion et al., 2014; Collier and Immerzeel, 2015; Bannister et al., 2019; Potter et al., 2022).

Climate reanalysis products offer an alternative for estimating precipitation by combining outputs from short-range forecast

models with observations through data assimilation. These products often struggle to accurately represent precipitation over

data-sparse areas or times, including High Mountain Asia (Dahri et al., 2016; Palazzi et al., 2013). ERA5 climate reanalysis50

(Hersbach et al., 2020), although generally exhibiting a wet bias for High Mountain Asia, provides relatively accurate precipi-

tation estimates in terms of amounts, seasonality, and variability, from daily to multi-annual scale compared to other reanalysis

and RCM products (Chen et al., 2021; Kumar et al., 2021).

Altogether, precipitation products over High Mountain Asia are often contradictory and lack consensus (Palazzi et al., 2013;

Bannister et al., 2019). These discrepancies further complicate our understanding and leave room for doubt in any given55
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prediction or estimate. As precipitation is the main driver of hydrological models (Meng et al., 2014; Remesan and Holman,

2015; Wulf et al., 2016), improving precipitation estimates is key to a better representation of the spatial and temporal dynamics

of hydrological processes. These improved estimates can in turn help us better understand, predict and mitigate extreme events

such as droughts, floods and landslides (Ji et al., 2020; Dahri et al., 2021b; Schreiner-McGraw and Ajami, 2022). Present day

precipitation estimates also underpin the accuracy of future precipitation predictions (Panday et al., 2015; Sanjay et al., 2017).60

Traditional and state-of-the-art statistical downscaling techniques are used to address these problems but present their own

issues. For High Mountain Asia, downscaling models often assume simplistic relationships, e.g. a linear correlation between

precipitation and elevation, and focus on single basins (Dahri et al., 2016; Bannister et al., 2019; Libertino et al., 2018). New

research is making the most of machine learning tools to downscale precipitation products (Yadav et al., 2024; Gerlitz et al.,

2014), allowing researchers to model more complex spatiotemporal precipitation distributions and generate products over larger65

areas and longer time periods (Ahmed et al., 2020; Ning et al., 2016; Mei et al., 2020; Sun et al., 2022). These studies are also

using machine learning corrected precipitation directly as inputs to hydrological models (Sun et al., 2022; Xiang et al., 2024)

and applying machine learning methods to merge precipitation data from multiple sources to improve prediction robustness in

ungauged areas (Lyu and Yong, 2024; Xiang et al., 2024; Zhang et al., 2021).

However, these downscaling methods generally struggle to simultaneously solve the following problems: 1) capturing extreme70

values and spatiotemporal structure, 2) generalising to multiple locations, 3) predicting at arbitrary locations, 4) overcoming

gridding biases and 5) working effectively with sparse and ‘small’ datasets (King et al., 2013; Maraun and Widmann, 2018;

Baño-Medina et al., 2020; ?; Andersson et al., 2023). We propose Multi-Fidelity Gaussian Processes (MFGPs) as an alternative

to other statistical downscaling and bias-correction methods. Using MFGPs, precipitation data from multiple sources can

be combined to overcome these challenges and increase the accuracy and effective resolution of precipitation predictions75

over topographically complex areas, especially over ungauged locations. Most importantly, the probabilistic nature of MFGPs

provides a principled way of quantifying uncertainty and the likelihood of extreme precipitation events.

This study focuses on applying MFGPs to downscale ERA5 monthly precipitation estimates in the data-sparse upper Beas and

Sutlej River basins in the Himalayas. The Beas and Sutlej are two main tributaries of the Indus River. The study area, shown

in Figure 1, serves as a pilot study for High Mountain Asia. The paper is structured as follows. Gaussian Processes (GPs) and80

MFGPs are first introduced in Section 2. The methodology and datasets used are presented in Section 3. The MFGPs are then

evaluated by downscaling ERA5 precipitation, first over a data-rich region (Europe) and then over a subset of the upper Beas

and Sutlej basins, in Section 4. The MFGP framework is then applied to the whole of the upper Beas and Sutlej basins and

compared with precipitation dataset benchmarks including APHRODITE in Section 5. Finally, the limitations of this approach

and further work are discussed in Section 6.85
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Figure 1. Elevation map of the upper Beas and Sutlej River basins with gauge locations represented by white circles. The dashed line

represents the watershed boundaries, with the letter ‘B’ denoting the upper Beas basin and ‘S’ the upper Sutlej basin. Only three gauge

stations are located above 2000 m. The inset shows the watersheds’ location with respect to High Mountain Asia, with areas above 2000 m

a.s.l. highlighted in purple.

2 Multi-Fidelity Gaussian Processes

2.1 Gaussian Processes

Consider the set of observations xi,yi with i= {1, ...,N}, xi ∈ RD and yi ∈ R where N is the number of data points and

D the number of observation dimensions. In this paper, xi represents a vector with the date, coordinates and elevation of the

observation and yi is its monthly precipitation value. These observations are generated by a function f :90

yi = f(xi)+ ϵi (1)

where ϵi is the noise term and is assumed to be distributed normally with a mean of zero and standard deviation σn, i.e., ϵi ∼
N (0;σ2

n). The function f can be modelled with a Gaussian Process (GP). We refer the reader to Rasmussen et al. (2006) for an

introduction to GPs and follow their notation in this presentation. A GP is a stochastic process where any finite collection of its

random variables is distributed according to a multivariate normal distribution. Similarly to a multivariate normal distribution,95

a GP is defined by a mean function µ(x,θµ) and covariance or kernel function k(x,x′,θk):

f(x)∼GP (µ(x,θµ),k(x,x
′,θk)) (2)
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where x is the input vector to predict at, x′ is another arbitrary input location, and θµ and θk represent the hyperparame-

ters of the mean and covariance functions respectively. The hyperparameters are the parameters of the model that can either

be set manually or optimised. Going forward the hyperparameters will be referred to jointly as θ. The covariance function100

k(x,x′,θk) strongly underpins the GP model. It captures the correlation of the outputs given the inputs encoding proper-

ties such as smoothness and periodicity. If the covariance function is stationary, the correlation depends only on the distance

between x and x′.

As the output of a GP for a single point is a probability distribution, the GP output over many points can be interpreted as a

probability distribution over functions. Predictions at new input locations can therefore be calculated using Bayes’ theorem.105

This is also known as the model being ‘fit’ to the data or ‘training’ the model with the data. If A represents the GP’s functions

and B the data, Bayesian inference can be written as:

p(A|B,C) =
p(A|C)p(B|A,C)

p(B|C)
where A= f(·), B = {xi,yi}Ni=1, C = θ (3)

where p(A|B,C) is the probability distribution of A conditional on B and C with all other distributions defined analogously.

This can be seen as the system A being updated using new information B. p(A|C) is therefore known as the prior distribution110

and p(A|B,C) as the posterior distribution. The posterior distribution is is therefore a principled way to define the uncertainty

of the model and is therefore estimating the probabilities of extreme values. p(B|A,C) is the probability of the observations

B occurring given the state of system A with hyperparameters C and is known as the likelihood. p(B|C) is known as the

marginal likelihood and is the probability density of the observations given the hyperparameters. This distribution is calculated

by integrating or ‘marginalising’ over all the values of f , i.e. going from p(B|A,C) to p(B|C).115

GPs therefore are non-parametric. Instead of optimising over finite set of parameters, e.g. weights of a random forest or neural

network, GPs are optimised over functions. Consequently, GPs are more expressive in how they fit the data compared to

traditional regression or classification models, i.e. they can be used to model complex relationships between the data. GPs are

also more robust to overfitting because rather than optimise a specific function, it integrates over all potential ones (Rasmussen

et al., 2006).120

Practically, the mean function µ(x,θµ), the covariance function k(x,x′,θk) and the prior distribution are built from a set of

standard functions that encode different assumptions. In particular, the covariance matrix is usually designed by multiplying or

adding standard kernel functions together (Rasmussen et al., 2006; Duvenaud et al., 2013). The covariance function makes GPs

well suited for highly-correlated geophysical datasets and quantifying uncertainty in absence of data. However these benefits

come at a cost, the computational complexity of GPs scales cubically with the number of data points. This scaling is an issue125

in large data regimes but can be addressed by low-rank approximations and inducing points (Liu et al., 2020; Tazi et al., 2023).

2.2 Multi-Fidelity Gaussian Processes

The fidelity of a dataset can be defined as a combination of the data’s precision and accuracy. The most accurate set of

observations with the highest resolution are referred to as the high-fidelity data. Less accurate and coarse observations or
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simulation data are denoted as low-fidelity data. In many cases, high-fidelity observations can be expensive to produce whereas130

low-fidelity observations are usually more inexpensive and therefore more numerous. A multi-fidelity model combines low-

fidelity datasets with the more accurate, but limited, observations in order to predict the high-fidelity output more effectively.

Datasets of different fidelities can be combined using GPs, where the output of a first GP is used as the input to the next and so

forth. For a Multi-Fidelity Gaussian Process (MFGP), each layer of the model represents a different level of fidelity, starting

from the lowest and moving towards the highest fidelity.135

Consider s fidelity levels each corresponding to different datasets, e.g., climate reanalysis, gauge station measurements, etc.

Each fidelity is made up of observations Yt at locations Xt ⊆ RD where t= 1, . . . ,s. The observations Ys denote the outputs

of the most accurate and expensive function to evaluate fs, whereas Y1 is the outputs of the cheapest and least accurate function

f1. The highest-fidelity data are assumed to be sampled from the ‘true’ distribution of the target function. The observations at

level t can be generated by a function ft:140

Yt,i = ft(Xt,i)+ ϵt,i (4)

where ϵt,i is the noise term.

One choice for this function is given by Le Gratiet and Garnier (2014). The approach requires two assumptions. First, the

relationship between the fidelities is assumed to be linear. Second, the model follows strict hierarchical sampling rules where

the fidelity levels have nested training sets. The high-fidelity locations must be contained with the domain of the lower-fidelity.145

The lowest-fidelity data must therefore have the largest domain, the second fidelity must have the second-largest domain and

so forth. From these assumptions, the function ft is defined as:

ft(Xt) = ρtft−1(Xt)+ ferr(Xt). (5)

The function ft is the high-fidelity GP as modelled by the scaled sum of of two functions ft−1 and ferr. The function ft−1 is a

GP modelling the outputs of the lower-fidelity function and is scaled by ρt, a scalar indicating the magnitude of the correlation150

to the high-fidelity data. The function ferr is another GP that models the bias between the two fidelity levels. The scaling factor

ρt is defined as:

ρt(Xt) =
cov(ft(Xt),ft−1(Xt))

var(ft−1(Xt))
(6)

where cov is the covariance and var is the variance. Model inference, including the propagation of the mean and standard devi-

ation through different fidelity levels, is discussed in Appendix A. Figure 2 illustrates the MFGP framework for a pedagogical155

example using two toy datasets.
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Figure 2. One dimensional pedagogical example of a MFGP model. The low-fidelity dataset is first contrasted with the high-fidelity data

(Step 0). The high-fidelity data is more sparse but has a higher resolution than the low-fidelity data, and is also nested within the low-fidelity

input domain. The first GP f1 is constrained by the lowest-fidelity observations Y1(X1) (Step 1). Function f1 is visualised through its

posterior distribution mean (grey continuous line) and its 95% confidence interval (grey shaded area) and can be used to make predictions

at new locations. Samples from f1 at X2 (Step 2) and the observations from the second fidelity Y2(X2), are then used as the inputs to the

second GP f2 (Step 3). The final panel also shows the output of simple GP fit to the high-fidelity data only. The simple GP model fails to

capture the underlying high-fidelity function and produces a more poorly constrained posterior distribution.
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3 Method and datasets

3.1 Method overview

In this study we use the MFGP framework to combine two datasets of different fidelities: high-fidelity gauge measurements,

which are accurate but sparse, and climate reanalysis data, which are complete but more biased. In this way, the MFGP is160

applied to downscale and bias-correct monthly reanalysis precipitation data using precipitation gauge measurements. Time,

latitude, longitude and elevation are used as input variables. The datasets used to train the MFGPs and make predictions from

the model are described in Section 3.2. The MFGP framework is validated using subsets of European station data and then

upper Beas and Sutlej gauge data. MFGP is first applied to Europe in order to ascertain the performance of the model on an

area with less sparse gauge data and more homogeneous spatial distribution of precipitation before applying it to the more165

challenging upper Beas and Sutlej regions. A MFGP model is then trained using all the gauges in upper Beas and Sutlej basins

and compared to other benchmark datasets. The benchmark datasets, their advantages and their limitations are presented in

Section 3.3.

3.2 Training and prediction datasets

The datasets used to train the MFGP model include the VALUE gauge measurements over Europe (high-fidelity), the Beas and170

Sutlej gauge measurements (high-fidelity), and ERA5 (low-fidelity). The digital elevation model is also presented and is used

to make the high resolution precipitation estimates over the upper Beas and Sutlej basins.

VALUE gauge measurements. The European station measurements are taken from the VALUE downscaling experiment

(Gutiérrez et al., 2019). The dataset features daily precipitation at 86 stations across Europe between 1979 and 2019 . These

stations are representative of different climatic regimes over the European continent including mountainous environments. The175

daily data is re-sampled to a monthly temporal resolution.

Beas and Sutlej gauge measurements. The upper Beas and Sutlej basins are chosen as the study region as they offer com-

paratively data-rich locations for High Mountain Asia (Wulf et al., 2016; Bannister et al., 2019). The dataset from Bannister

et al. (2019) with additional quality control is used. The dataset is made up of 58 stations with 46 within the upper Beas and

Sutlej basins and measurements between January 1980 and April 2013. The 23 stations run by the Bhakra Beas Management180

Board measure rainfall and snow water equivalent. The remaining 35 stations are run by the Indian Meteorological Department

and only record rainfall. This is not problematic as all these stations are below the snow line in this area (Lund et al., 2020).

The precipitation observations are daily but have missing values with gaps of several years for most locations. The stations

cover less than half of the study area as seen in Figure 1. With station altitudes ranging from 284 m to 3639 m a.s.l. and a

median altitude of 935 m a.s.l., most stations are not representative of the combined watersheds which together have a median185

elevation of approximately 4700 m a.s.l. The data is resampled from daily to monthly averages.
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ERA5. The 5th ECMWF Reanalysis (ERA5) (Hersbach et al., 2020) is used to train the low fidely GPs of the MFGP model.

ERA5 runs from 1950 to the present day over 0.25° by 0.25° grid and assimilates data from a large number of sources. ERA5’s

global spatial coverage and long temporal range make it an attractive dataset. It is also easily accessible and straightforward

to update. The monthly total precipitation variable is used in the following experiments. Elevation values are derived from190

ERA5’s geopotential variable.

GMTED2010. The 2010 global multi-resolution terrain elevation data (GMTED2010) is a digital elevation model computed

from 11 satellite data sources (Danielson and Gesch, 2011). The model provides elevation products at three separate resolutions

of 30 arc-seconds (approx. 1 km), 15 arc-seconds (approx. 500 m), and 7.5 arc-seconds (approx. 250 m) with global land

coverage from 84° N to 56° S for most products. In this paper, a resampled version of GMTED2010 at 0.0625° resolution from195

the European Space Agency’s Tropospheric Monitoring Instrument team (TROPOMI, 2019).

3.3 Benchmark datasets

Precipitation estimates using the MFGP framework are compared against the following precipitation benchmark datasets:

bias-corrected WRF, APHRODITE, TRMM, and CRU TS.

Bias-corrected WRF. The bias-corrected WRF output is a product that was specifically developed for the upper Beas and200

Sutlej basins by Bannister et al. (2019). Here, version 3.8.1 of the WRF model (Skamarock et al., 2008) was used to dynamically

downscale ERA-Interim reanalysis data (Dee et al., 2011) to a grid spacing of 5 km from 1980 to 2012. The precipitation

outputs from the model were then bias-corrected using the in situ observations described above, using a power transformation

method proposed by Leander and Buishand (2007).

APHRODITE. The second benchmark is the Asian Precipitation-Highly Resolved Observational Data Integration Towards205

Evaluation of water resources or (APHRODITE Yatagai et al., 2012). APHRODITE data ranges from 1951 to 2015 with

a maximum spatial resolution. The interpolation scheme uses nearby precipitation gauges, slope and a correlation distance

lookup table. In the paper, we use the APHRO_V1101 gridded precipitation product which was specifically developed for

monsoon Asia. Overall, APHRODITE has one of the best spatiotemporal coverage of gridded precipitation products over High

Mountain Asia. It is also one of the most studied and accurate products for the region (Dimri, 2021). However, the interpolation210

scheme underestimates precipitation at high altitudes and suffers from spatially heterogeneous biases when compared to in situ

observations. These biases pose critical limitations for high-precision hydrological studies (Ji et al., 2020; Bhardwaj et al.,

2017; Hussain et al., 2017).

TRMM. The Tropical Rainfall Measuring Mission (TRMM) is a satellite mission that was launched at the end of 1997 and

remained active until 2014. TRMM provides good spatial coverage over High Mountain Asia, although several studies have215

shown that the relatively coarse resolution of its products is unable to capture distribution differences between valleys and ridges

(Shukla et al., 2019; Andermann et al., 2011; Yin et al., 2008). Additionally, its relatively poor temporal coverage (only a few

overpasses per day) also contributes to extreme precipitation events not being captured. Here we use TRMM_3B43 data, which
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is a monthly 0.25° resolution Level 3 precipitation product where radar and radiometer measurements have been converted to

precipitation values and the results have been calibrated against ground measurements (Japan Aerospace Exploration Agency,220

2018). However, the calibration sites are not in High Mountain Asia.

CRU TS. The final benchmark is the high-resolution Climatic Research Unit global climate Time Series dataset (CRU TS v4.05

Harris et al., 2020). This gridded dataset uses an angular-distance weighting interpolation of in situ observations between 1901

and 2020. This resulting product has a 0.5° resolution and was chosen as a baseline given its coarser resolution and global

scope.225

4 Model validation

4.1 Experimental setup

4.1.1 Validation scheme

The MFGP model is evaluated from 2000 and 2004 over both Europe and the upper Beas and Sutlej basins. This time period

represents the time with the largest number of active stations in the upper Beas and Sutlej basins. For both regions, the MFGP230

model is tested using fivefold cross-validation. This means the data are first separated into five groups or folds and five separate

models are trained on different permutations of four groups and tested on the fifth. Cross-validation is therefore a useful way

to estimate how the model will perform in practice when it is asked to predict at arbitrary locations far way from its training

distribution. The groups are determined via k-means clustering on the station locations. To make the cross-validation clusters

even in size, only the seven closest stations to the cluster centres are kept. The cluster downsizing also increases the spatial235

independence between folds. The folds for both regions are shown in Figure 3.

Different variants of this cross-validation method are used to evaluate the MFGP model. First, we setup a ‘data-rich’ experiment

over Europe. In this case, all the available stations except the test fold stations are used to train the model. For example, when

evaluating the model on Fold 1 (Figure 3 a), blue markers), the model is trained on the other folds and the grey stations. In this

setting, the model therefore has access to more data including data that are climatically similar to where the model is evaluated.240

We then modify the experiment to create a ‘data-sparse’ setting over Europe. In this case, we train only the data in the training

folds and test on the excluded group. The ‘data-sparse’ scheme is repeated for the evaluation over the upper Beas and Sutlej

basins. This progressive reduction in data should help compare the impact of the data sparsity on the MFGP model against that

of complex spatiotemporal precipitation distribution in the upper Beas and Sutlej basins.

4.1.2 Data transformation245

The probability distribution function of monthly precipitation is not Gaussian but usually follows a log-normal distribution.

However, as the GP posterior distribution is constrained to be normal, making the marginal distribution more normal can

therefore help with inference. For this reason, the precipitation data are transformed using a Box-Cox function fit to the low-

10



-10°E 0°E 10°E 20°E 30°E
30°N

40°N

50°N

60°N

70°N

a

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Other stations
Cluster centres

75.5°E 76°E 76.5°E 77°E 77.5°E 78°E 78.5°E 79°E 79.5°E
30°N

30.5°N

31°N

31.5°N

32°N

32.5°N

33°N

33.5°N

b

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5
Other stations
Cluster centres

Figure 3. Maps of cross-validation folds over a) Europe and b) the upper Beas and Sutlej basins. The round marker represent the stations,

the marker colours the different folds, and the stars the cluster centres found via k-means. The coastlines are plotted in black in (a) and the

upper Beas and Sutlej basins watershed boundaries in light grey in (b).

fidelity ERA5 data:

yi(λ) =


yλ
i −1
λ , if λ ̸= 0

logyi, if λ= 0
(7)250

where yi is the ith observation and is assumed to be positive and λ is the scaling factor. The input features are standardised

by subtracting the mean and dividing standard deviation of the training set before they are passed to the models. This is also

known as z-scoring and generally improves inference.

4.1.3 Kernel design

The MFGP kernels are specified to be Matérn 5⁄2 functions defined as:255

kMat(x,x
′) =

σ2

Γ(ν)2ν−1

(√
2ν

l
|x−x′|

)ν

Kν

(√
2ν

l

)
(8)

where ν = 5/2, σ2 is the variance parameter, l the lengthscale parameter, Γ is the gamma function, and Kν is the modified Bessel

function of the second kind. The Matérn 5⁄2 function provides samples that are more faithful to real physical processes compared

to the default squared exponential kernel. The samples are twice differentiable, i.e. not completely smooth, thus allowing for

more abrupt changes in the modelled variable. The Matérn 5⁄2 kernel performed better than the squared exponential kernel for260

both the Europe and upper Beas and Sutlej basin experiments (not shown).
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4.1.4 Machine learning baselines

The performance of the MFGP is compared to several baseline models. We would like to establish that using both low and

high-fidelity data improve models that use just one or the other. In order to do this, we implement a GP fit to ERA5 data using

a Matérn 5⁄2 kernel, and a GP fit to the station data using a Matérn 5⁄2 kernel. The GP fit to ERA5 using a Matérn 5⁄2 is equivalent265

to the MFGP low-fidelity output. Finally, the MFGP is also compared to a GP fit on the station data with the custom kernel

design. The custom kernel is defined as:

k = kMat52(t) · kPer(t)+ kMat52-ARD(lat, lon, elevation) (9)

where kMat52 is the Matérn 5⁄2 kernel, kPer is the periodic kernel, and kMat52-ARD is the Matérn 5⁄2 exponential kernel with Auto-

matic Relevance Determination (ARD) (MacKay, 1994). ARD allows the kernel parameters to vary between input dimensions.270

The periodic kernel is defined as:

kPer(x,x
′) = σ2 exp

(
−2sin(2π|x−x′|/p)

l2

)
(10)

where p is the period parameter, σ2 is the variance parameter and l the lengthscale parameter.1 A similar kernel design to

Equation 9 was used over the upper Indus basin with ERA5 precipitation by Lalchand et al. (2022) and was found to perform

as well as more complex non-stationary kernel functions. The kernel design was formulated following the framework proposed275

Tazi et al. (2023) where statistical analysis of the precipitation data and domain knowledge, such as the periodic temporal

patterns and the strong influence of elevation, were combined to create a kernel that is predictive without being unnecessarily

complex.

Additionally, the MFGP model is compared to other models commonly used to interpolate or downscale precipitation for small

datasets. We implement three non-probabilistic models including linear interpolation and random forest and support vector280

regression downscaling where ERA5 precipitation is directly used as a high-fidelity precipitation predictor. We also compare

the MFGP with a strong alternative probabilistic model, namely a Convolutional Conditional Neural Process (ConvCNP).

Although these models contextualise the MFGP performance, they do not contribute towards the main goal of demonstrating

how the uncertainty can be narrowed by incorporating multiple data sources. For this reason, these models are discussed in

Section 6.285

4.1.5 Performance metrics

Several metrics are used to evaluate the models. The root mean square error (RMSE) is calculated for the validation sets as

well as their 5th percentile and 95th percentile values to evaluate how well the model is capturing extremes. The RMSE is more

robust to outliers than the mean absolute error or the bias. We also calculate the coefficient of determination (R2) to understand

how much of the variance in the data is represented by the model. These metrics are chosen in part for their broad usage across290

1Although σ2 and l serve similar purposes to the parameters of the Matérn 5⁄2 kernel shown in Equation 8, they are actually distinct variables and optimised

separately.
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both machine learning and environmental science fields. The mean log loss (MLL) computes average negative logarithm of the

posterior likelihood of all validation points. This metric is a measure of the model confidence and the quality of its uncertainty

predictions. The MLL is more suited to probabilistic methods than RMSE or R2. All the metrics are defined in Appendix B.

4.2 Validation over Europe

The MFGP framework is first applied to a ‘data-rich’ setting over Europe. Table 1 shows the performance of the MFGP295

with respect to other simpler GP models. Of these methods, the GP with the custom kernel extrapolating only from gauges

yields the poorest results with a negative R2 indicating that the model is predicting worse than the precipitation mean. This

poor predictive skill is expected as the custom kernel is designed to model precipitation over the Western Himalayas and not

Europe. By contrast, precipitation estimates from the GPs with the Matérn kernels provide better results. In particular, applying

a GP fit to ERA5 data at every station location gives even better estimates compared to a GP fit to the station data, including the300

best estimates for 95th percentile RMSE (2.58±1.11 mm/day). However, the MFGP model gives the best overall results with

lowest mean and 5th percentile RMSE (1.06±0.42 mm/day and 0.51±0.20 mm/day respectively), the highest R2 (0.65±0.09

mm/day), and the lowest MLL (0.89±0.20).

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 1.06±0.42 0.51±0.20 2.72±1.54 0.65±0.09 0.89±0.20

GPMat52 ERA5 1.16±0.43 0.52±0.25 2.58±1.11 0.57±0.13 (1.87±0.71)107

GPcustom gauges 1.91±0.69 1.60±0.22 5.58±2.06 -0.14±0.23 1.57±0.19

GPMat52 gauges 1.21±0.45 0.59±0.29 2.85±1.17 0.55±0.14 1.94±0.36

Table 1. Comparison of model performance metrics for the ‘data-rich’ setup over Europe. The models include the MFGP, a GP using the

custom kernel, and a GP using a Matérn 5⁄2 kernel with ARD. The metrics include the average RMSE (RMSE), the 5th percentile RMSE

(RMSE5), the 95th percentile RMSE (RMSE95), the R2, and the MLL. The training features represent inputs used to train the models. The

errors represent the standard deviation across the validation folds. Bolded values show the best model performance for a given metric.

The experiment is then repeated for the ‘data-sparse’ setting. Table 2 shows the performance metrics for this setup. Despite

a small decrease in performance compared to the ‘data-rich’ experiment shown in Table 1, the MFGP model is still able to305

combine the two datasets to improve predictions. The other baselines also show a generalised decreases in skill but their ranking

is unaffected.

Figure 4 a) plots the high-fidelity output as a function of low-fidelity R2 for the validation locations. The high-fidelity output

corresponds to the MFGP fit using both ERA5 and the gauge data. The low-fidelity MFGP fit uses on ERA5 only and is

equivalent to fitting a simple GP to ERA5 as shown in Table 2. Values above the dashed line show the locations where310

combining the datasets leads to improved performance. The plot shows that the MFGP improves predictions at most station

locations. The largest gains are observed over the European alps (shown in orange). Simultaneously this is also the area, along
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Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 1.13±0.47 0.57±0.23 3.02±1.62 0.62±0.11 0.90±0.20

GPMat52 ERA5 1.21±0.46 0.59±0.29 2.84±1.17 0.55±0.14 (18.7±7.4) 106

GPcustom gauges 2.25±0.90 1.10±0.60 6.51±2.29 -0.57±0.46 1.73±0.33

GPMat52 gauges 2.13±0.91 1.21± 0.48 6.29±2.35 -0.39±0.44 1.62±0.31

Table 2. As Table 1 for the ‘data-sparse’ setup over Europe.

with the Pyrenees and northern Spain (shown in green) where the model produces the largest errors. Altogether these results

show that MFGPs can confidently be applied to more data-sparse locations.

4.3 Validation over upper Beas and Sutlej basins315

Table 3 shows the performance of the MFGP with respect to other simpler GP models for the upper Beas and Sutlej basins.

Overall the performance of the MFGP model and machine learning baselines is worse than over Europe, with all metrics

showing a decrease in skill. This can be explained for two reasons. First, ERA5 is more accurate over Europe than the upper

Beas and Sutlej basins (cf. Tables 2 and 3). Second, the precipitation in the High Mountain Asia presents more extreme seasonal

variations, so is harder to predict (see Appendix C). The higher spatial heterogeneity of the precipitation over the upper Beas320

and Sutlej basins should not strongly contribute to the performance difference as the standardised spatial lengthscales between

the European and Himalayan stations are similar (see Appendix C).

The MFGP’s MLL and RMSE metrics suffer the most compared to the European experiments and the GP baselines. The

MFGP’s RMSE values grow approximately by a factor of 3 and the MLL by a factor of 2. This behaviour could be caused by

the specific temporal distribution of precipitation in the upper Beas and Sutlej. For most of the year, precipitation values stay325

low but increase dramatically during the Indian Summer Monsoon, peaking in June/July. If the model does not predict these

extreme values, the MLL and RMSE are heavily penalised. Conversely, the stronger periodicity in the data makes it easier to

fit the GP models thus comparatively improving the GP MLL scores and 5th percentile RMSE. The MFGP still outperforms

the GP fit to ERA5 and the GP extrapolating from the station data only with a mean RMSE (3.00±0.92 mm/day) and R2

(0.46±0.11). In this experiment, the GP with the custom kernel outperforms the GP with the Matérn kernel suggesting that330

incorporating domain knowledge becomes more important in this more complex precipitation regime. The experiments were

also conducted with all the ERA5 data for the study area (not shown), but showed no significant improvement over using the

ERA5 data at the station locations only.

Figure 4 b) plots the high-fidelity R2 as a function of low-fidelity R2 for the validation locations across the basins. The figure

shows that when the low-fidelity R2 is already high (>0.5), the MFGP improvements are limited. However, when the low-335

fidelity R2 is low, the MFGP significantly improves the low-fidelity fit. The upper Beas and Sutlej low-fidelity R2 values also
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Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22

GPMat52 ERA5 3.32±0.79 2.39±1.52 7.56±2.81 0.26±0.32 (11.4±4.8) 107

GP custom gauges 3.16±1.00 0.99±0.76 10.46±4.33 0.40±0.11 1.67±0.31

GPMat52 gauges 3.24±1.35 0.86±0.56 11.0±5.11 0.38±0.25 1.66±0.32

Table 3. As Table 2 for the Upper Beas and Sutlej basins.

cover a much larger range. Although the MFGP improves the low-fidelity predictions less consistently than over Europe, it

makes larger improvements over ERA5 over the upper Beas and Sutlej basins. In particular, the largest improvements are

observed for Fold 4 (shown in red) which has the highest average elevation and is therefore most representative of the basins’

ungauged areas. This result is therefore encouraging given the paper’s objective to predict in high altitude ungauged locations.340

plots/value_high_low_plot_2000_2005_colorblind.pdfplots/bs_high_low_plot_2000_2005_colorblind.pdf

Figure 4. MFGP high-fidelity R2 as a function low-fidelity R2 over a) ‘data-sparse’ Europe and b) upper Beas and Sutlej basins. The colours

correspond to the folds shown in Figure 3. Values above the dashed line show an improvement over the low-fidelity MFGP fit. The plots

shows that as the low-fidelity R2 decreases the high-fidelity R2 stays relatively high. This illustrates that important gains can be made over

using ERA5 alone.

5 Application to upper Beas and Sutlej basins

5.1 Study area predictions

A MFGP model is now trained using all available station data, including the stations outside of the basins, and ERA5 data over

the study area (30° N-33.5° N, 75.5° E-83° E) between 2000 and 2009. This corresponds to the overlapping period between

all the benchmark datasets studied in the following section. Again the precipitation values are transformed and input features345

are z-scored before they are passed to the model as this improves model inference. Separate models are trained on a yearly

basis due to memory and computational constraints. In the Appendix D, we show that, assuming no missing data, this does

not significantly impact the results of the model performance. When training the model across the entirety of both basins, the

MFGP high-fidelity GP initially optimised the longitude lengthscale to a very small value. This produced nonphysical looking

results with striations along lines of same longitude. Therefore, Gaussian prior distributions of N (0.1°,0.01°) are set for the350

longitude and latitude lengthscale parameters such that they would optimise to similar values. This choice is motivated by

the expectation that the precipitation lengthscales should be similar along these dimensions. The prior parameter values are
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selected based on the optimised hyperparameters for the MFGP’s low-fidelity GP and the high-fidelity hyperparameters from

the MFGP validation experiment. Finally, the GMTED2010 dataset was used (Danielson and Gesch, 2011) for the prediction

locations and elevations. The dataset’s 0.0625° resolution (approx. 7 km) allows the MFGP model to predict at high enough355

resolution to enable municipal decision making (Rambali, 2020).

Figure 5. Spatial distribution of average precipitation from 2000 to 2009 over the upper Beas and Sutlej basins from ERA5 (top row), the

MFGP posterior mean (second row), the MFGP 95% confidence interval (third row), and bivariate chloropleth map of the MFGP posterior

mean and 95% confidence interval (bottom row). Here the 95% confidence interval is used as the measure of uncertainty. Results are shown

for annual (first column), summer (JJAS; second column) and winter (DJFM; third column).

The average annual and seasonal precipitation MFGP predictions are shown in Figure 5. The mean of the MFGP posterior

distribution is compared to ERA5 precipitation in the first two rows. The MFGP annual average shows that most of the pre-

cipitation is concentrated in the west half of the study area over the Himalayan foothills. During the monsoon season, the

MFGP shows an average rainfall reaching 10 mm/day. The monsoon also brings rain to the southeastern side of the upper360
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Sutlej basin. Although estival precipitation distributions are similar, the highest precipitation values of the MFGP model are

shifted west relative to ERA5. In the winter months, the variance in precipitation is more attenuated and the distribution centre

is shifted to the North East and thus towards higher elevations. In contrast with the upper Beas basin, precipitation over the

eastern upper Sutlej basin increases with altitude with valleys showing overall little rain or snowfall (<2 mm/day) across

all seasons. These findings qualitatively echo previous studies on the spatiotemporal distribution of precipitation in this area,365

including the non-stationary and complex pattern of orographic precipitation gradients (Dahri et al., 2016; Bannister et al.,

2019).

The 95% confidence interval (CI) of MFGP model is also plotted in Figure 5. This metric represents the interval in which

95% of the MFGP outputs fall into. The CI boundary values therefore show possible extreme precipitation values. The CI is

therefore used as a measure of uncertainty. The most salient characteristic of the CI is that it is large in comparison to the mean370

of the posterior distribution, over 45 mm/day for several locations. For both the monsoon and winter seasons the CI is largest

in the area around 32°N, 77°E at the western edge of the study area. This behaviour is linked to conflicting low and high-

fidelity predictions where ERA5 suggests high precipitation values while the high-fidelity gauge data suggest the precipitation

should be much smaller at the same location. Conversely, over ungauged areas, the CI remains low. This shows the improved

predictive power of combining reanalysis and gauge data in a probabilistic framework.375

The mean posterior distribution and CI are then combined in a bivariate chloropleth map in the bottom row of Figure 5.

In general, the CI is expected to increase with higher precipitation values. This plot allows us to identify the regions that

have the highest uncertainty output compared to their mean predictions, i.e. a high ‘relative uncertainty’. The east and higher

altitude ungauged locations generally have a high relative uncertainty, and areas with a high gauge density have a lower

relative uncertainty. However, the chloropleth map does exhibit some smaller unexpected features. For example, a high relative380

uncertainty area in the west of the upper Beas basin (32°N, 76°E) and low relative uncertainty in the southern borders of the

upper Sutlej basin that receives more precipitation during the monsoon and winter seasons. Again, this points to the MFGP

model successfully capitalising on information from both precipitation datasets.

The effective resolution of the MFGP model is also compared with that of ERA5. Effective resolution refers to the level of

detail that can be accurately represented by the model. The effective resolution can be determined through the data’s power385

spectrum. The power spectrum shows the amount of the structure present in the dataset for a given wavenumber k or resolution

k−1. When the spectral density is low, it is not contributing structure at that resolution and therefore not representing the

physical processes at that scale. To generate the power spectrum, a Fourier transform of the precipitation is calculated for each

month over a square area (31°-33° N, 77°-79° E). To proceed equitably, the ERA5 data is linearly interpolated along its spatial

coordinates to the same resolution as the MFGP and both datasets are z-scored. Figure 6 shows the spectral density P falls off390

as a function of the resolution for both ERA5 and MFGP. Although ERA5 has a native resolution of 0.25° (approx. 31 km), it

possesses a relatively small amount of structure compared to the MFGP the same resolution. The MFGP model continues to

generate more structure at finer scales too. This points to the MFGP representing spatial patterns of precipitation better than

ERA5.
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Figure 6. Power spectrum of the MFGP model, ERA5 and APHRODITE over a 2° by 2° area (31°-33°N, 77°-79°E) between 2000-2009.

ERA5 and APHRODITE data are linearly interpolated to the same resolution as the MFGP output. The y-axis shows the power spectral

density as a function of resolution, i.e. the inverse of the wavenumber k. The continuous lines show the average spectral densities and the

shaded areas represent their standard deviation over time. All three datasets are z-scored prior to analysis.

5.2 Comparison with benchmark datasets395

To further evaluate the performance of the MFGP model over the upper Beas and Sutlej basins, the benchmark datasets de-

scribed in Section 3.3 are now are compared to the in situ observations between 2000 to 2009. All the available station data

in the upper Beas and Sutlej basins (46 of 58 available stations) are used. Nearest neighbour precipitation values to the station

locations are reported. It is important to note that bias-corrected WRF has used these gauge measurements in its development.

This is also most likely the case for APHRODITE and CRU TS. Table 4 compares the performance of the products across the400

different metrics. As the MFGP model is trained on all these datapoints, we do not include the model’s performance here as to

not make an inequitable comparison.

APHRODITE outperforms the other products for the mean RMSE (2.36±0.86 mm/day), 5th percentile RMSE (0.56±0.61

mm/day) and R2 (0.43±1.01) metrics. ERA5 has the best 95th percentile RMSE (6.17±3.54 mm/day) but the poorest 5th

percentile RMSE (0.84±0.79 mm/day). For this area, TRMM simultaneously yields the worst mean RMSE (3.99±1.43405

mm/day) and 95th percentile RMSE (8.54±4.02 mm/day). The results for ERA5 and TRMM match previous findings,

exhibiting wet and dry biases respectively (Kumar et al., 2021; Chen et al., 2021; Andermann et al., 2011; Shukla et al., 2019;

Yin et al., 2008). The bias-corrected WRF product has the worst R2 performance (-0.31±2.80). Overall the table shows that the

performance of these models is highly heterogeneous across both basins with all metrics showing large standard deviations.

From Table 4, APHRODITE was determined to be the most accurate of the benchmarks presented in the paper for this region410

and time period. The differences between APHRODITE and the MFGP output are therefore compared. The average precipi-
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Input features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2

ERA5 multiple† 2.83±0.89 0.84±0.79 6.17±3.54 -0.11±1.98

APHRODITE gauges 2.36±0.86 0.56±0.61 6.45±3.46 0.43±1.01

TRMM remote sensing 3.99±1.43 0.83±0.76 8.54±4.02 -0.18±0.51

CRU TS gauges 2.76±1.09 0.62±0.39 7.63±4.23 0.25±1.15

Bias-corrected WRF gauges + WRF 3.13±0.94 0.73±0.92 7.02±3.34 -0.31±2.80

Table 4. RMSE and R2 values for benchmark datasets over Upper Beas and Sutlej Basins between 2000 and 2010. Only stations located

in the basins (46 out 58) are used to evaluate the datasets. The errors represent the standard deviation across the stations. As some of these

benchmarks are or are likely produced using the station data, it is not possible to compare these results with the previous table. Bolded

values show the best model performance for a given metric. † ERA5 uses only remote sensing data for precipitation measurements but is also

constrained using direct measurements for other climatic variables.

tation across the basin for the MFGP output and APHRODITE between 2000 and 2009 do not differ much, with a mean and

standard deviation of 1.73 mm/day and 2.37 mm/day respectively for the MFGP model compared to 1.61 mm/day and 2.33

mm/day for APHRODITE. Figure 7 maps out the annual and seasonal averages. The annual average shows local spatial dif-

ferences on the order of ±2.5 mm/day. However seasonal averages show a much larger differences between the two datasets.415

In particular, APHRODITE predicts lower precipitation values in the northwest corner of the upper Beas basin (-5 mm/day to

-8 mm/day) and higher values on southeast side of the upper Beas basin (+2.5 mm/day to +5 mm/day) during the summer

monsoon. These difference are large compared to the values shown in Figure 5. This is also where MFGP places the most

uncertainty in Figure 5. These results, in combination with the spatial differences between the MFGP and ERA5, point to an

ambiguous spatial representation of peak precipitation values in the Himalayan foothills during the monsoon. In the winter, the420

differences are smaller due to on average lower precipitation rates (between +5 and -1.5 mm/day). During this period, MFGP

model predicts lower precipitation estimates at higher altitudes compared to APHRODITE. Finally, the power spectrum for

APHRODITE is calculated in Figure 6. The dataset presents a smaller average effective resolution compared to the MFGP and

even ERA5.

Figure 7. APHRODITE - MFGP differences between 2000 and 2009 over the upper Beas and Sutlej basins. Columns represent outputs for

annual, monsoon (JJAS), and winter (DJFM) averages respectively.
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6 Discussion and further work425

6.1 MFGP extensions

The MFGP model is easily applicable to other watersheds and mountainous regions such as the Andes or European Alps, or

to downscale other reanalysis or climate models. The model resolution is also arbitrary and higher resolution results could

be generated by using a higher resolution digital elevation model when predicting at new times and locations. This flexibility

makes MFGP a powerful tool for hydrological and, more generally, geophysical modelling.430

In this paper,a linear setup was applied.However, it is possible to apply the nonlinear form of the model, known as Nonlinear

Auto-Regressive GP (NARGP) (Perdikaris et al., 2017):

ft(Xt) = gt(Xt,ft−1(Xt)), (11)

where gt ∼GP (ft|µt,ktg ((Xt,ft−1(Xt)),(X
′

t ,ft−1(X
′

t)));θt). Unlike linear MFGP, NARGP captures a nonlinear relation-

ships between the different fidelities. However, the auto-regressive architecture of the model is also one of its limitations. The435

model specifies each GP is fitted in an isolated hierarchical manner. This type of inference means the model’s complexity

is not controlled through Bayesian inference and makes it more susceptible to overfitting. This was found to be true for the

precipitation datasets presented in this paper. An alternative could be to implement a Multi-Fidelity Deep Gaussian Process

(MFDGP) proposed by Cutajar et al. (2019) where the evaluation at each fidelity level is performed using data from the current

and previous fidelity levels. However, the MFDGP method requires the use of inducing points which can be hard to initialise440

without strong machine learning and environmental domain knowledge.

6.2 MFGP validation

6.2.1 With respect to GPs

In the validation experiments, we use datasets with no or a small number of missing values to compare the performance of

the model with other methodological benchmarks. In this case, we are only evaluating how well the model extrapolates in445

space. This works in favour of the simple GP model that extrapolates from the high-fidelity gauge data. However, the simple

GP’s accuracy suffers significantly when extrapolating with respect to time, which is required when making predictions for

incomplete datasets. This behaviour is another advantage of using a multi-fidelity model. The model validation in this study

also highlights the impact of the observation scarcity to model accuracy. Tackling the impact of climate change on water

scarcity in High Mountain Asia therefore requires more data sharing initiatives and consistent investment in weather station450

maintenance and deployment.

6.2.2 With respect to benchmarks

The benchmark datasets are compared on the validation folds in Appendix C. In this experiment, the MFGP model is able to

outperform the other models on some metrics over the data held out from the model (see Section 4.3). In particular, the model
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still scores the best for R2 (MFGP R2= 0.46±0.11 vs average of R2=0.00) despite most of these datasets being produced using455

these in situ observations. This shows that the underlying variations of data are being more accurately captured by the MFGP

model, even if the amplitude of those variations are captured less precisely (higher RMSE scores). This lower precision makes

sense as we expect the model to widen its posterior distribution at locations far from its training distribution. Furthermore

the MFGP product, unlike previous ones, includes principled uncertainty estimates in the form of probability distributions.

This can allow policymakers to understand the likelihood of worst case scenarios of drought or flooding. These uncertainty460

distributions can also be directly used to inform the placement of future sensors through multi-objective Bayesian optimisation

(Daulton et al., 2021, 2020). The MFGP model outputs could for example be combined with distance from roads and trails as a

proxy for accessibility. Together station locations that are both predictive and practical could be found. Finally, the model can

be easily updated with new station data through online learning, a feature which is unique to Bayesian inference (Bui et al.,

2017; Lederer et al., 2021).465

6.2.3 With respect to other machine learning models

The performance of the MFGP model is also contextualised through the implementation of three non-probabilistic baseline

models and a probabilistic deep learning model. Results and model implementation details are presented in Appendix E.

The performance of the linear interpolation model is first assessed. We note that the model presented in this paper is similar to

the interpolation scheme used for precipitation in ERA5-Land (Muñoz-Sabater et al., 2021). ERA5-Land is a reanalysis dataset470

that provides a consistent view of the evolution of land variables at an enhanced spatial resolution of 9 km. This is produced by

running a land surface model to regenerate some of the land components of ERA5 climate reanalysis. For atmospheric forcing,

it uses ERA5 atmospheric variables including precipitation which are linearly interpolated to the ERA5-Land grid. The linear

interpolation model also includes elevation as a predictor which should allow it to perform better than ERA5-Land especially

over mountainous regions.475

Overall, linear interpolation performs significantly worse over both Europe and the Beas and Sutlej basins than the MFGP, and

even its probabilistic counterpart, the GP fit to ERA5. This can be attributed to the GP’s generation of non-linear functions that

better capture ERA5’s physics and data assimilation.

We then contrast the MFGP to random forest and support vector regression. Both random forests (Ho, 1995) and support vector

regression (Drucker et al., 1996) have been used extensively to downscale precipitation, including over High Mountain Asia480

(Sun et al., 2022; Xiang et al., 2024; Ahmed et al., 2020; Yan et al., 2022; Ning et al., 2016; Mei et al., 2020). Both methods

work well with small datasets, are non-linear, and, for support vector regression, are kernel-based like GPs.

The random forest and support vector regression models perform similarly to the MFGPs in terms of RMSE/R2 for the ’data-

rich’ Europe experiment. However the MFGP performs consistently better for these metrics and is less sensitive to the reduction

of data when moving to the ’data-sparse’ setup. Over Europe, the random forests are however better at representing extreme485

values across all the cross validation folds. Over the Beas and Sutlej basins, the MFGP dominates offering more better and
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more consistent results with the exception of the 5th percentile RMSE. The relatively poor performance for the low percentiles

values is due to the GP and MFGP models reverting to the observation mean in locations far from the training distribution

where they are uncertain rather than confidently predicting lower values like the non-probabilistic models.

Lastly, ConvCNPs are also implemented for the validation experiments. The ConvCNP model is one member of the neural490

process model family that has shown state-of-the-art performance in spatiotemporal downscaling tasks (Vaughan et al., 2022;

Gordon et al., 2019; Andersson et al., 2023). Neural processes offer similar advantages to the MFGP in terms of being able to

quantify the probability of extreme events, generalise to multiple locations, predict at arbitrary locations, and overcome grid-

ding biases. The results show that these models overfit these relatively small datasets performing worse than linear regression,

in particular, for the Beas and Sutlej experiment. This is not surprising as neural networks generally require a large number of495

datapoints to be trained adequately. As these models can be used for transfer learning, future work could investigate the using

data from other mountainous regions to inform predictions in data-sparse High Mountain Asia. In summary, the MFGPs are

best suited to downscaling in the sparse and out-of-distribution settings presented in this paper.

6.3 Applicability of results

The MFGP model output for 33-year period between 1980 and 2012 over the upper Beas and Sutlej basins is made available for500

scientists, hydrologists and policymakers to perform more thorough research and water security risk assessments (Tazi, 2023).

However, there are several limitations to its applicability. A key shortcoming to the results, as with many precipitation product

in mountainous areas, is the underestimation of precipitation estimates due to undercatch. This is especially true in exposed

areas and where precipitation falls as snow. Implementing the model a year at a time is also problematic. This means the model,

at times with fewer observations, cannot leverage the mappings that exist at other times. Furthermore, predictions have been505

made for a monthly resolution only and are inappropriate for hydrological models that usually operate on a daily timescale.

These constraints come from the computational complexity of the MFGP. The framework could also be applied across High

Mountain Asia but this would also be computationally expensive. These problems could be overcome by applying variational,

product-of-experts, or low-rank approximations to the MFGP model (Tresp, 2000; Titsias, 2009; Wilson and Nickisch, 2015).

7 Conclusions510

MFGPs are simpler and more accurate than recent state-of-the-art models and traditional techniques for smaller study areas

with sparse datasets. The framework offers better mean RMSE and R2 than the bias-corrected regional climate model output at

prediction time. MFGP and APHRODITE perform similarly on average. Contrasting the two products across the basins shows

general consensus about the total amount of annual precipitation. However, there are key areas where predictions diverge

including over high altitudes in the winter and the north of the upper Beas basin during the summer monsoon. Furthermore,515

the MFGP model also provides principled and well-calibrated uncertainty quantification. The model also provides a higher

effective spatial resolution, providing more than three times the structure than ERA5 and APHRODITE at a 0.25° resolution.

The continued improvements of these estimates will be key factors to improving hydrological modelling and water security
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policy. Future work could apply the framework across High Mountain Asia, predict precipitation on daily timescale, conduct

sensor placement analysis, and implement variational, product-of-experts or low-rank approximations to MFGP framework to520

improve computational tractability.

Code and data availability. The code for this paper is available at: https://github.com/kenzaxtazi/mfgp. The MFGP model output between

1980 and 2012 for the upper Beas and Sutlej basin is available at: https://doi.org/10.5285/b2099787-b57c-44ae-bf42-0d46d9ec87cc. The

ERA5 data is available through the Copernicus Data Store (https://cds.climate.copernicus.eu/). The VALUE gauge data is available through

the VALUE experiment website (http://www.value-cost.eu/data). The GMTED2010 elevation data used is available from the Tropospheric525

Emission Monitoring Internet Service (https://www.temis.nl/data/gmted2010/index.php). The authors of this paper do not have the required

permission to make the Beas and Sutlej gauge dataset publicly available and suggest that any readers interested in obtaining it refer to Wulf

et al. (2016).
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Appendix A: More Bayesian inference

A1 Learning Gaussian Process hyperparameters530

For multiple input-output pairs, X and Y , the logarithm of the marginal likelihood is calculated. This is defined as the proba-

bility density of the observations given the hyperparameters:

log(p(Y |X,θ)) =−1

2
(Y −µ)T (K +σ2

nI)
−1(Y −µ)− 1

2
log(|K +σ2

nI|)−
N

2
log(2π) (A1)

where K is the covariance matrix constructed from the kernel function k, σn is the noise specified at the observations. The

logarithm of the likelihood is used to simplify the differentiation during Maximum Likelihood Estimation of the hyperparam-535

eters.

A2 Predicting with Gaussian Processes

Assuming a Gaussian likelihood for ϵ (see Equation 1), calculating the posterior distribution p(f∗|Y ,X) is tractable and can

be used to perform predictive inference for a new outputs f∗, given a new inputs X∗ as:

p(f∗|Y ,X,X∗) =N (f∗|µ∗(X∗),σ
2
∗(X∗)) (A2)540

Predictions are computed using the posterior mean µ∗, while the uncertainty associated with these predictions is quantified

through the posterior variance σ2
∗:

µ∗(X∗) = k∗N (K +σ2
nI)

−1Y (A3)

σ2
∗(X∗) = k∗∗ −k∗N (K +σ2

nI)
−1kT

∗N (A4)

where k∗N = k(X∗,X) and k∗∗ = k(X∗,X∗). In other words, the variance captures how much uncertainty remains after545

seeing the data.

A3 MFGP inference

At each level of the MFGP, the predicted mean µt and variance σ2
t are given by:

µt(X∗) = ρtµt−1(X∗)+µerr +k∗NtK
−1
t [Yt − ρtµt−1(Xt)−µerr] (A5)

σ2
t (X∗) = ρ2tσ

2
t−1(X∗)+k∗∗ −k∗NtK

−1
t kT

∗Nt
(A6)550

where X∗ is a set of test points used over the domain of interest and Nt denotes the number of training point locations where

we have observed data from the tth information source. The mean and the uncertainty are thus elegantly propagated from one

fidelity layer to the next. As the sum of two GPs is another GP, we can also write out the MFGP model as:ft−1

ft

∼GP

µt−1

µt

 kt−1 ρtkt−1

ρtkt−1 ρ2tkt−1 + kerr

 (A7)
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Appendix B: Metric definitions555

B1 Root mean square error (RMSE)

The RMSE represents the typical distance of the model from the data. It is given by:

RMSE =
√
⟨(yi − fi)2⟩ (B1)

where yi is the observed value and fi the predicted value. We use ⟨ ⟩ here and in the following definitions as a shorthand for

the mean. The RMSE is sensitive to outliers and systematic errors. The 5th and 95th percentile RMSE values are calculated by560

computing the RMSE for the high-fidelity data points in the 5th and 95th percentiles respectively.

B2 Coefficient of determination (R2)

The R2 represents the percentage of the data variance that can be explained by the model. It is given by:

R2 = 1− SSres

SStot
= 1−

∑
i(yi − fi)

2∑
i(yi − y)2

(B2)

where SSres is the sum of the squared residuals and SStot the total sum of squares. An R2 of 1 indicates a perfect fit whilst a565

negative R2 means the model performs worse than the mean. Although negative R2 scores are unlikely in interpolation settings,

they are possible when making predictions outside of the training distribution.

B3 Mean log loss (MLL)

Using the predictive distribution at each test input, the probability of the target given the model can be calculated. The log loss

(Rasmussen et al., 2006) is given by taking the negative logarithm of this probability. Taking the mean over all inputs gives the570

mean log loss (MLL):

MLL =−⟨logp(y∗|θ,x∗)⟩= ⟨1
2
log(2πσ2

∗)+
(y∗ − f(x∗))

2

2σ2
∗

⟩ (B3)

where f(x∗) is the model’s posterior mean, σ2
∗ the model’s variance θ the model’s optimised hyperparameters, and y∗ denotes

the target value, all at test point x∗. Smaller values imply more skill. The MLL is calculated prior to the inverse Box-Cox

transformation, as this metric assumes the model output is Gaussian.575
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Appendix C: Further data analysis

This appendix brings together more analysis around the validation experiments. More specifically, Table C1 compares observa-

tional data over Europe and the upper Beas and Sutlej basins and their optimised GP hyperparameters. Overall this breakdown

shows that the distribution of precipitation over the upper Beas and Sutlej basins is more complicated than that over Europe

despite a similar standardised gauge density/GP lengthscales between gauges.580

Metric mean std dev 5th percent 95th percent GP llon GP llat

Unit [mm/day] [mm/day] [mm/day] [mm/day] [°E] z-scored [°N] z-scored

VALUE gauges 2.39 2.19 0.22 6.61 4.96 0.47 3.80 0.49

BS gauges 2.95 3.98 0.00 11.17 0.26 0.52 0.23 0.48

Table C1. Precipitation statistics over Europe and the Beas and Sutlej using gauge data from 2000 to 2005. The mean, standard deviation,

the 5th and 95th percentile values, and lengthscale values for the datasets are presented. The lengthscales are calculated by fitting a GP with a

Matérn 5⁄2 kernel to each of the gauge datasets with time, latitude, longitude and elevation as inputs.

Table C2 shows the performance of the benchmark datasets for the upper Beas and Sutlej validation experiment. These results

are not directly comparable to the MFGP model as the data used to create these products are or are likely included in the held

out validation sets. They can however give us a indication of how well these models perform in absolute terms for this gauged

area.

Input features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2

ERA5 multiple† 3.03±1.05 0.53±0.58 6.01±3.52 -0.30±2.18

APHRODITE gauges 2.27±0.92 0.27±0.30 5.35±3.26 0.45±0.68

TRMM remote sensing 3.83±1.36 0.58±0.77 8.18±4.27 -0.22±0.68

CRU TS gauges 2.87±1.20 0.43±0.24 7.59±4.71 0.19±1.22

Bias-corrected WRF gauges + WRF 3.12±1.00 0.37±0.72 7.02±4.21 -0.10±1.77

Table C2. RMSE and R2 values for benchmark datasets over the Upper Beas and Sutlej Basins between 2000 and 2005 for cross-validation

test stations. The errors represent the standard deviation across the cross validation folds. Bolded values show the best model performance

for a given metric. † ERA5 uses only remote sensing data for precipitation measurements but is also constrained using direct measurements

for other climatic variables.
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Appendix D: MFGP time sensitivity585

The computational complexity of the MFGP framework only allows the modeller to train over climatically short periods of

time. In this study, we assume that long term variability is accurately captured by ERA5 and that there is limited information

to learn by training over longer time periods. This assumption is tested in the following experiment where we repeat the ‘data-

sparse’ version of the European validation experiment over different time ranges. Figure D1 shows the model performance as a

function of the number of time points for the different folds. Aside from a dip at the 2 year mark, there is no generalised trend590

change between different time periods across folds.

Figure D1. R2 as function of years used to model the data across the different folds of the ‘data-sparse’ experiment over Europe.
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Appendix E: Machine learning baseline results

To contextualise the performance of the MFGP models linear interpolation and downscaling using random forests and support

vector regression. The models are applied to the validation experiments presented in Section 4. These models have no explicit

way of merging multiple data sources, instead we use ERA5 as a fifth input to models. The random forest models were trained595

with 100 trees and the stopping tolerance for the support vector regression model was set to 10−3. We note that no systematic

hyperparameter search was performed for these models.

We also compare the MFGP to a Convolutional Conditional Neural Process (ConvCNP). In this setup, we used the high-fidelity

elevation as a context dataset to the model. The model itself was trained using a U-Net with four downsampling layers each

with 64 channels, an internal density of 500 and a learning rate of 5×10−5 and sampling all the data at each timestep to create600

the training tasks. The models are trained for 20 and 15 epochs for the Europe and Beas-Sutlej experiments respectively. Again

no systematic hyperparameter search or tailored sampling approach was performed for the ConvCNP models.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.72±0.46 1.75±0.18 5.21±1.55 0.04±0.06 -

RF ERA5 + gauges 1.12±0.44 0.45±0.19 2.62±0.93 0.61±0.09 -

SVRRBF ERA5 + gauges 1.14±0.46 0.53±0.33 3.03±1.48 0.60±0.12 -

MFGP ERA5 + gauges 1.06±0.42 0.51±0.20 2.72±1.54 0.65±0.09 0.89±0.20

ConvCNP ERA5 + gauges 2.16±0.76 2.29±0.93 4.25±1.60 -0.49±0.48 2.40±0.91

Table E1. Comparison of model performance metrics trained on ERA5 data for the ‘data-rich’ setup over Europe. We include a linear

interpolation model, a random forest (RF), a support vector regression (SVR) model with a smooth Radial Basis Function (RBF) kernel,

a ConvCNP and the MFGP model. The metrics include the average RMSE, the 5th percentile RMSE (RMSE5), the 95th percentile RMSE

(RMSE95), the R2 score, and the MLL. The errors represent the standard deviation across the validation folds.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.77±0.46 1.88±0.25 5.19±1.76 -0.02±0.13 -

RF ERA5 + gauges 1.16±0.39 0.41±0.20 2.92±1.39 0.57±0.10 -

SVRRBF ERA5 + gauges 1.53±0.62 0.73±0.23 4.64±1.99 0.29±0.19 -

MFGP ERA5 + gauges 1.13±0.47 0.57±0.23 3.02±1.62 0.62±0.11 0.90±0.20

ConvCNP ERA5 + gauges 1.92±0.51 1.77±0.78 4.84±1.70 -0.21±0.34 2.36±1.38

Table E2. As Table E1 for the ‘data-sparse’ setup over Europe.
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Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 4.21±0.99 2.21±0.45 14.33±4.03 -0.08±0.05 -

RF ERA5 + gauges 3.05±1.30 0.52±0.46 9.87±5.47 0.45±0.23 -

SVRRBF ERA5 + gauges 3.36±1.66 0.66±0.38 11.05±6.14 0.34±0.33 -

MFGP ERA5 + gauges 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22

ConvCNP ERA5 + gauges 4.89±0.93 3.57±0.79 14.16±3.85 -0.51±0.32 3.95±0.88

Table E3. As Table E2 for the upper Beas and Sutlej basins.
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