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Abstract. Based on the projected increase in hurricane landfall frequency on the middle to lower U.S. East Coast, we examined
the crucial role of the estuarine wind field in exacerbating coastal flooding. A regionally refined atmospheric and two high-
resolution hydrology and ocean models are integrated to provide plausible and physically-consistent ensembles of hurricane
events and the associated flooding inside the Delaware Bay and River, a U.S. mid-Atlantic estuary. Model results show that
the hurricane propagation direction, estuarine geometry, remote surge from the open ocean, and direct nearshore upwind stress
could magnify the flood magnitude. More specifically, inland-bound tracks that make landfall before reaching the mid-Atlantic
coast produce a more significant surge within Delaware Bay than the shore-parallel tracks, where the estuarine wind direction
plays the primary role in surge amplification. Ultimately, this study emphasized the need for integrated models to capture the

nonlinear dynamics and interactions in flood hazard modeling.

Plain Language Summary

This study examines how estuarine wind field can exacerbate hurricane-driven coastal and riverine flooding. We coupled earth
system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events
and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the
hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging
system, especially when the wind direction aligns with the surge propagation direction. Other essential factors, such as the
amplitude of the remote surge from the open ocean and the magnitude and timing of peak river discharge, can further amplify
the extreme water level. Ultimately, this work demonstrated the need for integrated modeling to capture the wind, tide, and
surge interactions during a hurricane landfall and why such a framework is critical for improving coastal hazard projections in

a warmer climate.
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1 Introduction

Due to their low-lying topography and high population densities, coastal cities and estuaries are particularly susceptible to
storm surges, which result in significant economic and social impacts like damage to infrastructure, loss of property and
livelihoods, and loss of life (Dietrich et al., 2010; Bilskie et al., 2016; Valle-Levinson et al., 2020). Recent climate studies
have indicated that, under different greenhouse gas emission rates and global warming scenarios, there is a potential for more
frequent hurricane landfalls on the U.S. Atlantic coast at the end of the 21st century (Knutson et al., 2022; Balaguru et al., 2023).
Some other works have shown a potential increase in hurricane’s maximum intensity (Emanuel, 2005, 2021), an increase in the
10 m wind speed (Roberts et al., 2020), and a decrease in translation speed (Emanuel, 2021; Garner et al., 2021) in the future.
These projected trends in hurricane characteristics can amplify the risk faced by coastal cities and estuaries to storm surges and
coastal flooding in the future climate. More recently, using Coupled Model Intercomparison Project Version 5 (CMIP5) global
climate model datasets, Weaver and Garner (2023) examined the hurricane landfall patterns in the U.S. East Coast for a warmer
climate. They showed a positive trend in hurricane genesis points moving northward and making more landfalls along the mid-
Atlantic region as they traveled through the U.S. Northeast (similar to Hurricane Irene 2011). This is a matter of concern for
the U.S. mid-Atlantic region that covers two of the largest estuaries in the U.S.: the Delaware and Chesapeake Bays. These
estuarine regions house ~ 27 million inhabitants, a large density of metropolitan areas, natural ecosystems (e.g., salt marshes
and freshwater wetlands), transportation networks, and industrial ports (Callahan and Leathers, 2021). The hurricane landfall
trend in this area certainly raises interest in the associated storm surge hazard that might help develop flood risk assessment
tools for federal, state, and local agencies.

To estimate the hurricane-induced flood risk, significant effort has been invested in storm surge prediction using high-
resolution numerical models that resolve fundamental underlying physics (Weisberg and Zheng, 2006; Wang et al., 2008; Hu
et al., 2009; Dietrich et al., 2011). However, a significant impediment to accurate storm surge predictions continues to be
the uncertainty in predicting hurricane properties that drive storm surge (Cyriac et al., 2018; Cangialosi et al., 2020). More
specifically, an inaccurate representation of any of these hurricane characteristics: intensity, size, translation speed, and the
angle of landfall with the coast can introduce large biases in predicting the surge and coastal flooding (Suh and Lee, 2018). In
a recent study, Hsu et al. (2023) examined the role of these variables for three different hurricanes that propagated through the
South Atlantic Bight [Matthew (2016), Dorian (2019), and Isaias (2020)] and showed how they affect the peak storm surge and
wave runup in the South Atlantic coastline. For the same region, Parker et al. (2023) demonstrated that various combinations
of tide, non-tidal residual, and wave setup and their spatially varying interaction can control the total water level at different
U.S. Southeast Atlantic coastline regions. In addition, storm surge also strongly depends on the local geometry of the basin and
bathymetric features (e.g., the angle of a coastline), such that an adequate representation of the system’s geometry is essential
for properly estimating the hydrodynamic response (Weisberg and Zheng, 2006; Resio and Westerink, 2008; Suh and Lee,
2018). Geometry is especially important in estuarine regions, where the storm surge and storm tide (sum of surge and the
astronomical tide) propagation and flood generation can vary spatially based on the size and bathymetry of the bay, cross-

sectional area, the shape of the system (e.g., funnel-shaped estuary, rectangular shaped tidal lagoons, etc.), and river discharge
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from the hurricane-induced precipitation (Mori et al., 2014; Familkhalili and Talke, 2016). In general, in hyper-tidal estuaries
(exhibit large tidal range) or convergent estuaries (channel area convergence dominates bottom friction), the variability of tide-
surge interaction can amplify the extreme water level (Lyddon et al., 2018). In addition, the magnitude and duration of the
estuarine winds during hurricane landfall can exacerbate the spatial extent and amplitude of surge-driven flooding (Shen et al.,
2006a; Weisberg and Zheng, 2008).

In shallow estuaries, the local wind field can create a surface slope between the bay mouth and the upstream end (Weisberg
and Zheng, 2006, 2008). This evolution becomes much more complex for a convergent system where the non-linear interaction
between the tide, surge, and local geometry influences the flow acceleration, ultimately amplifying or damping the surge-
induced flooding (Wong and Moses-Hall, 1998). When the remote surge generated by the wind field in the open ocean reaches
the coastal environment, it interacts with the estuarine wind and generates a complex set-up or set-down within the estuary
(Shen et al., 2006b; Defne et al., 2019). There have been many studies on the storm surge hindcast and long-term flood
hazard projections for different coastal or estuarine regions [e.g., Villarini et al. (2014); Wahl et al. (2015); Marsooli et al.
(2019); Lin et al. (2019); Bates et al. (2021); Gori et al. (2022)]; however, the effect of estuarine winds on surge amplification
during hurricane landfall is not often separately analyzed. For several U.S. coastal regions, Lin et al. (2010) and Marsooli
and Lin (2018) used higher-resolution hydrodynamic models to assess the sensitivity of coastal flooding to different storm
characteristics, but they also focused primarily on the overall surge evolution during the entire hurricane period and not on the
local amplification by the nearshore wind field during landfall.

Similarly, several other studies used the simplified storm surge model: Sea, Lake and Overland Surges from Hurricanes
[SLOSH; Jelesnianski (1992)] to assess basin-scale flooding from individual extreme events (Powell and Houston, 1996; Hous-
ton et al., 1999) or the ensemble of probabilistic hurricane tracks (Taylor and Glahn, 2008). While these studies extensively
discussed the role of landfall location, wind direction, and coastal geometry, the role of estuarine wind in the local amplification
of storm surge remained unexplored. Also, it should be noted that in a system with an irregular bottom and rapidly converging
width, it is challenging to assess the role of estuarine wind using simplified models like SLOSH due to the absence of ad-
vective terms in the momentum equations, exclusion of the river flow and the parametric representation of the hurricane wind
field (Glahn et al., 2009). To properly examine the role of estuarine wind and the non-linear interaction in surge amplification
in a complex system, an integrated modeling framework with higher-order physics is required that resolves the atmospheric,
hydrologic, and hydrodynamic processes during hurricane landfall.

This study aimed to answer, depending on the estuarine wind field (i.e., landfall location and wind direction), how different
the hydrodynamic responses during flooding when compared between an inland hurricane (making landfall before reaching
Delaware Bay) and a shore-parallel track (making landfall after passing Delaware Bay). This is an important question because
of the potential changes in landfall trends in a warmer climate in the U.S. Mid-Atlantic region. We focused on two tasks:
1) integrating an earth system model [E3SM, Golaz et al. (2022)] with high-resolution models that couple the hydrology
[DHSVM, Wigmosta et al. (1994)] and hydrodynamic [FVCOM, Chen et al. (2003)] models to provide a high-fidelity flood
estimate, and 2) evaluating the role of the estuarine wind field in amplifying storm surge during hurricane landfall. We chose

Delaware Bay and River (DBR), a shallow and convergent estuary in the U.S. Mid-Atlantic, historically highly vulnerable



to storm-induced flooding. We also selected Hurricane Irene (2011) as a focal event for the study, which caused one of the
90 most severe estuary-wide flood hazards in DBR. Using E3SM, we first perturbed Hurricane Irene (2011) to get an ensemble
of Irene-like tracks with different characteristics. Then using the coupled DHSVM-FVCOM, we predicted the total water level
from different tracks and the flood distribution along the entire DBR. Incorporating these three models provided a high-fidelity
representation of coupled atmospheric, fluvial, and coastal processes, which allows for improved flood estimates for Hurricane
Irene-like events. Finally, we separately looked at the role of the estuarine wind field in amplifying the surge as the tide

95 propagates upstream.
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Figure 1. (a) E3SM grid resolution: 100-km globally uniform resolution and a 25-km resolution over the North Atlantic; (b) Regional scale
model domains, where blue triangles show the FVCOM grid cells and green polygon represent the DHSVM model coverage; (c) Focus area
of the study, Delaware Bay and River (DBR). Red circles show tide gauge locations used for FVCOM model validation with their distance

from the Bay mouth (in kilometers); (d) Schematic showing the coupling strategy between the different models used in this study.
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2 Model setup and integration

The U.S. DOE Energy Exascale Earth System Model version 2 [hereafter, “E3SM”; Golaz et al. (2022)] is used to simulate an
ensemble of Hurricane Irene-like tracks. E3SM integrations are conducted using prognostic atmosphere, land, and river model
components, while oceanic sea-surface temperatures (SSTs) and sea ice cover are prescribed based on observations (Huang
et al., 2021). The atmosphere model version used in this study has 71 levels and uses a regionally refined horizontal grid mesh
of ~25 km over the North Atlantic basin and eastern North America with a coarser horizontal resolution (~100 km) outside
this region [Fig. 1a and as described in and used by Zarzycki et al. (2017)]. The atmosphere model is initialized globally based
on ECMWF Reanalysis version 5 [ERAS; Hersbach et al. (2020)], and all simulations span 30 days to cover the atmospheric
spin-up and evolution of Hurricane Irene as well as the meteorological conditions in the wake of the event. Additional details
of the E3SM setup and validation metrics are found in Appendix A.

We conduct an E3SM ensemble to acknowledge (a) our incomplete understanding of the model physics and (b) the inherent
uncertainty of model initial conditions. To address (a), we perturb model physics parameters to which tropical cyclones are
most sensitive [He and Posselt (2015); see Appendix A for the list of perturbed parameters and additional information on the
model ensemble setup and analyses]. This is accomplished by first defining acceptable numerical ranges for each parameter of
interest [based on He and Posselt (2015)] and then randomly drawing 50 values within those ranges to use within the model
integration. In this way, 50 unique parameter “sets” are created. To address (b), E3SM is initialized at two times separated by 12
hours [August 26, 2011 00Z (hereafter “E1”’) and August 25, 2011 12Z (hereafter “E2”)]. Both the ERAS5-based meteorological
patterns and the diagnosed storm center at these two initialization times are slightly different from each other and ultimately
result in a more diverse spread of simulated Irene tracks. E1 was identified as the optimal initialization time that produced
reasonable Irene tracks at the earliest forecast lead time, while E2 was also retained to understand the sensitivities of the
predicted tracks to large-scale meteorological patterns at initialization time. In total, two 50-member ensembles (E1 and E2)
are generated (Figure 2a).

Subsequently, we employ the Distributed Hydrology Soil Vegetation Model (DHSVM) to estimate the fluvial flooding in
the Delaware River Basin. DHSVM used meteorological variables from the E3SM model as climate forcing, including pre-
cipitation, air temperature, downward shortwave and longwave radiation, wind speed, and relative humidity. DHSVM is a
process-based, spatially distributed hydrological model that operates at the grid cell level. It simulates key overland and sub-
surface hydrological processes by solving the full energy and water balance equations. The model physics and formulations
have been extensively described in the existing literature [e.g., Wigmosta et al. (1994); Sun et al. (2015); Perkins et al. (2019);
Sun et al. (2024)]. For this study, we used a 90-m resolution for DHSVM in the Delaware River Basin and ran the model at a
3-hourly timestep.

Finally, to predict the extreme water surface elevation (WSE) with the atmospheric and riverine forcings, we use the un-
structured grid Finite Volume Community Ocean Model FVCOM (Chen et al., 2003), which has been extensively used for
storm surge modeling in many estuaries worldwide [e.g., Weisberg and Zheng (2006); Rego and Li (2009)]. We chose the 3D

barotropic and hydrostatic version, which resolves simplified Reynolds-averaged Navier—Stokes equations (with Boussinesq
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approximations). The model domain extends 700 km offshore from the mid-Atlantic coast to adequately capture the air-sea
interaction and 215 km from the Delaware Bay mouth to the river flow boundary (Figure 1b,c). The horizontal grid resolution
is assigned to 25 km along the open ocean boundary to 20 m in the river to seamlessly simulate the interaction between large-
and small-scale flood processes. Subsequently, we enforced the lateral and sea surface boundary conditions: 1) tidal forcing at
the open ocean boundary [WSE from the TPX08.0 global ocean tide model (Egbert and Erofeeva, 2002)], 2) river flow from
DHSVM, and 3) 10-m wind speed and mean sea-level pressure from E3SM. More details about the topography and bathymetry
data sets used for grid development, activated model physics, and assigned numerical variables/coefficients are given in Deb

et al. (2023).

3 Hurricane-induced estuarine flooding

At the onset, DHSVM simulated daily flows (averaged from the 3-hourly flows) were validated against USGS daily flow
observations at six gage locations on the main stem of the Delaware River for Hurricane Irene (2011) [Appendix B]. After
observing a satisfactory model performance (Nash-Sutcliffe efficiency and the Kling—Gupta efficiency), we simulated the
E3SM ensembles that produced a different range of peak river discharge at the Delaware River boundary, shown in Figure 2b.
The range and the ensemble mean of the river discharge from the two sets show a clear distinction, where the inland-oriented
tracks (E2) produced a smaller magnitude and an earlier peak (~ 12 hours) compared to the shore-parallel tracks (E1). In
this work, as we focused on the response of estuarine flooding to different hurricane characteristics, we directly used the
DHSVM data as river forcing for FVCOM without discussing the underlying physical processes responsible for the variation
in magnitude and phase of the fluvial discharge.

Before running FVCOM with meteorological conditions from E3SM and river forcing from DHSVM, we also validated
the hydrodynamic model by comparing predicted WSE with the observed data for two hurricanes, Hurricane Irene (2011)
and Hurricane Sandy (2012), that both had devastating impact on DBR. For both cases, we found that the model successfully
predicts the amplitude and phase of the storm surge and shows an excellent agreement between the model and observed data
at various tide gauge locations throughout the system [Appendix C]. Thus, the model was deemed fit for purpose for our
subsequent studies using ensemble forcing.

The ensemble simulations, forced with two 50-member ensembles of Irene-like cases (E1 and E2), show significant variabil-
ity (O(1 m) standard deviation in WSE) in the range of along-channel peak WSE over the ensemble forcing (Figure 2¢). E2,
with more inland tracks, generates a much higher range of surge than E1 for a significant portion of DBR; E2 also has a sig-
nificantly higher ensemble mean WSE, especially in the mid-bay approximately 150 km from the mouth, where the E2-forced
ensemble mean WSE is over 2 m higher (~ 100% increase) than the El-forced case. E1, which produced reasonable Irene
tracks (Figure A1), also shows a fair range of WSE and an ensemble mean compared to the observed along-channel peak WSE
for Hurricane Irene (2011). Here, observed peak WSE means the FVCOM model WSE generated using reanalysis forcing
and validated using field datasets. At the upstream end, near NB, the peak WSE range deviates from the observed due to the
influence of river discharge and the biases that propagated from the E3SM precipitation field (details provided in Appendix A).



165

170

175

Interestingly, close to the bay mouth and near the upstream river boundary, the distribution of E1- and E2-forced WSE
are similar, despite strong differences in the mid-bay. The similarity at the bay mouth indicates that the offshore hurricane
wind field (outside the bay) generated a narrow range of the remote surge, which propagated upstream from the bay entrance.
Then, there is a local generation of storm surge inside the bay (between BSL and BU), significantly higher for E2, likely due
to a combination of the hurricane’s estuarine wind field and convergence of the estuarine width. The river discharge plays a
secondary role; we can see that for E1, which produces a much higher flux magnitude, the impact is only significant for the
region between BU and NB (the narrowest portion near the DHSVM flow boundary). In general, for all the tracks from E1 and
E2, the peak river discharge at the Delaware River boundary lagged the storm surge at the bay entrance by two days, making
the impact of river discharge negligible during the landfall period on Aug 28, 2011 12Z. The higher surface slope near the
river boundary for E1, shown in Figure 2c, was generated primarily from the peak river discharge that occurred around Aug
30, 2011 127 (Figure 2b). While a similar along-channel gradient can also generate for E2 around Aug 30, 2011 12Z, the
significantly higher surge during the landfall (Aug 28, 2011 127Z) elevated the peak WSE much more than the following river

discharge-driven condition. A more detailed explanation of this WSE variation is given in the following section.
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4 The role of local estuarine wind in surge amplification

In this section, we examined the impact of estuarine wind directions in amplifying storm surges along the converging DBR
system. We selected two tracks from the ensembles — Cases A from El, and B from E2 (Figure 2a) — that produced a nearly
similar surge at the Delaware Bay mouth (the ‘remote surge’ hereafter), shown in Figure 2e. Cases A and B also have compa-
rable 10-m elevation wind magnitudes inside the bay (Figure 2d), though the strongest winds are in opposite directions; Case
A with a primarily northerly wind, and Case B a southerly wind. We provided a more thorough description of different process
comparisons that led to these event selections in the supplemental material titled “Hurricane case selection”.

Figures 3a,b shows a 2D representation of hurricane wind field for the two events when the estuarine wind speed peaked
(~20m/s) inside DBR. To isolate the role of estuarine wind, we defined a region (the black polygon in Figures 3a,b) that
covers the hydrodynamic model domain from the bay mouth to the upstream model boundary. We used this bounding polygon
to select the E3SM grid cells that fully cover the FVCOM model domain. FVCOM uses a bilinear interpolation method to
assign wind velocity at the unstructured grid cells from the meteorological dataset. To represent a scenario with nominal
estuarine wind during hurricane landfall, we multiplied the E3SM wind velocity vectors (in m/s) within the polygon with 0.1
to uniformly dampen the wind magnitude in the selected cells, regardless of the instantaneous location of the hurricane. For the
two cases, A and B, this artificial dampening reduced the peak wind speed magnitude to ~ 2.0 m/s, making the impact of the
hurricane wind field negligible. In addition, the polygon and E3SM grid cells extensively covered the FVCOM model domain,
going beyond the FVCOM boundary, to better interpolate the wind forcing. Figures 3c and 3d show the instantaneous WSE
along the main channel for the two tracks based on simulations with and without the effect of estuarine wind fields within the
defined region.

It is evident that the local estuarine wind stress plays a significant role in both cases in altering WSE as the storm surge
propagates upstream. However, the estuarine wind plays a more prominent role in Case B, where the southerly wind is directed
up-channel, and pushes more water northward into the converging portion of the Bay, resulting in a rapid increase in the water
level from BSL to NB (Figure 2c). In contrast, Case A shows a markedly different response within the system, as the northerly
wind causes a set-down at the upstream portion of DBR and a set-up in the mid-bay resulting from the interaction of the local
and remote surge, which produced higher flooding (~ 1.0 m) between SJS and PHL (Figure 3c).

Previous studies have demonstrated how the local estuarine wind field created surface slope during hurricane landfalls at
Tampa Bay, FL (Weisberg and Zheng, 2006), and Chesapeake Bay, VA (Shen et al., 2006b), respectively. They have shown
that, in shallow estuaries, the cross-shore component of wind stress creates a large downwind surface slope and surge. To
explain this process mechanistically, Wong and Trowbridge (1990) and Shen et al. (2006a) provided linear solutions for WSE
along a hypothetical rectangular estuary by dividing the total water level into two parts: remote surge and set-up/set-down
from local wind forcing. While the linear and simplified momentum equations (using a constant bottom and width of the
estuary) can provide a fundamental understanding of the spatially-varying surge amplitude, the evolution of flooding becomes
much more complex for a convergent system. In such cases, the non-linear interaction between the tide, surge, and local

geometry may increase or decrease along-channel WSE (Weisberg and Zheng, 2008; Xiao et al., 2021). In a complex system
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with irregular bottom and rapidly converging estuary width like DBR, the simplified equations cannot reasonably predict the
surface variation shown in Figures 3c,d, and a high-resolution 3D numerical modeling framework is necessary to address the
non-linear interactions and the associated surge generation.

The evolution of peak WSE for the entire period of the hurricanes was examined by designing a few scenarios to identify the
primary drivers of estuarine storm surge intensity. In the hydrodynamic model run, surface wind stresses (estuarine, remote, and
both) were included along with the tidal forcing in a sequence to explain the incremental flood amplification, shown in Figures
4a,b. As described earlier, we multiplied the E3SM wind velocity vectors (in m/s) by 0.1 outside/within the polygon (shown in
Figures 3a,b) to make estuarine/remote wind stress-only cases, respectively. For Case A (with a northerly wind from E1), the
estuarine wind aligned against the incident tidal wave (without remote surge) and produced a steep slope between MH and SJS
due to the complex tide-wind interaction and channel convergence. The downwind water surface pressure gradient in the estuary
caused additional resistance to the propagating flood tide. Combined with the convergence effect, this non-linear interaction
amplified the bay water level (Figure 4a). When the full wind field is included, we can see a similar along-channel peak WSE
gradient where the difference in peak water level, varying from 0.73 to 1.05 m, came from the remote surge propagation through
Delaware Bay. Figure 4a also shows that the remote surge, as it travels through the system, follows a similar trend of the peak
tidal WSE where some amplitude damping occurs close to RP due to higher flooding of the surrounding low-lying wetlands.
The combined effect of the remote surge and local set-up from the estuarine wind field attributed to a locally amplified flooding
on the bay-river interaction zone (between SJS and MH), where the peak water surface increased by more than 1.0m (~ 60%)
at certain locations. A spatial map of the peak WSE difference between surge from the full wind field and the remote field
only (An in meters) is given in Figure 4c to demonstrate the extent of the flooding in the same zone. Finally, when the river
discharge from the hurricane precipitation field is added to the full wind simulation, it seems to generate a steep WSE gradient
and compound flooding on the upstream part of the Delaware River (Figure 4a), where the river width is significantly narrower
than the estuary and bay mouth.

Case B, with a southerly wind, shows much higher flooding (almost doubled near the head) for the full simulation than Case
A (Figure 4b). As the estuarine wind and remote surge propagated in the same direction, the direct upwind push of the water
from the large bay surface raised the peak WSE from BSL to the upstream model boundary. While we can see a change in
the water surface slope near SJS from the higher overland flooding, the combined WSE from wind-generated local surge and
remote surge demonstrate a linear increase along the channel. Between BSL and SJS, the estuarine wind and remote surge
interacted similarly to the previous observations of Wong and Trowbridge (1990) and Shen et al. (2006a). However, from SJS
to the remaining narrow reach, the channel cross-section area convergence amplified the peak WSE as the wave propagated
upstream. Compared to the remote surge-only case, the combined estuarine wind and remote surge case produced a 2 m
higher water surface elevation (~ 100% increase). The inclusion of river discharge did not make any notable difference in the
upstream regions (as seen in Case A) due to the larger surge-driven channel water volume and surface area. Figure 4d shows
the peak WSE difference (An) for Case B, where we see a dramatic increase in along-channel flooding from the estuarine

wind field. This case illustrates that the local estuarine wind stress can significantly amplify WSE from the bay entrance to
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upstream regions in converging estuaries (nearly 2.5m or 150% for Case B), even when the offshore surge near the entrance is

245 not catastrophic.
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5 Discussion and conclusions

This study examined the role of different hurricane landfall locations and the associated estuarine wind field on the local
amplification of storm surges in a converging coastal system. A key finding was that small differences in hurricane tracks
could cause drastic differences in the bay surface wind stress (time scale is on the order of hours) and the along-channel
storm surge response due to local geometry. Previous works related to the sensitivity of storm surge and coastal flooding to
hurricane landfall locations, wind field (speed and direction), and geometry [e.g., Powell and Houston (1996); Houston et al.
(1999); Shen et al. (2006b); Weisberg and Zheng (2008); Marsooli and Lin (2018)] have not separately examined the role of
this shorter period (translation period through the estuary) and estuarine-scale landfalling wind using physics-based integrated
modeling frameworks.

Thus, there is a clear need to better understand the complex, nonlinear response of storm surge to storm track, as simple
metrics such as distance to storm track could be misleading and fail to capture the intricacies of the response. Further work
is also needed to examine the role of hurricane intensity, the radius of maximum wind, translation speed, and the interaction
between tide, non-tidal residual, and waves, separately, all of which could similarly influence the coastal flood level (Suh and
Lee, 2018; Parker et al., 2023; Hsu et al., 2023). These essential hurricane characteristics and oceanic processes can affect both
the remote and local surge generation, requiring a future study focusing on their overall impact on the same area. Also, this
work emphasized the utility of a model hierarchy, which is crucial for accurately representing important localized factors such
as the estuarine wind field. This approach is essential for improving future coastal hazard projections on the U.S. Atlantic coast
for a warmer climate.

The integrated modeling framework combining an earth system model (E3SM), hydrology model (DHSVM), and hydro-
dynamic model (FVCOM) helped generate plausible and physically-consistent two ensembles of hurricane Irene-like events,
associated river discharge, and the coastal flood water level, respectively. Peak water surface elevation inside Delaware Bay and
River, a shallow and convergent system, showed a pivotal relationship with the estuarine wind directions. Even though tracks
in Ensemble 2 (inland hurricanes) made landfall much earlier before reaching the bay compared to Ensemble 1 (shore-parallel
hurricanes), and both had a similar storm surge magnitude at the bay mouth (propagated from the open ocean), the inland-
oriented tracks produced greater flooding inside the bay and river despite much smaller river discharge. Upon examining the
flood generation mechanisms step-by-step, we observed that the estuarine hurricane wind could significantly amplify flooding
in shallow and converging estuaries when it follows the surge propagation direction. Case B, which has shown this effect,
produced nearly 2.5m or 150% increase in the peak WSE from the bay entrance to the upstream river portion compared to the
case with remote surge only. The water surface gradient demonstrated a spatially-varying effect of the non-linear interaction
between tide, surge, wind stress, and the estuary geometry, where the channel convergence rapidly raised the peak WSE as the
flood wave propagated upstream. When the surge and estuarine wind direction opposed each other (as seen for Ensemble 1),
the complex interaction produced a set-down in the river, a set-up in the bay, and a higher surge in the middle of the estuary.
As shown for Case A, while the flooding is limited to the mid-portion of the estuary, the peak WSE increased again by more

than 60% compared to the case without bay surface wind stress.
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Ultimately, the analysis showed that even if a hurricane makes landfall before reaching the mid-Atlantic region and does
not bring a record extreme water level near the bay mouth from offshore, the direct upwind forcing over the estuarine surface
area itself can produce a record level of flooding if it aligns with the surge direction. In converging estuarine systems world-
wide [e.g., the Delaware Bay and River (USA), Humber Estuary (UK), Hooghly Estuary (India), the Meghna River Estuary
(Bangladesh), and the Pearl River Estuary (China)] that are highly vulnerable to hurricane-induced flooding, physically consis-
tent and integrated modeling frameworks are critical to correctly resolve this nonlinear tide-wind-surge dynamics and improve
the coastal hazard projections for a future climate. In other coastal systems, such as sheltered tidal lagoons or river deltas,
properly resolving the estuarine local wind using an integrated framework is essential as well; however, the interacting effect

of geometry and tide-wind-surge dynamics in flood amplification will be less significant than the converging ones.

Code and data availability. ECMWF Reanalysis version 5 data were obtained from https://doi.org/10.24381/cds.bd0915c6. NOAA OI-SST
version 2 data were obtained from: https://www.psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html. The E3SM version 2 code base
is accessible via a Github repository at https://github.com/E3SM-Project/E3SM. The 3D ocean model FVCOM code is available from
the MEDM Lab (https://github.com/FVCOM-GitHub). The Distributed Hydrology Soil Vegetation Model (DHSVM) code is available at
https://www.pnnl.gov/projects/distributed-hydrology-soil-vegetation-model. Hydrodynamic model tidal boundary conditions are assigned
using OSU TPXO Tide Models (https://www.tpxo.net/home), and model validations are performed using tidal water level from NOAA
tides and currents (https://tidesandcurrents.noaa.gov/). E3SM ensemble setup and management was facilitated using the Betacast software
package (https://github.com/zarzycki/betacast). All E3SM-simulated tracks and storm characteristics are computed using the TempestEx-
tremes software package (https://github.com/ClimateGlobalChange/tempestextremes), and model errors in storm location and intensity
compared to the IBTrACS observation-based data set are obtained using version 10.0.0 of the Model Evaluation Tools Tropical Cyclone
(MET-TC) diagnostic package (available at https://github.com/dtcenter/MET). Model data sets used for further analysis are provided here at
https://doi.org/10.5281/zenodo.7988098.
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Appendix A: E3SM setup and validation

The U.S. DOE Energy Exascale Earth System Model version 2 [hereafter, “E3SM”; Golaz et al. (2022)] land model shares the
same horizontal grid as the atmosphere model (described in the main text). The E3SM river runoff model uses a horizontal
grid mesh of ~12 km, though output from this component is not addressed in this study. The atmosphere model is initialized
globally using ECMWF Reanalysis version 5 [ERAS; Hersbach et al. (2020)], while initial conditions for the land and river
models are taken from the end of a 1 yr E3SM simulation forced by observed, time-evolving atmospheric data.

Our E3SM ensemble setup is guided by the approach used in Reed et al. (2020). For all E3SM simulations described in this
study, the Betacast software toolkit (Zarzycki and Jablonowski, 2015, see Code Availability section for software access) is used
to facilitate ensemble configuration and management. A “test” collection of 100 simulations is conducted using 10-member
ensembles each initialized every 12 hours from August 27 00Z (approximately 12 hours before Hurricane Irene’s first U.S.
landfall in North Carolina) back to August 22 127Z. The “test” ensemble members use randomly drawn values (within defined
bounds) of parameters to which hurricanes are most sensitive (see Table A1), according to the hurricane parameter sensitivity
study of He and Posselt (2015) and as used in Reed et al. (2020) and Reed et al. (2021). The same parameter sets are used
across each initialization time as in Reed et al. (2020). All E3SM-simulated tracks and storm characteristics (e.g., minimum
sea-level pressure, maximum surface winds) of Irene are computed using the TempestExtremes software package (Ullrich
etal., 2021), and model errors in storm location and intensity compared to the National Centers for Environmental Information
(NCEI) International Best Track Archive for Climate Stewardship (IBTrACS; Knapp et al., 2010, 2018) are obtained using
version 10.0.0 of the Model Evaluation Tools Tropical Cyclone (MET-TC) diagnostic package (Brown et al., 2021) (see Code
Auvailability section for access to TempestExtremes and MET-TC). For each initialization time, “test” ensemble mean hurricane
track and intensity errors are computed, and an optimal initialization time (in this case, August 26 00Z) is identified that
attempts to maximize both simulation fidelity and forecast lead time. To create a larger sample size, the “test” ensemble
initialized at the optimal time (August 26 00Z), plus the ensemble initialized 12 hours earlier (August 25 12Z), are expanded to
50 members each (Reed et al. (2020) produced a 100-member ensemble at a single initialization time). In total, two 50-member
ensembles are generated by initializing E3SM at two times separated by 12 hours [00Z August 26 (hereafter “E1”) and 127
August 25 (hereafter “E2”)]. Each ensemble member within E1 uses a unique parameter set, with the same parameter sets being
imposed on E2 members (i.e., E2 member N uses the same parameter values as E1 member N, despite different initialization

times).

Table Al: List of E3SM atmospheric physics parameters modified in this study, including the associated parameterization
scheme; default values and minimum and maximum ranges used, and a short description. Parameter value ranges are taken

from He and Posselt (2015). For a description of parameterization schemes, see Golaz et al. (2022).

Scheme | Parameter Default | Min Max Short Description
CLUBB | clubb_c_k10 0.35 0.2 0.6 Coefficient of momentum
diffusivity, Kh_zm
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M zmeonv_c0_ocn 0.002 0.001 0.0045 Autoconversion coefficient
over ocean for deep

convection

zmeonv_dmpdz -0.7¢=3 | -0.002 0. Parcel fractional mass

entrainment rate

zmeonv_tau 3600. 1800. 28800. Time scale for consumption
rate of CAPE for deep
convection
MG2 ice_sed_ai 500 50 1400 Cloud ice fall speed
parameter

Figure A1 displays the time evolution of errors in along- and cross-track distances, minimum central sea-level pressure, and
maximum surface wind associated with Hurricane Irene simulated by E3SM initialized on August 26, 2011 00Z (ensemble
E1). Similar time series for ensemble E2 (not shown) indicate larger distance errors—consistent with a more westward/inland
track—but similar errors in minimum central pressure and maximum surface winds, by construction. Figure A1 shows that
Hurricane Irene simulated for E1 generally follows the correct trajectory (cross-track errors less than 20 km) but has a forward
speed that is slower than observed (along-track errors of roughly —50 to —100 km). Further, the E1 version of Irene predicts a
central pressure that is too low and surface winds that are too high, indicating an overestimation of hurricane intensity.

We also use the Climate Prediction Center “Unified Gauge-Based Analysis of Daily Precipitation over CONUS” product
(Chen et al., 2008), provided at daily resolution on a 0.25°x0.25° horizontal grid, to assess space-time averaged precipitation
accumulations. Figure A2 displays the evolution of mid-Atlantic watershed-averaged (left) 3-hourly precipitation amounts and
(right) cumulative sum of precipitation. Watershed-averaged precipitation intensity peaks near August 28, 2011 15Z-18Z, for
both the ensemble mean and selected E1 member. E3SM exhibits a slow onset of the watershed-averaged cumulative sum of
precipitation through August 28, 2011 12Z (Fig. A2, right), but later overestimates cumulative precipitation through August
29,2011 12Z. This equates to a ~15 mm (~20%) underestimation of cumulative precipitation during the initial impact window
but a ~30 mm (~33%) overestimation of storm-total precipitation. Together, Figs. Al and A2 indicate that E3SM simulates a
version of Irene that is too slow and too strong, leading to a delayed onset of precipitation in the mid-Atlantic watershed but

ultimately an overestimation of storm-total precipitation.
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Figure A1l. (Upper left) Time-evolving, along-track distance error (simulation minus observations) for E3SM ensemble members (light gray),
the ensemble mean (bold black), and the selected ensemble member analyzed in this study (bold gray) for the Hurricane Irene initialized
on August 26, 2011 00Z. (Upper right, lower left, lower right) As in the upper left panel, but for the cross-track error, minimum sea-level
pressure error, and maximum surface wind, respectively. The gray dotted line marks on August 28, 2011 15Z, the time corresponding to the

snapshot of Hurricane Irene shown in Fig. 2.
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Figure A2. (Left) Time evolution of 3-hourly precipitation amount averaged across the mid-Atlantic HUC2 watershed for E3SM ensemble
members (light red), the ensemble mean (black), and the selected ensemble member analyzed in this study (bold red) for the Hurricane Irene
initialized on August 26, 2011 00Z. (Right) As in the left panel, but for the cumulative sum of watershed-averaged precipitation from August
27, 2011 12Z, through August 29, 2011 12Z, representing the time window of Irene precipitation impacts on the watershed. In the right

panel, CPC rain gauge values are shown as blue dots and indicate cumulative sums for the 24-hour period ending at the time plotted.
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Appendix B: DHSVM validation

To evaluate the hydrological model for its robustness in capturing the spatial and temporal variability of flow responses, we
chose Hurricane Irene (2011) as the focal event and used a gridded (~ 6 km) CONUS-scale meteorological dataset developed
by Livneh et al. (2013) for model forcing. The source Livneh dataset consists of daily records of precipitation, maximum and
minimum air temperature, and wind speed over the period 1950-2013, and they were disaggregated from the daily records
to the 3-hourly interval. Then, we evaluated the DHSVM simulated daily flows (averaged from the 3-hourly flows) against
the United States Geological Survey (USGS) daily flow observations at six gage locations. These locations represented a
range of drainage areas from 4118 - 17560 sq. km along the longitudinal profile (upstream—downstream) of the main stem
of the Delaware River (Figure Bla). The model performance was measured using Nash-Sutcliffe efficiency (NSE) and the
Kling—Gupta efficiency [KGE; Gupta et al. (2009)]; they are commonly used for measuring hydrological model performance

and can be estimated as

Sony (00— M,)°
S (00— 0)°

Where M, and O,, are simulated and observed daily flow, respectively, N is the total number of days used in metric calculations,

NSE=1-

(B1)

and O is observed daily mean flow over N days.

KGE=1—/(r—1)2+(a—1)2+(3-1)2 (B2)

Where r is the linear correlation, « is the viability error, and f is the bias between observed and simulated daily flows. Both
NSE and KGE range from —oo to 1, and a value of 1 indicates perfect agreement between simulation and observations.

The comparison between simulations and observations of daily streamflow is shown in Figure B1b. We observed a good
agreement for Hurricane Irene (2011), where NSE daily range is from 0.71 - 0.91, and KGE range is from 0.59 - 0.91. Even
though the model captured the timing of peak river discharge for all evaluated gages, a higher peak flow bias is observed at
USGS-01428500 and USGS-01463500. Among various factors that might have attributed to this bias, some key sources are

uncertainties in climate input and topography and the uncertainty in stage-discharge rating curves and streamflow records.
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Figure B1. (a) USGS stream gage locations in the Delaware River Basin; (b) Comparison between observed and simulated river discharge

at the USGS stream gage locations.
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Appendix C: FVCOM validation

To validate the FVCOM model results, we used a different set of model forcing than the one mentioned in the main text
(section 2). The sea surface wind stress and atmospheric pressure field of Hurricane Irene (2011) were collected from ERAS,
a global atmospheric reanalysis model that provided the highest resolution from the available public data — a spatial resolution
of 30 km. As the hydrology model (DHSVM) was only calibrated for Hurricane Irene (2011), for validating FVCOM for both
Hurricanes Irene (2011) and Sandy (2012), we assigned the river flow condition using USGS stream gages available at the
Delaware River and Schuylkill River model boundary. Also, we collected water surface elevation (WSE) data from the NOAA
Tides & Currents database (tidesandcurrents.noaa.gov) for model validation. Finally, to quantify FVCOM model WSE error

statistics, we estimated the linear correlation coefficient (corr), average bias index (bias), and model skill as

Sy (Ma = M) (0, — O)

corr = C1H

V(£ 0.-0)") (S (01, - 3%

25:1 (Mn - On)
31 On

bias =

(C2)

27]:[:1 (Mn B On)2

shill =1 - -
S (|Mo = 0] + 10, —0))*

(C3)

Where M,, and O,, are simulated and observed water surface elevation, respectively, N is the total number of samples used
in metric calculations, and M and O are the mean of the samples.

Figure C1 shows that the model WSE and phase match very well with the in situ WSE and show a strong ability to predict
the peak surge elevation for both hurricanes. While the model peak surface amplitude agrees well, even in Philadelphia, there is
a slightly elevated amplitude error after the landfall period of Hurricane Sandy (2012). This could be from the missing sub-tidal
elevation at the model north-western open boundary, where we have a smaller area coverage for the ocean. The error estimates
are shown in the scatter plot (Figure C2), where we only included gauges representing different estuary and river-dominant
zones. Overall, the correlation coefficient varies from 0.92 to 0.96, and the skill score from 0.92 to 0.98, respectively, and the

averaged bias index indicates a model underprediction due to a slightly elevated tidal damping during the flood.
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Figure C1. Water surface elevation comparison between model results and in situ (in meters) at NOAA tide gauge locations in Delaware

Bay and River during (a) Hurricane Irene (2011) and (b) Hurricane Sandy (2012).
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Figure C2. Scatter comparison and statistics for (a) Hurricane Irene (2011) and (b) Hurricane Sandy (2012) water surface elevation at four

NOAA tide gauge locations that represent different bay and river zones, going from the upstream river to the estuary.
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