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Abstract. The rivers of High Mountain Asia provide freshwater to around 2
:::
1.9 billion people. However, precipitation, the

main driver of river flow, is still poorly understood due to limited direct
:
in

::::
situ measurements in this area. Existing tools

to interpolate these measurements or downscale and bias-correct precipitation models have several limitations. To overcome

these challenges, this paper uses a probabilistic machine learning approach called Multi-Fidelity Gaussian Processes (MFGPs)

to downscale ERA5 climate reanalysis. The method is first validated by downscaling ERA5 precipitation data over data-rich5

Europe and then data-sparse Upper
::::
upper

:
Beas and Sutlej River Basins

:::::
basins in the Himalayas. We find that MFGPs are

simpler to implement and more applicable to smaller datasets than other state-of-the-art machine learning models
:::::::
methods.

MFGPs are also able to quantify and narrow the uncertainty associated with the precipitation estimates, which is especially

needed over ungauged areas, and can be used to estimate the likelihood of extreme events that lead to floods or droughts. Over

the Upper
:::::
upper

:
Beas and Sutlej River Basins

:::::
basins, the precipitation estimates from the MFGP model are similar to or more10

accurate than available gridded precipitation products (APHRODITE, TRMM, CRU
::
TS, bias-corrected WRF). The MFGP

model and APHRODITE annual mean precipitation estimates generally agree with each other for this region with the MFGP

model predicting slightly higher average precipitation and variance. However, more significant spatial deviations between

the MFGP model and APHRODITE over this region appear during the summer monsoon. The MFGP model also presents a

more effective resolution, generating more structure at finer spatial scales than ERA5 and APHRODITE. MFGP precipitation15

estimates for the Upper
:::::
upper Beas and Sutlej Basins

:::::
basins

:
between 1980 and 2012 at a 0.0625° resolution (approx. 9

:
7 km)

are jointly published with this paper.

1 Introduction

High Mountain Asia underpins the water security of
:::::
around

:
1.9 billion people, supplying them with fresh water for agriculture,

energy, industry and domestic usage via Asia’s largest rivers (Wester et al., 2019; Immerzeel et al., 2020; Orr et al., 2022). In20

this area, precipitation drives river flow either directly through rain or, indirectly, by depositing snow reserves that are eventually

released through glacier and snow melt (Immerzeel et al., 2020). Precipitation over High Mountain Asia is mainly influenced by
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two large scale atmospheric patterns: the Indian summer monsoon and the western disturbances
::::::
Summer

::::::::
Monsoon

::::
and

:::::::
Western

::::::::::
Disturbances, which dominate in the boreal winter (Bookhagen and Burbank, 2010; Palazzi et al., 2013; Dimri et al., 2015).

On a local scale, precipitation over High Mountain Asia is characterised by large variances across relatively small distances of25

1 to 10 km due to the region’s complex topography (Anders et al., 2006; Bookhagen and Burbank, 2006; Karki et al., 2017;

Bookhagen and Burbank, 2010; Sigdel and Ma, 2017; Orr et al., 2017; Bannister et al., 2019). However, the spatiotemporal

distribution of precipitation in this area is comparatively poorly understood (Singh et al., 2015; Dahri et al., 2021a; Orr et al.,

2022).

Knowledge of precipitation patterns in High Mountain Asia is principally constrained by limited observations. Only a small30

number of in situ precipitation observations exist in this region, with most gauge stations placed in unrepresentative loca-

tions (below 2000 m a.s.l.) (Winiger et al., 2005; Salzmann et al., 2014; Immerzeel et al., 2015; Duan et al., 2015; Bhardwaj

et al., 2017; Krishnan et al., 2019). Indirect observations through satellites are available but struggle to capture the distribution

differences between valleys and ridges, as well as short-lived extreme events. Furthermore, satellites often confuse precipita-

tion with ice and snow at the surface level. This leads to remote sensing products generally underestimating precipitation in35

mountainous areas (Yin et al., 2008; Andermann et al., 2011). These obstacles mean that many physical relationships, such

as between precipitation rates and elevation, are not well understood in High Mountain Asia (Dahri et al., 2016). This in turn

adversely affects tools to interpolate or combine precipitation measurements to create gridded precipitation products (Meng

et al., 2014; Bhardwaj et al., 2017; Hussain et al., 2017; Ji et al., 2020). As a result, interpolated
:::::::::::::::
interpolation-based

:
products

such as APHRODITE (Yatagai et al., 2012) tend to underestimate precipitation at high altitudes (Immerzeel et al., 2015; Li40

et al., 2017). Furthermore, such gridded products often have no uncertainty estimates.

In addition to interpolated
::::::::::::::::
interpolation-based products, outputs from regional climate models (RCMs) can also be used to

estimate precipitation over High Mountain Asia (Maussion et al., 2014; Norris et al., 2017, 2019; Orr et al., 2017; Norris et al.,

2020). However, these physical models are computationally expensive, lack error estimates, generate large model-dependent

uncertainty (Hawkins and Sutton, 2009), and are generally not well-optimised for mountainous regions (Cannon et al., 2017;45

Norris et al., 2017, 2019; Orr et al., 2017). For example, the ensemble of RCMs from the Coordinated Regional Climate

Downscaling Experiment (CORDEX) for South Asia regularly overestimates historical precipitation over High Mountain Asia

by over 100% for both winter and summer (Sanjay et al., 2017). RCM precipitation outputs therefore typically need to be

bias-corrected before use in this region (Maussion et al., 2014; Collier and Immerzeel, 2015; Bannister et al., 2019; Potter

et al., 2022).50

Climate reanalysis products offer an alternative for estimating precipitation by combining output
::::::
outputs

:
from short-range

forecast models with observations through data assimilation. These products often struggle to accurately represent precipita-

tion over data-sparse areas or times, including High Mountain Asia (Dahri et al., 2016; Palazzi et al., 2013). ERA5 climate

reanalysis (Hersbach et al., 2020), although generally exhibiting a wet bias for High Mountain Asia, provides relatively ac-

curate precipitation estimates in terms of amounts, seasonality, and variability, from daily to multi-annual scale compared to55

other reanalysis and RCM products (Chen et al., 2021; Kumar et al., 2021).
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Altogether, precipitation products over High Mountain Asia are often contradictory and lack consensus (Palazzi et al., 2013;

Bannister et al., 2019). These discrepancies further complicate our understanding and leave room for doubt in any given

prediction or estimate. As precipitation is the main driver of hydrological models (Meng et al., 2014; Remesan and Holman,

2015; Wulf et al., 2016), improving precipitation estimates is key to a better representation of the spatial and temporal dynamics60

of hydrological processes. These
:::::::
improved

::::::::
estimates

:::
can

:
in turn help us better understand, predict and mitigate extreme events

such as droughts, floods and landslides (Ji et al., 2020; Dahri et al., 2021b; Schreiner-McGraw and Ajami, 2022). Finally,

current precipitation estimates
::::::
Present

::::
day

::::::::::
precipitation

::::::::
estimates

::::
also underpin the accuracy of future precipitation predictions

(Panday et al., 2015; Sanjay et al., 2017).

Traditional and state-of-the-art statistical downscaling techniques are used to address these problems but present their own65

issues. These methods
:::
For

:::::
High

:::::::::
Mountain

:::::
Asia,

::::::::::
downscaling

:::::::
models

:::::
often

:::::::
assume

::::::::
simplistic

::::::::::::
relationships,

::::
e.g.

:
a
::::::

linear

:::::::::
correlation

:::::::
between

::::::::::
precipitation

:::
and

:::::::::
elevation,

:::
and

:::::
focus

::
on

:::::
single

:::::
basins

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dahri et al., 2016; Bannister et al., 2019; Libertino et al., 2018)

:
.
::::
New

:::::::
research

:
is
:::::::
making

:::
the

::::
most

::
of

:::::::
machine

:::::::
learning

::::
tools

::
to

:::::::::
downscale

::::::::::
precipitation

::::::::
products

::::::::::::::::::::::::::::::::
(Yadav et al., 2024; Gerlitz et al., 2014)

:
,
:::::::
allowing

:::::::::
researchers

::
to

::::::
model

::::
more

:::::::
complex

:::::::::::::
spatiotemporal

::::::::::
precipitation

:::::::::::
distributions

:::
and

:::::::
generate

:::::::
products

::::
over

:::::
larger

:::::
areas

:::
and

:::::
longer

::::
time

:::::::
periods

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Ahmed et al., 2020; Ning et al., 2016; Mei et al., 2020; Sun et al., 2022).

:::::
These

::::::
studies

:::
are

::::
also

:::::
using70

:::::::
machine

:::::::
learning

::::::::
corrected

:::::::::::
precipitation

:::::::
directly

::
as

::::::
inputs

::
to

:::::::::::
hydrological

::::::
models

:::::::::::::::::::::::::::::::
(Sun et al., 2022; Xiang et al., 2024)

:::
and

:::::::
applying

::::::::
machine

:::::::
learning

:::::::
methods

:::
to

:::::
merge

:::::::::::
precipitation

::::
data

:::::
from

:::::::
multiple

:::::::
sources

::
to

:::::::
improve

:::::::::
prediction

:::::::::
robustness

:::
in

::::::::
ungauged

::::
areas

:::::::::::::::::::::::::::::::::::::::::::::::::
(Lyu and Yong, 2024; Xiang et al., 2024; Zhang et al., 2021)

:
.

::::::::
However,

::::
these

:::::::::::
downscaling

::::::::
methods generally struggle to simultaneously solve the following problems: 1/ )

:
capturing ex-

treme values and spatiotemporal structure, 2/ )
:
generalising to multiple locations, 3/ )

:
predicting at arbitrary locations, 4/

:
)75

overcoming gridding biases and 5/
:
) working effectively with sparse and ‘small’ datasets (King et al., 2013; Maraun and Wid-

mann, 2018; Baño-Medina et al., 2020; ?; Andersson et al., 2023). We propose Multi-Fidelity Gaussian Processes (MFGPs) as

an alternative to other statistical downscaling and bias-correction methods. Using MFGPs, multiple precipitation
::::::::::
precipitation

:::
data

:::::
from

:::::::
multiple

:
sources can be combined to overcome these challenges and increase the accuracy and effective resolution

of precipitation predictions over topographically complex areas, especially over ungauged locations. Most importantly, the80

probabilistic nature of MFGPs provides a principled way of quantifying uncertainty and the likelihood of extreme precipitation

events.

This study focuses on applying MFGPs to downscale ERA5 monthly precipitation estimates in the data-sparse Upper
:::::
upper

Beas and Sutlej River Basins
:::::
basins in the Himalayas, which .

::::
The

::::
Beas

::::
and

:::::
Sutlej are two main tributaries of the Indus River.

The study area, shown in Figure 1, serves as a pilot study for High Mountain Asia. The paper is structured as follows. MFGPs85

and Gaussian Processes (GPs)
:::
and

::::::
MFGPs

:
are first introduced in Section 2. The methodology and datasets used are presented

in Section 3. The MFGPs are then evaluated by downscaling ERA5 precipitation
:
, first over a data-rich region (Europe) and

then over a subset of the Upper
:::::
upper Beas and Sutlej Basins

:::::
basins,

:
in Section 4. The MFGP framework is then applied to

the whole of the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins

:
and compared with precipitation dataset benchmarks including

APHRODITE in Section 5. Finally, the limitations of this approach and further work are discussed in Section 6.90
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Figure 1. Elevation map of the Upper
::::
upper Beas and Sutlej River Basins

:::::
basins

:
with gauge locations represented by white circles. The

dashed line represents the watershed boundaries, with the letter ‘B’ denoting the Upper
::::
upper

:
Beas River Basin

::::
basin and ‘S’ the Upper

::::
upper

:
Sutlej River Basin

:::
basin. Only three gauge stations are located above 2000 m. The inset shows the watersheds’ location with respect to

High Mountain Asia, with areas above 2000 m a.s.l. highlighted in purple.

2 Multi-Fidelity Gaussian Processes

2.1 Gaussian Processes

Consider the set of observations xi,yi with i= {1, ...,N}, xi ∈ RD and yi ∈ R where N is the number of data points and

D the number of observation dimensions. In this paper, xi represents a vector with the date, coordinates and elevation of the

observation and yi is its monthly precipitation value. These observations are generated by a function f :95

yi = f(xi)+ ϵi (1)

where ϵi is the noise term and is assumed to be distributed normally with a mean of zero and standard deviation σn, i.e., ϵi ∼
N (0;σ2

n). The function f can be modelled with a Gaussian Process (GP). We refer the reader to Rasmussen et al. (2006) for an

introduction to GPs and follow their notation in this presentation. A GP is a stochastic process where any finite collection of its

random variables is distributed according to a multivariate normal distribution. Similarly to a multivariate normal distribution,100

a GP is defined by a mean function µ(x,θµ) and covariance or kernel function k(x,x′,θk):

f(x)∼GP (µ(x,θµ),k(x,x
′,θk)) (2)

4



where x is the input vector to predict at, x′ is another arbitrary input location, and θµ and θk represent the hyperparameters

of the mean and covariance functions respectively. The hyperparameters are the parameters of the model that can either be set

manually or optimised. Going forward the hyperparameters will be referred to jointly as θ. The covariance function k(x,x′,θk)105

strongly underpins the GP model. The covariance function
::
It captures the correlation of the outputs given the inputs and encodes

:::::::
encoding

:
properties such as smoothness and periodicity. If the covariance function is stationary, the correlation depends only

on the distance between x and x′.

As the output of a GP for a single point is a probability distribution, the GP output over many points can be interpreted as a

probability distribution over functions. Predictions at new input locations can therefore be calculated using Bayes’ theorem.110

This is also known as the model being ‘fit’ to the data or ‘training’ the model with the data. If A represents all the values of the

GP
::
the

:::::
GP’s

::::::::
functions

:
and B the data, Bayesian inference can be written as:

p(A|B,C) =
p(A|C)p(B|A,C)

p(B|C)
where A= f(·), B = {xi,yi}Ni=1, C = θ (3)

where p(A|B,C) is the probability distribution of A conditional on B and C with all other distributions defined analogously.

This can be seen as the system A being updated using new information B. p(A|C) is therefore known as the prior distribution115

and p(A|B,C) as the posterior distribution. The full posterior distribution is especially relevant when estimating the likelihood

of extreme values and is therefore a principled way to define the uncertainty of the model .
:::
and

::
is

::::::::
therefore

:::::::::
estimating

:::
the

::::::::::
probabilities

::
of

:::::::
extreme

::::::
values.

:::::::::
p(B|A,C)

::
is

:::
the

:::::::::
probability

:::
of

:::
the

::::::::::
observations

::
B

::::::::
occurring

:::::
given

:::
the

::::
state

:::
of

::::::
system

::
A

::::
with

:::::::::::::
hyperparameters

::
C
::::
and

::
is

::::::
known

::
as

:::
the

:::::::::
likelihood. p(B|C) is known as the marginal likelihood and is the probability density

of the observations given the hyperparameters. This distribution is calculated by integrating or ‘marginalising’ over all the120

values of f , i.e. going from p(B|A,C) to p(B|C).

GPs therefore are non-parametric. Instead of optimising over finite set of parameters, e.g. weights of a random forest or neural

network, GPs are optimised over functions. Consequently, GPs are more expressive in how they fit the data compared to

traditional regression or classification models, i.e. they can be used to model complex relationships between the data. GPs are

also more robust to overfitting because rather than optimise a specific function, it integrates over all potential ones (Rasmussen125

et al., 2006).

Practically, the mean function µ(x,θµ), the covariance function k(x,x′,θk) and the prior distribution are built from a set of

standard functions that encode different assumptions. In particular, the covariance matrix is usually designed by multiplying or

adding standard kernel functions together (Rasmussen et al., 2006; Duvenaud et al., 2013). The covariance function makes GPs

well suited for highly-correlated geophysical datasets and quantifying uncertainty in absence of data. However these benefits130

come at a cost, the computational complexity of GPs scales cubically with the number of data points. This scaling is an issue

in large data regimes but can be addressed by low-rank approximations and inducing points (Liu et al., 2020; Tazi et al., 2023).
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2.2 Multi-Fidelity Gaussian Processes

The fidelity of a dataset can be defined as a combination of the data’s precision and accuracy. The most accurate set of observa-

tions with the highest resolution are referred to as the high fidelity
::::::::::
high-fidelity

:
data. Less accurate and coarse observations or135

simulation data are denoted as low fidelity
:::::::::
low-fidelity data. In many cases, high fidelity

::::::::::
high-fidelity

:
observations can be ex-

pensive to produce whereas low fidelity
::::::::::
low-fidelity observations are usually more inexpensive and therefore more numerous.

A multi-fidelity model combines low fidelity
::::::::::
low-fidelity datasets with the more accurate, but limited, observations in order to

predict the high fidelity
::::::::::
high-fidelity output more effectively. Datasets of different fidelities can be combined using GPs, where

the output of a first GP is used as the input to the next and so forth. For a Multi-Fidelity Gaussian Process (MFGP), each layer140

of the model represents a different level of fidelity, starting from the lowest and moving towards the highest fidelity.

Consider s fidelity levels each corresponding to different datasets, e.g., climate reanalysis, gauge station measurements, etc.

Each fidelity is made up of observations Yt at locations Xt ⊆ RD where t= 1, . . . ,s. The observations Ys denote the outputs

of the most accurate and expensive function to evaluate fs, whereas Y1 is the outputs of the cheapest and least accurate function

f1. The highest fidelity
::::::::::::
highest-fidelity

:
data are assumed to be sampled from the ‘true’ distribution of the target function. The145

observations at level t can be generated by a function ft:

Yt,i = ft(Xt,i)+ ϵt,i (4)

where ϵt,i is the noise term.

One choice for this function is given by Le Gratiet and Garnier (2014). The approach requires two assumptions. First, the

relationship between the fidelities is assumed to be linear. Second, the model follows strict hierarchical sampling rules where150

the fidelity levels have nested training sets. The high fidelity
::::::::::
high-fidelity locations must be contained with the domain of the

lower fidelity. The lowest fidelity
:::::::::::
lower-fidelity.

::::
The

::::::::::::
lowest-fidelity data must therefore have the largest domain, the second

fidelity must have the second-largest domain and so forth. From these assumptions, the function ft is defined as:

ft(Xt) = ρtft−1(Xt)+ ferr(Xt). (5)

The function ft is the high fidelity
::::::::::
high-fidelity

:
GP as modelled by the scaled sum of of two functions ft−1 and ferr. The155

function ft−1 is a GP modelling the outputs of the lower fidelity
:::::::::::
lower-fidelity function and is scaled by ρt, a scalar indicating

the magnitude of the correlation to the high fidelity
::::::::::
high-fidelity data. The function ferr is another GP that models the bias

between the two fidelity levels. The scaling factor ρt is defined as:

ρt(Xt) =
cov(ft(Xt),ft−1(Xt))

var(ft−1(Xt))
(6)

where cov is the covariance and var is the variance. Model inference, including the propagation of the mean and standard devi-160

ation through different fidelity levels, is discussed in Appendix A. Figure 2 illustrates the MFGP framework for a pedagogical

example using two toy datasets.
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3 Method and datasets

3.1 Method overview

In this study we use the MFGP framework to combine two datasets of different fidelities: high fidelity
::::::::::
high-fidelity

:
gauge165

measurements, which are accurate but sparse, and climate reanalysis data, which are complete but more biased. In this way,

the MFGP is applied to downscale and bias-correct monthly
::::::::
reanalysis precipitation ERA5 reanalysis data using precipitation

gauge measurements. Time, latitude, longitude and elevation are used as input variables. The datasets used to train the MFGPs

and make predictions from the model are described in Section 3.2. The MFGP framework is validated over
::::
using

::::::
subsets

:::
of

European station data and then a subset of the Upper
::::
upper

:
Beas and Sutlej gauge data. MFGP is first applied to Europe in order170

to ascertain the performance of the model on an area with less sparse gauge data and more homogeneous spatial distribution of

precipitation before applying it to the more challenging Upper
::::
upper

:
Beas and Sutlej regions. A MFGP model is then trained

using all the gauges in Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins and compared to other benchmark datasets. The benchmark

datasets, their advantages and their limitations are presented in Section 3.3.

3.2 Training and prediction datasets175

The datasets used to train the MFGP model include the VALUE gauge measurements over Europe (high fidelity
::::::::::
high-fidelity),

the Beas and Sutlej gauge measurements (high fidelity
::::::::::
high-fidelity), and ERA5 (low fidelity

::::::::::
low-fidelity). The resampled

GMTED2010 dataset
:::::
digital

::::::::
elevation

::::::
model is also presented and is used as inputs to make the high resolution precipita-

tion estimates over the Upper
:::::
upper Beas and Sutlej Basins

:::::
basins.

VALUE gauge measurements. The European station measurements are taken from the VALUE downscaling experiment180

(Gutiérrez et al., 2019). The dataset features daily precipitation at 86 stations across Europe between 1979 and 2019 . These

stations are representative of different climatic regimes over the European continent including mountainous environments. The

daily data is re-sampled to a monthly temporal resolution.

Beas and Sutlej gauge measurements. The Upper
::::
upper

:
Beas and Sutlej Basins were

:::::
basins

:::
are

:
chosen as the study regions

:::::
region

:
as they offer comparatively data-rich locations for High Mountain Asia (Wulf et al., 2016; Bannister et al., 2019). The185

dataset from Bannister et al. (2019) with additional quality control is used. The dataset is made up of 58 stations (
:::
with

:
46 in the

Upper
:::::
within

:::
the

:::::
upper Beas and Sutlej Basins) with

:::::
basins

:::
and

:
measurements between January 1980 and April 2013. The 23

stations run by the Bhakra Beas Management Board measure rainfall and snow water equivalent. The remaining 35 stations are

run by the Indian Meteorological Department and only record rainfall. This is not problematic as all these stations are below

the snow line in this area (Lund et al., 2020). The precipitation observations are daily but have missing values with gaps of190

several years for most locations. The stations cover less than half of the study area as seen in Figure 1. With station altitudes

ranging from 284 m to 3639 m a.s.l. and a median altitude of 935 m a.s.l., most stations are not representative of the area

which has
:::::::
combined

::::::::::
watersheds

:::::
which

:::::::
together

::::
have

:
a median elevation of approximately 4700 m a.s.l. The data is converted

::::::::
resampled

:
from daily to monthly averages.
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ERA5. The 5th
::
5th

:
ECMWF Reanalysis (ERA5) (Hersbach et al., 2020) is used as the final modelinput

::
to

::::
train

:::
the

::::
low

:::::
fidely195

:::
GPs

:::
of

:::
the

::::::
MFGP

::::::
model. ERA5 runs from 1950 to the present day over 0.25°

::
by

:::::
0.25°

:
grid and assimilates data from a

large number of sources. ERA5’s global spatial coverage and long temporal range make it an attractive dataset. It is also

easily accessible and straightforward to update. The monthly total precipitation variable is used in the following experiments.

Elevation values are derived from ERA5’s geopotential variable.

GMTED2010. The 2010 global multi-resolution terrain elevation data (GMTED2010) is a digital elevation model computed200

from 11 satellite data sources (Danielson and Gesch, 2011). The model provides elevation products at three separate resolutions

of 30 arc-seconds (approx. 1 km), 15 arc-seconds (approx. 500 m), and 7.5 arc-seconds (approx. 250 m) with global land

coverage from 84° N to 56° S for most products. In this paper, an
:
a
:
resampled version of GMTED2010 at 0.0625° resolution

from the European Space Agency’s Tropospheric Monitoring Instrument team (TROPOMI, 2019).

3.3 Benchmark datasets205

Precipitation estimates using the MFGP framework are compared against the following precipitation benchmark datasets:

bias-corrected WRF, APHRODITE, TRMM, and CRU TS.

Bias-corrected WRF. The bias-corrected WRF output is a product that was specifically developed for the Upper
::::
upper

:
Beas

and Sutlej Basins
:::::
basins by Bannister et al. (2019). Here, version 3.8.1 of the WRF model (Skamarock et al., 2008) was used

to dynamically downscale ERA-Interim reanalysis data (Dee et al., 2011) to a grid spacing of 5 km from 1980 to 2012. The210

precipitation outputs from the model were then bias-corrected using the in situ observations described above, using a power

transformation method proposed by Leander and Buishand (2007).

APHRODITE. The second benchmark is the Asian Precipitation-Highly Resolved Observational Data Integration Towards

Evaluation of water resources or APHRODITE (Yatagai et al., 2012)
::::::::::::::::::::::::::::
(APHRODITE Yatagai et al., 2012). APHRODITE data

ranges from 1951 to 2015 with a maximum spatial resolutionof 0.25°. The interpolation scheme uses nearby precipitation215

gauges, slope and a correlation distance lookup table. In the paper, we use the APHRO_V1101 gridded precipitation product

which was specifically developed for monsoon Asia. Overall, APHRODITE has one of the best spatiotemporal coverage of

gridded precipitation products over High Mountain Asia. It is also one of the most studied and accurate products for the region

(Dimri, 2021). However, the interpolation scheme underestimates precipitation at high altitudes and suffers from spatially het-

erogeneous biases when compared to in situ observations. These biases pose critical limitations for high-precision hydrological220

studies (Ji et al., 2020; Bhardwaj et al., 2017; Hussain et al., 2017).

TRMM. The Tropical Rainfall Measuring Mission (TRMM) is a satellite mission that was launched at the end of 1997 and

remained active until 2014. TRMM provides good spatial coverage over High Mountain Asia, although several studies have

shown that its relatively coarse 0.25° resolution
:::
the

::::::::
relatively

:::::
coarse

:::::::::
resolution

::
of

:::
its

:::::::
products is unable to capture distribution

differences between valleys and ridges (Shukla et al., 2019; Andermann et al., 2011; Yin et al., 2008). Additionally, its relatively225

poor temporal coverage (only a few overpasses per day) also contributes to extreme precipitation events not being captured.
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Here we use TRMM_3B43 data, which is a monthly
::::
0.25°

:::::::::
resolution Level 3 precipitation product where radar and radiometer

measurements have been converted to precipitation values and the results have been calibrated against ground measurements

(Japan Aerospace Exploration Agency, 2018). However, the calibration sites are not in High Mountain Asia.

CRU TS. The final benchmark is the high-resolution Climatic Research Unit global climate Time Series dataset (CRU TS230

v4.05) developed at the University of East Anglia (Harris et al., 2020)
::::::::::::::::::::::::::::
(CRU TS v4.05 Harris et al., 2020). This gridded dataset

uses an angular-distance weighting interpolation of in situ observations between 1901 and 2020. This resulting product has a

0.5° resolution and was chosen as a baseline , given it’s
::::
given

:::
its coarser resolution and global scope.

4 Model validation

4.1 Experimental setup235

4.1.1 Validation schemes
:::::::
scheme

The MFGP model is evaluated from 2000 and 2004 over both Europe and the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins. This

time period represents the time with the largest number of active stations in the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins. For

both regions, the MFGP model is tested using fivefold cross-validation. This means the data are first separated into five groups

or folds and five separate models are trained on different permutations of four groups and tested on the fifth. Cross-validation240

is therefore a useful way to estimate how the model will perform in practice when it is asked to predict at arbitrary locations

far way from its training distribution. The groups are determined via k-means clustering on the station locations. To make the

cross-validation clusters even in size, only the seven closest stations to the cluster centres are kept. The cluster downsizing also

increases the
:::::
spatial independence between folds. The folds for both regions are shown in Figure 3.

Different variants of this cross-validation method are used to evaluate the
:::::
MFGP

:
model. First, we setup a ‘data-rich’ experiment245

over Europe. In this case, all the available stations except the test fold stations are used to train the model. For example, when

evaluating the model on fold
::::
Fold 1 (Figure 3 (a)

::
a), blue markers), the model is trained on the other folds and the grey stations.

In this setting, the model therefore has access to more data including data that are climatically similar to where the model is

evaluated. We then modify the experiment to create a ‘data sparse
:::::::::
data-sparse’ setting over Europe. In this case, we train only

the data in the training folds and test on the excluded group. The ‘data sparse
:::::::::
data-sparse’ scheme is repeated for the evaluation250

over the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins. This progressive reduction in data should help compare the impact of the

data sparsity on the MFGP model against that of complex spatiotemporal precipitation distribution in the Upper
::::
upper

:
Beas

and Sutlej Basins
:::::
basins.

4.1.2 Data transformations
:::::::::::::
transformation

The probability distribution function of monthly precipitation is not Gaussian but usually follows a log-normal distribution.255

However, as the GP posterior distribution is constrained to be Gaussian
::::::
normal, making the marginal distribution more normal
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can
::::::::
therefore help with inference. For this reason

:
, the precipitation data are transformed using a Box-Cox function fit to the

low fidelity
:::::::::
low-fidelity ERA5 data:

yi(λ) =


yλ
i −1
λ , if λ ̸= 0

logyi, if λ= 0
(7)

where yi is the ith observation and is assumed to be positive and λ is the scaling factor. The input features are standardised260

by subtracting the mean and dividing standard deviation of the training set before they are passed to the models. This is also

known as z-scoring and generally improves inference.

4.1.3 Kernel design

The MFGP kernels are specified to be Matérn 5⁄2 functions defined as:

kMat(x,x
′) =

σ2

Γ(ν)2ν−1

(√
2ν

l
|x−x′|

)ν

Kν

(√
2ν

l

)
(8)265

where ν = 5/2, σ2 is the variance parameter, l the lengthscale parameter, Γ is the gamma function, and Kν is the modified Bessel

function of the second kind. The Matérn 5⁄2 function provides samples that are more faithful to real physical processes compared

to the default squared exponential kernel. The samples are twice differentiable, i.e. not completely smooth, thus allowing for

more abrupt changes in the modelled variable. The Matérn 5⁄2 kernel performed better than the squared exponential kernel for

both the Europe and Upper
:::::
upper Beas and Sutlej Basin

::::
basin

:
experiments (not shown).270

4.1.4 Machine learning baselines

The performance of the MFGP is compared to linear regression model trained on ERA5 data ,
:::::
several

::::::::
baseline

::::::
models.

::::
We

:::::
would

:::
like

:::
to

:::::::
establish

::::
that

:::::
using

::::
both

:::
low

::::
and

::::::::::
high-fidelity

::::
data

:::::::
improve

::::::
models

::::
that

:::
use

:::
just

::::
one

::
or

:::
the

:::::
other.

::
In

:::::
order

::
to

:::
do

:::
this,

:::
we

:::::::::
implement

:
a GP fit to ERA5

:::
data using a Matérn 5⁄2 kernel, and a GP fit to the station data using a Matérn 5⁄2 kernel.

The GP fit to ERA5 using a Matérn 5⁄2 is equivalent to the MFGP low fidelity
:::::::::
low-fidelity

:
output. Finally, the MFGP is also275

compared to a GP fit on the station data with the custom kernel design. The custom kernel is defined as:

k = kMat52(t) · kPer(t)+ kMat52-ARD(lat, lon, elevation) (9)

where kMat52 is the Matérn 5⁄2 kernel, kPer is the periodic kernel, and kMat52-ARD is the Matérn 5⁄2 exponential kernel with Auto-

matic Relevance Determination (ARD) (MacKay, 1994). ARD allows the kernel parameters to vary between input dimensions.

The periodic kernel is defined as:280

kPer(x,x
′) = σ2 exp

(
−2sin(2π|x−x′|/p)

l2

)
(10)
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where p is the period parameter, σ2 is the variance parameter and l the lengthscale parameter.1 A similar kernel design to

Equation 9 was used over the Upper Indus Basin
:::::
upper

:::::
Indus

::::
basin

:
with ERA5 precipitation by Lalchand et al. (2022) and was

found to perform as well as more complex non-stationary kernel functions. The kernel design was formulated following the

framework proposed Tazi et al. (2023) where statistical analysis of the precipitation data and domain knowledge, such as the285

periodic temporal patterns and the strong influence of elevation, were combined to create a kernel that is predictive without

being unnecessarily complex.

Finally, we investigate current state-of-the-art downscaling models :
:::::::::::
Additionally,

:::
the

::::::
MFGP

::::::
model

::
is

:::::::::
compared

::
to

:::::
other

::::::
models

:::::::::
commonly

::::
used

:::
to

:::::::::
interpolate

::
or

::::::::::
downscale

::::::::::
precipitation

:::
for

:::::
small

::::::::
datasets.

:::
We

::::::::::
implement

::::
three

:::::::::::::::
non-probabilistic

::::::
models

::::::::
including

:::::
linear

:::::::::::
interpolation

:::
and

:::::::
random

:::::
forest

:::
and

:::::::
support

:::::
vector

:::::::::
regression

::::::::::
downscaling

::::::
where

:::::
ERA5

:::::::::::
precipitation290

:
is
:::::::
directly

::::
used

:::
as

:
a
:::::::::::
high-fidelity

:::::::::::
precipitation

::::::::
predictor.

:::
We

::::
also

:::::::
compare

::::
the

::::::
MFGP

::::
with

:
a
::::::

strong
:::::::::
alternative

:::::::::::
probabilistic

::::::
model,

:::::::
namely

:
a
:

Convolutional Conditional Neural Processes
::::::
Process

:
(ConvCNP)(Gordon et al., 2019; ?) and Convolutional

Gaussian Neural Processes (ConvGNP) (Markou et al., 2022; Andersson et al., 2023). These models offer similar advantages

to the MFGP model, including: capturing extreme values and spatiotemporal structure, generalising to multiple locations,

predicting at arbitrary locations and overcoming gridding biases. However, these neural networks require a large number of295

datapoints to be trained adequately, and therefore training them on the same amount of data as the MFGP model did not allow

them to converge to any physically sensible outputs. We therefore omit these results in the following sections but present the

code to implement the models in the supplementary material.
:::::::
Although

:::::
these

::::::
models

:::::::::::
contextualise

:::
the

::::::
MFGP

::::::::::::
performance,

:::
they

:::
do

:::
not

:::::::::
contribute

::::::
towards

:::
the

:::::
main

::::
goal

::
of

::::::::::::
demonstrating

::::
how

:::
the

:::::::::
uncertainty

:::
can

:::
be

::::::::
narrowed

::
by

::::::::::::
incorporating

:::::::
multiple

:::
data

:::::::
sources.

::::
For

:::
this

::::::
reason,

:::::
these

::::::
models

:::
are

::::::::
discussed

::
in

:::::::
Section

::
6.300

4.1.5 Performance metrics

Several metrics are used to evaluate the models. The root mean square error (RMSE) is calculated for the validation sets as well

as their 5th percentile and 95th percentile values to evaluate how well the model is capturing extremes. The RMSE is chosen as

a performance metric as it is more robust to outliers than the mean absolute error or the bias. We also calculate the coefficient of

determination (R2) to understand how much of the variance in the data is represented by the model. These metrics are chosen in305

part for their broad usage across both machine learning and environmental science fields. The mean log loss (MLL) computes

average negative logarithm of the posterior likelihood of all validation points. This metric therefore is a measure of the model

confidence and the quality of its uncertainty predictions. The MLL is more suited to probabilistic methods than RMSE or R2.

All
::
the

:
metrics are defined in Appendix B.

1Although σ2 and l serve similar purposes to the parameters of the Matérn 5⁄2 kernel shown in Equation 8, they are actually distinct variables and optimised

separately.
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4.2 Validation over Europe310

The MFGP framework is first applied to a ‘data-rich’ setting over Europe. Table 1 shows the performance of the MFGP

with respect to other simpler GP modelsand linear regression. Of these methods, the GP with the custom kernel extrapolating

only from gauges yields the poorest results . This
::::
with

:
a
::::::::
negative

::
R2

:::::::::
indicating

::::
that

:::
the

:::::
model

::
is
:::::::::

predicting
::::::
worse

::::
than

:::
the

::::::::::
precipitation

::::::
mean.

::::
This

::::
poor

:::::::::
predictive

::::
skill

:
is expected as the custom kernel is designed to model precipitation over the

Western Himalayas and not Europe. By contrast, precipitation estimates from the linear regression model and the GPs with the315

Matérn kernels provide better results. In particular, applying a GP fit to ERA5 data at every station location gives even better

estimates compared to a GP fit to the station data, including the best estimates for 95th percentile RMSE (2.58±1.11 mm/day).

However, the MFGP model gives the best overall results with lowest mean and 5th percentile RMSE (1.06±0.42 mm/day and

0.51±0.20 mm/day respectively), the highest R2 (0.65±0.09 mm/day), and the highest
:::::
lowest MLL (0.89±0.20).

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 1.06±0.42 0.51±0.20 2.72±1.54 0.65±0.09 0.89±0.20

GPMat52 ERA5 1.16±0.43 0.52±0.25 2.58±1.11 0.57±0.13 (1.87±0.71)107

GPcustom gauges 1.91±0.69 1.60±0.22 5.58±2.06 -0.14±0.23 1.57±0.19

GPMat52 gauges 1.21±0.45 0.59±0.29 2.85±1.17 0.55±0.14 1.94±0.36

Table 1. Comparison of model performance metrics for the ‘data-rich’ setup over Europe. The models include the MFGP, a GP using the

custom kernel, and a GP using a Matérn 5⁄2 kernel with ARD. The metrics include the average RMSE (RMSE), the 5th percentile RMSE

(RMSE5), the 95th percentile RMSE (RMSE95), the R2, and the MLL. The training features represent inputs used to train the models. The

errors represent the standard deviation across the validation folds. Bolded values show the best model performance for a given metric.

The experiment is then repeated for the ‘data sparse
:::::::::
data-sparse’ setting. Table 2 shows the performance metrics for this setup.320

Despite a small decrease in performance compared to the ‘data rich
:::::::
data-rich’ experiment shown in Table 1, the MFGP model

is still able to combine the two datasets to improve predictions. The other baselines also show a generalised decreases in skill

but their ranking is unaffected.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 1.13±0.47 0.57±0.23 3.02±1.62 0.62±0.11 0.90±0.20

GPMat52 ERA5 1.21±0.46 0.59±0.29 2.84±1.17 0.55±0.14 (18.7±7.4) 106

GPcustom gauges 2.25±0.90 1.10±0.60 6.51±2.29 -0.57±0.46 1.73±0.33

GPMat52 gauges 2.13±0.91 1.21± 0.48 6.29±2.35 -0.39±0.44 1.62±0.31

Table 2. As Table 1 for the ‘data-sparse’ setup over Europe.
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Figure 4 (a) plots the high fidelity
::::::::::
high-fidelity output as a function of low fidelity

::::::::::
low-fidelity R2 for the validation locations.

The high-fidelity output corresponds to the MFGP fit using both ERA
:::::
ERA5 and the gauge data. The low fidelity

::::::::::
low-fidelity325

MFGP fit uses on ERA5 only and is equivalent to fitting a simple GP to ERA5 as shown in Table 2. Values above the dashed

line show the locations where combining the datasets leads to improved performance. The plot shows that the MFGP improves

predictions at most station locations. The largest gains are observed over the European alps (shown in orange). Simultaneously

this is also the area, along with the Pyrenees and northern Spain (shown in green) where the model produces the largest errors.

Altogether these results show that MFGPs can confidently be applied to more data-sparse locations.330

4.3 Validation over Upper
:::::
upper

:
Beas and Sutlej Basins

:::::
basins

Table 3 shows the performance of the MFGP with respect to other simpler GP models and linear regression for the Upper
:::
for

::
the

:::::
upper

:
Beas and Sutlej Basins

:::::
basins. Overall the performance of the MFGP model and machine learning baselines is worse

than over Europe, with all metrics showing a decrease in skill. This can be explained for two reasons. First, ERA5 is more

accurate over Europe than the Upper
:::::
upper Beas and Sutlej Basins (see

:::::
basins

::::
(cf. Tables 2 and 3). Second, the precipitation335

in the High Mountain Asia presents more extreme seasonal variations, so is harder to predict (see Appendix C). The higher

spatial heterogeneity of the precipitation over the Upper
:::::
upper Beas and Sutlej Basins

:::::
basins

:
should not strongly contribute to

the performance difference as the scale of the study area is much smaller than that of the European experiment while the number

of stations remains the same
::::::::::
standardised

:::::
spatial

:::::::::::
lengthscales

:::::::
between

:::
the

::::::::
European

::::
and

:::::::::
Himalayan

:::::::
stations

:::
are

::::::
similar

:
(see

Appendix C).340

In particular, the
:::
The

:
MFGP’s MLL and RMSE metrics suffer the most compared to the European experiments and the GP

baselines. The MFGP
:
’s
:
RMSE values grow approximately by a factor of 3 and the MLL by a factor of 2. This behaviour

could be caused by the specific temporal distribution of precipitation in the Upper
::::
upper

:
Beas and Sutlej. For most of the

year, precipitation values stay low but increase dramatically during the summer monsoon
:::::
Indian

:::::::
Summer

::::::::
Monsoon, peaking

in June/July. If the model does not predict these extreme values, the MLL and RMSE are heavily penalised. Conversely, the345

stronger periodicity in the data makes it easier to fit the GP models thus comparatively improving the GP MLL scores and 5th

::
5th

:
percentile RMSE. The MFGP still outperforms the GP fit for

:
to

:
ERA5 and the GP extrapolation using

::::::::::
extrapolating

:::::
from

the station data only with a mean RMSE (3.00±0.92 mm/day) and R2 (0.46±0.11). In this experiment, all the probabilistic

models show better performance than the linear regression model on the low fidelity data alone. In particular, the
:::
the GP with

the custom kernel outperforms the GP with the Matérn kernel suggesting that incorporating domain knowledge becomes more350

important in this more complex precipitation regime.
:::
The

:::::::::::
experiments

::::
were

::::
also

:::::::::
conducted

::::
with

:::
all

:::
the

::::::
ERA5

::::
data

:::
for

:::
the

::::
study

::::
area

::::
(not

:::::::
shown),

:::
but

::::::
showed

:::
no

:::::::::
significant

:::::::::::
improvement

::::
over

:::::
using

:::
the

:::::
ERA5

::::
data

::
at

:::
the

::::::
station

:::::::
locations

:::::
only.

Figure 4 (b) plots the high fidelity
::::::::::
high-fidelity R2 as a function of low fidelity

:::::::::
low-fidelity

:
R2 for the validation locations across

the basins. The figure shows that when the low fidelity
:::::::::
low-fidelity R2 is already high (>0.5), the MFGP improvements are

limited. However, when the low fidelity
:::::::::
low-fidelity

:
R2 is low, the MFGP significantly improves the low fidelity

::::::::::
low-fidelity355

fit. The Upper
:::::
upper Beas and Sutlej low fidelity

:::::::::
low-fidelity

:
R2 values also cover a much larger range. Although the MFGP
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Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGP gauges + ERA5 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22

GPMat52 ERA5 3.32±0.79 2.39±1.52 7.56±2.81 0.26±0.32 (11.4±4.8) 107

GP custom gauges 3.16±1.00 0.99±0.76 10.46±4.33 0.40±0.11 1.67±0.31

GPMat52 gauges 3.24±1.35 0.86±0.56 11.0±5.11 0.38±0.25 1.66±0.32

Table 3. As Table 2 for the Upper Beas and Sutlej basins.

improves the low fidelity
::::::::::
low-fidelity predictions less consistently than over Europe, it makes larger improvements over ERA5

over the Upper
::::
upper

:
Beas and Sutlej basins. In particular, the largest improvements are observed for Fold 4 (shown in red)

which has the highest average elevation and is therefore most representative of the basins’ ungauged areas. This result is

therefore encouraging given the paper’s objective to predict in high altitude ungauged locations.360

5 Application to Upper
:::::
upper Beas and Sutlej Basins

::::::
basins

5.1 Study area predictions

A MFGP model is now trained using all available station data, including the stations outside of the basins, and ERA5 data

over the study area (30° N-33.5° N, 75.5° E-83° E) between 2000 and 2009. This corresponds to the overlapping period

between all the benchmark datasets studied in the following section. Again the precipitation values are transformed and input365

features are z-scored before they are passed to the model as this improves model inference. Separate models are trained on a

yearly basis due to memory and computational constraints. In the Appendix D, we show that,
:::::::::
assuming

::
no

:::::::
missing

::::
data,

:
this

does not significantly impact the results of the model performanceassuming no missing data. When training the model across

the entirety of both basins, the MFGP high fidelity function
::::::::::
high-fidelity

:::
GP

:
initially optimised the longitude lengthscale

to a very small value. This produced nonphysical looking results with striations along lines of same longitude. Therefore,370

Gaussian prior distributions of N (0.1°,0.01°) are set for the longitude and latitude lengthscale parameters such that they

would optimise to similar values. This choice is motivated by the expectation that the precipitation lengthscales are
:::::
should

:::
be

similar along these dimensions. The
::::
prior

::::::::
parameter

:
values are selected based on the optimised parameters

:::::::::::::
hyperparameters for

the MFGP’s low fidelity function and the high fidelity values
:::::::::
low-fidelity

:::
GP

::::
and

:::
the

::::::::::
high-fidelity

::::::::::::::
hyperparameters

:
from the

MFGP validation experiment. Finally, the GMTED2010 dataset was used (Danielson and Gesch, 2011) as
::
for

:
the prediction375

locations
:::
and

::::::::
elevations. The dataset’s 0.0625° resolution (approx. 9

:
7
:
km) allows the MFGP model to predict at high enough

resolution to enable municipal decision making (Rambali, 2020).

The average annual and seasonal precipitation MFGP outputs
::::::::
predictions

:
are shown in Figure 5. The mean of the MFGP

posterior distribution is compared to ERA5 precipitation in the first two rows. The MFGP annual average shows that most of
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the precipitation is concentrated in the west half of the study area over the Himalayan foothills. During the monsoon season,380

the MFGP shows an average rainfall reaching 10 mm/day. The monsoon also brings rain to the southeastern side of the Upper

Sutlej Basin. Although the
::::
upper

:::::
Sutlej

::::::
basin.

::::::::
Although estival precipitation distributions are similar, the highest precipitation

values of the MFGP model are shifted to the West in comparison to
:::
west

:::::::
relative

::
to ERA5. In the winter months, the variance

in precipitation is more attenuated and the distribution centre is shifted to the North East and thus towards higher elevations.

In contrast with the Upper Beas Basin
:::::
upper

::::
Beas

:::::
basin, precipitation over the eastern Upper Sutlej Basin shows a proportional385

relationship
::::
upper

::::::
Sutlej

::::
basin

::::::::
increases

::::
with

:
altitude with valleys showing overall little rain or snowfall (<2 mm/day) across

all seasons. These findings qualitatively echo previous studies on the spatiotemporal distribution of precipitation in this area,

including the non-stationary and complex pattern of altitudinal precipitation
:::::::::
orographic

:::::::::::
precipitation

::::::::
gradients (Dahri et al.,

2016; Bannister et al., 2019).

The 95% confidence interval (CI) of MFGP model is also plotted in Figure 5. This metric represents the interval in which 95%390

of the model
:::::
MFGP

:
outputs fall into. The CI boundary values therefore show possible extreme precipitation values. The CI is

therefore used as a measure of uncertainty. For this investigation, the
::::
The most salient characteristic of the CI is that it is large in

comparison to the mean of the posterior distribution(,
:
over 45 mm/day for several locations. For both the monsoon and winter

seasons the CI is largest in the area around 32°N,
:
77°E at the western edge of the study area. This is due to a conflict between the

low and high fidelity function
::::::::
behaviour

::
is

:::::
linked

::
to
:::::::::
conflicting

::::
low

:::
and

:::::::::::
high-fidelity predictions where ERA5 suggest smaller395

:::::::
suggests

::::
high precipitation values while the high fidelity

::::::::::
high-fidelity gauge data suggest the precipitation should be high

:::::
much

::::::
smaller at the same location. Conversely, over ungauged areas, the CI remains low. This shows the improved predictive power

of combining reanalysis and gauge data
::
in

:
a
:::::::::::
probabilistic

:::::::::
framework.

The mean posterior distribution and CI are then combined in a bivariate chloropleth map in the bottom row of Figure 5.

In general, the CI is expected to increase with higher precipitation values. This plot allows us to identify the regions that400

have the highest uncertainty output compared to their mean predictions, i.e. a high ‘relative uncertainty’. The east and higher

altitude ungauged locations generally have a high relative uncertainty, and areas with a high gauge density have a lower

relative uncertainty. However, the chloropleth map does exhibit some smaller unexpected features. For example, a high relative

uncertainty area in the west of the Upper Beas Basin
::::
upper

:::::
Beas

::::
basin

:
(32°N, 76°E) and low relative uncertainty in the southern

borders of the Upper Sutlej Basin
::::
upper

:::::
Sutlej

:::::
basin

:
that receives more precipitation during the monsoon and winter seasons.405

Again, this points to the MFGP model successfully capitalising on information from both precipitation datasets.

The effective resolution of the MFGP model is also compared with that of ERA5. Effective resolution refers to the level of

detail or structure that can be accurately represented by the model. The effective resolution can be determined through the

data’s power spectrumdensity. The power spectrum density shows the amount of the structure present in the dataset for a given

wavenumber k or resolution k−1. When the power spectrum
::::::
spectral

:
density is low, it is not contributing structure at that410

resolution and therefore not representing the physical processes at that scale. To generate the power spectrumdensity, the ,
::
a

Fourier transform of the precipitation is calculated for each month over a square area (31°-33° N, 77°-79° E). The
::
To

:::::::
proceed

::::::::
equitably,

:::
the ERA5 data is linearly interpolated along it’s

::
its spatial coordinates to the same resolution as the MFGP

:::
and

::::
both
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::::::
datasets

:::
are

::::::::
z-scored. Figure 6 shows the power spectrum

::::::
spectral

:
density P falls off as a function of the resolution for both

ERA5 and MFGP. Although ERA5 has a native resolution of 0.25° (approx. 31 km), it possesses a relatively small amount of415

structure compared to the MFGP the same resolution. The MFGP model continues to generate more structure at finer scales

too. This points to the MFGP representing spatial patterns of precipitation better than ERA5.

5.2 Comparison with benchmark datasets

To further evaluate the performance of the MFGP model over the Upper
:::::
upper Beas and Sutlej Basins

:::::
basins, the benchmark

datasets described in Section 3.3 are now are compared to the in situ observations between 2000 to 2009. All the available420

station data in the Upper
::::
upper

:
Beas and Sutlej basins (46 of 58 available stations) are used. Nearest neighbour precipitation

values to the station locations are reported. It is important to note that APHRODITE, CRU and bias-corrected WRF have or

have most likely used the
:::
has

::::
used

:::::
these gauge measurements in their development.

::
its

:::::::::::
development.

::::
This

::
is
::::
also

:::::
most

:::::
likely

::
the

::::
case

:::
for

::::::::::::
APHRODITE

:::
and

:::::
CRU

:::
TS.

:
Table 4 compares the performance of the products across the different metrics. As the

MFGP model is trained on all these datapoints, we do not include the model’s performance here as to not make an inequitable425

comparison.

APHRODITE outperforms the other products for
::
the

:
mean RMSE (2.36±0.86 mm/day), 5th percentile RMSE (0.56±0.61

mm/day) and R2 (0.43±1.01)
::::::
metrics. ERA5 has the best 95th percentile RMSE (6.17±3.54 mm/day) but the poorest

5th percentile RMSE (0.84±0.79 mm/day). For this area, TRMM simultaneously possesses
:::::
yields

:
the worst mean RMSE

(3.99±1.43 mm/day) and 95th percentile RMSE (8.54±4.02 mm/day). The results for ERA5 and TRMM match the previous430

findings
:::::::
previous

::::::::
findings, exhibiting wet and dry biases respectively (Kumar et al., 2021; Chen et al., 2021; Andermann et al.,

2011; Shukla et al., 2019; Yin et al., 2008). The bias-corrected WRF product has the worst R2 performance (-0.31±2.80). Over-

all the table shows that the performance of these models is highly heterogeneous across both basins with all metrics showing

large standard deviations.

From these results
::::
Table

::
4, APHRODITE was determined by the authors to be the most accurate of the benchmarks presented435

in the paper for this region and time period. The differences between APHRODITE and the MFGP output are therefore com-

paredusing annual and seasonal averages in Figure 7. The average annual precipitation across the basin for the MFGP output

and APHRODITE between 2000 and 2009 do not differ much,
:
with a mean and standard deviation of 1.73 mm/day and 2.37

mm/day respectively for the MFGP model compared to 1.61 mm/day and 2.33 mm/day for APHRODITE.
:::::
Figure

::
7
:::::
maps

:::
out

::
the

::::::
annual

::::
and

:::::::
seasonal

::::::::
averages. The annual average shows local spatial differences on the order of ±2.5 mm/day. How-440

ever the seasonal averages show a much larger differences between the two datasets. In particular, APHRODITE predicts lower

precipitation values in the northwest corner of the Upper Beas Basin
::::
upper

:::::
Beas

::::
basin

:
(-5 mm/day to -8 mm/day) and higher

values
::
on southeast side of the Upper Beas Basin

:::::
upper

::::
Beas

:::::
basin (+2.5 mm/day to +5 mm/day) during the summer mon-

soon. These difference are large compared to the values shown in Figure 5. These differences
:::
This

::
is

::::
also

:::::
where

::::::
MFGP

::::::
places

::
the

:::::
most

::::::::::
uncertainty

::
in

::::::
Figure

::
5.

:::::
These

::::::
results, in combination with the spatial differences between the MFGP and ERA5,445

point to an ambiguous spatial representation of peak precipitation values in the Himalayan foothills during the monsoon. In
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Input features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2

ERA5 multiple† 2.83±0.89 0.84±0.79 6.17±3.54 -0.11±1.98

APHRODITE gauges 2.36±0.86 0.56±0.61 6.45±3.46 0.43±1.01

TRMM remote sensing 3.99±1.43 0.83±0.76 8.54±4.02 -0.18±0.51

CRU TS gauges 2.76±1.09 0.62±0.39 7.63±4.23 0.25±1.15

Bias-corrected WRF gauges + WRF 3.13±0.94 0.73±0.92 7.02±3.34 -0.31±2.80

Table 4. RMSE and R2 values for benchmark datasets over Upper Beas and Sutlej Basins between 2000 and 2010. Only stations located

in the basins (46 out 58) are used to evaluate the datasets. The errors represent the standard deviation across the stations. As some of these

benchmarks are or are likely produced using the station data, it is not possible to compare these results with the previous table. Bolded

values show the best model performance for a given metric. † ERA5 uses only remote sensing data for precipitation measurements but is also

constrained using direct measurements for other climatic variables.

the winter, the differences are smaller due to on average lower precipitation rates (between +5 and -1.5 mm/day). During

this period, MFGP model predicts lower precipitation estimates at higher altitudes compared to APHRODITE. Finally, the

power spectrum density for APHRODITE is calculated in Figure 6. The dataset presents a smaller average effective resolution

compared to the MFGP and even ERA5.450

6 Discussion and further work

6.1 MFGP model
:::::::::
extensions

The MFGP model is easily applicable to other watersheds and mountainous regions such as the Andes , or European Alps
:
,

or to downscale other reanalysis or climate models. The model resolution is also arbitrary and higher resolution results could

be generated by using a higher resolution digital elevation model when predicting at new times and locations. This flexibility455

makes MFGP a powerful tool for hydrological and, more generally, geophysical modelling.

In this paper,we apply a linear setup . It is also
:::
was

:::::::::::::::
applied.However,

::
it

::
is possible to apply the nonlinear form of the model,

known as Nonlinear Auto-Regressive GP (NARGP) (Perdikaris et al., 2017):

ft(Xt) = gt(Xt,ft−1(Xt)), (11)

where gt ∼GP (ft|µt,ktg ((Xt,ft−1(Xt)),(X
′

t ,ft−1(X
′

t)));θt). Unlike linear MFGP, NARGP captures a nonlinear relation-460

ships between the different fidelities. However, the auto-regressive architecture of the model is also one of its limitations. The

model specifies each GP is fitted in an isolated hierarchical manner. This type of inference means the model’s complexity is not

controlled through Bayesian inference and makes it more susceptible to overfitting. This was found to be true for the precipita-

tion datasets presented in this paper. An alternative could be to implement a Multi-Fidelity Deep Gaussian Process (MFDGP)
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proposed by Cutajar et al. (2019) where the evaluation at each fidelity level is performed using data at the current level and the465

previous ones
::::
from

:::
the

::::::
current

::::
and

:::::::
previous

::::::
fidelity

:::::
levels. However, the MFDGP method requires the use of inducing points

which can be hard to initialise without strong machine learning and environmental domain knowledge.

6.2 Model
::::::
MFGP

:
validation

6.2.1
::::
With

:::::::
respect

::
to

::::
GPs

In the validation experiments, we use datasets with no or a small number of missing values to compare the performance of the470

model with other methodological benchmarks. In this case, we are only evaluating how well the model extrapolates in space.

This works in favour of the simple GP model that extrapolates from the high fidelity
::::::::::
high-fidelity gauge data. However, the

simple GP’s accuracy suffers significantly when extrapolating with respect to time, which is required when making predictions

for incomplete datasets. This is another point in favour
:::::::
behaviour

::
is
:::::::

another
:::::::::
advantage of using a multi-fidelity model. The

model validation in this study also highlights the impact of the observation scarcity to model accuracy. Tackling the impact475

of climate change on water scarcity in High Mountain Asia therefore requires more data sharing initiatives and consistent

investment in weather station maintenance and deployment.

6.2.2
::::
With

:::::::
respect

::
to

:::::::::::
benchmarks

The benchmark datasets are compared on the validation folds in Appendix C. In this experiment, the MFGP model is able

to outperform the other models on some metrics over the data held out from the model (see Section 4.3). In particular, the480

model still scores the best for R2 (MFGP R2= 0.46±0.11 vs average of R2=0.00) despite
::::
most

::
of

:
these datasets being trained

on
:::::::
produced

:::::
using

:
these in situ observations. This shows that the underlying variations of data are being more accurately

captured by the
:::::
MFGP

:
model, even if the amplitude of those variations are captured less precisely (higher RMSE scores). This

lower precision makes sense as we expect the model to widen it’s
::
its posterior distribution at locations far from it’s

::
its

:
training

distribution. Furthermore this
::
the

::::::
MFGP

:
product, unlike previous ones, outputs

:::::::
includes principled uncertainty estimates

::
in

:::
the485

::::
form

::
of

:::::::::
probability

:::::::::::
distributions. This can allow policymakers to understand the likelihood of worst case scenarios of drought

or flooding. These uncertainties
:::::::::
uncertainty

:::::::::::
distributions can also be directly used to inform the placement of future sensors

through multi-objective Bayesian optimisation (Daulton et al., 2021, 2020). The MFGP model outputs could for example be

combined with distance from roads and trails as a proxy for accessibility. Together station locations that are both predictive

and practical could be found. Finally, the model can be easily updated with new station data through online learning, a feature490

which is unique to Bayesian inference (Bui et al., 2017; Lederer et al., 2021).

6.2.3
::::
With

:::::::
respect

::
to

:::::
other

::::::::
machine

:::::::
learning

:::::::
models

:::
The

:::::::::::
performance

::
of

:::
the

::::::
MFGP

::::::
model

::
is

::::
also

::::::::::::
contextualised

:::::::
through

:::
the

:::::::::::::
implementation

:::
of

::::
three

:::::::::::::::
non-probabilistic

:::::::
baseline

::::::
models

:::
and

::
a

::::::::::
probabilistic

::::
deep

:::::::
learning

::::::
model.

:::::::
Results

:::
and

::::::
model

:::::::::::::
implementation

:::::
details

:::
are

:::::::::
presented

::
in

::::::::
Appendix

::
E.

:
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:::
The

:::::::::::
performance

::
of

:::
the

:::::
linear

:::::::::::
interpolation

:::::
model

::
is

::::
first

:::::::
assessed.

:::
We

::::
note

::::
that

:::
the

:::::
model

::::::::
presented

::
in
::::
this

:::::
paper

::
is

::::::
similar

::
to495

::
the

:::::::::::
interpolation

:::::::
scheme

::::
used

::
for

:::::::::::
precipitation

::
in

::::::::::
ERA5-Land

::::::::::::::::::::::::
(Muñoz-Sabater et al., 2021).

::::::::::
ERA5-Land

::
is

:
a
:::::::::
reanalysis

::::::
dataset

:::
that

:::::::
provides

::
a

::::::::
consistent

::::
view

:::
of

::
the

::::::::
evolution

::
of

::::
land

::::::::
variables

::
at

::
an

::::::::
enhanced

::::::
spatial

::::::::
resolution

::
of

::
9 km

:
.
::::
This

:
is
::::::::
produced

:::
by

::::::
running

::
a

:::
land

:::::::
surface

:::::
model

::
to

:::::::::
regenerate

:::::
some

::
of

:::
the

::::
land

::::::::::
components

::
of

:::::
ERA5

:::::::
climate

:::::::::
reanalysis.

:::
For

::::::::::
atmospheric

:::::::
forcing,

:
it
::::
uses

::::::
ERA5

::::::::::
atmospheric

::::::::
variables

::::::::
including

::::::::::
precipitation

::::::
which

:::
are

::::::
linearly

::::::::::
interpolated

::
to
:::

the
:::::::::::
ERA5-Land

::::
grid.

::::
The

:::::
linear

::::::::::
interpolation

::::::
model

::::
also

:::::::
includes

:::::::
elevation

:::
as

:
a
::::::::
predictor

:::::
which

::::::
should

:::::
allow

::
it

::
to

:::::::
perform

:::::
better

::::
than

::::::::::
ERA5-Land

:::::::::
especially500

:::
over

:::::::::::
mountainous

:::::::
regions.

:

::::::
Overall,

:::::
linear

:::::::::::
interpolation

::::::::
performs

::::::::::
significantly

:::::
worse

::::
over

::::
both

:::::::
Europe

:::
and

:::
the

::::
Beas

::::
and

:::::
Sutlej

:::::
basins

::::
than

:::
the

::::::
MFGP,

::::
and

::::
even

::
its

:::::::::::
probabilistic

::::::::::
counterpart,

::
the

::::
GP

::
fit

::
to

::::::
ERA5.

::::
This

:::
can

::
be

::::::::
attributed

::
to
:::
the

:::::
GP’s

:::::::::
generation

::
of

::::::::
non-linear

::::::::
functions

::::
that

:::::
better

::::::
capture

:::::::
ERA5’s

::::::
physics

::::
and

:::
data

:::::::::::
assimilation.

:

:::
We

:::
then

:::::::
contrast

:::
the

::::::
MFGP

::
to

::::::
random

:::::
forest

::::
and

::::::
support

::::::
vector

:::::::::
regression.

::::
Both

:::::::
random

:::::
forests

::::::::::
(Ho, 1995)

:::
and

::::::
support

::::::
vector505

::::::::
regression

:::::::::::::::::::
(Drucker et al., 1996)

:::
have

:::::
been

::::
used

::::::::::
extensively

::
to

:::::::::
downscale

:::::::::::
precipitation,

::::::::
including

::::
over

:::::
High

::::::::
Mountain

:::::
Asia

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sun et al., 2022; Xiang et al., 2024; Ahmed et al., 2020; Yan et al., 2022; Ning et al., 2016; Mei et al., 2020)

:
.
::::
Both

:::::::
methods

:::::
work

:::
well

::::
with

:::::
small

::::::::
datasets,

:::
are

:::::::::
non-linear,

::::
and,

::
for

:::::::
support

:::::
vector

::::::::::
regression,

:::
are

::::::::::
kernel-based

::::
like

::::
GPs.

:

:::
The

:::::::
random

:::::
forest

::::
and

:::::::
support

::::::
vector

:::::::::
regression

::::::
models

::::::::
perform

::::::::
similarly

::
to

:::
the

:::::::
MFGPs

:::
in

:::::
terms

::
of

:::::::::
RMSE/R2

:::
for

::::
the

::::::::
’data-rich’

:::::::
Europe

::::::::::
experiment.

::::::::
However

:::
the

::::::
MFGP

::::::::
performs

::::::::::
consistently

:::::
better

:::
for

::::
these

:::::::
metrics

:::
and

::
is
::::
less

::::::::
sensitive

::
to

:::
the510

::::::::
reduction

::
of

::::
data

::::
when

:::::::
moving

::
to

:::
the

:::::::::::
’data-sparse’

:::::
setup.

:::::
Over

::::::
Europe,

:::
the

:::::::
random

::::::
forests

:::
are

:::::::
however

:::::
better

::
at
:::::::::::
representing

::::::
extreme

::::::
values

::::::
across

:::
all

:::
the

:::::
cross

::::::::
validation

::::::
folds.

::::
Over

::::
the

::::
Beas

::::
and

:::::
Sutlej

::::::
basins,

::::
the

::::::
MFGP

:::::::::
dominates

:::::::
offering

:::::
more

:::::
better

:::
and

:::::
more

::::::::
consistent

::::::
results

::::
with

:::
the

::::::::
exception

::
of

:::
the

:::
5th

::::::::
percentile

:::::::
RMSE.

::::
The

::::::::
relatively

::::
poor

::::::::::
performance

:::
for

:::
the

::::
low

:::::::::
percentiles

:::::
values

::
is
::::

due
::
to

:::
the

::::
GP

:::
and

::::::
MFGP

:::::::
models

::::::::
reverting

::
to

:::
the

::::::::::
observation

:::::
mean

::
in

::::::::
locations

:::
far

:::::
from

:::
the

:::::::
training

:::::::::
distribution

::::::
where

:::
they

:::
are

::::::::
uncertain

::::::
rather

:::
than

::::::::::
confidently

:::::::::
predicting

:::::
lower

:::::
values

::::
like

:::
the

::::::::::::::
non-probabilistic

:::::::
models.515

:::::
Lastly,

::::::::::
ConvCNPs

:::
are

::::
also

:::::::::::
implemented

:::
for

:::
the

:::::::::
validation

:::::::::::
experiments.

:::
The

:::::::::
ConvCNP

::::::
model

::
is

:::
one

::::::::
member

::
of

:::
the

::::::
neural

::::::
process

:::::
model

::::::
family

:::
that

:::
has

::::::
shown

::::::::::::
state-of-the-art

:::::::::::
performance

::
in

::::::::::::
spatiotemporal

::::::::::
downscaling

:::::
tasks

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vaughan et al., 2022; Gordon et al., 2019; Andersson et al., 2023)

:
.
:::::
Neural

:::::::::
processes

::::
offer

::::::
similar

::::::::::
advantages

::
to

:::
the

::::::
MFGP

::
in

:::::
terms

::
of

:::::
being

::::
able

::
to

:::::::
quantify

:::
the

:::::::::
probability

:::
of

:::::::
extreme

::::::
events,

::::::::
generalise

::
to
::::::::

multiple
::::::::
locations,

:::::::
predict

::
at

::::::::
arbitrary

::::::::
locations,

::::
and

::::::::
overcome

::::::::
gridding

::::::
biases.

::::
The

::::::
results

:::::
show

::::
that

:::::
these

::::::
models

::::::
overfit

::::
these

:::::::::
relatively

:::::
small

::::::
datasets

::::::::::
performing

::::::
worse

::::
than

:::::
linear

:::::::::
regression,

::
in
:::::::::

particular,
:::
for

:::
the

:::::
Beas

:::
and

::::::
Sutlej520

:::::::::
experiment.

:::::
This

:
is
::::
not

::::::::
surprising

::
as

::::::
neural

::::::::
networks

::::::::
generally

::::::
require

:
a
:::::
large

:::::::
number

::
of

:::::::::
datapoints

::
to

::
be

::::::
trained

::::::::::
adequately.

::
As

:::::
these

::::::
models

:::
can

:::
be

::::
used

::
for

:::::::
transfer

::::::::
learning,

:::::
future

::::
work

:::::
could

:::::::::
investigate

:::
the

:::::
using

::::
data

::::
from

:::::
other

::::::::::
mountainous

:::::::
regions

::
to

:::::
inform

::::::::::
predictions

::
in

:::::::::
data-sparse

:::::
High

::::::::
Mountain

:::::
Asia.

::
In

::::::::
summary,

:::
the

:::::::
MFGPs

:::
are

:::
best

::::::
suited

::
to

::::::::::
downscaling

::
in

:::
the

::::::
sparse

:::
and

:::::::::::::::
out-of-distribution

:::::::
settings

::::::::
presented

::
in

:::
this

::::::
paper.
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6.3 Applicability of results525

The MFGP model output for 33-year period between 1980 and 2012 over the Upper
:::::
upper

:
Beas and Sutlej Basins

:::::
basins is

made available for scientists, hydrologists and policymakers to perform more thorough research and water security risk assess-

ments (Tazi, 2023). However, there are several limitations to its applicability. A key shortcoming to the results, as with many

precipitation product in mountainous areas, is the underestimation of precipitation estimates due to undercatch. This is espe-

cially true in exposed areas and where precipitation falls as snow. Implementing the model a year at a time is also problematic.530

This means the model, at times with fewer observations, cannot leverage the mappings that exist at other times. Furthermore,

predictions have been made for a monthly resolution only and could be
::
are inappropriate for hydrological models that usually

operate on a daily timescale. These constraints come from the computational constraints of the framework
:::::::::
complexity

:::
of

:::
the

:::::
MFGP. The framework could also be applied across High Mountain Asia but this would also be computationally expensive.

These problems could be overcome by applying variationaland ,
::::::::::::::::
product-of-experts,

::
or

:
low-rank approximations to the MFGP535

model (Titsias, 2009; Wilson and Nickisch, 2015)
:::::::::::::::::::::::::::::::::::::::::::::
(Tresp, 2000; Titsias, 2009; Wilson and Nickisch, 2015).

7 Conclusions

MFGPs are simpler and more accurate than recent state of the art
::::::::::::
state-of-the-art

:
models and traditional techniques for

smaller study areas with sparse datasets. The framework offers better mean RMSE and R2 than the bias-corrected regional

climate model output at prediction time. MFGP and APHRODITE perform similarly on average. Contrasting the two prod-540

ucts across the basins shows general consensus about the total amount of annual precipitation. However, there are key areas

where predictions diverge including over high altitudes in the winter and the north of the Upper Beas Basin
:::::
upper

::::
Beas

:::::
basin

during the summer monsoon. Furthermore, the MFGP model also provides principled and well-calibrated uncertainty quan-

tification. The model also provides a higher effective spatial resolution, providing more than three times the structure than

ERA5 and APHRODITE at a 0.25° resolution. These improvements
:::
The

::::::::
continued

::::::::::::
improvements

:::
of

::::
these

:::::::::
estimates will be545

key factors to improving hydrological modelling and water security policy. Future work could apply the framework across

High Mountain Asia, predict precipitation on daily timescale, conduct sensor placement analysis, and implement variational
:
,

:::::::::::::::
product-of-experts or low-rank approximations to MFGP framework to improve computational tractability.

Code and data availability. The code for this paper is available at: https://github.com/kenzaxtazi/mfgp. The MFGP model output between

1980 and 2012 for the upper Beas and Sutlej basin is available at: https://doi.org/10.5285/b2099787-b57c-44ae-bf42-0d46d9ec87cc. The550

ERA5 data is available through the Copernicus Data Store (https://cds.climate.copernicus.eu/). The VALUE gauge data is available through

the VALUE experiment website (http://www.value-cost.eu/data). The GMTED2010 elevation data used is available from the Tropospheric

Emission Monitoring Internet Service (https://www.temis.nl/data/gmted2010/index.php). The authors of this paper do not have the required

permission to make the Beas and Sutlej gauge dataset publicly available and suggest that any readers interested in obtaining it refer to Wulf

et al. (2016).555
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Figure 2. One dimensional pedagogical example of a MFGP model. The low fidelity first
::::::::
low-fidelity

:
dataset is

:::
first

:
contrasted with the

high fidelity
:::::::::
high-fidelity

:
data (Step 0). The high fidelity

:::::::::
high-fidelity data is more sparse but has a higher resolution than the low fidelity

::::::::
low-fidelity

:
data, and is also nested within the low fidelity

:::::::::
low-fidelity input domain. The first GP f1 is constrained by the lowest fidelity

::::::::::
lowest-fidelity

:
observations Y1(X1) (Step 1). Function f1 is visualised through its posterior distribution mean (grey continuous line) and its

95% confidence interval (grey shaded area) and can be used to make predictions at new locations. Samples from f1 at X2 (Step 2) and the

observations from the second fidelity Y2(X2), are then used as the inputs to the second GP f2 (Step 3). The final panel also shows the output

of simple GP fit to the high fidelity
:::::::::
high-fidelity

:
data only. The simple GP model fails to capture the underlying high fidelity

:::::::::
high-fidelity

function and produces a more poorly constrained posterior distribution.
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Figure 3. Maps of cross-validation folds over a) Europe and b) the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins. The round marker represent

the stations, the marker colours the different folds, and the stars the cluster centres found via k-means. The coastlines are plotted in black in

(a) and the Upper
::::
upper

:
Beas and Sutlej Basins

::::
basins watershed boundaries in light grey in (b).

plots/value_high_low_plot_2000_2005_colorblind.pdfplots/bs_high_low_plot_2000_2005_colorblind.pdf

Figure 4. MFGP high fidelity
:::::::::
high-fidelity R2 as a function low fidelity

:::::::::
low-fidelity R2 over a) ‘data-sparse’ Europe and b) Upper

::::
upper Beas

and Sutlej Basins
:::::
basins. The colours correspond to the folds shown in Figure 3. Values above the dashed line show an improvement over the

low fidelity
::::::::
low-fidelity

:
MFGP fit. The plots shows that as the low fidelity

::::::::
low-fidelity R2 decreases the high fidelity

:::::::::
high-fidelity

:
R2 stays

relatively high. This illustrates that important gains can be made over using ERA5 alone.
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Figure 5. Spatial distribution of average precipitation from 2000 to 2009 over the Upper
::::
upper

:
Beas and Sutlej Basins

:::::
basins from ERA5

(top row),
::
the MFGP model posterior mean (second row),

::
the MFGP model 95% confidence interval (third row), and bivariate chloropleth

map of the MFGP posterior mean and 95% confidence interval (bottom row). Here the 95% confidence interval is used as the measure of

uncertainty. Results are shown for annual (first column), summer (JJAS; second column) and winter (DJFM; third column).
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Figure 6. Power spectrum densities of the MFGP model, ERA5 and APHRODITE over a 2° by 2° area (31°-33°N, 77°-79°E) between

2000-2009. ERA5 and APHRODITE data are linearly interpolated to the same resolution as the MFGP output. The y-axis shows the power

spectrum
::::::
spectral density as a function of resolution, i.e. the inverse of the wavenumber k. The continuous lines show the average power

spectrum
::::::
spectral densities and the shaded areas represent their standard deviation over time. All three datasets are z-scored prior to the

analysis.

Figure 7. APHRODITE - MFGP differences between 2000 and 2009 over the Upper
::::
upper

:
Beas and Sutlej Basins

::::
basins. Columns represent

outputs for annual, monsoon (JJAS), and winter (DJFM) averages respectively.

24



Appendix A: More Bayesian inference

A1 Learning Gaussian Process hyperparameters

For multiple input-output pairs, X and Y , the logarithm of the marginal likelihood is calculated. This is defined as the proba-

bility density of the observations given the hyperparameters:

log(p(Y |X,θ)) =−1

2
(Y −µ)T (K +σ2

nI)
−1(Y −µ)− 1

2
log(|K +σ2

nI|)−
N

2
log(2π) (A1)560

where K is the covariance matrix constructed from the kernel function k, σn is the noise specified at the observations. The

logarithm of the likelihood is used to simplify the differentiation during Maximum Likelihood Estimation of the hyperparam-

eters.

A2
:::::::::
Predicting

:::::
with

::::::::
Gaussian

:::::::::
Processes

Assuming a Gaussian likelihood for ϵ (see Equation 1), calculating the posterior distribution p(f∗|Y ,X) is tractable and can565

be used to perform predictive inference for a new outputs f∗, given a new inputs X∗ as:

p(f∗|Y ,X,X∗) =N (f∗|µ∗(X∗),σ
2
∗(X∗)) (A2)

A3 Predicting with Gaussian Processes

Predictions are computed using the posterior mean µ∗, while the uncertainty associated with these predictions is quantified

through the posterior variance σ2
∗:570

µ∗(X∗) = k∗n∗N
::

(K +σ2
nI)

−1Y (A3)

σ2
∗(X∗) = k∗∗ −k∗n∗N

::
(K +σ2

nI)
−1k∗n∗N

::

T (A4)

where k∗n = [k(x∗,x1), ...,k(x∗,xn)] and k∗∗ = k(x∗,x∗):::::::::::::::
k∗N = k(X∗,X)

:::
and

:::::::::::::::
k∗∗ = k(X∗,X∗). In other words, the vari-

ance captures how much uncertainty remains after seeing the data.

A3 MFGP inference575

At each level of the MFGP, the predicted mean µt and variance σ2
t ::
µt:::

and
::::::::
variance

::
σ2
t:are given by:

µt(X∗) = ρtµt−1(X∗)+µerr +k∗nt∗Nt
::

K−1
t [Yt − ρtµt−1(Xt)−µerr] (A5)

σ2
t (X∗) = ρ2tσ

2
t−1(X∗)+k∗∗ −k∗nt∗Nt

::
K−1

t k∗nt∗Nt
::

T (A6)

where X∗ is a set of test points used over the domain of interest and nt ::
Nt:

denotes the number of training point locations

where we have observed data from the t-th
:

th
:
information source. The mean and the uncertainty are

::::
thus elegantly propagated580
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from one fidelity layer to the next. As the sum of two GPs is another GP, we can also write out the linear
:::::
MFGP

:
model as:ft−1

ft

∼GP

µt−1

µt

 kt−1 ρtkt−1

ρtkt−1 ρ2tkt−1 + kerr

 (A7)
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Appendix B: Metric definitions

B1 Root mean square error (RMSE)

The RMSE represents the typical distance of the model from the data. It is given by:585

RMSE =
√
⟨(yi − fi)2⟩ (B1)

where yi is the observed value and fi th
:::
the predicted value. We use ⟨ ⟩ here and in the following definitions as a shorthand for

the mean. The RMSE is sensitive to outliers and systematic errors. The 5th and 95th
:::
5th

:::
and

::::
95th percentile RMSE values are

calculated by computing the RMSE for the high fidelity
::::::::::
high-fidelity

:
data points in the 5th and 95th

::
5th

::::
and

:::
95th

:
percentiles

respectively.590

B2 Coefficient of determination (R2)

The R2 represents the percentage of the data variance that can be explained by the model. It is given by:

R2 = 1− SSres

SStot
= 1−

∑
i(yi − fi)

2∑
i(yi − y)2

(B2)

where SSres is the sum of the squared residuals and SStot the total sum of squares. An R2 of 1 indicates a perfect fit whilst a

negative R2 means the model performs worse than the mean.
::::::::
Although

:::::::
negative

:::
R2

:::::
scores

:::
are

:::::::
unlikely

::
in

:::::::::::
interpolation

:::::::
settings,595

:::
they

:::
are

:::::::
possible

:::::
when

:::::::
making

:::::::::
predictions

::::::
outside

:::
of

:::
the

::::::
training

::::::::::
distribution.

:

B3 Mean log loss (MLL)

Using the predictive distribution at each test input, the probability of the target given the model can be calculated. The log loss

(Rasmussen et al., 2006) is given by taking the negative logarithm of this probability. Taking the mean over all inputs gives the

mean log loss (MLL):600

MLL =−⟨logp(y∗|θ,x∗)⟩= ⟨1
2
log(2πσ2

∗)+
(y∗ − f(x∗))

2

2σ2
∗

⟩ (B3)

where
:::::
f(x∗)::

is
:::
the

:::::::
model’s

::::::::
posterior

:::::
mean,

:::
σ2
∗ :::

the
::::::
model’s

::::::::
variance θ are the

::
the

:::::::
model’s

:
optimised hyperparameters,

:::
and

:
y∗

denotes the target at test points,
:::::
value,

:::
all

::
at

:::
test

::::
point

:
x∗denotes the test point and f(x∗) denotes the mean prediction. Smaller

values imply more skill.
:::
The

:::::
MLL

:
is
:::::::::
calculated

::::
prior

::
to
:::
the

::::::
inverse

::::::::
Box-Cox

:::::::::::::
transformation,

::
as

::::
this

:::::
metric

:::::::
assumes

:::
the

::::::
model

:::::
output

::
is

::::::::
Gaussian.

:
605
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Appendix C: Further data analysis

::::
This

:::::::
appendix

::::::
brings

:::::::
together

::::
more

:::::::
analysis

::::::
around

:::
the

::::::::
validation

:::::::::::
experiments.

::::
More

::::::::::
specifically,

:::::
Table

:::
C1

::::::::
compares

:::::::::::
observational

:::
data

::::
over

:::::::
Europe

:::
and

:::
the

:::::
upper

::::
Beas

::::
and

:::::
Sutlej

:::::
basins

:::
and

:::::
their

::::::::
optimised

:::
GP

::::::::::::::
hyperparameters.

:::::::
Overall

:::
this

:::::::::
breakdown

::::::
shows

:::
that

:::
the

::::::::::
distribution

::
of

::::::::::
precipitation

::::
over

:::
the

:::::
upper

:::::
Beas

:::
and

:::::
Sutlej

::::::
basins

::
is

::::
more

::::::::::
complicated

::::
than

::::
that

::::
over

::::::
Europe

::::::
despite

::
a

::::::
similar

::::::::::
standardised

:::::
gauge

::::::::::
density/GP

::::::::::
lengthscales

:::::::
between

:::::::
gauges.610

Metric mean std dev 5th percent 95th percent GP llon GP llat

Unit [mm/day] [mm/day] [mm/day] [mm/day] [°E] z-scored [°N] z-scored

VALUE gauges 2.39 2.19 0.22 6.61 4.96 0.47 3.80 0.49

BS gauges 2.95 3.98 0.00 11.17 0.26 0.52 0.23 0.48

Table C1. Precipitation statistics over Europe and the Beas and Sutlej using gauge data from 2000 to 2005. The mean, standard deviation,

the 5th and 95th percentile values, and lengthscale values for the datasets are presented. The lengthscales are calculated by fitting a GP with a

Matérn 5⁄2 kernel to each of the gauge datasets with time, latitude, longitude and elevation as inputs.

::::
Table

:::
C2

::::::
shows

:::
the

::::::::::
performance

::
of

:::
the

::::::::::
benchmark

:::::::
datasets

::
for

:::
the

:::::
upper

:::::
Beas

:::
and

:::::
Sutlej

:::::::::
validation

::::::::::
experiment.

:::::
These

::::::
results

::
are

::::
not

::::::
directly

::::::::::
comparable

::
to

:::
the

::::::
MFGP

::::::
model

::
as

:::
the

::::
data

::::
used

::
to

:::::
create

:::::
these

:::::::
products

:::
are

::
or

:::
are

:::::
likely

::::::::
included

::
in

:::
the

::::
held

:::
out

::::::::
validation

::::
sets.

:::::
They

:::
can

:::::::
however

::::
give

::
us

::
a

::::::::
indication

::
of

::::
how

::::
well

:::::
these

::::::
models

:::::::
perform

::
in

:::::::
absolute

:::::
terms

:::
for

:::
this

:::::::
gauged

::::
area.

Input features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2

ERA5 multiple† 3.03±1.05 0.53±0.58 6.01±3.52 -0.30±2.18

APHRODITE gauges 2.27±0.92 0.27±0.30 5.35±3.26 0.45±0.68

TRMM remote sensing 3.83±1.36 0.58±0.77 8.18±4.27 -0.22±0.68

CRU TS gauges 2.87±1.20 0.43±0.24 7.59±4.71 0.19±1.22

Bias-corrected WRF gauges + WRF 3.12±1.00 0.37±0.72 7.02±4.21 -0.10±1.77

Table C2. RMSE and R2 values for benchmark datasets over the Upper Beas and Sutlej Basins between 2000 and 2005 for cross-validation

test stations. The errors represent the standard deviation across the cross validation folds. Bolded values show the best model performance

for a given metric. † ERA5 uses only remote sensing data for precipitation measurements but is also constrained using direct measurements

for other climatic variables.
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Appendix D: MFGP time sensitivity615

The computational complexity of the MFGP framework only allows the modeller to train over climatically short periods of

time. In this study, we assume that long term variability is accurately captured by ERA5 and that there is limited information

to learn by training over longer time periods. This assumption is tested in the following experiment where we repeat the ‘data-

sparse’ version of the European validation experiment over different time ranges. Figure D1 shows the model performance as

a function of the number of time points for the different folds. Asides
::::
Aside

:
from a dip at the 2 year mark

:
, there is no visible620

:::::::::
generalised

:
trend change between different time periods across folds.

Figure D1. R2 as function of years used to model the data across the different folds of the ‘data-sparse’ experiment over Europe.
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Appendix E:
:::::::
Machine

::::::::
learning

:::::::
baseline

::::::
results

::
To

:::::::::::
contextualise

:::
the

:::::::::::
performance

::
of

:::
the

::::::
MFGP

::::::
models

:::::
linear

:::::::::::
interpolation

:::
and

:::::::::::
downscaling

::::
using

:::::::
random

::::::
forests

:::
and

:::::::
support

:::::
vector

:::::::::
regression.

::::
The

::::::
models

:::
are

::::::
applied

::
to
:::

the
:::::::::
validation

::::::::::
experiments

::::::::
presented

::
in
:::::::
Section

::
4.

:::::
These

:::::::
models

::::
have

::
no

:::::::
explicit

:::
way

::
of

::::::::
merging

:::::::
multiple

::::
data

:::::::
sources,

::::::
instead

::
we

::::
use

:::::
ERA5

::
as

::
a

:::
fifth

:::::
input

::
to

:::::::
models.

:::
The

:::::::
random

:::::
forest

::::::
models

:::::
were

::::::
trained625

::::
with

:::
100

::::
trees

::::
and

:::
the

:::::::
stopping

::::::::
tolerance

:::
for

:::
the

::::::
support

::::::
vector

::::::::
regression

::::::
model

::::
was

::
set

::
to

::::::
10−3.

:::
We

::::
note

:::
that

:::
no

:::::::::
systematic

:::::::::::::
hyperparameter

:::::
search

::::
was

:::::::::
performed

::
for

:::::
these

:::::::
models.

:::
We

:::
also

::::::::
compare

::
the

::::::
MFGP

::
to

::
a

:::::::::::
Convolutional

::::::::::
Conditional

::::::
Neural

:::::::
Process

::::::::::
(ConvCNP).

::
In

::::
this

:::::
setup,

::
we

:::::
used

::
the

:::::::::::
high-fidelity

:::::::
elevation

::
as
::

a
::::::
context

:::::::
dataset

::
to

:::
the

::::::
model.

::::
The

:::::
model

:::::
itself

:::
was

:::::::
trained

:::::
using

:
a
::::::
U-Net

::::
with

::::
four

::::::::::::
downsampling

:::::
layers

:::::
each

::::
with

::
64

::::::::
channels,

::
an

:::::::
internal

::::::
density

::
of

::::
500

:::
and

:
a
:::::::
learning

::::
rate

::
of

::::::::
5× 10−5

:::
and

::::::::
sampling

::
all

:::
the

::::
data

::
at

::::
each

:::::::
timestep

::
to
::::::
create630

::
the

:::::::
training

:::::
tasks.

::::
The

::::::
models

:::
are

::::::
trained

:::
for

::
20

:::
and

:::
15

::::::
epochs

:::
for

:::
the

::::::
Europe

:::
and

::::::::::
Beas-Sutlej

::::::::::
experiments

::::::::::
respectively.

::::::
Again

::
no

:::::::::
systematic

:::::::::::::
hyperparameter

::::::
search

::
or

::::::
tailored

::::::::
sampling

::::::::
approach

::::
was

::::::::
performed

:::
for

:::
the

:::::::::
ConvCNP

:::::::
models.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.72±0.46 1.75±0.18 5.21±1.55 0.04±0.06 -

RF ERA5 + gauges 1.12±0.44 0.45±0.19 2.62±0.93 0.61±0.09 -

SVRRBF ERA5 + gauges 1.14±0.46 0.53±0.33 3.03±1.48 0.60±0.12 -

MFGP ERA5 + gauges 1.06±0.42 0.51±0.20 2.72±1.54 0.65±0.09 0.89±0.20

ConvCNP ERA5 + gauges 2.16±0.76 2.29±0.93 4.25±1.60 -0.49±0.48 2.40±0.91

Table E1.
:::::::::
Comparison

::
of

:::::
model

::::::::::
performance

::::::
metrics

::::::
trained

::
on

:::::
ERA5

::::
data

:::
for

:::
the

::::::::
‘data-rich’

::::
setup

::::
over

::::::
Europe.

::::
We

:::::
include

::
a
:::::
linear

:::::::::
interpolation

::::::
model,

:
a
::::::
random

:::::
forest

::::
(RF),

::
a
::::::
support

:::::
vector

::::::::
regression

:::::
(SVR)

:::::
model

::::
with

:
a
::::::

smooth
::::::
Radial

::::
Basis

:::::::
Function

:::::
(RBF)

::::::
kernel,

:
a
::::::::
ConvCNP

:::
and

:::
the

:::::
MFGP

:::::
model.

::::
The

::::::
metrics

::::::
include

::
the

::::::
average

::::::
RMSE,

:::
the

::
5th

::::::::
percentile

::::::
RMSE

::::::::
(RMSE5),

::
the

::::
95th

:::::::
percentile

::::::
RMSE

::::::::
(RMSE95),

:::
the

::
R2

:::::
score,

:::
and

:::
the

::::
MLL.

::::
The

::::
errors

:::::::
represent

:::
the

:::::::
standard

:::::::
deviation

:::::
across

::
the

::::::::
validation

::::
folds.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.77±0.46 1.88±0.25 5.19±1.76 -0.02±0.13 -

RF ERA5 + gauges 1.16±0.39 0.41±0.20 2.92±1.39 0.57±0.10 -

SVRRBF ERA5 + gauges 1.53±0.62 0.73±0.23 4.64±1.99 0.29±0.19 -

MFGP ERA5 + gauges 1.13±0.47 0.57±0.23 3.02±1.62 0.62±0.11 0.90±0.20

ConvCNP ERA5 + gauges 1.92±0.51 1.77±0.78 4.84±1.70 -0.21±0.34 2.36±1.38

Table E2.
::
As

::::
Table

:::
E1

::
for

:::
the

:::::::::
‘data-sparse’

:::::
setup

:::
over

::::::
Europe.
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Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 4.21±0.99 2.21±0.45 14.33±4.03 -0.08±0.05 -

RF ERA5 + gauges 3.05±1.30 0.52±0.46 9.87±5.47 0.45±0.23 -

SVRRBF ERA5 + gauges 3.36±1.66 0.66±0.38 11.05±6.14 0.34±0.33 -

MFGP ERA5 + gauges 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22

ConvCNP ERA5 + gauges 4.89±0.93 3.57±0.79 14.16±3.85 -0.51±0.32 3.95±0.88

Table E3.
::
As

::::
Table

:::
E2

::
for

:::
the

::::
upper

::::
Beas

:::
and

:::::
Sutlej

:::::
basins.
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