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Response to Referee #1

We thank Peter Ukkonen for his comments on our manuscript, which we will respond to below. To 
structure our response, his comments are printed on a gray background color, while our answers are  
displayed on ordinary white background.

Could you try to measure the number of floating point operations? This would give a direct measure 
of the cost. Reporting just the speed against the ten-stream implementation in Libradtran (a non 
operational code) is not that informative. Whether dynamic TenStream becomes a viable contender 
for NWP models will largely depend on how fast it eventually is, which depends both on the cost  
(number of FLOPs) and whether it can effectively exploit hardware (FLOPs per second). I agree 
with leaving this  second aspect  for  a  future paper to address but  the number of  floating point 
operations  could  easily  be  measured  with  GPTL (https://github.com/jmrosinski/GPTL)  or  other 
timing library built with PAPI.

By using GPTL, we were indeed able to quantify the number of floating point operations for all the 
solvers we use when applied to the very first time step of our shallow cumulus time series – except 
for the MYSTIC solver, whose timing would take a very long time:

solar spectral range thermal spectral range

δ-Eddington
1D two-stream solver

4.66 · 1010 FLOPS (x 1.00) 6.77 · 1010 FLOPS (x 1.00)

dynamic TenStream
incomplete 3D solver with 
two Gauß-Seidel iterations

2.20 · 1011 FLOPS (x 4.72) 2.78 · 1011 FLOPS (x 4.11)

original TenStream
full 3D solver

1.79 · 1012 FLOPS (x 38.44) 1.11 · 1012 FLOPS (x 16.46) 

However, we have decided to not include these numbers into the paper itself as GPTL printed out a 
few error  messages  during these  tests  that  we were  not  able  to  get  rid  of.  Hence,  we are  not  
completely sure how reliable these numbers are, although they in general confirm the relative speed 
numbers reported in Table 1 of the paper.

Besides that, we think that the number of floating-point operations is not an ideal measure of speed 
anyway. One of the primary computational expenditures in the (dynamic) TenStream solver for 
example is the retrieval of the TenStream coefficients from the corresponding look-up tables, which 
is mainly limited by memory bandwidth. On the other hand, calculating the Eddington coefficients 
in the δ-Eddington approximation is definitely faster, but features a significant amount of floating-
point operations, indicating that even the number of floating-point operations is not an objective 
measure of performance.

So as much as we understand the desire to have an objective measure of how fast our dynamic 
TenStream solver actually is, providing such a number is a difficult task. And as we already noted in 



the initial reply to your review, the main aim of this manuscript is to demonstrate the feasibility of  
the  concepts  behind  the  dynamic  TenStream  solver  and  not  to  compare  its  performance  to 
operational radiation codes. The only statement we wanted to make in terms of speed is that a solver 
using incomplete solves is pretty fast by its design, as it just performs a fraction of the computations 
a full solve does.

Regarding the second aspect, I am in fact a bit concerned that the Gauss Seidel implementation,  
even if divided into subdomains, won't be able to exploit SIMD vectorization on CPU's. (Perhaps 
GPU’s could be a better fit). You need not address this in the paper but do you think it would be a  
lot  of  work to write  a  Jacobi  implementation for  dynamic TenStream in the future in order to 
explore  which  gives  better  speed/accuracy  trade-off  on  different  hardware?  I  understand  its 
convergence speed is worse but it could turn out to be a reasonable trade-off if it allows SIMD 
vectorization and Gauss-Seidel  doesn’t,  especially  as  CPU hardware  is  moving towards  longer 
vector lengths with AVX-512 instructions being supported by newer CPU’s.

Implementing  the  Jacobi  method  into  the  dynamic  TenStream  solver  is  actually  a  pretty 
straightforward task and has already been done (but is not used by default). 

Multicolor or red-black Gauß-Seidel/SOR solvers allow to use shared memory parallelization and 
SIMD instructions and should also allow for reasonable vector lengths for GPU processing, albeit 
again reducing convergence speed. We agree that if a host model is targeting accelerators or vector 
machines one should investigate the respective performance.

Line 66. SPARTACUS was not designed for NWP specifically, in the original Hogan and Shonk 
(2013)  paper  the  authors  actually  talk  more  about  climate  models.  The  proliferation  of  (sub-)  
kilometer-scale NWP models arguably makes SPARTACUS more relevant for climate rather than 
NWP.

Thanks for pointing this out. By quantifying sub-grid scale 3D effects, SPARTACUS is indeed also 
relevant  for  climate  models.  But  since  especially  global-scale  NWP  models  still  operate  at 
resolutions where individual grid boxes contain both cloudy and cloud-free regions, these sub-grid 
scale 3D effects may also still play a role at the resolutions of currently employed NWP models.  
Hence we decided to change the expression “specifically designed for the use in NWP models” to 
“specifically designed for the use in large-scale models” for the second revision of the manuscript, 
as it was used in the introduction of the original SPARTACUS paper (Schäfer and Hogan, 2016).  
However, this change is no longer relevant due to the response to the following comment.

Line 67. This speed comparison is slightly out of date since SPARTACUS was recently sped-up by 
~3x via code optimization. A better comparison might be to TripleClouds, it’s fully 1D-counterpart, 
and to say it’s 3-5 times more slower than TripleClouds (citing Fig. 3 in Ukkonen and Hogan,  
2024). However, this is nitpicking sightly and it’s also OK to leave the older comparison (optimized  
SPARTACUS against an optimized McICA could still still be ~6x slower for all I know).

References:
Hogan,  R.  J.,  & Shonk,  J.  K.  (2013).  Incorporating the  effects  of  3D radiative  transfer  in  the 
presence  of  clouds  into  two-stream  multilayer  radiation  schemes.  Journal  of  the  Atmospheric 
Sciences, 70(2), 708-724.
Ukkonen, P., & Hogan, R. J. (2024). Twelve Times Faster yet Accurate: A New State‐Of‐The‐Art in 
Radiation Schemes via Performance and Spectral Optimization. Journal of Advances in Modeling 
Earth Systems, 16(1), e2023MS003932.

Thanks for pointing out this new, very interesting paper. In that regard, the speed comparison is 
indeed a bit outdated. Since we primarily wanted to refer to the currently relatively slow speed of  



inter-column 3D radiative transfer solvers, we decided to get rid of this comparison for the second 
revision of the paper, because SPARTACUS is addressing sub-grid scale rather than inter-column 
3D radiative effects and its significant speed-up is making the comparison pointless.

Response to Anonymous Referee #3

We thank Anonymous Referee  #3 for  his  or  her  comments  on our  manuscript,  which we will 
respond  to  below.  To  structure  our  response,  the  referee’s  comments  are  printed  on  a  gray 
background color, while our answers are displayed on ordinary white background.

I am satisfied with the authors' responses to my previous review. I feel that they have made a real  
effort to understand my questions and to take into account my suggestions when relevant (as well as 
those from other reviewers). In addition to minor changes, the revised version of the manuscript 
includes a new section with an analysis of the behaviour of the scheme as a function of the number 
of Gauss-Seidel iterations; a welcome addition! Some of my questions were not answered in the 
manuscript because the authors considered them out of scope, which I found very reasonable. I can 
only hope that their next papers will investigate these compensating errors in the thermal, or the 
idea of advecting flux fields along with the other meteorological fields, or accounting for subgrid 
heterogeneity...  In  the  meantime,  I  strongly  recommend  publication  -  after  the  four  remaining 
occurences of "almost perfectly" are removed!

Thank you for your positive response on the revised version of our manuscript. For the second 
revision, we have also removed the four remaining occurrences of “almost perfectly”. In particular, 
the following changes were made:

The sentence starting in l. 660 of the revised version was changed to: “At first glance, we can see 
that the results for the new solver are very similar to those obtained by the original TenStream 
solver in panel (b), even when operated at the low calling frequency of 60 s.”

In l. 703, we modified the corresponding sentence this way: “In summary, we can hence say that for  
both  the  solar  and  the  thermal  spectral  range,  dynamic  TenStream  is  able  to  visually  almost 
reproduce  the  results  obtained by the  original  TenStream solver,  even when operated  at  lower 
calling frequencies.”

The sentence starting in l. 739 was changed to: “In terms of heating rates, we saw that our new 
solver is almost able to reproduce the results of the original TenStream solver, even when operated 
at lower calling frequencies.”

And finally, we also modified the sentence starting in l. 762 to avoid the phrase “almost perfectly”:  
“de  Mourgues  et  al.  (2023)  for  example  showed  that  in  the  thermal  spectral  range,  even  30 
quadrature points are sufficient to calculate heating rates that are very similar to those obtained by a  
line-by-line calculation.”

References:

• Schäfer, S. A. K., Hogan, R. J., Klinger, C., Chiu, J. C., and Mayer, B.: Representing 3-D 
cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective 
cloud  edge  length,  Journal  of  Geophysical  Research:  Atmospheres,  121,  8567–8582, 
https://doi.org/10.1002/2016jd024876, 2016.


