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 18 

Abstract: Biological soil crusts (biocrusts hereafter) cover a substantial proportion of the 19 

dryland ecosystem and play crucial roles in ecological processes such as biogeochemical cycles, 20 

water distribution, and soil erosion. Consequently, studying the spatial distribution of biocrusts 21 

holds great significance for drylands, especially on a global scale, but it remains limited. This 22 

study aimed to simulate global-scale investigations of biocrust distribution by introducing three 23 

major approaches: spectral characterization indices, dynamic vegetation models, and geospatial 24 

models, while discussing their applicability. We then summarized the present understanding of 25 

the factors influencing biocrust distribution. Finally, to further advance this field, we proposed 26 

several potential research topics and directions, including the development of a standardized 27 

biocrust database, enhancement of non-vascular vegetation dynamic models, integration of 28 

multi-sensor monitoring, extensive use of machine learning, and a focus on regional research 29 

co-development. This work will significantly contribute to mapping the biocrust distribution 30 

and thereby advance our understanding of dryland ecosystem management and restoration. 31 
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Biological soil crusts (biocrusts hereafter) are continuous biotic complexes that live in the 35 

topsoil, which are formed by different proportions of photosynthetic autotrophic (e.g. 36 

cyanobacteria, algae, lichens, mosses) and heterotrophic (e.g. bacteria, fungi, archaea) 37 

organisms colloidal with soil particles, usually with a thickness of a few millimeters to a few 38 

centimeters (Weber et al., 2022). Biocrusts occupy a wide range of ecological niches in mid 39 

latitudes, polar and alpine regions, covering approximately 11% of the global land area (Porada 40 

et al., 2019). In particular, biocrusts are well-adapted to water-limited, nutrient-poor, and hostile 41 

environments, such as arid and semi-arid areas characterized by low ratios of precipitation to 42 

potential evaporation (0.05-0.5 mm mm-1) (Pravalie, 2016; Read et al., 2014; Weber et al., 2016).  43 

As vital components of dryland ecosystems, biocrusts fulfill many essential ecological 44 

functions. They contribute to stabilizing the soil surface, improving soil permeability, and 45 

enhancing water-holding capacity within the upper few centimeters of soil (Sun et al., 2023; 46 

Shi et al., 2023; Gao et al., 2017). By participating in various biogeochemical cycles, biocrusts 47 

were estimated to contribute to 15% of terrestrial net primary productivity and 40-85% of 48 

biological nitrogen fixation (Elbert et al., 2012; Rodriguez-Caballero et al., 2018). They also 49 

impact ecohydrological processes by altering soil microclimate and redistributing soil water 50 

(Kidron et al., 2022; Tucker et al., 2017). Moreover, biocrusts influence seed capture and soil 51 

seed banks (Kropfl et al., 2022), thereby mediating plant growth and community assembly 52 

(Havrilla and Barger, 2018; Song et al., 2022). The extent and magnitude of these ecological 53 

functions and services depend on the spatial distribution of biocrusts. Therefore, it is crucial to 54 

understand their distribution. 55 

Despite the significance of biocrusts, previous studies have primarily focused on their 56 

contributions to carbon and nitrogen cycling across various habitats and climates (Hu et al., 57 

2019; Morillas and Gallardo, 2015), as well as interspecific interactions and biocrust 58 

biodiversity (Machado De Lima et al., 2021; Munoz-Martin et al., 2019), rather than their 59 

spatial distribution. Countries like China, the United States, Spain, Australia, and Israel, most 60 

of which have extensive dryland areas, have attempted to make breakthroughs on this issue 61 

(Fig. 1a). However, other dryland countries and regions, such as central and southern Africa, 62 

where the biocrust distribution has been reported, still suffer from a paucity of studies and data 63 
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on biocrusts (Fig. 1b). This geographical imbalance in biocrust distribution studies has resulted 64 

in most knowledge remaining at local to regional scales, with very limited discoveries on a 65 

global scale. 66 

 67 

Fig. 1 Literature review of biocrust distribution studies. (a) Map of hotspot countries for 68 

biocrust distribution research. Numbers are the countries of the authors of published articles 69 

from 1990 to 2022, and the top 12 countries are shown; The database is Web of Science, TS = 70 

("biogenic crust*" OR "biological crust*" OR "biological soil crust*" OR "biocrust*" OR 71 

"microphytic crust*" OR "microbiotic crust*" OR "cyanobacterial*" OR "algal*" OR "lichen*" 72 

OR "moss*" OR "biotic crust*") AND ("mapping*" OR "distribution*" OR "spatial pattern*") 73 

AND (“dryland” OR “hyper*arid*” OR “arid*” OR “semi*arid*” OR “dry subhumid*”), with 74 

research interests in Environmental Sciences/Ecology and a total of 700 papers. (b) Global 75 

biocrust data distribution, based on field surveys and literature compilation. The bar chart 76 
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counts the number of entries for biocrust records (presence/absence or cover) for six continents 77 

(regions). Datasets have been collected and expanded from the published database (Chen et al., 78 

2020; Rodriguez-Caballero et al., 2018) to 3848 items (unpublished). 79 

In this study, we aimed to sort out and advance the understanding of biocrust distribution 80 

from three perspectives: the applicability and comparison of research methods (section 2), 81 

clarification of factors influencing biocrust distribution (section 3), and challenges and 82 

strategies for future studies on biocrust distribution (section 4). This work is expected to deepen 83 

our understanding of dryland ecosystem processes and provide a scientific basis for conserving 84 

dryland ecosystems and their responses to global change. 85 

2. Research Methods 86 

Three methods are commonly used to study biocrust distribution: spectral characterization, 87 

vegetation dynamic modeling, and geospatial modeling. This section provides an overview of 88 

these methods, including their basic principles, case studies, adaptability, and limitations. 89 

2.1 Spectral characterization index  90 

With advances in remote sensing and geo-information technology, spectroscopy offers a 91 

feasible method of characterizing distribution features from a physical point of view. 92 

Differences in absorption or reflection of specific wavelengths by different ground covers can 93 

effectively identify soil surface objects (Rodriguez-Caballero et al., 2015). By identifying 94 

biocrust-specific bands from reflectance spectral images (Karnieli et al., 1999), it is possible to 95 

construct a presence-absence map of biocrust distribution (Fig. 2a).  96 

Currently, spectral characterization indices have been widely applied in many areas of 97 

drylands. For example, cyanobacterial biocrusts are widely distributed in the Sahara region of 98 

Africa (Beaugendre et al., 2017) and the Negev Desert of Israel(Panigada et al., 2019), where 99 

the study invented the Biocrust Index (CI) based on remotely sensed imagery to access the 100 

characteristics of localized changes in biocrust distribution over 31 years (Karnieli, 1997; Noy 101 

et al., 2021). Sun et al. (2024) developed the fraction biocrust cover index (FBCI) based on 102 

radiative transfer and mapped biocrust distribution over a desert area at 10 m resolution, 103 

showing well-matched results between the model and field observations (RMSE of 0.0774, 104 

systematic deviation of -4.05%). In the Gurbantunggut Desert, a study constructed the 105 



5 
 

Biological Soil Crust Index (BSCI) with lichen biocrust as the dominant group and mapped the 106 

distribution of biocrusts with high accuracy (accuracy of 94.7%, kappa coefficient of 0.82) 107 

(Chen et al., 2005), spatially, biocrusts cover 28.7% of the area, with a high and uniform cover 108 

in the southern part of the desert and a scattered distribution in other regions (Zhang et al., 109 

2007). In the Loess Plateau, red-green-blue (RGB) image-based biocrust monitoring showed 110 

that variability in biocrusts cover decreased logarithmically with increasing plot size until a 111 

critical size of 1m2, after which biocrusts cover remained approximately constant (Wang et al., 112 

2022a). 113 

For the spectral characterization method, it is critical to determine the threshold of spectral 114 

bands that represent biocrusts. For instance, at an aerosol optical depth of 0.2, the BSCI ranges 115 

from 4.13 to 6.23 and narrows to 4.58-5.69 with increasingly poor atmospheric conditions. 116 

Overly strict or loose threshold ranges can easily lead to biocrust omission or misidentification. 117 

To improve the accuracy of biocrust identification, some researchers have utilized the 118 

hyperspectral sensor’s continuous waveband capabilities and created the Continuum Removal 119 

Crust Identification Algorithm (CRCIA) (Chamizo et al., 2012b; Weber et al., 2008). Baxter et 120 

al. (2021) innovatively applied the random forest algorithm to spectral feature classification, 121 

achieving an accuracy of 78.5% in biocrusts recognition. Additionally, two other indices, the 122 

Sandy Land Ratio Crust Index (SRCI) and the Desert Ratio Crust Index (DRCI), were 123 

introduced to account for differences between sandy land (vegetation cover FVC <20%) and 124 

desert environments, improving mapping accuracy by approximately 6% (Wang et al., 2022b). 125 

The spectral characterization method is easy to use and, thus, facilitates access to 126 

continuous long-term dynamics of biocrusts distribution. However, mosses and vascular plants 127 

are generally mixed up in this method because their reflectance characteristics are similar across 128 

all wavelengths, especially when mosses are wet, which makes them indistinguishable (Fang 129 

et al., 2015). Therefore, the spectral characterization method mainly applies to situations where 130 

biocrust cover is greater than 30% and plant cover is less than 10% (Beaugendre et al., 2017). 131 

It should be noted that the existing indexes mostly correspond to biocrust cover consisting of 132 

specific dominant groups in specific environments, which cannot be directly extrapolated to 133 

areas with highly heterogeneous environments (Table 1). Wetting or disturbance may also lead 134 
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to large fluctuations in the reflectance of different land types, interfering with biocrust 135 

distribution monitoring (Rodriguez-Caballero et al., 2015; Weber and Hill, 2016). 136 

2.2 Dynamic global vegetation models (DGVMs) 137 

Dynamic global vegetation models are another major method for estimating vegetation 138 

cover (Deng et al., 2022). These models mainly focus on simulating the biogeochemical 139 

processes (e.g., carbon and water cycles) and the metabolic and hydrological processes of 140 

organisms (Fig. 2b) (Lenton et al., 2016; Porada et al., 2017). DGVMs have significant 141 

advantages in mapping biocrust distribution because their assumptions have clear biological 142 

implications (Cuddington et al., 2013). Porada et al. (2013) focused on CO2 diffusion rates and 143 

photosynthetic processes under dynamic water content saturation in dryland biocrusts. By 144 

parameterizing long-term climate data and disturbance intervals and averaging simulation 145 

results for the past 20 years for each grid point, they estimated that biocrusts cover 11% of the 146 

global terrestrial land surface (Fig. 3a) (Porada et al., 2019). Specifically, the light and dark 147 

cyanobacteria were widely distributed in deserts, savannas, grasslands, and Mediterranean 148 

woodlands at low latitudes, with their presence increasing to some extent with increasing 149 

dryness. In contrast, mosses were mainly distributed in middle and high latitudes and polar 150 

regions. 151 

Dynamic vegetation models can be combined with cross-scale remotely sensed data to 152 

quantify the geographic distribution and biogeochemical effects of plants, replacing traditional 153 

measurements. However, the uneven distribution density of biocrust data points along the 154 

aridity gradient or a small amount of data may lead to poor prediction of global-scale 155 

distributions (Quillet et al., 2010). So far, non-vascular vegetation has not received enough 156 

attention, and only the Lichen and Bryophyte Model (LiBry) used in the above case is uniquely 157 

suited to emulating biocrust distribution (Porada et al., 2019; Porada et al., 2013). The LiBry 158 

model includes variations in biocrust cover strategy under disturbance and its growth, but it 159 

relies heavily on subjective experience and model parameterization, which is still immature 160 

compared to dynamic models of vascular vegetation.  161 

2.3 Geospatial models 162 
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Directly relating vegetation presence or cover to environmental data, instead of indirectly 163 

via biological processes, is another important way to obtain biocrust distribution (Beaugendre 164 

et al., 2017; Fischer and Subbotina, 2014; Skidmore et al., 2011). Classic statistical models can 165 

serve this purpose. However, they still require comprehensive expert knowledge of how 166 

environmental factors affect biocrusts (Pearce et al., 2001), which is hard to obtain and prone 167 

to bias. Geospatial models, which integrate machine learning tools with field survey data and 168 

remote sensing data, hold the most promise (Fig. 2c) (Crego et al., 2022). They are also known 169 

as species distribution models or ecological niche models (Brown and Anderson, 2014; 170 

Jiménez-Valverde et al., 2008; Soberon and Nakamura, 2009). At the global scale, there has 171 

been only one study that predicted biocrust distribution patterns using geospatial modeling 172 

(Rodriguez-Caballero et al., 2018), which found that biocrust covers 12.2% of the global land 173 

surface area, which is about 1.79×107 km2 (Fig. 3b). 174 

Fig. 2 Summary of three major approaches to studying biocrust distribution. Illuminations of 175 

applying spectral characterization method (a), dynamic vegetation model (b), and geospatial 176 

model (c) in biocrusts distribution study. See the main text for a more detailed introduction to 177 

these methods. 178 

Compared with the result of the dynamic vegetation model, the simulation accuracy 179 

(R2~0.8) and mapping resolution (0.5°×0.5°) of the geospatial model were improved. 180 

Biocrust distribution is generally consistent in the large deserts of Asia, western America, 181 
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Europe, and Oceania, while some semi-arid regions, such as the northern and southern margins 182 

of the African Sahara Desert, South Asia, and central North America, have significantly higher 183 

biocrust cover in the projection by Rodriguez-Caballero et al. (2018). We estimate that this may 184 

be because geospatial modeling focuses more on the influence of climate, as the Mediterranean 185 

climate and tropical desert climate in the Sahara Desert, as well as the tropical desert climate 186 

of northwestern South Asia, are suitable for biocrust survival. Additionally, the large number 187 

and high cover of biocrust training sets in central North America could have contributed to the 188 

generally high predicted cover in machine learning.  189 

 190 

Fig. 3 Maps of global biocrusts distribution. (a) Prediction based on vegetation dynamic model 191 

(Porada et al., 2019). (b) Prediction based on geospatial model (Rodriguez-Caballero et al., 192 

2018). Permissions have been obtained from the relevant sources Porada et al., (2019) and 193 

Rodriguez-Caballero et al., (2018). 194 

As black-boxes, geospatial models are largely non-interpretable and, thus, less capable of 195 

capturing the key mechanisms behind phenomena, which may limit their applications. Under 196 

this methodological framework, only the direct effects of various environmental indicators are 197 

considered. For example, it focuses on the direct effect of precipitation on biocrust distribution 198 

while ignoring the indirect effects, such as interactions among shrubs, grasses, and biocrusts 199 

(Wang et al., 2024). In addition, to avoid confounding model predictions, the inclusion of 200 

environmental factors should be based on their relevance to biocrusts, and expert knowledge 201 

should still be needed to a certain degree (Mäkinen et al., 2022). Not only natural conditions 202 

such as climate, topography, and soil, but also data on human activities such as afforestation, 203 

trampling, and population density need to be considered as environmental indicators in the 204 

model. It should be noted that the superimposition of environmental layers of different 205 

resolutions may cause deviations in results to some extent, which is unavoidable (Zhao et al., 206 
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2024). Despite the above limitations of geospatial modeling, with sufficient computing power, 207 

observation data of biocrust distribution, and suitable environmental information, geospatial 208 

models are supposed to be relatively optimal solutions for predicting biocrust distribution 209 

(Table 1). 210 

Table 1 Comparison among the three main types of methods to predict biocrust distribution 211 

 Spectral characteristic 

index 

Vegetation dynamics 

model 

Geospatial model 

Principle Differences in 

wavelength reflectance 

of surface features 

Differences in the 

physiological processes 

of different biocrust 

types 

Remote sensing 

information-driven and 

survey data-based 

machine learning 

framework 

Advantages Convenience and ease of 

use 

Clear ecological 

significance 

Machine training 

simulation, without 

subjective interference 

Disadvantages Reflectivity is affected 

by climate change, 

disturbances； 

Mosses and vascular 

plants have similar 

reflectance 

characteristics；  

The results only show 

the presence or absence 

of biocrusts without 

coverage 

Experience-based 

promotion with 

significant human 

intervention； 

Experiments need to be 

supported by big data  

A large amount of 

computing power； 

Adequate number of 

sample points to support 

accuracy  

Applicable 

scales 

Regional scale (Desert 

and sandy land with 

<20% vegetation cover) 

Regional scale 

Global scale 

Regional scale 

Global scale 

 212 

3. Influencing Factors of Biocrust Distribution 213 

It is of great importance to clarify the environmental variables associated with biocrust 214 

distribution. On the one hand, it helps to frame the range of data selection before modeling, and 215 

on the other hand, it aids in identifying patterns of biocrust distribution in the context of 216 
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dynamic changes and various types of environmental information, thereby facilitating the 217 

prediction of distributed evolution on longer time scales. Numerous modelling studies (Kidron 218 

and Xiao, 2023; Li et al., 2023; Rodriguez-Caballero et al., 2018) have demonstrated that, on 219 

the global scale, biocrust distribution is mainly influenced by water conditions, temperature, 220 

soil properties, fire, and disturbance (Bowker et al., 2016).  221 

Water conditions. In general, total precipitation (Fig. 4b) is considered to be critical in 222 

determining the distribution of biocrusts (Eldridge and Tozer, 1997). Increased precipitation 223 

can lead to higher levels of lichen and moss cover, while algal cover may initially increase and 224 

then decrease (Budel et al., 2009; Marsh et al., 2006; Zhao et al., 2014). It should be noted that 225 

precipitation can also promote the growth of vascular plants, and continuous high cover of 226 

vascular plants and litterfall will limit the space available to biocrusts (Bowker et al., 2005). In 227 

addition to the total amount of precipitation, the seasonality and frequency of precipitation 228 

cannot be ignored (Budel et al., 2009). Winter precipitation and/or smaller rain events benefit 229 

biocrusts, especially when mean annual precipitation is less than 500 mm. Meanwhile, a high 230 

frequency of precipitation can lead to the dominance of biocrusts over vascular plants (Chamizo 231 

et al., 2016; Jia et al., 2019). Experimental evidence shows that precipitation events of 5 mm 232 

are able to maintain normal physiological and ecological functions of the biocrust on the 233 

Colorado Plateau, USA, while ever lower precipitation events of 1.2 mm can rapidly kill moss 234 

biocrust (Reed et al., 2012). Non-precipitation water input is another important water resource 235 

type. The Namib Desert receives little rainfall, but lichens and moss biocrusts can reach a 236 

relatively high cover (~70%) (Budel et al., 2009). This is because local water vapor tends to 237 

condense into fog or dew, which facilitates the survival of three-dimensional species (such as 238 

leafy lichens) by trapping air moisture (Eldridge et al., 2020; Kidron, 2019; Li et al., 2021). 239 

Similarly, lichen biocrusts are widely distributed in the western U.S. along the Mexican coast 240 

due to the high air humidity (dew formation for almost 1/3 of the year) (Mccune et al., 2022; 241 

Miranda‐González and Mccune, 2020). 242 

Temperature. Relatively high soil temperature can create an environment of high 243 

evaporation that impedes biocrusts colonization (Garcia-Pichel et al., 2013). Regarding air 244 

temperature, warming by 4°C could alter biocrust community structure, resulting in a sharp 245 
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decrease in moss biocrust cover and an increase in cyanobacterial biocrust cover. This effect 246 

becomes even more significant when warming interacts with time and precipitation treatments 247 

(Ferrenberg et al., 2015). Recent studies have shown that historical and future temperature 248 

changes also affect biocrust distribution. For example, the climate legacy over the last 20,000 249 

years could indirectly affect the distribution and relative species richness of biocrusts by 250 

altering vegetation cover and soil pH (Eldridge and Delgado-Baquerizo, 2019). Additionally, 251 

under future scenarios of increased temperature and aridity, biocrust cover is predicted to 252 

decrease by approximately 25% by the end of the century, with communities shifting towards 253 

early cyanobacterial biocrusts (Rodríguez-Caballero et al., 2022). 254 

Soil properties. It was commonly believed that finer soils benefit biocrust growth (Belnap 255 

et al., 2014; Williams et al., 2013). However, some scientists have challenged this notion (Fig. 256 

4c). For example, Kidron (2018) argued that soils with high dust or fine grains are not a 257 

necessary condition for biocrust distribution. Qiu et al. (2023) suggested that soils with small 258 

amounts of gravel (0.04-22.34% content, 0.58% being optimal) are more favorable for biocrusts. 259 

Another study has shown that the soil parent material determines the degree of surface 260 

weathering and the water-holding capacity of the soil, thus indirectly influencing the 261 

distribution of biocrusts (Bowker and Belnap, 2008). Gypsum or calcareous soils tend to 262 

develop mosses and lichens (Elbert et al., 2012), while sandy soils tend to develop 263 

cyanobacteria (Root and Mccune, 2012).  264 

Fire. The grassland is a major life form in dryland ecosystems, making it crucial to explore 265 

the effects of fire events on biocrust distribution (Palmer et al., 2022). Fire-induced soil 266 

warming can alter the resource allocation and dynamic growth mechanisms between biocrusts 267 

and vascular plants (Mccann et al., 2021), potentially leading to a reduction in species richness 268 

and cover of biocrusts, especially cyanobacteria, and algae (Abella et al., 2020; Palmer et al., 269 

2020). (Condon and Pyke, 2018) showed that moss cover increases with time after the fire, with 270 

no significant change in lichen cover.  271 

Disturbance. Activities such as grazing, agricultural practices, and land development can 272 

significantly impact biocrust distribution. Studies have demonstrated that grazing intensity can 273 

lead to substantial changes in biocrust cover. For instance, in Patagonian rangelands, biocrust 274 
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cover decreased by 85%, 89%, and 98% under light, medium, and heavy grazing, respectively 275 

(Velasco Ayuso et al., 2019). In the Loess Plateau, total biocrust cover remained almost 276 

unchanged under light grazing (< 30.00 goat dung / m2), but there were variations in community 277 

structure, with an increase in cyanobacteria biocrusts (23.1%) and a decrease in moss biocrusts 278 

(42.2%) due to reduction in vascular plant cover (Ma et al., 2023). Tillage practices can disrupt 279 

the soil surface, leading to a reduction in biocrust cover ( 6% on average) and diversity, with 280 

lichens struggling to survive in tilled fields compared to mosses (Durham et al., 2018). 281 

Additionally, late-successional biocrusts exhibit higher tolerance compared to pre-successional 282 

biocrusts. Moss biocrusts, for instance, can maintain soil microbial biomass and nematode 283 

abundance better under trampling disturbance compared to cyanobacteria and lichen biocrusts 284 

(Yang et al., 2018). However, contrary to this view, it has been observed that cyanobacterial 285 

biocrusts increased in cover from 81% to 99% after trampling, while lichen and moss biocrusts 286 

decreased from 1.5% and 18% to less than 0.5%. Furthermore, mining activities can 287 

significantly reduce the photosynthetic potential of biocrusts, particularly affecting the recovery 288 

of cyanobacterial biocrusts (Gabay et al., 2022).  289 

Other factors. On a global scale, biocrust distribution is also closely linked to 290 

biogeographic isolation. Strong spatial heterogeneity, accompanied by spatial distance, can 291 

create barriers to the dispersal of propagules (spores, fungal bodies), which indirectly impedes 292 

colonization of the biocrusts (Garcia-Pichel et al., 2013). In addition, factors such as vascular 293 

plant cover, topography, and solar radiation also influence biocrust distribution, to a lesser 294 

extent than the factors mentioned above. For further insights, readers are encouraged to consult 295 

Chapter 10 of Biological Soil Crusts: An Organizing Principle in Drylands, which provides an 296 

overview of the control and distribution patterns of biocrusts from micro to global scales 297 

(Bowker et al., 2016). 298 

To sum up, climate is the most important factor influencing global biocrust distribution, 299 

especially in drylands where water is precious to the organisms. However, exploration of the 300 

roles of climatic factors such as rainfall seasonality and atmospheric drought still needs much 301 

further effort (Wright and Collins, 2024), especially in the context of global climate change. 302 

Although more attention has been paid to the physical properties of soils, the roles of their 303 
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chemical properties, such as the nitrogen (N) and phosphorus (P) content, need to be taken more 304 

seriously. Fire and disturbance are usually ignored. However, due to the trend towards warmer 305 

and drier environments, as well as increasing population and the need to sustain livelihoods, 306 

their influences on biocrust distribution may become more important. As one of the basic 307 

processes on a global scale, biogeographic isolation or changes in land use should be paid more 308 

attention to. With the increasing number of biocrust data points, we can expect this aspect will 309 

see a surge in research. 310 

Fig. 4 Biocrust distribution and its critical influencing factors. (a) Biocrust cover map and its 311 

influencing factors. (a) Global biocrust distribution, by random forest modelling. Based on a 312 

global biocrust database constructed by Chen et al., we expanded the biocrust data to 3848 313 

entries through literature compilation and field surveys and fitted them with four types of 314 

remotely sensed environmental data, including climate, land use, soil properties, and elevation, 315 

to finally predict the suitable areas for the biocrust distribution and quantify the biocrust cover. 316 

(b) Global average annual precipitation (1970-2020), data from the WorldClim database 317 

(version 2.1). (c) Global soil texture distribution, data from HWSD (Harmonized World Soil 318 

Database, version 1.2). Precipitation and soil texture were taken as examples of environmental 319 

factors. 320 

4. Challenges and Perspectives 321 
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Biocrusts play a crucial role in dryland ecosystems, making it essential to understand their 322 

current status and distribution dynamics. For influencing factors (Chapter 3), traditional 323 

observational studies and controlled experiments offer multiple perspectives of foundational 324 

knowledge. For assessing biocrust distribution patterns (Chapter 2), the methods shift from 325 

traditional approaches to spectral index, vegetation dynamics, and geospatial models that span 326 

multiple subjects like ecology, biology, geology, and computer science. However, high-327 

precision biocrust distribution data across geographic units remain scarce, and current research 328 

methods are still limited. To further advance studies of biocrust distribution, we propose the 329 

following aspects for consideration.  330 

5.1 Building standardized biocrusts database 331 

Currently, biocrust data are fragmented, low in volume, and derived from narrow sources, 332 

largely limiting spatial prediction from points to broader areas. Thus, we suggest that a global 333 

effort to build a standardized and specialized biocrusts database. This database should include 334 

consistent data items (such as main types and cover of biocrusts, latitude, longitude, and cover) 335 

and adhere to uniform inclusion criteria. Such a database is an important infrastructure for 336 

mapping global biocrust distribution, serving as the benchmark for training and validating 337 

spectral characteristics, DGVM, and geospatial models (Engel et al., 2023). Given the difficulty 338 

of conducting field surveys worldwide, compilating biocrust data from the published literature 339 

or other sources would be a primary approach (Fig. 4(a)). To date, several published studies 340 

have assembled 900 ~ 1,000 data on biocrust presence or absence from the literature (including 341 

584 data on biocrust cover) (Chen et al., 2020; Eldridge et al., 2020; Havrilla et al., 2019; 342 

Rodriguez-Caballero et al., 2018). However, compiling from literature largely comes to its 343 

limitations and is still far from building a standardized and specialized biocrusts database. 344 

While open databases are not specialized to biocrusts, some of them may provide valuable 345 

additions (Fig. 5). For instance, the biodiversity and specimen datasets such as GBIF and the 346 

Atlas of Living Australia (Belbin and Williams, 2015; García-Roselló et al., 2015) contain a 347 

large amount of information on species, including mosses and lichens (Table 2), potentially 348 

offering hundreds or even thousands of entries of biocrusts occurrence or cover. Similarly, 349 

global, national, and regional plant flora can significantly contribute to building the 350 
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standardized and specialized biocrusts database. For example, sPlot includes ~2 million 351 

vegetation plot data (Sabatini et al., 2021), and the European Vegetation Archive (EVA) also 352 

holds 1.6 million entries over the globe or Europe (Chytrý et al., 2016). Regional datasets like 353 

the Environmental Monitoring of Arid and Semiarid Regions (MARAS) have surveyed 426 sites 354 

(up to September 2020) and provided regular access to 624.50 km2 of rangeland vegetation 355 

spatial patterns, species diversity, soil functional indices, climatic data, and landscape 356 

photographs in the Patagonia region of Argentina and Chile (Oliva et al., 2020). Concerns about 357 

land use products are also necessary. Global land use maps, based on the PROBA-V sensor, 358 

which contain spatial information for the Moss & Lichen layer, have an annual update 359 

frequency and a resolution of 100 m. Additionally, an increasing number of amateurs contribute 360 

significantly to global species information entries through species identification apps, which 361 

are user-friendly and widely accessible. The citizen science project iNaturalist is a very good 362 

example (Wolf et al., 2022). Furthermore, when collecting and collating data from non-363 

academic sources, the combination of web crawlers and text analysis can help in obtaining 364 

biocrusts data and addressing key ecological issues.  365 
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 366 

Fig. 5 Potential approaches to building a standardized biocrusts database. (a) Distribution of 367 

lichens in the GBIF database with an example photo, (b) environmental monitors distribution 368 

map of MARAS database, (c) distribution of "mosses and lichens" in the PROBAV_LC100 369 

database (light yellow area) in northern Asia, for instance. 370 

Table 2 References for biocrusts database expansion channels 371 
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5.2 Improving non-vascular vegetation dynamic models 373 
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There are only two DGVMs applicable to non-vascular organisms – LiBry and ECHAM6-374 

HAM2-BIOCRUST (Rodriguez-Caballero et al., 2022). Despite their utility, these models still 375 

require performance improvements. Future directions for enhancing these models could include 376 

incorporating spatial self-organization of non-vascular organisms (Gassmann et al., 2000), the 377 

effects of fire (Thonicke et al., 2001), vegetation-environment feedback processes (Quillet et 378 

al., 2010), functional traits (Boulangeat et al., 2012), intraspecific-interspecific interactions 379 

(Boulangeat et al., 2014) and seasonal dynamics. Moreover, the physical properties, 380 

photosynthetic capacity, and carbon and nitrogen allocation of biocrusts change along 381 

environmental gradients in complex and context-dependent ways. These factors should be 382 

incorporated into DGVMs (Fatichi et al., 2019). Spatial-explicit DGVMs may be one key to 383 

effectively improving the accuracy of simulations in future studies, although they are data-384 

intensive. Also, biocrusts are significantly influenced by hydrological processes and, in turn, 385 

affect these processes (Chen et al., 2018; Whitney et al., 2017). However, ecohydrological 386 

models, which focus on hydrological processes, are rarely connected to global biocrust 387 

distribution predictions. (Jia et al., 2019) attempted to incorporate biocrusts cover as a system 388 

state variable in an ecohydrological model, investigating biocrusts cover under varying rainfall 389 

gradients. By feeding ecohydrological models with global environmental data, particularly 390 

hydrological variables, these models could offer a new approach to predicting biocrust 391 

distribution on a global scale. 392 

5.3 Integrated application of high-quality sensors 393 

The spectral characterization method lies in the differences in spectral reflectance of 394 

biocrusts and other land types at various wavelengths. Consequently, the accuracy of the results 395 

is contingent on the quality of the sensors used. Previous studies often employed a single sensor 396 

with fixed band intervals for distinguishing biocrusts, potentially missing critical spectral 397 

features of different land types (Chamizo et al., 2012a). If the biocrusts index can be constructed 398 

by combining and comparing the full-band spectral data from multiple terrestrial sensors and 399 

infrared cameras, and other devices, the errors will be reduced to a certain extent, thus 400 

improving the classification accuracy (Wang et al., 2022b). In addition, the unique advantages 401 

of hyperspectral data, which include large data volumes and narrow bands, allow for the 402 
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development of new biocrust discrimination standards when combined with observational data. 403 

If further estimation of biocrust cover can be achieved on this basis, it will be a significant 404 

contribution to the study of large-scale biocrust distribution (Rodríguez-Caballero et al., 2017). 405 

To date, high-resolution sensors have proven successful in monitoring lichens and mosses 406 

(Blanco-Sacristan et al., 2021), and the release of such products is something important to look 407 

out for in the future. 408 

5.4 Making full use of machine learning 409 

Machine learning can be combined with remote sensing products to uncover complex 410 

features from big data, enabling the prediction of global biocrust distribution (Collier et al., 411 

2022). This data-driven approach has powerful predictive capabilities, especially for mapping 412 

species distribution, and can largely avoid the errors of missing or misidentifying biocrusts 413 

caused by traditional methods (relying on field measurements to determine threshold ranges) 414 

(Wang et al., 2022b). In remote sensing image classification, mature machine learning 415 

algorithms include support vector machines, single decision trees, random forests, artificial 416 

neural networks, etc. (Yu et al., 2020). Ensemble models combining multiple algorithms have 417 

been widely used in the field of species distribution but have seen relatively few applications 418 

in biocrust prediction. In the future, using machine learning to identify parameters for dynamic 419 

models of biocrusts may be one of the most promising methods to predict biocrust distribution 420 

(Perry et al., 2022). 421 

5.5 Regional research synergy development 422 

Research on biocrust distribution has shown significant spatial and climatic imbalances. 423 

The study areas that have been conducted are relatively concentrated in countries such as China, 424 

the United States, Spain, Australia, and Israel. Although there are large areas of dryland 425 

distributed in Africa (other than South Africa), central Asia, central South America, and 426 

northern North America, research on biocrusts in these regions is scarce. These unbalanced 427 

regional research efforts constrain the advancement of studies on global biocrust distribution. 428 

Therefore, how to coordinate and promote the common progress of regional research is an 429 

urgent issue at present. Climatically, in addition to the drylands, the cold zones may be another 430 

important area to explore biocrust distribution (Pushkareva et al., 2016). On the Tibetan Plateau, 431 
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studies have investigated the spatial variation of different types of biocrust communities across 432 

climatic gradients and their effects on soil temperature features and freezing duration (Ming et 433 

al., 2022; Wei et al., 2022). These findings highlight the need for more studies on biocrust 434 

distribution in the alpine areas. 435 

5. Conclusion 436 

Biocrusts are of great significance to the ecohydrological processes, soil material cycling, 437 

landscape shaping, and biodiversity conservation in drylands. To date, numerous studies have 438 

tried to fill the knowledge gap in biocrust distribution at the regional scale. However, global-439 

scale research remains scarce, and mapping accuracy is still insufficient, directly leading to 440 

ambiguities in ecological function assessment and prediction. Therefore, advancing global-441 

scale biocrust distribution research requires a more comprehensive consideration of the 442 

applicability of previous methods and a broader knowledge base to help select environmental 443 

indicators. For future work in this field, we advocate for closer cooperation among scientists to 444 

build a global standardized database incorporating multiple sources of biocrust data. This effort 445 

should primarily focus on expanding biocrust data items in understudied regions where 446 

biocrusts have been reported, thereby creating a larger, multi-habitat training set. Meanwhile, 447 

modern learning tools, such as deep learning, should be broadly applied to high-quality sensor 448 

image segmentation, data classification, and model parameter tuning. Finally, long-term 449 

monitoring and simulation are necessary to better understand the dynamics of ecological 450 

restoration in drylands and the response of biocrusts to environmental changes. 451 
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