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We thank both reviewers for their feedback on the manuscript. We discuss their comments (italicised) below.

Response to Reviewer 1

We thank Reviewer 1 for their thorough and positive feedback (e.g., “Overall, this is one of the best scientific
papers I have ever read, especially considering its highly technical nature”). We appreciate their encouraging
comments on the manuscript’s presentation, including the clarity and conciseness of the writing, the precision
of the mathematical formulae and the efficacy of the figures (e.g., “All aspects of the paper appear to be very
carefully prepared, including citation of relevant literature, readability of the text by a broad audience, presen-
tation of methods and results, and technical precision in presentation of the mathematics and statistics”). We
are also grateful they recognised our efforts towards contextualising this research within existing literature
and giving a balanced discussion about the advantages and disadvantages of the proposed method.

Response to Reviewer 2

We thank Reviewer 2 for their insightful comments and suggestions. We address the reviewer concerns point
by point below.

Comment 1

“First, ECMWF also provides high-resolution reanalysis precipitation data (ERA5 Land, hourly, 0.1 degree,
9 km), which is not considered in the manuscript. How does the generated MFGP precipitation estimates
compare with ERA5 Land precipitation data?”

ERA5-Land is a reanalysis dataset that provides a consistent view of the evolution of land variables at
an enhanced spatial resolution of 0.1° by 0.1° (approx. 9km) compared to ERA5’s resolution of 0.25° by
0.25° (approx. 31km). It is produced by running a land surface model to regenerate some of the land
components of ERA5 climate reanalysis. For atmospheric forcing, it uses ERA5 atmospheric variables such
as air temperature and precipitation at a 0.1° resolution by linearly interpolating the driving variables to
the ERA5-Land grid. Although other forcing variables are corrected, this is not the case for precipitation.
For further details please see Muñoz-Sabater et al. (2021) and ECMWF (2024). Precipitation characteristics
from ERA5-Land are therefore very similar to ERA5 (Gomis-Cebolla et al., 2023; Xu et al., 2022; Xin et al.,
2022). They also should theoretically perform worse than the linear regression models presented in our paper
(Table 1-3) which also include elevation as a predictor.

Moreover, we would like to stress that we have carefully chosen four gridded precipitation datasets for the
High Mountain Asia region, based on existing literature, to evaluate our model against. These are:

1



• APHRODITE, which is a gridded rain-gauge interpolated dataset for Asia considered the gold-standard
for precipitation in High Mountain Asia,

• CRU TS, which is a global gridded rain-gauge interpolated dataset.

• A bias-corrected high-resolution regional climate model simulation, which used the Weather Research
and Forecast (WRF) model at a spatial resolution of 5 km, with precipitation output corrected using
local rain-gauge data for the region investigated in this manuscript.

• TRMM, which is a satellite-based precipitation dataset, designed to improve our understanding of
precipitation in the current climate.

To address the reviewer’s concern, we make the connection between ERA5-Land and our linear regression
models clearer in a new subsection of the discussion:

“We note that the model presented in this paper is similar to the interpolation scheme used for precipitation in
ERA5-Land (Muñoz-Sabater et al., 2021). ERA5-Land is a reanalysis dataset that provides a consistent view
of the evolution of land variables at an enhanced spatial resolution of 9 km. This is produced by running a
land surface model to regenerate some of the land components of ERA5 climate reanalysis. For atmospheric
forcing, it uses ERA5 atmospheric variables including precipitation which are linearly interpolated to the
ERA5-Land grid. The linear interpolation model also includes elevation as a predictor which should allow it
to perform better than ERA5-Land especially over mountainous regions.”

– Section 6.3.3

Comment 2

“Second, the authors only consider a very simple machine learning model, i.e., linear regression, and complex
deep learning models that require a lot of training data, including Convolutional Conditional Neural Processes
(ConvCNP) and Convolutional Gaussian Neural Processes (ConvGNP). They neglect simple machine learning
methods that do not need many data, such as random forest and support vector machines.”

The main goal of the paper was to show that the precipitation uncertainty could be narrowed by combining
datasets from multiple sources. This information allows hydrologists to quantify the probabilities of extreme
events and policymakers to make better decisions with limited resources as highlighted in Section 1. However,
we appreciate that the case for the performance of Gaussian processes could be better contextualised by
including these models.

To address the reviewer’s concern we implement random forests and support vector regression for the valida-
tion experiments and now include the performance of ConvCNPs. These results are shown below in Tables
A-C and are presented in the manuscript under Appendix E with the linear regression model and the models’
implementation details. A summary of the results and the rationale for choosing these models are included
in the discussion:

“Overall, linear interpolation performs significantly worse over both Europe and the Beas and Sutlej basins
than the MFGP, and even its probabilistic counterpart, the GP fit to ERA5. This can be attributed to the
GP’s generation of non-linear functions that better capture ERA5’s physics and data assimilation.

We then contrast the MFGP to random forest and support vector regression. Both random forests (Ho, 1995)
and support vector regression (Drucker et al., 1996) have been used extensively to downscale precipitation,
including over High Mountain Asia (Sun et al., 2022; Xiang et al., 2024; Ahmed et al., 2020; Yan et al., 2022;
Ning et al., 2016; Mei et al., 2020). Both methods work well with small datasets, are non-linear, and, for
support vector regression, are kernel-based like GPs. .

The random forest and support vector regression models perform similarly to the MFGPs in terms of
RMSE/R2 for the ’data-rich’ Europe experiment. However the MFGP performs consistently better for these
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metrics and is less sensitive to the reduction of data when moving to the ’data-sparse’ setup. Over Europe,
the random forests are however better at representing extreme values across all the cross validation folds.
Over the Beas and Sutlej basins, the MFGP dominates offering more better and more consistent results with
the exception of the 5th percentile RMSE. The relatively poor performance for the low percentiles values is
due to the GP and MFGP models reverting to the observation mean in locations far from the training dis-
tribution where they are uncertain rather than confidently predicting lower values like the non-probabilistic
models.

Lastly, ConvCNPs are also implemented for the validation experiments. The ConvCNP model is one member
of the neural process model family that has shown state-of-the-art performance in spatiotemporal downscaling
tasks (Vaughan et al., 2022; Gordon et al., 2019; Andersson et al., 2023). Neural processes offer similar
advantages to the MFGP in terms of being able to quantify the probability of extreme events, generalise
to multiple locations, predict at arbitrary locations, and overcome gridding biases. The results show that
these models overfit these relatively small datasets performing worse than linear regression, in particular, for
the Beas and Sutlej experiment. This is not surprising as neural networks generally require a large number
of datapoints to be trained adequately. As these models can be used for transfer learning, future work
could investigate the using data from other mountainous regions to inform predictions in data-sparse High
Mountain Asia. In summary, the MFGPs are best suited to downscaling in the sparse and out-of-distribution
settings presented in this paper.”

– Section 6.3.3

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.72±0.46 1.75±0.18 5.21±1.55 0.04±0.06 -
RF ERA5 + gauges 1.12±0.44 0.45±0.19 2.62±0.93 0.61±0.09 -
SVRRBF ERA5 + gauges 1.14±0.46 0.53±0.33 3.03±1.48 0.60±0.12 -
MFGP ERA5 + gauges 1.06±0.42 0.51±0.20 2.72±1.54 0.65±0.09 0.89±0.20
ConvCNP ERA5 + gauges 2.16±0.76 2.29±0.93 4.25±1.60 -0.49±0.48 2.40±0.91

Table A: Comparison of model performance metrics trained on ERA5 data for the ‘data-rich’ setup over
Europe. We include a linear interpolation model, a random forest (RF), a support vector regression (SVR)
model with a smooth Radial Basis Function (RBF) kernel, a ConvCNP and the MFGP model. The metrics
include the average RMSE, the 5th percentile RMSE (RMSE5), the 95th percentile RMSE (RMSE95), the
R2 score, and the MLL. The errors represent the standard deviation across the validation folds.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 1.77±0.46 1.88±0.25 5.19±1.76 -0.02±0.13 -
RF ERA5 + gauges 1.16±0.39 0.41±0.20 2.92±1.39 0.57±0.10 -
SVRRBF ERA5 + gauges 1.53±0.62 0.73±0.23 4.64±1.99 0.29±0.19 -
MFGP ERA5 + gauges 1.13±0.47 0.57±0.23 3.02±1.62 0.62±0.11 0.90±0.20
ConvCNP ERA5 + gauges 1.92±0.51 1.77±0.78 4.84±1.70 -0.21±0.34 2.36±1.38

Table B: As Table A for the ‘data-sparse’ setup over Europe.

Model Training features RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

Linear reg. ERA5 4.21±0.99 2.21±0.45 14.33±4.03 -0.08±0.05 -
RF ERA5 + gauges 3.05±1.30 0.52±0.46 9.87±5.47 0.45±0.23 -
SVRRBF ERA5 + gauges 3.36±1.66 0.66±0.38 11.05±6.14 0.34±0.33 -
MFGP ERA5 + gauges 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22
ConvCNP ERA5 + gauges 4.89±0.93 3.57±0.79 14.16±3.85 -0.51±0.32 3.95±0.88

Table C: As Table B for the upper Beas and Sutlej basins.
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Comment 3

“Finally, in the model comparison shown in Table 1-3, GP is only trained on ERA5 data at station locations.
Why not use all ERA5 data in the study region to train and test the model? I would expect better model
performance even for GPs.”

The model has information about ERA5 at all the training and test locations for the validation experiments.
These locations fall within the ERA5 grid boxes, so there is theoretically little to no additional information
to be gained by including neighbouring grid box values. To check this, we ran an experiment that was trained
on all ERA5 data for the Beas and Sutlej basins.

Results from this experiment are shown in Table D (below), and confirm that there is no added benefit in
including this data. However, we have clarified this in the revised manuscript by adding additional text which
states:

“The experiments were also conducted with all the ERA5 data for the study area (not shown), but showed
no significant improvement over using the ERA5 data at the station locations only”.

– Section 4.2

We note that we did not rerun these experiments over Europe, as we would have needed to apply method-
ological approximations to overcome the memory and computational bottlenecks that comes with this larger
domain.

Model RMSE [mm/day] RMSE5 [mm/day] RMSE95 [mm/day] R2 MLL

MFGPlimited 3.00±0.92 1.66±0.95 9.62±3.63 0.46±0.11 1.79±0.22
MFGPall 5.16±2.51 0.84±0.56 19.48±9.79 0.32±0.27 1.68±0.34

Table D: Comparison of MFGP performance using ERA5 for the whole study area (all) and using only ERA5
at the training and test site locations (limited) over Upper Beas and Sutlej Basins. The metrics include the
average RMSE, the 5th percentile RMSE (RMSE5), the 95th percentile RMSE (RMSE95), the R2 score and
the mean log loss (MLL).The bolded values highlight the best scores

Comment 4

“I believe the authors use the Nash-Sutcliffe efficiency (NSE) in the manuscript, rather than R2, which should
always be non-negative values.”

We confirm that we are using the coefficient of determination or R2 score. This metric, defined and explained
in Appendix B, and is given by:

R2 = 1− SSres
SStot

= 1−
∑

i(yi − fi)
2∑

i(yi − y)2

where fi is the ith predicted value, yi is the ith observed value, and y is the mean of the observations. SSres
is therefore the sum of the squared residuals and SStot is the total sum of squares. A negative R2 is possible
and would indicate that the model is predicting worse than the precipitation mean. Although negative R2

scores are unlikely in interpolation settings, they are possible when making predictions outside of the training
distribution. To address the reviewer’s concerns, we make this interpretation of negative R2 clearer in the
main body of the paper and the appendix:

“Of these methods, the GP with the custom kernel extrapolating only from gauges yields the poorest results
with a negative R2 indicating that the model is predicting worse than the precipitation mean.”
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– Section 4.2

“An R2 of 1 indicates a perfect fit whilst a negative R2 means the model performs worse than the mean.
Although negative R2 scores are unlikely in interpolation settings, they are possible when making predictions
outside of the training distribution.”

– Appendix B

Summary of changes

• Make the connection between ERA5-Land and the linear regression model clearer in a new subsection
of the discussion (Section 6.3.3).

• Implement random forests and support vector regression for the validation experiments and which
we present in Appendix E. The results are discussed alongside the linear regression and ConvCNP
performances in Section 6.3.3.

• Clarify the limited benefit of using additional ERA5 data for the validation experiments in Section 4.2.

• Make the interpretation of negative R2 clearer in the main body of the paper and Appendix B.
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